hdlc_cisco.c 9.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Generic HDLC support routines for Linux
  4. * Cisco HDLC support
  5. *
  6. * Copyright (C) 2000 - 2006 Krzysztof Halasa <[email protected]>
  7. */
  8. #include <linux/errno.h>
  9. #include <linux/hdlc.h>
  10. #include <linux/if_arp.h>
  11. #include <linux/inetdevice.h>
  12. #include <linux/init.h>
  13. #include <linux/kernel.h>
  14. #include <linux/module.h>
  15. #include <linux/pkt_sched.h>
  16. #include <linux/poll.h>
  17. #include <linux/rtnetlink.h>
  18. #include <linux/skbuff.h>
  19. #undef DEBUG_HARD_HEADER
  20. #define CISCO_MULTICAST 0x8F /* Cisco multicast address */
  21. #define CISCO_UNICAST 0x0F /* Cisco unicast address */
  22. #define CISCO_KEEPALIVE 0x8035 /* Cisco keepalive protocol */
  23. #define CISCO_SYS_INFO 0x2000 /* Cisco interface/system info */
  24. #define CISCO_ADDR_REQ 0 /* Cisco address request */
  25. #define CISCO_ADDR_REPLY 1 /* Cisco address reply */
  26. #define CISCO_KEEPALIVE_REQ 2 /* Cisco keepalive request */
  27. struct hdlc_header {
  28. u8 address;
  29. u8 control;
  30. __be16 protocol;
  31. } __packed;
  32. struct cisco_packet {
  33. __be32 type; /* code */
  34. __be32 par1;
  35. __be32 par2;
  36. __be16 rel; /* reliability */
  37. __be32 time;
  38. } __packed;
  39. #define CISCO_PACKET_LEN 18
  40. #define CISCO_BIG_PACKET_LEN 20
  41. struct cisco_state {
  42. cisco_proto settings;
  43. struct timer_list timer;
  44. struct net_device *dev;
  45. spinlock_t lock;
  46. unsigned long last_poll;
  47. int up;
  48. u32 txseq; /* TX sequence number, 0 = none */
  49. u32 rxseq; /* RX sequence number */
  50. };
  51. static int cisco_ioctl(struct net_device *dev, struct if_settings *ifs);
  52. static inline struct cisco_state *state(hdlc_device *hdlc)
  53. {
  54. return (struct cisco_state *)hdlc->state;
  55. }
  56. static int cisco_hard_header(struct sk_buff *skb, struct net_device *dev,
  57. u16 type, const void *daddr, const void *saddr,
  58. unsigned int len)
  59. {
  60. struct hdlc_header *data;
  61. #ifdef DEBUG_HARD_HEADER
  62. netdev_dbg(dev, "%s called\n", __func__);
  63. #endif
  64. skb_push(skb, sizeof(struct hdlc_header));
  65. data = (struct hdlc_header *)skb->data;
  66. if (type == CISCO_KEEPALIVE)
  67. data->address = CISCO_MULTICAST;
  68. else
  69. data->address = CISCO_UNICAST;
  70. data->control = 0;
  71. data->protocol = htons(type);
  72. return sizeof(struct hdlc_header);
  73. }
  74. static void cisco_keepalive_send(struct net_device *dev, u32 type,
  75. __be32 par1, __be32 par2)
  76. {
  77. struct sk_buff *skb;
  78. struct cisco_packet *data;
  79. skb = dev_alloc_skb(sizeof(struct hdlc_header) +
  80. sizeof(struct cisco_packet));
  81. if (!skb)
  82. return;
  83. skb_reserve(skb, 4);
  84. cisco_hard_header(skb, dev, CISCO_KEEPALIVE, NULL, NULL, 0);
  85. data = (struct cisco_packet *)(skb->data + 4);
  86. data->type = htonl(type);
  87. data->par1 = par1;
  88. data->par2 = par2;
  89. data->rel = cpu_to_be16(0xFFFF);
  90. /* we will need do_div here if 1000 % HZ != 0 */
  91. data->time = htonl((jiffies - INITIAL_JIFFIES) * (1000 / HZ));
  92. skb_put(skb, sizeof(struct cisco_packet));
  93. skb->priority = TC_PRIO_CONTROL;
  94. skb->dev = dev;
  95. skb->protocol = htons(ETH_P_HDLC);
  96. skb_reset_network_header(skb);
  97. dev_queue_xmit(skb);
  98. }
  99. static __be16 cisco_type_trans(struct sk_buff *skb, struct net_device *dev)
  100. {
  101. struct hdlc_header *data = (struct hdlc_header *)skb->data;
  102. if (skb->len < sizeof(struct hdlc_header))
  103. return cpu_to_be16(ETH_P_HDLC);
  104. if (data->address != CISCO_MULTICAST &&
  105. data->address != CISCO_UNICAST)
  106. return cpu_to_be16(ETH_P_HDLC);
  107. switch (data->protocol) {
  108. case cpu_to_be16(ETH_P_IP):
  109. case cpu_to_be16(ETH_P_IPX):
  110. case cpu_to_be16(ETH_P_IPV6):
  111. skb_pull(skb, sizeof(struct hdlc_header));
  112. return data->protocol;
  113. default:
  114. return cpu_to_be16(ETH_P_HDLC);
  115. }
  116. }
  117. static int cisco_rx(struct sk_buff *skb)
  118. {
  119. struct net_device *dev = skb->dev;
  120. hdlc_device *hdlc = dev_to_hdlc(dev);
  121. struct cisco_state *st = state(hdlc);
  122. struct hdlc_header *data = (struct hdlc_header *)skb->data;
  123. struct cisco_packet *cisco_data;
  124. struct in_device *in_dev;
  125. __be32 addr, mask;
  126. u32 ack;
  127. if (skb->len < sizeof(struct hdlc_header))
  128. goto rx_error;
  129. if (data->address != CISCO_MULTICAST &&
  130. data->address != CISCO_UNICAST)
  131. goto rx_error;
  132. switch (ntohs(data->protocol)) {
  133. case CISCO_SYS_INFO:
  134. /* Packet is not needed, drop it. */
  135. dev_kfree_skb_any(skb);
  136. return NET_RX_SUCCESS;
  137. case CISCO_KEEPALIVE:
  138. if ((skb->len != sizeof(struct hdlc_header) +
  139. CISCO_PACKET_LEN) &&
  140. (skb->len != sizeof(struct hdlc_header) +
  141. CISCO_BIG_PACKET_LEN)) {
  142. netdev_info(dev, "Invalid length of Cisco control packet (%d bytes)\n",
  143. skb->len);
  144. goto rx_error;
  145. }
  146. cisco_data = (struct cisco_packet *)(skb->data + sizeof
  147. (struct hdlc_header));
  148. switch (ntohl(cisco_data->type)) {
  149. case CISCO_ADDR_REQ: /* Stolen from syncppp.c :-) */
  150. rcu_read_lock();
  151. in_dev = __in_dev_get_rcu(dev);
  152. addr = 0;
  153. mask = ~cpu_to_be32(0); /* is the mask correct? */
  154. if (in_dev != NULL) {
  155. const struct in_ifaddr *ifa;
  156. in_dev_for_each_ifa_rcu(ifa, in_dev) {
  157. if (strcmp(dev->name,
  158. ifa->ifa_label) == 0) {
  159. addr = ifa->ifa_local;
  160. mask = ifa->ifa_mask;
  161. break;
  162. }
  163. }
  164. cisco_keepalive_send(dev, CISCO_ADDR_REPLY,
  165. addr, mask);
  166. }
  167. rcu_read_unlock();
  168. dev_kfree_skb_any(skb);
  169. return NET_RX_SUCCESS;
  170. case CISCO_ADDR_REPLY:
  171. netdev_info(dev, "Unexpected Cisco IP address reply\n");
  172. goto rx_error;
  173. case CISCO_KEEPALIVE_REQ:
  174. spin_lock(&st->lock);
  175. st->rxseq = ntohl(cisco_data->par1);
  176. ack = ntohl(cisco_data->par2);
  177. if (ack && (ack == st->txseq ||
  178. /* our current REQ may be in transit */
  179. ack == st->txseq - 1)) {
  180. st->last_poll = jiffies;
  181. if (!st->up) {
  182. u32 sec, min, hrs, days;
  183. sec = ntohl(cisco_data->time) / 1000;
  184. min = sec / 60; sec -= min * 60;
  185. hrs = min / 60; min -= hrs * 60;
  186. days = hrs / 24; hrs -= days * 24;
  187. netdev_info(dev, "Link up (peer uptime %ud%uh%um%us)\n",
  188. days, hrs, min, sec);
  189. netif_dormant_off(dev);
  190. st->up = 1;
  191. }
  192. }
  193. spin_unlock(&st->lock);
  194. dev_kfree_skb_any(skb);
  195. return NET_RX_SUCCESS;
  196. } /* switch (keepalive type) */
  197. } /* switch (protocol) */
  198. netdev_info(dev, "Unsupported protocol %x\n", ntohs(data->protocol));
  199. dev_kfree_skb_any(skb);
  200. return NET_RX_DROP;
  201. rx_error:
  202. dev->stats.rx_errors++; /* Mark error */
  203. dev_kfree_skb_any(skb);
  204. return NET_RX_DROP;
  205. }
  206. static void cisco_timer(struct timer_list *t)
  207. {
  208. struct cisco_state *st = from_timer(st, t, timer);
  209. struct net_device *dev = st->dev;
  210. spin_lock(&st->lock);
  211. if (st->up &&
  212. time_after(jiffies, st->last_poll + st->settings.timeout * HZ)) {
  213. st->up = 0;
  214. netdev_info(dev, "Link down\n");
  215. netif_dormant_on(dev);
  216. }
  217. cisco_keepalive_send(dev, CISCO_KEEPALIVE_REQ, htonl(++st->txseq),
  218. htonl(st->rxseq));
  219. spin_unlock(&st->lock);
  220. st->timer.expires = jiffies + st->settings.interval * HZ;
  221. add_timer(&st->timer);
  222. }
  223. static void cisco_start(struct net_device *dev)
  224. {
  225. hdlc_device *hdlc = dev_to_hdlc(dev);
  226. struct cisco_state *st = state(hdlc);
  227. unsigned long flags;
  228. spin_lock_irqsave(&st->lock, flags);
  229. st->up = st->txseq = st->rxseq = 0;
  230. spin_unlock_irqrestore(&st->lock, flags);
  231. st->dev = dev;
  232. timer_setup(&st->timer, cisco_timer, 0);
  233. st->timer.expires = jiffies + HZ; /* First poll after 1 s */
  234. add_timer(&st->timer);
  235. }
  236. static void cisco_stop(struct net_device *dev)
  237. {
  238. hdlc_device *hdlc = dev_to_hdlc(dev);
  239. struct cisco_state *st = state(hdlc);
  240. unsigned long flags;
  241. del_timer_sync(&st->timer);
  242. spin_lock_irqsave(&st->lock, flags);
  243. netif_dormant_on(dev);
  244. st->up = st->txseq = 0;
  245. spin_unlock_irqrestore(&st->lock, flags);
  246. }
  247. static struct hdlc_proto proto = {
  248. .start = cisco_start,
  249. .stop = cisco_stop,
  250. .type_trans = cisco_type_trans,
  251. .ioctl = cisco_ioctl,
  252. .netif_rx = cisco_rx,
  253. .module = THIS_MODULE,
  254. };
  255. static const struct header_ops cisco_header_ops = {
  256. .create = cisco_hard_header,
  257. };
  258. static int cisco_ioctl(struct net_device *dev, struct if_settings *ifs)
  259. {
  260. cisco_proto __user *cisco_s = ifs->ifs_ifsu.cisco;
  261. const size_t size = sizeof(cisco_proto);
  262. cisco_proto new_settings;
  263. hdlc_device *hdlc = dev_to_hdlc(dev);
  264. int result;
  265. switch (ifs->type) {
  266. case IF_GET_PROTO:
  267. if (dev_to_hdlc(dev)->proto != &proto)
  268. return -EINVAL;
  269. ifs->type = IF_PROTO_CISCO;
  270. if (ifs->size < size) {
  271. ifs->size = size; /* data size wanted */
  272. return -ENOBUFS;
  273. }
  274. if (copy_to_user(cisco_s, &state(hdlc)->settings, size))
  275. return -EFAULT;
  276. return 0;
  277. case IF_PROTO_CISCO:
  278. if (!capable(CAP_NET_ADMIN))
  279. return -EPERM;
  280. if (dev->flags & IFF_UP)
  281. return -EBUSY;
  282. if (copy_from_user(&new_settings, cisco_s, size))
  283. return -EFAULT;
  284. if (new_settings.interval < 1 ||
  285. new_settings.timeout < 2)
  286. return -EINVAL;
  287. result = hdlc->attach(dev, ENCODING_NRZ,
  288. PARITY_CRC16_PR1_CCITT);
  289. if (result)
  290. return result;
  291. result = attach_hdlc_protocol(dev, &proto,
  292. sizeof(struct cisco_state));
  293. if (result)
  294. return result;
  295. memcpy(&state(hdlc)->settings, &new_settings, size);
  296. spin_lock_init(&state(hdlc)->lock);
  297. dev->header_ops = &cisco_header_ops;
  298. dev->hard_header_len = sizeof(struct hdlc_header);
  299. dev->type = ARPHRD_CISCO;
  300. call_netdevice_notifiers(NETDEV_POST_TYPE_CHANGE, dev);
  301. netif_dormant_on(dev);
  302. return 0;
  303. }
  304. return -EINVAL;
  305. }
  306. static int __init hdlc_cisco_init(void)
  307. {
  308. register_hdlc_protocol(&proto);
  309. return 0;
  310. }
  311. static void __exit hdlc_cisco_exit(void)
  312. {
  313. unregister_hdlc_protocol(&proto);
  314. }
  315. module_init(hdlc_cisco_init);
  316. module_exit(hdlc_cisco_exit);
  317. MODULE_AUTHOR("Krzysztof Halasa <[email protected]>");
  318. MODULE_DESCRIPTION("Cisco HDLC protocol support for generic HDLC");
  319. MODULE_LICENSE("GPL v2");