vrf.c 47 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072
  1. // SPDX-License-Identifier: GPL-2.0-or-later
  2. /*
  3. * vrf.c: device driver to encapsulate a VRF space
  4. *
  5. * Copyright (c) 2015 Cumulus Networks. All rights reserved.
  6. * Copyright (c) 2015 Shrijeet Mukherjee <[email protected]>
  7. * Copyright (c) 2015 David Ahern <[email protected]>
  8. *
  9. * Based on dummy, team and ipvlan drivers
  10. */
  11. #include <linux/ethtool.h>
  12. #include <linux/module.h>
  13. #include <linux/kernel.h>
  14. #include <linux/netdevice.h>
  15. #include <linux/etherdevice.h>
  16. #include <linux/ip.h>
  17. #include <linux/init.h>
  18. #include <linux/moduleparam.h>
  19. #include <linux/netfilter.h>
  20. #include <linux/rtnetlink.h>
  21. #include <net/rtnetlink.h>
  22. #include <linux/u64_stats_sync.h>
  23. #include <linux/hashtable.h>
  24. #include <linux/spinlock_types.h>
  25. #include <linux/inetdevice.h>
  26. #include <net/arp.h>
  27. #include <net/ip.h>
  28. #include <net/ip_fib.h>
  29. #include <net/ip6_fib.h>
  30. #include <net/ip6_route.h>
  31. #include <net/route.h>
  32. #include <net/addrconf.h>
  33. #include <net/l3mdev.h>
  34. #include <net/fib_rules.h>
  35. #include <net/sch_generic.h>
  36. #include <net/netns/generic.h>
  37. #include <net/netfilter/nf_conntrack.h>
  38. #define DRV_NAME "vrf"
  39. #define DRV_VERSION "1.1"
  40. #define FIB_RULE_PREF 1000 /* default preference for FIB rules */
  41. #define HT_MAP_BITS 4
  42. #define HASH_INITVAL ((u32)0xcafef00d)
  43. struct vrf_map {
  44. DECLARE_HASHTABLE(ht, HT_MAP_BITS);
  45. spinlock_t vmap_lock;
  46. /* shared_tables:
  47. * count how many distinct tables do not comply with the strict mode
  48. * requirement.
  49. * shared_tables value must be 0 in order to enable the strict mode.
  50. *
  51. * example of the evolution of shared_tables:
  52. * | time
  53. * add vrf0 --> table 100 shared_tables = 0 | t0
  54. * add vrf1 --> table 101 shared_tables = 0 | t1
  55. * add vrf2 --> table 100 shared_tables = 1 | t2
  56. * add vrf3 --> table 100 shared_tables = 1 | t3
  57. * add vrf4 --> table 101 shared_tables = 2 v t4
  58. *
  59. * shared_tables is a "step function" (or "staircase function")
  60. * and it is increased by one when the second vrf is associated to a
  61. * table.
  62. *
  63. * at t2, vrf0 and vrf2 are bound to table 100: shared_tables = 1.
  64. *
  65. * at t3, another dev (vrf3) is bound to the same table 100 but the
  66. * value of shared_tables is still 1.
  67. * This means that no matter how many new vrfs will register on the
  68. * table 100, the shared_tables will not increase (considering only
  69. * table 100).
  70. *
  71. * at t4, vrf4 is bound to table 101, and shared_tables = 2.
  72. *
  73. * Looking at the value of shared_tables we can immediately know if
  74. * the strict_mode can or cannot be enforced. Indeed, strict_mode
  75. * can be enforced iff shared_tables = 0.
  76. *
  77. * Conversely, shared_tables is decreased when a vrf is de-associated
  78. * from a table with exactly two associated vrfs.
  79. */
  80. u32 shared_tables;
  81. bool strict_mode;
  82. };
  83. struct vrf_map_elem {
  84. struct hlist_node hnode;
  85. struct list_head vrf_list; /* VRFs registered to this table */
  86. u32 table_id;
  87. int users;
  88. int ifindex;
  89. };
  90. static unsigned int vrf_net_id;
  91. /* per netns vrf data */
  92. struct netns_vrf {
  93. /* protected by rtnl lock */
  94. bool add_fib_rules;
  95. struct vrf_map vmap;
  96. struct ctl_table_header *ctl_hdr;
  97. };
  98. struct net_vrf {
  99. struct rtable __rcu *rth;
  100. struct rt6_info __rcu *rt6;
  101. #if IS_ENABLED(CONFIG_IPV6)
  102. struct fib6_table *fib6_table;
  103. #endif
  104. u32 tb_id;
  105. struct list_head me_list; /* entry in vrf_map_elem */
  106. int ifindex;
  107. };
  108. struct pcpu_dstats {
  109. u64 tx_pkts;
  110. u64 tx_bytes;
  111. u64 tx_drps;
  112. u64 rx_pkts;
  113. u64 rx_bytes;
  114. u64 rx_drps;
  115. struct u64_stats_sync syncp;
  116. };
  117. static void vrf_rx_stats(struct net_device *dev, int len)
  118. {
  119. struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
  120. u64_stats_update_begin(&dstats->syncp);
  121. dstats->rx_pkts++;
  122. dstats->rx_bytes += len;
  123. u64_stats_update_end(&dstats->syncp);
  124. }
  125. static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
  126. {
  127. vrf_dev->stats.tx_errors++;
  128. kfree_skb(skb);
  129. }
  130. static void vrf_get_stats64(struct net_device *dev,
  131. struct rtnl_link_stats64 *stats)
  132. {
  133. int i;
  134. for_each_possible_cpu(i) {
  135. const struct pcpu_dstats *dstats;
  136. u64 tbytes, tpkts, tdrops, rbytes, rpkts;
  137. unsigned int start;
  138. dstats = per_cpu_ptr(dev->dstats, i);
  139. do {
  140. start = u64_stats_fetch_begin_irq(&dstats->syncp);
  141. tbytes = dstats->tx_bytes;
  142. tpkts = dstats->tx_pkts;
  143. tdrops = dstats->tx_drps;
  144. rbytes = dstats->rx_bytes;
  145. rpkts = dstats->rx_pkts;
  146. } while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
  147. stats->tx_bytes += tbytes;
  148. stats->tx_packets += tpkts;
  149. stats->tx_dropped += tdrops;
  150. stats->rx_bytes += rbytes;
  151. stats->rx_packets += rpkts;
  152. }
  153. }
  154. static struct vrf_map *netns_vrf_map(struct net *net)
  155. {
  156. struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
  157. return &nn_vrf->vmap;
  158. }
  159. static struct vrf_map *netns_vrf_map_by_dev(struct net_device *dev)
  160. {
  161. return netns_vrf_map(dev_net(dev));
  162. }
  163. static int vrf_map_elem_get_vrf_ifindex(struct vrf_map_elem *me)
  164. {
  165. struct list_head *me_head = &me->vrf_list;
  166. struct net_vrf *vrf;
  167. if (list_empty(me_head))
  168. return -ENODEV;
  169. vrf = list_first_entry(me_head, struct net_vrf, me_list);
  170. return vrf->ifindex;
  171. }
  172. static struct vrf_map_elem *vrf_map_elem_alloc(gfp_t flags)
  173. {
  174. struct vrf_map_elem *me;
  175. me = kmalloc(sizeof(*me), flags);
  176. if (!me)
  177. return NULL;
  178. return me;
  179. }
  180. static void vrf_map_elem_free(struct vrf_map_elem *me)
  181. {
  182. kfree(me);
  183. }
  184. static void vrf_map_elem_init(struct vrf_map_elem *me, int table_id,
  185. int ifindex, int users)
  186. {
  187. me->table_id = table_id;
  188. me->ifindex = ifindex;
  189. me->users = users;
  190. INIT_LIST_HEAD(&me->vrf_list);
  191. }
  192. static struct vrf_map_elem *vrf_map_lookup_elem(struct vrf_map *vmap,
  193. u32 table_id)
  194. {
  195. struct vrf_map_elem *me;
  196. u32 key;
  197. key = jhash_1word(table_id, HASH_INITVAL);
  198. hash_for_each_possible(vmap->ht, me, hnode, key) {
  199. if (me->table_id == table_id)
  200. return me;
  201. }
  202. return NULL;
  203. }
  204. static void vrf_map_add_elem(struct vrf_map *vmap, struct vrf_map_elem *me)
  205. {
  206. u32 table_id = me->table_id;
  207. u32 key;
  208. key = jhash_1word(table_id, HASH_INITVAL);
  209. hash_add(vmap->ht, &me->hnode, key);
  210. }
  211. static void vrf_map_del_elem(struct vrf_map_elem *me)
  212. {
  213. hash_del(&me->hnode);
  214. }
  215. static void vrf_map_lock(struct vrf_map *vmap) __acquires(&vmap->vmap_lock)
  216. {
  217. spin_lock(&vmap->vmap_lock);
  218. }
  219. static void vrf_map_unlock(struct vrf_map *vmap) __releases(&vmap->vmap_lock)
  220. {
  221. spin_unlock(&vmap->vmap_lock);
  222. }
  223. /* called with rtnl lock held */
  224. static int
  225. vrf_map_register_dev(struct net_device *dev, struct netlink_ext_ack *extack)
  226. {
  227. struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
  228. struct net_vrf *vrf = netdev_priv(dev);
  229. struct vrf_map_elem *new_me, *me;
  230. u32 table_id = vrf->tb_id;
  231. bool free_new_me = false;
  232. int users;
  233. int res;
  234. /* we pre-allocate elements used in the spin-locked section (so that we
  235. * keep the spinlock as short as possible).
  236. */
  237. new_me = vrf_map_elem_alloc(GFP_KERNEL);
  238. if (!new_me)
  239. return -ENOMEM;
  240. vrf_map_elem_init(new_me, table_id, dev->ifindex, 0);
  241. vrf_map_lock(vmap);
  242. me = vrf_map_lookup_elem(vmap, table_id);
  243. if (!me) {
  244. me = new_me;
  245. vrf_map_add_elem(vmap, me);
  246. goto link_vrf;
  247. }
  248. /* we already have an entry in the vrf_map, so it means there is (at
  249. * least) a vrf registered on the specific table.
  250. */
  251. free_new_me = true;
  252. if (vmap->strict_mode) {
  253. /* vrfs cannot share the same table */
  254. NL_SET_ERR_MSG(extack, "Table is used by another VRF");
  255. res = -EBUSY;
  256. goto unlock;
  257. }
  258. link_vrf:
  259. users = ++me->users;
  260. if (users == 2)
  261. ++vmap->shared_tables;
  262. list_add(&vrf->me_list, &me->vrf_list);
  263. res = 0;
  264. unlock:
  265. vrf_map_unlock(vmap);
  266. /* clean-up, if needed */
  267. if (free_new_me)
  268. vrf_map_elem_free(new_me);
  269. return res;
  270. }
  271. /* called with rtnl lock held */
  272. static void vrf_map_unregister_dev(struct net_device *dev)
  273. {
  274. struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
  275. struct net_vrf *vrf = netdev_priv(dev);
  276. u32 table_id = vrf->tb_id;
  277. struct vrf_map_elem *me;
  278. int users;
  279. vrf_map_lock(vmap);
  280. me = vrf_map_lookup_elem(vmap, table_id);
  281. if (!me)
  282. goto unlock;
  283. list_del(&vrf->me_list);
  284. users = --me->users;
  285. if (users == 1) {
  286. --vmap->shared_tables;
  287. } else if (users == 0) {
  288. vrf_map_del_elem(me);
  289. /* no one will refer to this element anymore */
  290. vrf_map_elem_free(me);
  291. }
  292. unlock:
  293. vrf_map_unlock(vmap);
  294. }
  295. /* return the vrf device index associated with the table_id */
  296. static int vrf_ifindex_lookup_by_table_id(struct net *net, u32 table_id)
  297. {
  298. struct vrf_map *vmap = netns_vrf_map(net);
  299. struct vrf_map_elem *me;
  300. int ifindex;
  301. vrf_map_lock(vmap);
  302. if (!vmap->strict_mode) {
  303. ifindex = -EPERM;
  304. goto unlock;
  305. }
  306. me = vrf_map_lookup_elem(vmap, table_id);
  307. if (!me) {
  308. ifindex = -ENODEV;
  309. goto unlock;
  310. }
  311. ifindex = vrf_map_elem_get_vrf_ifindex(me);
  312. unlock:
  313. vrf_map_unlock(vmap);
  314. return ifindex;
  315. }
  316. /* by default VRF devices do not have a qdisc and are expected
  317. * to be created with only a single queue.
  318. */
  319. static bool qdisc_tx_is_default(const struct net_device *dev)
  320. {
  321. struct netdev_queue *txq;
  322. struct Qdisc *qdisc;
  323. if (dev->num_tx_queues > 1)
  324. return false;
  325. txq = netdev_get_tx_queue(dev, 0);
  326. qdisc = rcu_access_pointer(txq->qdisc);
  327. return !qdisc->enqueue;
  328. }
  329. /* Local traffic destined to local address. Reinsert the packet to rx
  330. * path, similar to loopback handling.
  331. */
  332. static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
  333. struct dst_entry *dst)
  334. {
  335. int len = skb->len;
  336. skb_orphan(skb);
  337. skb_dst_set(skb, dst);
  338. /* set pkt_type to avoid skb hitting packet taps twice -
  339. * once on Tx and again in Rx processing
  340. */
  341. skb->pkt_type = PACKET_LOOPBACK;
  342. skb->protocol = eth_type_trans(skb, dev);
  343. if (likely(__netif_rx(skb) == NET_RX_SUCCESS))
  344. vrf_rx_stats(dev, len);
  345. else
  346. this_cpu_inc(dev->dstats->rx_drps);
  347. return NETDEV_TX_OK;
  348. }
  349. static void vrf_nf_set_untracked(struct sk_buff *skb)
  350. {
  351. if (skb_get_nfct(skb) == 0)
  352. nf_ct_set(skb, NULL, IP_CT_UNTRACKED);
  353. }
  354. static void vrf_nf_reset_ct(struct sk_buff *skb)
  355. {
  356. if (skb_get_nfct(skb) == IP_CT_UNTRACKED)
  357. nf_reset_ct(skb);
  358. }
  359. #if IS_ENABLED(CONFIG_IPV6)
  360. static int vrf_ip6_local_out(struct net *net, struct sock *sk,
  361. struct sk_buff *skb)
  362. {
  363. int err;
  364. vrf_nf_reset_ct(skb);
  365. err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
  366. sk, skb, NULL, skb_dst(skb)->dev, dst_output);
  367. if (likely(err == 1))
  368. err = dst_output(net, sk, skb);
  369. return err;
  370. }
  371. static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
  372. struct net_device *dev)
  373. {
  374. const struct ipv6hdr *iph;
  375. struct net *net = dev_net(skb->dev);
  376. struct flowi6 fl6;
  377. int ret = NET_XMIT_DROP;
  378. struct dst_entry *dst;
  379. struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
  380. if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct ipv6hdr)))
  381. goto err;
  382. iph = ipv6_hdr(skb);
  383. memset(&fl6, 0, sizeof(fl6));
  384. /* needed to match OIF rule */
  385. fl6.flowi6_l3mdev = dev->ifindex;
  386. fl6.flowi6_iif = LOOPBACK_IFINDEX;
  387. fl6.daddr = iph->daddr;
  388. fl6.saddr = iph->saddr;
  389. fl6.flowlabel = ip6_flowinfo(iph);
  390. fl6.flowi6_mark = skb->mark;
  391. fl6.flowi6_proto = iph->nexthdr;
  392. dst = ip6_dst_lookup_flow(net, NULL, &fl6, NULL);
  393. if (IS_ERR(dst) || dst == dst_null)
  394. goto err;
  395. skb_dst_drop(skb);
  396. /* if dst.dev is the VRF device again this is locally originated traffic
  397. * destined to a local address. Short circuit to Rx path.
  398. */
  399. if (dst->dev == dev)
  400. return vrf_local_xmit(skb, dev, dst);
  401. skb_dst_set(skb, dst);
  402. /* strip the ethernet header added for pass through VRF device */
  403. __skb_pull(skb, skb_network_offset(skb));
  404. memset(IP6CB(skb), 0, sizeof(*IP6CB(skb)));
  405. ret = vrf_ip6_local_out(net, skb->sk, skb);
  406. if (unlikely(net_xmit_eval(ret)))
  407. dev->stats.tx_errors++;
  408. else
  409. ret = NET_XMIT_SUCCESS;
  410. return ret;
  411. err:
  412. vrf_tx_error(dev, skb);
  413. return NET_XMIT_DROP;
  414. }
  415. #else
  416. static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
  417. struct net_device *dev)
  418. {
  419. vrf_tx_error(dev, skb);
  420. return NET_XMIT_DROP;
  421. }
  422. #endif
  423. /* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
  424. static int vrf_ip_local_out(struct net *net, struct sock *sk,
  425. struct sk_buff *skb)
  426. {
  427. int err;
  428. vrf_nf_reset_ct(skb);
  429. err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
  430. skb, NULL, skb_dst(skb)->dev, dst_output);
  431. if (likely(err == 1))
  432. err = dst_output(net, sk, skb);
  433. return err;
  434. }
  435. static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
  436. struct net_device *vrf_dev)
  437. {
  438. struct iphdr *ip4h;
  439. int ret = NET_XMIT_DROP;
  440. struct flowi4 fl4;
  441. struct net *net = dev_net(vrf_dev);
  442. struct rtable *rt;
  443. if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct iphdr)))
  444. goto err;
  445. ip4h = ip_hdr(skb);
  446. memset(&fl4, 0, sizeof(fl4));
  447. /* needed to match OIF rule */
  448. fl4.flowi4_l3mdev = vrf_dev->ifindex;
  449. fl4.flowi4_iif = LOOPBACK_IFINDEX;
  450. fl4.flowi4_tos = RT_TOS(ip4h->tos);
  451. fl4.flowi4_flags = FLOWI_FLAG_ANYSRC;
  452. fl4.flowi4_proto = ip4h->protocol;
  453. fl4.daddr = ip4h->daddr;
  454. fl4.saddr = ip4h->saddr;
  455. rt = ip_route_output_flow(net, &fl4, NULL);
  456. if (IS_ERR(rt))
  457. goto err;
  458. skb_dst_drop(skb);
  459. /* if dst.dev is the VRF device again this is locally originated traffic
  460. * destined to a local address. Short circuit to Rx path.
  461. */
  462. if (rt->dst.dev == vrf_dev)
  463. return vrf_local_xmit(skb, vrf_dev, &rt->dst);
  464. skb_dst_set(skb, &rt->dst);
  465. /* strip the ethernet header added for pass through VRF device */
  466. __skb_pull(skb, skb_network_offset(skb));
  467. if (!ip4h->saddr) {
  468. ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
  469. RT_SCOPE_LINK);
  470. }
  471. memset(IPCB(skb), 0, sizeof(*IPCB(skb)));
  472. ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
  473. if (unlikely(net_xmit_eval(ret)))
  474. vrf_dev->stats.tx_errors++;
  475. else
  476. ret = NET_XMIT_SUCCESS;
  477. out:
  478. return ret;
  479. err:
  480. vrf_tx_error(vrf_dev, skb);
  481. goto out;
  482. }
  483. static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
  484. {
  485. switch (skb->protocol) {
  486. case htons(ETH_P_IP):
  487. return vrf_process_v4_outbound(skb, dev);
  488. case htons(ETH_P_IPV6):
  489. return vrf_process_v6_outbound(skb, dev);
  490. default:
  491. vrf_tx_error(dev, skb);
  492. return NET_XMIT_DROP;
  493. }
  494. }
  495. static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
  496. {
  497. int len = skb->len;
  498. netdev_tx_t ret = is_ip_tx_frame(skb, dev);
  499. if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
  500. struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
  501. u64_stats_update_begin(&dstats->syncp);
  502. dstats->tx_pkts++;
  503. dstats->tx_bytes += len;
  504. u64_stats_update_end(&dstats->syncp);
  505. } else {
  506. this_cpu_inc(dev->dstats->tx_drps);
  507. }
  508. return ret;
  509. }
  510. static void vrf_finish_direct(struct sk_buff *skb)
  511. {
  512. struct net_device *vrf_dev = skb->dev;
  513. if (!list_empty(&vrf_dev->ptype_all) &&
  514. likely(skb_headroom(skb) >= ETH_HLEN)) {
  515. struct ethhdr *eth = skb_push(skb, ETH_HLEN);
  516. ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
  517. eth_zero_addr(eth->h_dest);
  518. eth->h_proto = skb->protocol;
  519. rcu_read_lock_bh();
  520. dev_queue_xmit_nit(skb, vrf_dev);
  521. rcu_read_unlock_bh();
  522. skb_pull(skb, ETH_HLEN);
  523. }
  524. vrf_nf_reset_ct(skb);
  525. }
  526. #if IS_ENABLED(CONFIG_IPV6)
  527. /* modelled after ip6_finish_output2 */
  528. static int vrf_finish_output6(struct net *net, struct sock *sk,
  529. struct sk_buff *skb)
  530. {
  531. struct dst_entry *dst = skb_dst(skb);
  532. struct net_device *dev = dst->dev;
  533. const struct in6_addr *nexthop;
  534. struct neighbour *neigh;
  535. int ret;
  536. vrf_nf_reset_ct(skb);
  537. skb->protocol = htons(ETH_P_IPV6);
  538. skb->dev = dev;
  539. rcu_read_lock();
  540. nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
  541. neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
  542. if (unlikely(!neigh))
  543. neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
  544. if (!IS_ERR(neigh)) {
  545. sock_confirm_neigh(skb, neigh);
  546. ret = neigh_output(neigh, skb, false);
  547. rcu_read_unlock();
  548. return ret;
  549. }
  550. rcu_read_unlock();
  551. IP6_INC_STATS(dev_net(dst->dev),
  552. ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
  553. kfree_skb(skb);
  554. return -EINVAL;
  555. }
  556. /* modelled after ip6_output */
  557. static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
  558. {
  559. return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
  560. net, sk, skb, NULL, skb_dst(skb)->dev,
  561. vrf_finish_output6,
  562. !(IP6CB(skb)->flags & IP6SKB_REROUTED));
  563. }
  564. /* set dst on skb to send packet to us via dev_xmit path. Allows
  565. * packet to go through device based features such as qdisc, netfilter
  566. * hooks and packet sockets with skb->dev set to vrf device.
  567. */
  568. static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev,
  569. struct sk_buff *skb)
  570. {
  571. struct net_vrf *vrf = netdev_priv(vrf_dev);
  572. struct dst_entry *dst = NULL;
  573. struct rt6_info *rt6;
  574. rcu_read_lock();
  575. rt6 = rcu_dereference(vrf->rt6);
  576. if (likely(rt6)) {
  577. dst = &rt6->dst;
  578. dst_hold(dst);
  579. }
  580. rcu_read_unlock();
  581. if (unlikely(!dst)) {
  582. vrf_tx_error(vrf_dev, skb);
  583. return NULL;
  584. }
  585. skb_dst_drop(skb);
  586. skb_dst_set(skb, dst);
  587. return skb;
  588. }
  589. static int vrf_output6_direct_finish(struct net *net, struct sock *sk,
  590. struct sk_buff *skb)
  591. {
  592. vrf_finish_direct(skb);
  593. return vrf_ip6_local_out(net, sk, skb);
  594. }
  595. static int vrf_output6_direct(struct net *net, struct sock *sk,
  596. struct sk_buff *skb)
  597. {
  598. int err = 1;
  599. skb->protocol = htons(ETH_P_IPV6);
  600. if (!(IPCB(skb)->flags & IPSKB_REROUTED))
  601. err = nf_hook(NFPROTO_IPV6, NF_INET_POST_ROUTING, net, sk, skb,
  602. NULL, skb->dev, vrf_output6_direct_finish);
  603. if (likely(err == 1))
  604. vrf_finish_direct(skb);
  605. return err;
  606. }
  607. static int vrf_ip6_out_direct_finish(struct net *net, struct sock *sk,
  608. struct sk_buff *skb)
  609. {
  610. int err;
  611. err = vrf_output6_direct(net, sk, skb);
  612. if (likely(err == 1))
  613. err = vrf_ip6_local_out(net, sk, skb);
  614. return err;
  615. }
  616. static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev,
  617. struct sock *sk,
  618. struct sk_buff *skb)
  619. {
  620. struct net *net = dev_net(vrf_dev);
  621. int err;
  622. skb->dev = vrf_dev;
  623. err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk,
  624. skb, NULL, vrf_dev, vrf_ip6_out_direct_finish);
  625. if (likely(err == 1))
  626. err = vrf_output6_direct(net, sk, skb);
  627. if (likely(err == 1))
  628. return skb;
  629. return NULL;
  630. }
  631. static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
  632. struct sock *sk,
  633. struct sk_buff *skb)
  634. {
  635. /* don't divert link scope packets */
  636. if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
  637. return skb;
  638. vrf_nf_set_untracked(skb);
  639. if (qdisc_tx_is_default(vrf_dev) ||
  640. IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
  641. return vrf_ip6_out_direct(vrf_dev, sk, skb);
  642. return vrf_ip6_out_redirect(vrf_dev, skb);
  643. }
  644. /* holding rtnl */
  645. static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
  646. {
  647. struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
  648. struct net *net = dev_net(dev);
  649. struct dst_entry *dst;
  650. RCU_INIT_POINTER(vrf->rt6, NULL);
  651. synchronize_rcu();
  652. /* move dev in dst's to loopback so this VRF device can be deleted
  653. * - based on dst_ifdown
  654. */
  655. if (rt6) {
  656. dst = &rt6->dst;
  657. netdev_ref_replace(dst->dev, net->loopback_dev,
  658. &dst->dev_tracker, GFP_KERNEL);
  659. dst->dev = net->loopback_dev;
  660. dst_release(dst);
  661. }
  662. }
  663. static int vrf_rt6_create(struct net_device *dev)
  664. {
  665. int flags = DST_NOPOLICY | DST_NOXFRM;
  666. struct net_vrf *vrf = netdev_priv(dev);
  667. struct net *net = dev_net(dev);
  668. struct rt6_info *rt6;
  669. int rc = -ENOMEM;
  670. /* IPv6 can be CONFIG enabled and then disabled runtime */
  671. if (!ipv6_mod_enabled())
  672. return 0;
  673. vrf->fib6_table = fib6_new_table(net, vrf->tb_id);
  674. if (!vrf->fib6_table)
  675. goto out;
  676. /* create a dst for routing packets out a VRF device */
  677. rt6 = ip6_dst_alloc(net, dev, flags);
  678. if (!rt6)
  679. goto out;
  680. rt6->dst.output = vrf_output6;
  681. rcu_assign_pointer(vrf->rt6, rt6);
  682. rc = 0;
  683. out:
  684. return rc;
  685. }
  686. #else
  687. static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
  688. struct sock *sk,
  689. struct sk_buff *skb)
  690. {
  691. return skb;
  692. }
  693. static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
  694. {
  695. }
  696. static int vrf_rt6_create(struct net_device *dev)
  697. {
  698. return 0;
  699. }
  700. #endif
  701. /* modelled after ip_finish_output2 */
  702. static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
  703. {
  704. struct dst_entry *dst = skb_dst(skb);
  705. struct rtable *rt = (struct rtable *)dst;
  706. struct net_device *dev = dst->dev;
  707. unsigned int hh_len = LL_RESERVED_SPACE(dev);
  708. struct neighbour *neigh;
  709. bool is_v6gw = false;
  710. vrf_nf_reset_ct(skb);
  711. /* Be paranoid, rather than too clever. */
  712. if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
  713. skb = skb_expand_head(skb, hh_len);
  714. if (!skb) {
  715. dev->stats.tx_errors++;
  716. return -ENOMEM;
  717. }
  718. }
  719. rcu_read_lock();
  720. neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
  721. if (!IS_ERR(neigh)) {
  722. int ret;
  723. sock_confirm_neigh(skb, neigh);
  724. /* if crossing protocols, can not use the cached header */
  725. ret = neigh_output(neigh, skb, is_v6gw);
  726. rcu_read_unlock();
  727. return ret;
  728. }
  729. rcu_read_unlock();
  730. vrf_tx_error(skb->dev, skb);
  731. return -EINVAL;
  732. }
  733. static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
  734. {
  735. struct net_device *dev = skb_dst(skb)->dev;
  736. IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
  737. skb->dev = dev;
  738. skb->protocol = htons(ETH_P_IP);
  739. return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
  740. net, sk, skb, NULL, dev,
  741. vrf_finish_output,
  742. !(IPCB(skb)->flags & IPSKB_REROUTED));
  743. }
  744. /* set dst on skb to send packet to us via dev_xmit path. Allows
  745. * packet to go through device based features such as qdisc, netfilter
  746. * hooks and packet sockets with skb->dev set to vrf device.
  747. */
  748. static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev,
  749. struct sk_buff *skb)
  750. {
  751. struct net_vrf *vrf = netdev_priv(vrf_dev);
  752. struct dst_entry *dst = NULL;
  753. struct rtable *rth;
  754. rcu_read_lock();
  755. rth = rcu_dereference(vrf->rth);
  756. if (likely(rth)) {
  757. dst = &rth->dst;
  758. dst_hold(dst);
  759. }
  760. rcu_read_unlock();
  761. if (unlikely(!dst)) {
  762. vrf_tx_error(vrf_dev, skb);
  763. return NULL;
  764. }
  765. skb_dst_drop(skb);
  766. skb_dst_set(skb, dst);
  767. return skb;
  768. }
  769. static int vrf_output_direct_finish(struct net *net, struct sock *sk,
  770. struct sk_buff *skb)
  771. {
  772. vrf_finish_direct(skb);
  773. return vrf_ip_local_out(net, sk, skb);
  774. }
  775. static int vrf_output_direct(struct net *net, struct sock *sk,
  776. struct sk_buff *skb)
  777. {
  778. int err = 1;
  779. skb->protocol = htons(ETH_P_IP);
  780. if (!(IPCB(skb)->flags & IPSKB_REROUTED))
  781. err = nf_hook(NFPROTO_IPV4, NF_INET_POST_ROUTING, net, sk, skb,
  782. NULL, skb->dev, vrf_output_direct_finish);
  783. if (likely(err == 1))
  784. vrf_finish_direct(skb);
  785. return err;
  786. }
  787. static int vrf_ip_out_direct_finish(struct net *net, struct sock *sk,
  788. struct sk_buff *skb)
  789. {
  790. int err;
  791. err = vrf_output_direct(net, sk, skb);
  792. if (likely(err == 1))
  793. err = vrf_ip_local_out(net, sk, skb);
  794. return err;
  795. }
  796. static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev,
  797. struct sock *sk,
  798. struct sk_buff *skb)
  799. {
  800. struct net *net = dev_net(vrf_dev);
  801. int err;
  802. skb->dev = vrf_dev;
  803. err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
  804. skb, NULL, vrf_dev, vrf_ip_out_direct_finish);
  805. if (likely(err == 1))
  806. err = vrf_output_direct(net, sk, skb);
  807. if (likely(err == 1))
  808. return skb;
  809. return NULL;
  810. }
  811. static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
  812. struct sock *sk,
  813. struct sk_buff *skb)
  814. {
  815. /* don't divert multicast or local broadcast */
  816. if (ipv4_is_multicast(ip_hdr(skb)->daddr) ||
  817. ipv4_is_lbcast(ip_hdr(skb)->daddr))
  818. return skb;
  819. vrf_nf_set_untracked(skb);
  820. if (qdisc_tx_is_default(vrf_dev) ||
  821. IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
  822. return vrf_ip_out_direct(vrf_dev, sk, skb);
  823. return vrf_ip_out_redirect(vrf_dev, skb);
  824. }
  825. /* called with rcu lock held */
  826. static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
  827. struct sock *sk,
  828. struct sk_buff *skb,
  829. u16 proto)
  830. {
  831. switch (proto) {
  832. case AF_INET:
  833. return vrf_ip_out(vrf_dev, sk, skb);
  834. case AF_INET6:
  835. return vrf_ip6_out(vrf_dev, sk, skb);
  836. }
  837. return skb;
  838. }
  839. /* holding rtnl */
  840. static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
  841. {
  842. struct rtable *rth = rtnl_dereference(vrf->rth);
  843. struct net *net = dev_net(dev);
  844. struct dst_entry *dst;
  845. RCU_INIT_POINTER(vrf->rth, NULL);
  846. synchronize_rcu();
  847. /* move dev in dst's to loopback so this VRF device can be deleted
  848. * - based on dst_ifdown
  849. */
  850. if (rth) {
  851. dst = &rth->dst;
  852. netdev_ref_replace(dst->dev, net->loopback_dev,
  853. &dst->dev_tracker, GFP_KERNEL);
  854. dst->dev = net->loopback_dev;
  855. dst_release(dst);
  856. }
  857. }
  858. static int vrf_rtable_create(struct net_device *dev)
  859. {
  860. struct net_vrf *vrf = netdev_priv(dev);
  861. struct rtable *rth;
  862. if (!fib_new_table(dev_net(dev), vrf->tb_id))
  863. return -ENOMEM;
  864. /* create a dst for routing packets out through a VRF device */
  865. rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1);
  866. if (!rth)
  867. return -ENOMEM;
  868. rth->dst.output = vrf_output;
  869. rcu_assign_pointer(vrf->rth, rth);
  870. return 0;
  871. }
  872. /**************************** device handling ********************/
  873. /* cycle interface to flush neighbor cache and move routes across tables */
  874. static void cycle_netdev(struct net_device *dev,
  875. struct netlink_ext_ack *extack)
  876. {
  877. unsigned int flags = dev->flags;
  878. int ret;
  879. if (!netif_running(dev))
  880. return;
  881. ret = dev_change_flags(dev, flags & ~IFF_UP, extack);
  882. if (ret >= 0)
  883. ret = dev_change_flags(dev, flags, extack);
  884. if (ret < 0) {
  885. netdev_err(dev,
  886. "Failed to cycle device %s; route tables might be wrong!\n",
  887. dev->name);
  888. }
  889. }
  890. static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
  891. struct netlink_ext_ack *extack)
  892. {
  893. int ret;
  894. /* do not allow loopback device to be enslaved to a VRF.
  895. * The vrf device acts as the loopback for the vrf.
  896. */
  897. if (port_dev == dev_net(dev)->loopback_dev) {
  898. NL_SET_ERR_MSG(extack,
  899. "Can not enslave loopback device to a VRF");
  900. return -EOPNOTSUPP;
  901. }
  902. port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
  903. ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack);
  904. if (ret < 0)
  905. goto err;
  906. cycle_netdev(port_dev, extack);
  907. return 0;
  908. err:
  909. port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
  910. return ret;
  911. }
  912. static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
  913. struct netlink_ext_ack *extack)
  914. {
  915. if (netif_is_l3_master(port_dev)) {
  916. NL_SET_ERR_MSG(extack,
  917. "Can not enslave an L3 master device to a VRF");
  918. return -EINVAL;
  919. }
  920. if (netif_is_l3_slave(port_dev))
  921. return -EINVAL;
  922. return do_vrf_add_slave(dev, port_dev, extack);
  923. }
  924. /* inverse of do_vrf_add_slave */
  925. static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
  926. {
  927. netdev_upper_dev_unlink(port_dev, dev);
  928. port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
  929. cycle_netdev(port_dev, NULL);
  930. return 0;
  931. }
  932. static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
  933. {
  934. return do_vrf_del_slave(dev, port_dev);
  935. }
  936. static void vrf_dev_uninit(struct net_device *dev)
  937. {
  938. struct net_vrf *vrf = netdev_priv(dev);
  939. vrf_rtable_release(dev, vrf);
  940. vrf_rt6_release(dev, vrf);
  941. free_percpu(dev->dstats);
  942. dev->dstats = NULL;
  943. }
  944. static int vrf_dev_init(struct net_device *dev)
  945. {
  946. struct net_vrf *vrf = netdev_priv(dev);
  947. dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
  948. if (!dev->dstats)
  949. goto out_nomem;
  950. /* create the default dst which points back to us */
  951. if (vrf_rtable_create(dev) != 0)
  952. goto out_stats;
  953. if (vrf_rt6_create(dev) != 0)
  954. goto out_rth;
  955. dev->flags = IFF_MASTER | IFF_NOARP;
  956. /* similarly, oper state is irrelevant; set to up to avoid confusion */
  957. dev->operstate = IF_OPER_UP;
  958. netdev_lockdep_set_classes(dev);
  959. return 0;
  960. out_rth:
  961. vrf_rtable_release(dev, vrf);
  962. out_stats:
  963. free_percpu(dev->dstats);
  964. dev->dstats = NULL;
  965. out_nomem:
  966. return -ENOMEM;
  967. }
  968. static const struct net_device_ops vrf_netdev_ops = {
  969. .ndo_init = vrf_dev_init,
  970. .ndo_uninit = vrf_dev_uninit,
  971. .ndo_start_xmit = vrf_xmit,
  972. .ndo_set_mac_address = eth_mac_addr,
  973. .ndo_get_stats64 = vrf_get_stats64,
  974. .ndo_add_slave = vrf_add_slave,
  975. .ndo_del_slave = vrf_del_slave,
  976. };
  977. static u32 vrf_fib_table(const struct net_device *dev)
  978. {
  979. struct net_vrf *vrf = netdev_priv(dev);
  980. return vrf->tb_id;
  981. }
  982. static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
  983. {
  984. kfree_skb(skb);
  985. return 0;
  986. }
  987. static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
  988. struct sk_buff *skb,
  989. struct net_device *dev)
  990. {
  991. struct net *net = dev_net(dev);
  992. if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1)
  993. skb = NULL; /* kfree_skb(skb) handled by nf code */
  994. return skb;
  995. }
  996. static int vrf_prepare_mac_header(struct sk_buff *skb,
  997. struct net_device *vrf_dev, u16 proto)
  998. {
  999. struct ethhdr *eth;
  1000. int err;
  1001. /* in general, we do not know if there is enough space in the head of
  1002. * the packet for hosting the mac header.
  1003. */
  1004. err = skb_cow_head(skb, LL_RESERVED_SPACE(vrf_dev));
  1005. if (unlikely(err))
  1006. /* no space in the skb head */
  1007. return -ENOBUFS;
  1008. __skb_push(skb, ETH_HLEN);
  1009. eth = (struct ethhdr *)skb->data;
  1010. skb_reset_mac_header(skb);
  1011. skb_reset_mac_len(skb);
  1012. /* we set the ethernet destination and the source addresses to the
  1013. * address of the VRF device.
  1014. */
  1015. ether_addr_copy(eth->h_dest, vrf_dev->dev_addr);
  1016. ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
  1017. eth->h_proto = htons(proto);
  1018. /* the destination address of the Ethernet frame corresponds to the
  1019. * address set on the VRF interface; therefore, the packet is intended
  1020. * to be processed locally.
  1021. */
  1022. skb->protocol = eth->h_proto;
  1023. skb->pkt_type = PACKET_HOST;
  1024. skb_postpush_rcsum(skb, skb->data, ETH_HLEN);
  1025. skb_pull_inline(skb, ETH_HLEN);
  1026. return 0;
  1027. }
  1028. /* prepare and add the mac header to the packet if it was not set previously.
  1029. * In this way, packet sniffers such as tcpdump can parse the packet correctly.
  1030. * If the mac header was already set, the original mac header is left
  1031. * untouched and the function returns immediately.
  1032. */
  1033. static int vrf_add_mac_header_if_unset(struct sk_buff *skb,
  1034. struct net_device *vrf_dev,
  1035. u16 proto, struct net_device *orig_dev)
  1036. {
  1037. if (skb_mac_header_was_set(skb) && dev_has_header(orig_dev))
  1038. return 0;
  1039. return vrf_prepare_mac_header(skb, vrf_dev, proto);
  1040. }
  1041. #if IS_ENABLED(CONFIG_IPV6)
  1042. /* neighbor handling is done with actual device; do not want
  1043. * to flip skb->dev for those ndisc packets. This really fails
  1044. * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
  1045. * a start.
  1046. */
  1047. static bool ipv6_ndisc_frame(const struct sk_buff *skb)
  1048. {
  1049. const struct ipv6hdr *iph = ipv6_hdr(skb);
  1050. bool rc = false;
  1051. if (iph->nexthdr == NEXTHDR_ICMP) {
  1052. const struct icmp6hdr *icmph;
  1053. struct icmp6hdr _icmph;
  1054. icmph = skb_header_pointer(skb, sizeof(*iph),
  1055. sizeof(_icmph), &_icmph);
  1056. if (!icmph)
  1057. goto out;
  1058. switch (icmph->icmp6_type) {
  1059. case NDISC_ROUTER_SOLICITATION:
  1060. case NDISC_ROUTER_ADVERTISEMENT:
  1061. case NDISC_NEIGHBOUR_SOLICITATION:
  1062. case NDISC_NEIGHBOUR_ADVERTISEMENT:
  1063. case NDISC_REDIRECT:
  1064. rc = true;
  1065. break;
  1066. }
  1067. }
  1068. out:
  1069. return rc;
  1070. }
  1071. static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
  1072. const struct net_device *dev,
  1073. struct flowi6 *fl6,
  1074. int ifindex,
  1075. const struct sk_buff *skb,
  1076. int flags)
  1077. {
  1078. struct net_vrf *vrf = netdev_priv(dev);
  1079. return ip6_pol_route(net, vrf->fib6_table, ifindex, fl6, skb, flags);
  1080. }
  1081. static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
  1082. int ifindex)
  1083. {
  1084. const struct ipv6hdr *iph = ipv6_hdr(skb);
  1085. struct flowi6 fl6 = {
  1086. .flowi6_iif = ifindex,
  1087. .flowi6_mark = skb->mark,
  1088. .flowi6_proto = iph->nexthdr,
  1089. .daddr = iph->daddr,
  1090. .saddr = iph->saddr,
  1091. .flowlabel = ip6_flowinfo(iph),
  1092. };
  1093. struct net *net = dev_net(vrf_dev);
  1094. struct rt6_info *rt6;
  1095. rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, skb,
  1096. RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
  1097. if (unlikely(!rt6))
  1098. return;
  1099. if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
  1100. return;
  1101. skb_dst_set(skb, &rt6->dst);
  1102. }
  1103. static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
  1104. struct sk_buff *skb)
  1105. {
  1106. int orig_iif = skb->skb_iif;
  1107. bool need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
  1108. bool is_ndisc = ipv6_ndisc_frame(skb);
  1109. /* loopback, multicast & non-ND link-local traffic; do not push through
  1110. * packet taps again. Reset pkt_type for upper layers to process skb.
  1111. * For non-loopback strict packets, determine the dst using the original
  1112. * ifindex.
  1113. */
  1114. if (skb->pkt_type == PACKET_LOOPBACK || (need_strict && !is_ndisc)) {
  1115. skb->dev = vrf_dev;
  1116. skb->skb_iif = vrf_dev->ifindex;
  1117. IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
  1118. if (skb->pkt_type == PACKET_LOOPBACK)
  1119. skb->pkt_type = PACKET_HOST;
  1120. else
  1121. vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
  1122. goto out;
  1123. }
  1124. /* if packet is NDISC then keep the ingress interface */
  1125. if (!is_ndisc) {
  1126. struct net_device *orig_dev = skb->dev;
  1127. vrf_rx_stats(vrf_dev, skb->len);
  1128. skb->dev = vrf_dev;
  1129. skb->skb_iif = vrf_dev->ifindex;
  1130. if (!list_empty(&vrf_dev->ptype_all)) {
  1131. int err;
  1132. err = vrf_add_mac_header_if_unset(skb, vrf_dev,
  1133. ETH_P_IPV6,
  1134. orig_dev);
  1135. if (likely(!err)) {
  1136. skb_push(skb, skb->mac_len);
  1137. dev_queue_xmit_nit(skb, vrf_dev);
  1138. skb_pull(skb, skb->mac_len);
  1139. }
  1140. }
  1141. IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
  1142. }
  1143. if (need_strict)
  1144. vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
  1145. skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
  1146. out:
  1147. return skb;
  1148. }
  1149. #else
  1150. static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
  1151. struct sk_buff *skb)
  1152. {
  1153. return skb;
  1154. }
  1155. #endif
  1156. static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
  1157. struct sk_buff *skb)
  1158. {
  1159. struct net_device *orig_dev = skb->dev;
  1160. skb->dev = vrf_dev;
  1161. skb->skb_iif = vrf_dev->ifindex;
  1162. IPCB(skb)->flags |= IPSKB_L3SLAVE;
  1163. if (ipv4_is_multicast(ip_hdr(skb)->daddr))
  1164. goto out;
  1165. /* loopback traffic; do not push through packet taps again.
  1166. * Reset pkt_type for upper layers to process skb
  1167. */
  1168. if (skb->pkt_type == PACKET_LOOPBACK) {
  1169. skb->pkt_type = PACKET_HOST;
  1170. goto out;
  1171. }
  1172. vrf_rx_stats(vrf_dev, skb->len);
  1173. if (!list_empty(&vrf_dev->ptype_all)) {
  1174. int err;
  1175. err = vrf_add_mac_header_if_unset(skb, vrf_dev, ETH_P_IP,
  1176. orig_dev);
  1177. if (likely(!err)) {
  1178. skb_push(skb, skb->mac_len);
  1179. dev_queue_xmit_nit(skb, vrf_dev);
  1180. skb_pull(skb, skb->mac_len);
  1181. }
  1182. }
  1183. skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
  1184. out:
  1185. return skb;
  1186. }
  1187. /* called with rcu lock held */
  1188. static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
  1189. struct sk_buff *skb,
  1190. u16 proto)
  1191. {
  1192. switch (proto) {
  1193. case AF_INET:
  1194. return vrf_ip_rcv(vrf_dev, skb);
  1195. case AF_INET6:
  1196. return vrf_ip6_rcv(vrf_dev, skb);
  1197. }
  1198. return skb;
  1199. }
  1200. #if IS_ENABLED(CONFIG_IPV6)
  1201. /* send to link-local or multicast address via interface enslaved to
  1202. * VRF device. Force lookup to VRF table without changing flow struct
  1203. * Note: Caller to this function must hold rcu_read_lock() and no refcnt
  1204. * is taken on the dst by this function.
  1205. */
  1206. static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
  1207. struct flowi6 *fl6)
  1208. {
  1209. struct net *net = dev_net(dev);
  1210. int flags = RT6_LOOKUP_F_IFACE | RT6_LOOKUP_F_DST_NOREF;
  1211. struct dst_entry *dst = NULL;
  1212. struct rt6_info *rt;
  1213. /* VRF device does not have a link-local address and
  1214. * sending packets to link-local or mcast addresses over
  1215. * a VRF device does not make sense
  1216. */
  1217. if (fl6->flowi6_oif == dev->ifindex) {
  1218. dst = &net->ipv6.ip6_null_entry->dst;
  1219. return dst;
  1220. }
  1221. if (!ipv6_addr_any(&fl6->saddr))
  1222. flags |= RT6_LOOKUP_F_HAS_SADDR;
  1223. rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, NULL, flags);
  1224. if (rt)
  1225. dst = &rt->dst;
  1226. return dst;
  1227. }
  1228. #endif
  1229. static const struct l3mdev_ops vrf_l3mdev_ops = {
  1230. .l3mdev_fib_table = vrf_fib_table,
  1231. .l3mdev_l3_rcv = vrf_l3_rcv,
  1232. .l3mdev_l3_out = vrf_l3_out,
  1233. #if IS_ENABLED(CONFIG_IPV6)
  1234. .l3mdev_link_scope_lookup = vrf_link_scope_lookup,
  1235. #endif
  1236. };
  1237. static void vrf_get_drvinfo(struct net_device *dev,
  1238. struct ethtool_drvinfo *info)
  1239. {
  1240. strscpy(info->driver, DRV_NAME, sizeof(info->driver));
  1241. strscpy(info->version, DRV_VERSION, sizeof(info->version));
  1242. }
  1243. static const struct ethtool_ops vrf_ethtool_ops = {
  1244. .get_drvinfo = vrf_get_drvinfo,
  1245. };
  1246. static inline size_t vrf_fib_rule_nl_size(void)
  1247. {
  1248. size_t sz;
  1249. sz = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
  1250. sz += nla_total_size(sizeof(u8)); /* FRA_L3MDEV */
  1251. sz += nla_total_size(sizeof(u32)); /* FRA_PRIORITY */
  1252. sz += nla_total_size(sizeof(u8)); /* FRA_PROTOCOL */
  1253. return sz;
  1254. }
  1255. static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
  1256. {
  1257. struct fib_rule_hdr *frh;
  1258. struct nlmsghdr *nlh;
  1259. struct sk_buff *skb;
  1260. int err;
  1261. if ((family == AF_INET6 || family == RTNL_FAMILY_IP6MR) &&
  1262. !ipv6_mod_enabled())
  1263. return 0;
  1264. skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
  1265. if (!skb)
  1266. return -ENOMEM;
  1267. nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
  1268. if (!nlh)
  1269. goto nla_put_failure;
  1270. /* rule only needs to appear once */
  1271. nlh->nlmsg_flags |= NLM_F_EXCL;
  1272. frh = nlmsg_data(nlh);
  1273. memset(frh, 0, sizeof(*frh));
  1274. frh->family = family;
  1275. frh->action = FR_ACT_TO_TBL;
  1276. if (nla_put_u8(skb, FRA_PROTOCOL, RTPROT_KERNEL))
  1277. goto nla_put_failure;
  1278. if (nla_put_u8(skb, FRA_L3MDEV, 1))
  1279. goto nla_put_failure;
  1280. if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
  1281. goto nla_put_failure;
  1282. nlmsg_end(skb, nlh);
  1283. /* fib_nl_{new,del}rule handling looks for net from skb->sk */
  1284. skb->sk = dev_net(dev)->rtnl;
  1285. if (add_it) {
  1286. err = fib_nl_newrule(skb, nlh, NULL);
  1287. if (err == -EEXIST)
  1288. err = 0;
  1289. } else {
  1290. err = fib_nl_delrule(skb, nlh, NULL);
  1291. if (err == -ENOENT)
  1292. err = 0;
  1293. }
  1294. nlmsg_free(skb);
  1295. return err;
  1296. nla_put_failure:
  1297. nlmsg_free(skb);
  1298. return -EMSGSIZE;
  1299. }
  1300. static int vrf_add_fib_rules(const struct net_device *dev)
  1301. {
  1302. int err;
  1303. err = vrf_fib_rule(dev, AF_INET, true);
  1304. if (err < 0)
  1305. goto out_err;
  1306. err = vrf_fib_rule(dev, AF_INET6, true);
  1307. if (err < 0)
  1308. goto ipv6_err;
  1309. #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
  1310. err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
  1311. if (err < 0)
  1312. goto ipmr_err;
  1313. #endif
  1314. #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
  1315. err = vrf_fib_rule(dev, RTNL_FAMILY_IP6MR, true);
  1316. if (err < 0)
  1317. goto ip6mr_err;
  1318. #endif
  1319. return 0;
  1320. #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
  1321. ip6mr_err:
  1322. vrf_fib_rule(dev, RTNL_FAMILY_IPMR, false);
  1323. #endif
  1324. #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
  1325. ipmr_err:
  1326. vrf_fib_rule(dev, AF_INET6, false);
  1327. #endif
  1328. ipv6_err:
  1329. vrf_fib_rule(dev, AF_INET, false);
  1330. out_err:
  1331. netdev_err(dev, "Failed to add FIB rules.\n");
  1332. return err;
  1333. }
  1334. static void vrf_setup(struct net_device *dev)
  1335. {
  1336. ether_setup(dev);
  1337. /* Initialize the device structure. */
  1338. dev->netdev_ops = &vrf_netdev_ops;
  1339. dev->l3mdev_ops = &vrf_l3mdev_ops;
  1340. dev->ethtool_ops = &vrf_ethtool_ops;
  1341. dev->needs_free_netdev = true;
  1342. /* Fill in device structure with ethernet-generic values. */
  1343. eth_hw_addr_random(dev);
  1344. /* don't acquire vrf device's netif_tx_lock when transmitting */
  1345. dev->features |= NETIF_F_LLTX;
  1346. /* don't allow vrf devices to change network namespaces. */
  1347. dev->features |= NETIF_F_NETNS_LOCAL;
  1348. /* does not make sense for a VLAN to be added to a vrf device */
  1349. dev->features |= NETIF_F_VLAN_CHALLENGED;
  1350. /* enable offload features */
  1351. dev->features |= NETIF_F_GSO_SOFTWARE;
  1352. dev->features |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC;
  1353. dev->features |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
  1354. dev->hw_features = dev->features;
  1355. dev->hw_enc_features = dev->features;
  1356. /* default to no qdisc; user can add if desired */
  1357. dev->priv_flags |= IFF_NO_QUEUE;
  1358. dev->priv_flags |= IFF_NO_RX_HANDLER;
  1359. dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
  1360. /* VRF devices do not care about MTU, but if the MTU is set
  1361. * too low then the ipv4 and ipv6 protocols are disabled
  1362. * which breaks networking.
  1363. */
  1364. dev->min_mtu = IPV6_MIN_MTU;
  1365. dev->max_mtu = IP6_MAX_MTU;
  1366. dev->mtu = dev->max_mtu;
  1367. }
  1368. static int vrf_validate(struct nlattr *tb[], struct nlattr *data[],
  1369. struct netlink_ext_ack *extack)
  1370. {
  1371. if (tb[IFLA_ADDRESS]) {
  1372. if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) {
  1373. NL_SET_ERR_MSG(extack, "Invalid hardware address");
  1374. return -EINVAL;
  1375. }
  1376. if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) {
  1377. NL_SET_ERR_MSG(extack, "Invalid hardware address");
  1378. return -EADDRNOTAVAIL;
  1379. }
  1380. }
  1381. return 0;
  1382. }
  1383. static void vrf_dellink(struct net_device *dev, struct list_head *head)
  1384. {
  1385. struct net_device *port_dev;
  1386. struct list_head *iter;
  1387. netdev_for_each_lower_dev(dev, port_dev, iter)
  1388. vrf_del_slave(dev, port_dev);
  1389. vrf_map_unregister_dev(dev);
  1390. unregister_netdevice_queue(dev, head);
  1391. }
  1392. static int vrf_newlink(struct net *src_net, struct net_device *dev,
  1393. struct nlattr *tb[], struct nlattr *data[],
  1394. struct netlink_ext_ack *extack)
  1395. {
  1396. struct net_vrf *vrf = netdev_priv(dev);
  1397. struct netns_vrf *nn_vrf;
  1398. bool *add_fib_rules;
  1399. struct net *net;
  1400. int err;
  1401. if (!data || !data[IFLA_VRF_TABLE]) {
  1402. NL_SET_ERR_MSG(extack, "VRF table id is missing");
  1403. return -EINVAL;
  1404. }
  1405. vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
  1406. if (vrf->tb_id == RT_TABLE_UNSPEC) {
  1407. NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE],
  1408. "Invalid VRF table id");
  1409. return -EINVAL;
  1410. }
  1411. dev->priv_flags |= IFF_L3MDEV_MASTER;
  1412. err = register_netdevice(dev);
  1413. if (err)
  1414. goto out;
  1415. /* mapping between table_id and vrf;
  1416. * note: such binding could not be done in the dev init function
  1417. * because dev->ifindex id is not available yet.
  1418. */
  1419. vrf->ifindex = dev->ifindex;
  1420. err = vrf_map_register_dev(dev, extack);
  1421. if (err) {
  1422. unregister_netdevice(dev);
  1423. goto out;
  1424. }
  1425. net = dev_net(dev);
  1426. nn_vrf = net_generic(net, vrf_net_id);
  1427. add_fib_rules = &nn_vrf->add_fib_rules;
  1428. if (*add_fib_rules) {
  1429. err = vrf_add_fib_rules(dev);
  1430. if (err) {
  1431. vrf_map_unregister_dev(dev);
  1432. unregister_netdevice(dev);
  1433. goto out;
  1434. }
  1435. *add_fib_rules = false;
  1436. }
  1437. out:
  1438. return err;
  1439. }
  1440. static size_t vrf_nl_getsize(const struct net_device *dev)
  1441. {
  1442. return nla_total_size(sizeof(u32)); /* IFLA_VRF_TABLE */
  1443. }
  1444. static int vrf_fillinfo(struct sk_buff *skb,
  1445. const struct net_device *dev)
  1446. {
  1447. struct net_vrf *vrf = netdev_priv(dev);
  1448. return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
  1449. }
  1450. static size_t vrf_get_slave_size(const struct net_device *bond_dev,
  1451. const struct net_device *slave_dev)
  1452. {
  1453. return nla_total_size(sizeof(u32)); /* IFLA_VRF_PORT_TABLE */
  1454. }
  1455. static int vrf_fill_slave_info(struct sk_buff *skb,
  1456. const struct net_device *vrf_dev,
  1457. const struct net_device *slave_dev)
  1458. {
  1459. struct net_vrf *vrf = netdev_priv(vrf_dev);
  1460. if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
  1461. return -EMSGSIZE;
  1462. return 0;
  1463. }
  1464. static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
  1465. [IFLA_VRF_TABLE] = { .type = NLA_U32 },
  1466. };
  1467. static struct rtnl_link_ops vrf_link_ops __read_mostly = {
  1468. .kind = DRV_NAME,
  1469. .priv_size = sizeof(struct net_vrf),
  1470. .get_size = vrf_nl_getsize,
  1471. .policy = vrf_nl_policy,
  1472. .validate = vrf_validate,
  1473. .fill_info = vrf_fillinfo,
  1474. .get_slave_size = vrf_get_slave_size,
  1475. .fill_slave_info = vrf_fill_slave_info,
  1476. .newlink = vrf_newlink,
  1477. .dellink = vrf_dellink,
  1478. .setup = vrf_setup,
  1479. .maxtype = IFLA_VRF_MAX,
  1480. };
  1481. static int vrf_device_event(struct notifier_block *unused,
  1482. unsigned long event, void *ptr)
  1483. {
  1484. struct net_device *dev = netdev_notifier_info_to_dev(ptr);
  1485. /* only care about unregister events to drop slave references */
  1486. if (event == NETDEV_UNREGISTER) {
  1487. struct net_device *vrf_dev;
  1488. if (!netif_is_l3_slave(dev))
  1489. goto out;
  1490. vrf_dev = netdev_master_upper_dev_get(dev);
  1491. vrf_del_slave(vrf_dev, dev);
  1492. }
  1493. out:
  1494. return NOTIFY_DONE;
  1495. }
  1496. static struct notifier_block vrf_notifier_block __read_mostly = {
  1497. .notifier_call = vrf_device_event,
  1498. };
  1499. static int vrf_map_init(struct vrf_map *vmap)
  1500. {
  1501. spin_lock_init(&vmap->vmap_lock);
  1502. hash_init(vmap->ht);
  1503. vmap->strict_mode = false;
  1504. return 0;
  1505. }
  1506. #ifdef CONFIG_SYSCTL
  1507. static bool vrf_strict_mode(struct vrf_map *vmap)
  1508. {
  1509. bool strict_mode;
  1510. vrf_map_lock(vmap);
  1511. strict_mode = vmap->strict_mode;
  1512. vrf_map_unlock(vmap);
  1513. return strict_mode;
  1514. }
  1515. static int vrf_strict_mode_change(struct vrf_map *vmap, bool new_mode)
  1516. {
  1517. bool *cur_mode;
  1518. int res = 0;
  1519. vrf_map_lock(vmap);
  1520. cur_mode = &vmap->strict_mode;
  1521. if (*cur_mode == new_mode)
  1522. goto unlock;
  1523. if (*cur_mode) {
  1524. /* disable strict mode */
  1525. *cur_mode = false;
  1526. } else {
  1527. if (vmap->shared_tables) {
  1528. /* we cannot allow strict_mode because there are some
  1529. * vrfs that share one or more tables.
  1530. */
  1531. res = -EBUSY;
  1532. goto unlock;
  1533. }
  1534. /* no tables are shared among vrfs, so we can go back
  1535. * to 1:1 association between a vrf with its table.
  1536. */
  1537. *cur_mode = true;
  1538. }
  1539. unlock:
  1540. vrf_map_unlock(vmap);
  1541. return res;
  1542. }
  1543. static int vrf_shared_table_handler(struct ctl_table *table, int write,
  1544. void *buffer, size_t *lenp, loff_t *ppos)
  1545. {
  1546. struct net *net = (struct net *)table->extra1;
  1547. struct vrf_map *vmap = netns_vrf_map(net);
  1548. int proc_strict_mode = 0;
  1549. struct ctl_table tmp = {
  1550. .procname = table->procname,
  1551. .data = &proc_strict_mode,
  1552. .maxlen = sizeof(int),
  1553. .mode = table->mode,
  1554. .extra1 = SYSCTL_ZERO,
  1555. .extra2 = SYSCTL_ONE,
  1556. };
  1557. int ret;
  1558. if (!write)
  1559. proc_strict_mode = vrf_strict_mode(vmap);
  1560. ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
  1561. if (write && ret == 0)
  1562. ret = vrf_strict_mode_change(vmap, (bool)proc_strict_mode);
  1563. return ret;
  1564. }
  1565. static const struct ctl_table vrf_table[] = {
  1566. {
  1567. .procname = "strict_mode",
  1568. .data = NULL,
  1569. .maxlen = sizeof(int),
  1570. .mode = 0644,
  1571. .proc_handler = vrf_shared_table_handler,
  1572. /* set by the vrf_netns_init */
  1573. .extra1 = NULL,
  1574. },
  1575. { },
  1576. };
  1577. static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
  1578. {
  1579. struct ctl_table *table;
  1580. table = kmemdup(vrf_table, sizeof(vrf_table), GFP_KERNEL);
  1581. if (!table)
  1582. return -ENOMEM;
  1583. /* init the extra1 parameter with the reference to current netns */
  1584. table[0].extra1 = net;
  1585. nn_vrf->ctl_hdr = register_net_sysctl(net, "net/vrf", table);
  1586. if (!nn_vrf->ctl_hdr) {
  1587. kfree(table);
  1588. return -ENOMEM;
  1589. }
  1590. return 0;
  1591. }
  1592. static void vrf_netns_exit_sysctl(struct net *net)
  1593. {
  1594. struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
  1595. struct ctl_table *table;
  1596. table = nn_vrf->ctl_hdr->ctl_table_arg;
  1597. unregister_net_sysctl_table(nn_vrf->ctl_hdr);
  1598. kfree(table);
  1599. }
  1600. #else
  1601. static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
  1602. {
  1603. return 0;
  1604. }
  1605. static void vrf_netns_exit_sysctl(struct net *net)
  1606. {
  1607. }
  1608. #endif
  1609. /* Initialize per network namespace state */
  1610. static int __net_init vrf_netns_init(struct net *net)
  1611. {
  1612. struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
  1613. nn_vrf->add_fib_rules = true;
  1614. vrf_map_init(&nn_vrf->vmap);
  1615. return vrf_netns_init_sysctl(net, nn_vrf);
  1616. }
  1617. static void __net_exit vrf_netns_exit(struct net *net)
  1618. {
  1619. vrf_netns_exit_sysctl(net);
  1620. }
  1621. static struct pernet_operations vrf_net_ops __net_initdata = {
  1622. .init = vrf_netns_init,
  1623. .exit = vrf_netns_exit,
  1624. .id = &vrf_net_id,
  1625. .size = sizeof(struct netns_vrf),
  1626. };
  1627. static int __init vrf_init_module(void)
  1628. {
  1629. int rc;
  1630. register_netdevice_notifier(&vrf_notifier_block);
  1631. rc = register_pernet_subsys(&vrf_net_ops);
  1632. if (rc < 0)
  1633. goto error;
  1634. rc = l3mdev_table_lookup_register(L3MDEV_TYPE_VRF,
  1635. vrf_ifindex_lookup_by_table_id);
  1636. if (rc < 0)
  1637. goto unreg_pernet;
  1638. rc = rtnl_link_register(&vrf_link_ops);
  1639. if (rc < 0)
  1640. goto table_lookup_unreg;
  1641. return 0;
  1642. table_lookup_unreg:
  1643. l3mdev_table_lookup_unregister(L3MDEV_TYPE_VRF,
  1644. vrf_ifindex_lookup_by_table_id);
  1645. unreg_pernet:
  1646. unregister_pernet_subsys(&vrf_net_ops);
  1647. error:
  1648. unregister_netdevice_notifier(&vrf_notifier_block);
  1649. return rc;
  1650. }
  1651. module_init(vrf_init_module);
  1652. MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
  1653. MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
  1654. MODULE_LICENSE("GPL");
  1655. MODULE_ALIAS_RTNL_LINK(DRV_NAME);
  1656. MODULE_VERSION(DRV_VERSION);