veth.c 44 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * drivers/net/veth.c
  4. *
  5. * Copyright (C) 2007 OpenVZ http://openvz.org, SWsoft Inc
  6. *
  7. * Author: Pavel Emelianov <[email protected]>
  8. * Ethtool interface from: Eric W. Biederman <[email protected]>
  9. *
  10. */
  11. #include <linux/netdevice.h>
  12. #include <linux/slab.h>
  13. #include <linux/ethtool.h>
  14. #include <linux/etherdevice.h>
  15. #include <linux/u64_stats_sync.h>
  16. #include <net/rtnetlink.h>
  17. #include <net/dst.h>
  18. #include <net/xfrm.h>
  19. #include <net/xdp.h>
  20. #include <linux/veth.h>
  21. #include <linux/module.h>
  22. #include <linux/bpf.h>
  23. #include <linux/filter.h>
  24. #include <linux/ptr_ring.h>
  25. #include <linux/bpf_trace.h>
  26. #include <linux/net_tstamp.h>
  27. #define DRV_NAME "veth"
  28. #define DRV_VERSION "1.0"
  29. #define VETH_XDP_FLAG BIT(0)
  30. #define VETH_RING_SIZE 256
  31. #define VETH_XDP_HEADROOM (XDP_PACKET_HEADROOM + NET_IP_ALIGN)
  32. #define VETH_XDP_TX_BULK_SIZE 16
  33. #define VETH_XDP_BATCH 16
  34. struct veth_stats {
  35. u64 rx_drops;
  36. /* xdp */
  37. u64 xdp_packets;
  38. u64 xdp_bytes;
  39. u64 xdp_redirect;
  40. u64 xdp_drops;
  41. u64 xdp_tx;
  42. u64 xdp_tx_err;
  43. u64 peer_tq_xdp_xmit;
  44. u64 peer_tq_xdp_xmit_err;
  45. };
  46. struct veth_rq_stats {
  47. struct veth_stats vs;
  48. struct u64_stats_sync syncp;
  49. };
  50. struct veth_rq {
  51. struct napi_struct xdp_napi;
  52. struct napi_struct __rcu *napi; /* points to xdp_napi when the latter is initialized */
  53. struct net_device *dev;
  54. struct bpf_prog __rcu *xdp_prog;
  55. struct xdp_mem_info xdp_mem;
  56. struct veth_rq_stats stats;
  57. bool rx_notify_masked;
  58. struct ptr_ring xdp_ring;
  59. struct xdp_rxq_info xdp_rxq;
  60. };
  61. struct veth_priv {
  62. struct net_device __rcu *peer;
  63. atomic64_t dropped;
  64. struct bpf_prog *_xdp_prog;
  65. struct veth_rq *rq;
  66. unsigned int requested_headroom;
  67. };
  68. struct veth_xdp_tx_bq {
  69. struct xdp_frame *q[VETH_XDP_TX_BULK_SIZE];
  70. unsigned int count;
  71. };
  72. /*
  73. * ethtool interface
  74. */
  75. struct veth_q_stat_desc {
  76. char desc[ETH_GSTRING_LEN];
  77. size_t offset;
  78. };
  79. #define VETH_RQ_STAT(m) offsetof(struct veth_stats, m)
  80. static const struct veth_q_stat_desc veth_rq_stats_desc[] = {
  81. { "xdp_packets", VETH_RQ_STAT(xdp_packets) },
  82. { "xdp_bytes", VETH_RQ_STAT(xdp_bytes) },
  83. { "drops", VETH_RQ_STAT(rx_drops) },
  84. { "xdp_redirect", VETH_RQ_STAT(xdp_redirect) },
  85. { "xdp_drops", VETH_RQ_STAT(xdp_drops) },
  86. { "xdp_tx", VETH_RQ_STAT(xdp_tx) },
  87. { "xdp_tx_errors", VETH_RQ_STAT(xdp_tx_err) },
  88. };
  89. #define VETH_RQ_STATS_LEN ARRAY_SIZE(veth_rq_stats_desc)
  90. static const struct veth_q_stat_desc veth_tq_stats_desc[] = {
  91. { "xdp_xmit", VETH_RQ_STAT(peer_tq_xdp_xmit) },
  92. { "xdp_xmit_errors", VETH_RQ_STAT(peer_tq_xdp_xmit_err) },
  93. };
  94. #define VETH_TQ_STATS_LEN ARRAY_SIZE(veth_tq_stats_desc)
  95. static struct {
  96. const char string[ETH_GSTRING_LEN];
  97. } ethtool_stats_keys[] = {
  98. { "peer_ifindex" },
  99. };
  100. static int veth_get_link_ksettings(struct net_device *dev,
  101. struct ethtool_link_ksettings *cmd)
  102. {
  103. cmd->base.speed = SPEED_10000;
  104. cmd->base.duplex = DUPLEX_FULL;
  105. cmd->base.port = PORT_TP;
  106. cmd->base.autoneg = AUTONEG_DISABLE;
  107. return 0;
  108. }
  109. static void veth_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  110. {
  111. strscpy(info->driver, DRV_NAME, sizeof(info->driver));
  112. strscpy(info->version, DRV_VERSION, sizeof(info->version));
  113. }
  114. static void veth_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
  115. {
  116. u8 *p = buf;
  117. int i, j;
  118. switch(stringset) {
  119. case ETH_SS_STATS:
  120. memcpy(p, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
  121. p += sizeof(ethtool_stats_keys);
  122. for (i = 0; i < dev->real_num_rx_queues; i++)
  123. for (j = 0; j < VETH_RQ_STATS_LEN; j++)
  124. ethtool_sprintf(&p, "rx_queue_%u_%.18s",
  125. i, veth_rq_stats_desc[j].desc);
  126. for (i = 0; i < dev->real_num_tx_queues; i++)
  127. for (j = 0; j < VETH_TQ_STATS_LEN; j++)
  128. ethtool_sprintf(&p, "tx_queue_%u_%.18s",
  129. i, veth_tq_stats_desc[j].desc);
  130. break;
  131. }
  132. }
  133. static int veth_get_sset_count(struct net_device *dev, int sset)
  134. {
  135. switch (sset) {
  136. case ETH_SS_STATS:
  137. return ARRAY_SIZE(ethtool_stats_keys) +
  138. VETH_RQ_STATS_LEN * dev->real_num_rx_queues +
  139. VETH_TQ_STATS_LEN * dev->real_num_tx_queues;
  140. default:
  141. return -EOPNOTSUPP;
  142. }
  143. }
  144. static void veth_get_ethtool_stats(struct net_device *dev,
  145. struct ethtool_stats *stats, u64 *data)
  146. {
  147. struct veth_priv *rcv_priv, *priv = netdev_priv(dev);
  148. struct net_device *peer = rtnl_dereference(priv->peer);
  149. int i, j, idx;
  150. data[0] = peer ? peer->ifindex : 0;
  151. idx = 1;
  152. for (i = 0; i < dev->real_num_rx_queues; i++) {
  153. const struct veth_rq_stats *rq_stats = &priv->rq[i].stats;
  154. const void *stats_base = (void *)&rq_stats->vs;
  155. unsigned int start;
  156. size_t offset;
  157. do {
  158. start = u64_stats_fetch_begin_irq(&rq_stats->syncp);
  159. for (j = 0; j < VETH_RQ_STATS_LEN; j++) {
  160. offset = veth_rq_stats_desc[j].offset;
  161. data[idx + j] = *(u64 *)(stats_base + offset);
  162. }
  163. } while (u64_stats_fetch_retry_irq(&rq_stats->syncp, start));
  164. idx += VETH_RQ_STATS_LEN;
  165. }
  166. if (!peer)
  167. return;
  168. rcv_priv = netdev_priv(peer);
  169. for (i = 0; i < peer->real_num_rx_queues; i++) {
  170. const struct veth_rq_stats *rq_stats = &rcv_priv->rq[i].stats;
  171. const void *base = (void *)&rq_stats->vs;
  172. unsigned int start, tx_idx = idx;
  173. size_t offset;
  174. tx_idx += (i % dev->real_num_tx_queues) * VETH_TQ_STATS_LEN;
  175. do {
  176. start = u64_stats_fetch_begin_irq(&rq_stats->syncp);
  177. for (j = 0; j < VETH_TQ_STATS_LEN; j++) {
  178. offset = veth_tq_stats_desc[j].offset;
  179. data[tx_idx + j] += *(u64 *)(base + offset);
  180. }
  181. } while (u64_stats_fetch_retry_irq(&rq_stats->syncp, start));
  182. }
  183. }
  184. static void veth_get_channels(struct net_device *dev,
  185. struct ethtool_channels *channels)
  186. {
  187. channels->tx_count = dev->real_num_tx_queues;
  188. channels->rx_count = dev->real_num_rx_queues;
  189. channels->max_tx = dev->num_tx_queues;
  190. channels->max_rx = dev->num_rx_queues;
  191. }
  192. static int veth_set_channels(struct net_device *dev,
  193. struct ethtool_channels *ch);
  194. static const struct ethtool_ops veth_ethtool_ops = {
  195. .get_drvinfo = veth_get_drvinfo,
  196. .get_link = ethtool_op_get_link,
  197. .get_strings = veth_get_strings,
  198. .get_sset_count = veth_get_sset_count,
  199. .get_ethtool_stats = veth_get_ethtool_stats,
  200. .get_link_ksettings = veth_get_link_ksettings,
  201. .get_ts_info = ethtool_op_get_ts_info,
  202. .get_channels = veth_get_channels,
  203. .set_channels = veth_set_channels,
  204. };
  205. /* general routines */
  206. static bool veth_is_xdp_frame(void *ptr)
  207. {
  208. return (unsigned long)ptr & VETH_XDP_FLAG;
  209. }
  210. static struct xdp_frame *veth_ptr_to_xdp(void *ptr)
  211. {
  212. return (void *)((unsigned long)ptr & ~VETH_XDP_FLAG);
  213. }
  214. static void *veth_xdp_to_ptr(struct xdp_frame *xdp)
  215. {
  216. return (void *)((unsigned long)xdp | VETH_XDP_FLAG);
  217. }
  218. static void veth_ptr_free(void *ptr)
  219. {
  220. if (veth_is_xdp_frame(ptr))
  221. xdp_return_frame(veth_ptr_to_xdp(ptr));
  222. else
  223. kfree_skb(ptr);
  224. }
  225. static void __veth_xdp_flush(struct veth_rq *rq)
  226. {
  227. /* Write ptr_ring before reading rx_notify_masked */
  228. smp_mb();
  229. if (!READ_ONCE(rq->rx_notify_masked) &&
  230. napi_schedule_prep(&rq->xdp_napi)) {
  231. WRITE_ONCE(rq->rx_notify_masked, true);
  232. __napi_schedule(&rq->xdp_napi);
  233. }
  234. }
  235. static int veth_xdp_rx(struct veth_rq *rq, struct sk_buff *skb)
  236. {
  237. if (unlikely(ptr_ring_produce(&rq->xdp_ring, skb))) {
  238. dev_kfree_skb_any(skb);
  239. return NET_RX_DROP;
  240. }
  241. return NET_RX_SUCCESS;
  242. }
  243. static int veth_forward_skb(struct net_device *dev, struct sk_buff *skb,
  244. struct veth_rq *rq, bool xdp)
  245. {
  246. return __dev_forward_skb(dev, skb) ?: xdp ?
  247. veth_xdp_rx(rq, skb) :
  248. __netif_rx(skb);
  249. }
  250. /* return true if the specified skb has chances of GRO aggregation
  251. * Don't strive for accuracy, but try to avoid GRO overhead in the most
  252. * common scenarios.
  253. * When XDP is enabled, all traffic is considered eligible, as the xmit
  254. * device has TSO off.
  255. * When TSO is enabled on the xmit device, we are likely interested only
  256. * in UDP aggregation, explicitly check for that if the skb is suspected
  257. * - the sock_wfree destructor is used by UDP, ICMP and XDP sockets -
  258. * to belong to locally generated UDP traffic.
  259. */
  260. static bool veth_skb_is_eligible_for_gro(const struct net_device *dev,
  261. const struct net_device *rcv,
  262. const struct sk_buff *skb)
  263. {
  264. return !(dev->features & NETIF_F_ALL_TSO) ||
  265. (skb->destructor == sock_wfree &&
  266. rcv->features & (NETIF_F_GRO_FRAGLIST | NETIF_F_GRO_UDP_FWD));
  267. }
  268. static netdev_tx_t veth_xmit(struct sk_buff *skb, struct net_device *dev)
  269. {
  270. struct veth_priv *rcv_priv, *priv = netdev_priv(dev);
  271. struct veth_rq *rq = NULL;
  272. int ret = NETDEV_TX_OK;
  273. struct net_device *rcv;
  274. int length = skb->len;
  275. bool use_napi = false;
  276. int rxq;
  277. rcu_read_lock();
  278. rcv = rcu_dereference(priv->peer);
  279. if (unlikely(!rcv) || !pskb_may_pull(skb, ETH_HLEN)) {
  280. kfree_skb(skb);
  281. goto drop;
  282. }
  283. rcv_priv = netdev_priv(rcv);
  284. rxq = skb_get_queue_mapping(skb);
  285. if (rxq < rcv->real_num_rx_queues) {
  286. rq = &rcv_priv->rq[rxq];
  287. /* The napi pointer is available when an XDP program is
  288. * attached or when GRO is enabled
  289. * Don't bother with napi/GRO if the skb can't be aggregated
  290. */
  291. use_napi = rcu_access_pointer(rq->napi) &&
  292. veth_skb_is_eligible_for_gro(dev, rcv, skb);
  293. }
  294. skb_tx_timestamp(skb);
  295. if (likely(veth_forward_skb(rcv, skb, rq, use_napi) == NET_RX_SUCCESS)) {
  296. if (!use_napi)
  297. dev_lstats_add(dev, length);
  298. } else {
  299. drop:
  300. atomic64_inc(&priv->dropped);
  301. ret = NET_XMIT_DROP;
  302. }
  303. if (use_napi)
  304. __veth_xdp_flush(rq);
  305. rcu_read_unlock();
  306. return ret;
  307. }
  308. static u64 veth_stats_tx(struct net_device *dev, u64 *packets, u64 *bytes)
  309. {
  310. struct veth_priv *priv = netdev_priv(dev);
  311. dev_lstats_read(dev, packets, bytes);
  312. return atomic64_read(&priv->dropped);
  313. }
  314. static void veth_stats_rx(struct veth_stats *result, struct net_device *dev)
  315. {
  316. struct veth_priv *priv = netdev_priv(dev);
  317. int i;
  318. result->peer_tq_xdp_xmit_err = 0;
  319. result->xdp_packets = 0;
  320. result->xdp_tx_err = 0;
  321. result->xdp_bytes = 0;
  322. result->rx_drops = 0;
  323. for (i = 0; i < dev->num_rx_queues; i++) {
  324. u64 packets, bytes, drops, xdp_tx_err, peer_tq_xdp_xmit_err;
  325. struct veth_rq_stats *stats = &priv->rq[i].stats;
  326. unsigned int start;
  327. do {
  328. start = u64_stats_fetch_begin_irq(&stats->syncp);
  329. peer_tq_xdp_xmit_err = stats->vs.peer_tq_xdp_xmit_err;
  330. xdp_tx_err = stats->vs.xdp_tx_err;
  331. packets = stats->vs.xdp_packets;
  332. bytes = stats->vs.xdp_bytes;
  333. drops = stats->vs.rx_drops;
  334. } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
  335. result->peer_tq_xdp_xmit_err += peer_tq_xdp_xmit_err;
  336. result->xdp_tx_err += xdp_tx_err;
  337. result->xdp_packets += packets;
  338. result->xdp_bytes += bytes;
  339. result->rx_drops += drops;
  340. }
  341. }
  342. static void veth_get_stats64(struct net_device *dev,
  343. struct rtnl_link_stats64 *tot)
  344. {
  345. struct veth_priv *priv = netdev_priv(dev);
  346. struct net_device *peer;
  347. struct veth_stats rx;
  348. u64 packets, bytes;
  349. tot->tx_dropped = veth_stats_tx(dev, &packets, &bytes);
  350. tot->tx_bytes = bytes;
  351. tot->tx_packets = packets;
  352. veth_stats_rx(&rx, dev);
  353. tot->tx_dropped += rx.xdp_tx_err;
  354. tot->rx_dropped = rx.rx_drops + rx.peer_tq_xdp_xmit_err;
  355. tot->rx_bytes = rx.xdp_bytes;
  356. tot->rx_packets = rx.xdp_packets;
  357. rcu_read_lock();
  358. peer = rcu_dereference(priv->peer);
  359. if (peer) {
  360. veth_stats_tx(peer, &packets, &bytes);
  361. tot->rx_bytes += bytes;
  362. tot->rx_packets += packets;
  363. veth_stats_rx(&rx, peer);
  364. tot->tx_dropped += rx.peer_tq_xdp_xmit_err;
  365. tot->rx_dropped += rx.xdp_tx_err;
  366. tot->tx_bytes += rx.xdp_bytes;
  367. tot->tx_packets += rx.xdp_packets;
  368. }
  369. rcu_read_unlock();
  370. }
  371. /* fake multicast ability */
  372. static void veth_set_multicast_list(struct net_device *dev)
  373. {
  374. }
  375. static int veth_select_rxq(struct net_device *dev)
  376. {
  377. return smp_processor_id() % dev->real_num_rx_queues;
  378. }
  379. static struct net_device *veth_peer_dev(struct net_device *dev)
  380. {
  381. struct veth_priv *priv = netdev_priv(dev);
  382. /* Callers must be under RCU read side. */
  383. return rcu_dereference(priv->peer);
  384. }
  385. static int veth_xdp_xmit(struct net_device *dev, int n,
  386. struct xdp_frame **frames,
  387. u32 flags, bool ndo_xmit)
  388. {
  389. struct veth_priv *rcv_priv, *priv = netdev_priv(dev);
  390. int i, ret = -ENXIO, nxmit = 0;
  391. struct net_device *rcv;
  392. unsigned int max_len;
  393. struct veth_rq *rq;
  394. if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
  395. return -EINVAL;
  396. rcu_read_lock();
  397. rcv = rcu_dereference(priv->peer);
  398. if (unlikely(!rcv))
  399. goto out;
  400. rcv_priv = netdev_priv(rcv);
  401. rq = &rcv_priv->rq[veth_select_rxq(rcv)];
  402. /* The napi pointer is set if NAPI is enabled, which ensures that
  403. * xdp_ring is initialized on receive side and the peer device is up.
  404. */
  405. if (!rcu_access_pointer(rq->napi))
  406. goto out;
  407. max_len = rcv->mtu + rcv->hard_header_len + VLAN_HLEN;
  408. spin_lock(&rq->xdp_ring.producer_lock);
  409. for (i = 0; i < n; i++) {
  410. struct xdp_frame *frame = frames[i];
  411. void *ptr = veth_xdp_to_ptr(frame);
  412. if (unlikely(xdp_get_frame_len(frame) > max_len ||
  413. __ptr_ring_produce(&rq->xdp_ring, ptr)))
  414. break;
  415. nxmit++;
  416. }
  417. spin_unlock(&rq->xdp_ring.producer_lock);
  418. if (flags & XDP_XMIT_FLUSH)
  419. __veth_xdp_flush(rq);
  420. ret = nxmit;
  421. if (ndo_xmit) {
  422. u64_stats_update_begin(&rq->stats.syncp);
  423. rq->stats.vs.peer_tq_xdp_xmit += nxmit;
  424. rq->stats.vs.peer_tq_xdp_xmit_err += n - nxmit;
  425. u64_stats_update_end(&rq->stats.syncp);
  426. }
  427. out:
  428. rcu_read_unlock();
  429. return ret;
  430. }
  431. static int veth_ndo_xdp_xmit(struct net_device *dev, int n,
  432. struct xdp_frame **frames, u32 flags)
  433. {
  434. int err;
  435. err = veth_xdp_xmit(dev, n, frames, flags, true);
  436. if (err < 0) {
  437. struct veth_priv *priv = netdev_priv(dev);
  438. atomic64_add(n, &priv->dropped);
  439. }
  440. return err;
  441. }
  442. static void veth_xdp_flush_bq(struct veth_rq *rq, struct veth_xdp_tx_bq *bq)
  443. {
  444. int sent, i, err = 0, drops;
  445. sent = veth_xdp_xmit(rq->dev, bq->count, bq->q, 0, false);
  446. if (sent < 0) {
  447. err = sent;
  448. sent = 0;
  449. }
  450. for (i = sent; unlikely(i < bq->count); i++)
  451. xdp_return_frame(bq->q[i]);
  452. drops = bq->count - sent;
  453. trace_xdp_bulk_tx(rq->dev, sent, drops, err);
  454. u64_stats_update_begin(&rq->stats.syncp);
  455. rq->stats.vs.xdp_tx += sent;
  456. rq->stats.vs.xdp_tx_err += drops;
  457. u64_stats_update_end(&rq->stats.syncp);
  458. bq->count = 0;
  459. }
  460. static void veth_xdp_flush(struct veth_rq *rq, struct veth_xdp_tx_bq *bq)
  461. {
  462. struct veth_priv *rcv_priv, *priv = netdev_priv(rq->dev);
  463. struct net_device *rcv;
  464. struct veth_rq *rcv_rq;
  465. rcu_read_lock();
  466. veth_xdp_flush_bq(rq, bq);
  467. rcv = rcu_dereference(priv->peer);
  468. if (unlikely(!rcv))
  469. goto out;
  470. rcv_priv = netdev_priv(rcv);
  471. rcv_rq = &rcv_priv->rq[veth_select_rxq(rcv)];
  472. /* xdp_ring is initialized on receive side? */
  473. if (unlikely(!rcu_access_pointer(rcv_rq->xdp_prog)))
  474. goto out;
  475. __veth_xdp_flush(rcv_rq);
  476. out:
  477. rcu_read_unlock();
  478. }
  479. static int veth_xdp_tx(struct veth_rq *rq, struct xdp_buff *xdp,
  480. struct veth_xdp_tx_bq *bq)
  481. {
  482. struct xdp_frame *frame = xdp_convert_buff_to_frame(xdp);
  483. if (unlikely(!frame))
  484. return -EOVERFLOW;
  485. if (unlikely(bq->count == VETH_XDP_TX_BULK_SIZE))
  486. veth_xdp_flush_bq(rq, bq);
  487. bq->q[bq->count++] = frame;
  488. return 0;
  489. }
  490. static struct xdp_frame *veth_xdp_rcv_one(struct veth_rq *rq,
  491. struct xdp_frame *frame,
  492. struct veth_xdp_tx_bq *bq,
  493. struct veth_stats *stats)
  494. {
  495. struct xdp_frame orig_frame;
  496. struct bpf_prog *xdp_prog;
  497. rcu_read_lock();
  498. xdp_prog = rcu_dereference(rq->xdp_prog);
  499. if (likely(xdp_prog)) {
  500. struct xdp_buff xdp;
  501. u32 act;
  502. xdp_convert_frame_to_buff(frame, &xdp);
  503. xdp.rxq = &rq->xdp_rxq;
  504. act = bpf_prog_run_xdp(xdp_prog, &xdp);
  505. switch (act) {
  506. case XDP_PASS:
  507. if (xdp_update_frame_from_buff(&xdp, frame))
  508. goto err_xdp;
  509. break;
  510. case XDP_TX:
  511. orig_frame = *frame;
  512. xdp.rxq->mem = frame->mem;
  513. if (unlikely(veth_xdp_tx(rq, &xdp, bq) < 0)) {
  514. trace_xdp_exception(rq->dev, xdp_prog, act);
  515. frame = &orig_frame;
  516. stats->rx_drops++;
  517. goto err_xdp;
  518. }
  519. stats->xdp_tx++;
  520. rcu_read_unlock();
  521. goto xdp_xmit;
  522. case XDP_REDIRECT:
  523. orig_frame = *frame;
  524. xdp.rxq->mem = frame->mem;
  525. if (xdp_do_redirect(rq->dev, &xdp, xdp_prog)) {
  526. frame = &orig_frame;
  527. stats->rx_drops++;
  528. goto err_xdp;
  529. }
  530. stats->xdp_redirect++;
  531. rcu_read_unlock();
  532. goto xdp_xmit;
  533. default:
  534. bpf_warn_invalid_xdp_action(rq->dev, xdp_prog, act);
  535. fallthrough;
  536. case XDP_ABORTED:
  537. trace_xdp_exception(rq->dev, xdp_prog, act);
  538. fallthrough;
  539. case XDP_DROP:
  540. stats->xdp_drops++;
  541. goto err_xdp;
  542. }
  543. }
  544. rcu_read_unlock();
  545. return frame;
  546. err_xdp:
  547. rcu_read_unlock();
  548. xdp_return_frame(frame);
  549. xdp_xmit:
  550. return NULL;
  551. }
  552. /* frames array contains VETH_XDP_BATCH at most */
  553. static void veth_xdp_rcv_bulk_skb(struct veth_rq *rq, void **frames,
  554. int n_xdpf, struct veth_xdp_tx_bq *bq,
  555. struct veth_stats *stats)
  556. {
  557. void *skbs[VETH_XDP_BATCH];
  558. int i;
  559. if (xdp_alloc_skb_bulk(skbs, n_xdpf,
  560. GFP_ATOMIC | __GFP_ZERO) < 0) {
  561. for (i = 0; i < n_xdpf; i++)
  562. xdp_return_frame(frames[i]);
  563. stats->rx_drops += n_xdpf;
  564. return;
  565. }
  566. for (i = 0; i < n_xdpf; i++) {
  567. struct sk_buff *skb = skbs[i];
  568. skb = __xdp_build_skb_from_frame(frames[i], skb,
  569. rq->dev);
  570. if (!skb) {
  571. xdp_return_frame(frames[i]);
  572. stats->rx_drops++;
  573. continue;
  574. }
  575. napi_gro_receive(&rq->xdp_napi, skb);
  576. }
  577. }
  578. static void veth_xdp_get(struct xdp_buff *xdp)
  579. {
  580. struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
  581. int i;
  582. get_page(virt_to_page(xdp->data));
  583. if (likely(!xdp_buff_has_frags(xdp)))
  584. return;
  585. for (i = 0; i < sinfo->nr_frags; i++)
  586. __skb_frag_ref(&sinfo->frags[i]);
  587. }
  588. static int veth_convert_skb_to_xdp_buff(struct veth_rq *rq,
  589. struct xdp_buff *xdp,
  590. struct sk_buff **pskb)
  591. {
  592. struct sk_buff *skb = *pskb;
  593. u32 frame_sz;
  594. if (skb_shared(skb) || skb_head_is_locked(skb) ||
  595. skb_shinfo(skb)->nr_frags ||
  596. skb_headroom(skb) < XDP_PACKET_HEADROOM) {
  597. u32 size, len, max_head_size, off;
  598. struct sk_buff *nskb;
  599. struct page *page;
  600. int i, head_off;
  601. /* We need a private copy of the skb and data buffers since
  602. * the ebpf program can modify it. We segment the original skb
  603. * into order-0 pages without linearize it.
  604. *
  605. * Make sure we have enough space for linear and paged area
  606. */
  607. max_head_size = SKB_WITH_OVERHEAD(PAGE_SIZE -
  608. VETH_XDP_HEADROOM);
  609. if (skb->len > PAGE_SIZE * MAX_SKB_FRAGS + max_head_size)
  610. goto drop;
  611. /* Allocate skb head */
  612. page = alloc_page(GFP_ATOMIC | __GFP_NOWARN);
  613. if (!page)
  614. goto drop;
  615. nskb = build_skb(page_address(page), PAGE_SIZE);
  616. if (!nskb) {
  617. put_page(page);
  618. goto drop;
  619. }
  620. skb_reserve(nskb, VETH_XDP_HEADROOM);
  621. size = min_t(u32, skb->len, max_head_size);
  622. if (skb_copy_bits(skb, 0, nskb->data, size)) {
  623. consume_skb(nskb);
  624. goto drop;
  625. }
  626. skb_put(nskb, size);
  627. skb_copy_header(nskb, skb);
  628. head_off = skb_headroom(nskb) - skb_headroom(skb);
  629. skb_headers_offset_update(nskb, head_off);
  630. /* Allocate paged area of new skb */
  631. off = size;
  632. len = skb->len - off;
  633. for (i = 0; i < MAX_SKB_FRAGS && off < skb->len; i++) {
  634. page = alloc_page(GFP_ATOMIC | __GFP_NOWARN);
  635. if (!page) {
  636. consume_skb(nskb);
  637. goto drop;
  638. }
  639. size = min_t(u32, len, PAGE_SIZE);
  640. skb_add_rx_frag(nskb, i, page, 0, size, PAGE_SIZE);
  641. if (skb_copy_bits(skb, off, page_address(page),
  642. size)) {
  643. consume_skb(nskb);
  644. goto drop;
  645. }
  646. len -= size;
  647. off += size;
  648. }
  649. consume_skb(skb);
  650. skb = nskb;
  651. }
  652. /* SKB "head" area always have tailroom for skb_shared_info */
  653. frame_sz = skb_end_pointer(skb) - skb->head;
  654. frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
  655. xdp_init_buff(xdp, frame_sz, &rq->xdp_rxq);
  656. xdp_prepare_buff(xdp, skb->head, skb_headroom(skb),
  657. skb_headlen(skb), true);
  658. if (skb_is_nonlinear(skb)) {
  659. skb_shinfo(skb)->xdp_frags_size = skb->data_len;
  660. xdp_buff_set_frags_flag(xdp);
  661. } else {
  662. xdp_buff_clear_frags_flag(xdp);
  663. }
  664. *pskb = skb;
  665. return 0;
  666. drop:
  667. consume_skb(skb);
  668. *pskb = NULL;
  669. return -ENOMEM;
  670. }
  671. static struct sk_buff *veth_xdp_rcv_skb(struct veth_rq *rq,
  672. struct sk_buff *skb,
  673. struct veth_xdp_tx_bq *bq,
  674. struct veth_stats *stats)
  675. {
  676. void *orig_data, *orig_data_end;
  677. struct bpf_prog *xdp_prog;
  678. struct xdp_buff xdp;
  679. u32 act, metalen;
  680. int off;
  681. skb_prepare_for_gro(skb);
  682. rcu_read_lock();
  683. xdp_prog = rcu_dereference(rq->xdp_prog);
  684. if (unlikely(!xdp_prog)) {
  685. rcu_read_unlock();
  686. goto out;
  687. }
  688. __skb_push(skb, skb->data - skb_mac_header(skb));
  689. if (veth_convert_skb_to_xdp_buff(rq, &xdp, &skb))
  690. goto drop;
  691. orig_data = xdp.data;
  692. orig_data_end = xdp.data_end;
  693. act = bpf_prog_run_xdp(xdp_prog, &xdp);
  694. switch (act) {
  695. case XDP_PASS:
  696. break;
  697. case XDP_TX:
  698. veth_xdp_get(&xdp);
  699. consume_skb(skb);
  700. xdp.rxq->mem = rq->xdp_mem;
  701. if (unlikely(veth_xdp_tx(rq, &xdp, bq) < 0)) {
  702. trace_xdp_exception(rq->dev, xdp_prog, act);
  703. stats->rx_drops++;
  704. goto err_xdp;
  705. }
  706. stats->xdp_tx++;
  707. rcu_read_unlock();
  708. goto xdp_xmit;
  709. case XDP_REDIRECT:
  710. veth_xdp_get(&xdp);
  711. consume_skb(skb);
  712. xdp.rxq->mem = rq->xdp_mem;
  713. if (xdp_do_redirect(rq->dev, &xdp, xdp_prog)) {
  714. stats->rx_drops++;
  715. goto err_xdp;
  716. }
  717. stats->xdp_redirect++;
  718. rcu_read_unlock();
  719. goto xdp_xmit;
  720. default:
  721. bpf_warn_invalid_xdp_action(rq->dev, xdp_prog, act);
  722. fallthrough;
  723. case XDP_ABORTED:
  724. trace_xdp_exception(rq->dev, xdp_prog, act);
  725. fallthrough;
  726. case XDP_DROP:
  727. stats->xdp_drops++;
  728. goto xdp_drop;
  729. }
  730. rcu_read_unlock();
  731. /* check if bpf_xdp_adjust_head was used */
  732. off = orig_data - xdp.data;
  733. if (off > 0)
  734. __skb_push(skb, off);
  735. else if (off < 0)
  736. __skb_pull(skb, -off);
  737. skb_reset_mac_header(skb);
  738. /* check if bpf_xdp_adjust_tail was used */
  739. off = xdp.data_end - orig_data_end;
  740. if (off != 0)
  741. __skb_put(skb, off); /* positive on grow, negative on shrink */
  742. /* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
  743. * (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
  744. */
  745. if (xdp_buff_has_frags(&xdp))
  746. skb->data_len = skb_shinfo(skb)->xdp_frags_size;
  747. else
  748. skb->data_len = 0;
  749. skb->protocol = eth_type_trans(skb, rq->dev);
  750. metalen = xdp.data - xdp.data_meta;
  751. if (metalen)
  752. skb_metadata_set(skb, metalen);
  753. out:
  754. return skb;
  755. drop:
  756. stats->rx_drops++;
  757. xdp_drop:
  758. rcu_read_unlock();
  759. kfree_skb(skb);
  760. return NULL;
  761. err_xdp:
  762. rcu_read_unlock();
  763. xdp_return_buff(&xdp);
  764. xdp_xmit:
  765. return NULL;
  766. }
  767. static int veth_xdp_rcv(struct veth_rq *rq, int budget,
  768. struct veth_xdp_tx_bq *bq,
  769. struct veth_stats *stats)
  770. {
  771. int i, done = 0, n_xdpf = 0;
  772. void *xdpf[VETH_XDP_BATCH];
  773. for (i = 0; i < budget; i++) {
  774. void *ptr = __ptr_ring_consume(&rq->xdp_ring);
  775. if (!ptr)
  776. break;
  777. if (veth_is_xdp_frame(ptr)) {
  778. /* ndo_xdp_xmit */
  779. struct xdp_frame *frame = veth_ptr_to_xdp(ptr);
  780. stats->xdp_bytes += xdp_get_frame_len(frame);
  781. frame = veth_xdp_rcv_one(rq, frame, bq, stats);
  782. if (frame) {
  783. /* XDP_PASS */
  784. xdpf[n_xdpf++] = frame;
  785. if (n_xdpf == VETH_XDP_BATCH) {
  786. veth_xdp_rcv_bulk_skb(rq, xdpf, n_xdpf,
  787. bq, stats);
  788. n_xdpf = 0;
  789. }
  790. }
  791. } else {
  792. /* ndo_start_xmit */
  793. struct sk_buff *skb = ptr;
  794. stats->xdp_bytes += skb->len;
  795. skb = veth_xdp_rcv_skb(rq, skb, bq, stats);
  796. if (skb) {
  797. if (skb_shared(skb) || skb_unclone(skb, GFP_ATOMIC))
  798. netif_receive_skb(skb);
  799. else
  800. napi_gro_receive(&rq->xdp_napi, skb);
  801. }
  802. }
  803. done++;
  804. }
  805. if (n_xdpf)
  806. veth_xdp_rcv_bulk_skb(rq, xdpf, n_xdpf, bq, stats);
  807. u64_stats_update_begin(&rq->stats.syncp);
  808. rq->stats.vs.xdp_redirect += stats->xdp_redirect;
  809. rq->stats.vs.xdp_bytes += stats->xdp_bytes;
  810. rq->stats.vs.xdp_drops += stats->xdp_drops;
  811. rq->stats.vs.rx_drops += stats->rx_drops;
  812. rq->stats.vs.xdp_packets += done;
  813. u64_stats_update_end(&rq->stats.syncp);
  814. return done;
  815. }
  816. static int veth_poll(struct napi_struct *napi, int budget)
  817. {
  818. struct veth_rq *rq =
  819. container_of(napi, struct veth_rq, xdp_napi);
  820. struct veth_stats stats = {};
  821. struct veth_xdp_tx_bq bq;
  822. int done;
  823. bq.count = 0;
  824. xdp_set_return_frame_no_direct();
  825. done = veth_xdp_rcv(rq, budget, &bq, &stats);
  826. if (stats.xdp_redirect > 0)
  827. xdp_do_flush();
  828. if (done < budget && napi_complete_done(napi, done)) {
  829. /* Write rx_notify_masked before reading ptr_ring */
  830. smp_store_mb(rq->rx_notify_masked, false);
  831. if (unlikely(!__ptr_ring_empty(&rq->xdp_ring))) {
  832. if (napi_schedule_prep(&rq->xdp_napi)) {
  833. WRITE_ONCE(rq->rx_notify_masked, true);
  834. __napi_schedule(&rq->xdp_napi);
  835. }
  836. }
  837. }
  838. if (stats.xdp_tx > 0)
  839. veth_xdp_flush(rq, &bq);
  840. xdp_clear_return_frame_no_direct();
  841. return done;
  842. }
  843. static int __veth_napi_enable_range(struct net_device *dev, int start, int end)
  844. {
  845. struct veth_priv *priv = netdev_priv(dev);
  846. int err, i;
  847. for (i = start; i < end; i++) {
  848. struct veth_rq *rq = &priv->rq[i];
  849. err = ptr_ring_init(&rq->xdp_ring, VETH_RING_SIZE, GFP_KERNEL);
  850. if (err)
  851. goto err_xdp_ring;
  852. }
  853. for (i = start; i < end; i++) {
  854. struct veth_rq *rq = &priv->rq[i];
  855. napi_enable(&rq->xdp_napi);
  856. rcu_assign_pointer(priv->rq[i].napi, &priv->rq[i].xdp_napi);
  857. }
  858. return 0;
  859. err_xdp_ring:
  860. for (i--; i >= start; i--)
  861. ptr_ring_cleanup(&priv->rq[i].xdp_ring, veth_ptr_free);
  862. return err;
  863. }
  864. static int __veth_napi_enable(struct net_device *dev)
  865. {
  866. return __veth_napi_enable_range(dev, 0, dev->real_num_rx_queues);
  867. }
  868. static void veth_napi_del_range(struct net_device *dev, int start, int end)
  869. {
  870. struct veth_priv *priv = netdev_priv(dev);
  871. int i;
  872. for (i = start; i < end; i++) {
  873. struct veth_rq *rq = &priv->rq[i];
  874. rcu_assign_pointer(priv->rq[i].napi, NULL);
  875. napi_disable(&rq->xdp_napi);
  876. __netif_napi_del(&rq->xdp_napi);
  877. }
  878. synchronize_net();
  879. for (i = start; i < end; i++) {
  880. struct veth_rq *rq = &priv->rq[i];
  881. rq->rx_notify_masked = false;
  882. ptr_ring_cleanup(&rq->xdp_ring, veth_ptr_free);
  883. }
  884. }
  885. static void veth_napi_del(struct net_device *dev)
  886. {
  887. veth_napi_del_range(dev, 0, dev->real_num_rx_queues);
  888. }
  889. static bool veth_gro_requested(const struct net_device *dev)
  890. {
  891. return !!(dev->wanted_features & NETIF_F_GRO);
  892. }
  893. static int veth_enable_xdp_range(struct net_device *dev, int start, int end,
  894. bool napi_already_on)
  895. {
  896. struct veth_priv *priv = netdev_priv(dev);
  897. int err, i;
  898. for (i = start; i < end; i++) {
  899. struct veth_rq *rq = &priv->rq[i];
  900. if (!napi_already_on)
  901. netif_napi_add(dev, &rq->xdp_napi, veth_poll);
  902. err = xdp_rxq_info_reg(&rq->xdp_rxq, dev, i, rq->xdp_napi.napi_id);
  903. if (err < 0)
  904. goto err_rxq_reg;
  905. err = xdp_rxq_info_reg_mem_model(&rq->xdp_rxq,
  906. MEM_TYPE_PAGE_SHARED,
  907. NULL);
  908. if (err < 0)
  909. goto err_reg_mem;
  910. /* Save original mem info as it can be overwritten */
  911. rq->xdp_mem = rq->xdp_rxq.mem;
  912. }
  913. return 0;
  914. err_reg_mem:
  915. xdp_rxq_info_unreg(&priv->rq[i].xdp_rxq);
  916. err_rxq_reg:
  917. for (i--; i >= start; i--) {
  918. struct veth_rq *rq = &priv->rq[i];
  919. xdp_rxq_info_unreg(&rq->xdp_rxq);
  920. if (!napi_already_on)
  921. netif_napi_del(&rq->xdp_napi);
  922. }
  923. return err;
  924. }
  925. static void veth_disable_xdp_range(struct net_device *dev, int start, int end,
  926. bool delete_napi)
  927. {
  928. struct veth_priv *priv = netdev_priv(dev);
  929. int i;
  930. for (i = start; i < end; i++) {
  931. struct veth_rq *rq = &priv->rq[i];
  932. rq->xdp_rxq.mem = rq->xdp_mem;
  933. xdp_rxq_info_unreg(&rq->xdp_rxq);
  934. if (delete_napi)
  935. netif_napi_del(&rq->xdp_napi);
  936. }
  937. }
  938. static int veth_enable_xdp(struct net_device *dev)
  939. {
  940. bool napi_already_on = veth_gro_requested(dev) && (dev->flags & IFF_UP);
  941. struct veth_priv *priv = netdev_priv(dev);
  942. int err, i;
  943. if (!xdp_rxq_info_is_reg(&priv->rq[0].xdp_rxq)) {
  944. err = veth_enable_xdp_range(dev, 0, dev->real_num_rx_queues, napi_already_on);
  945. if (err)
  946. return err;
  947. if (!napi_already_on) {
  948. err = __veth_napi_enable(dev);
  949. if (err) {
  950. veth_disable_xdp_range(dev, 0, dev->real_num_rx_queues, true);
  951. return err;
  952. }
  953. if (!veth_gro_requested(dev)) {
  954. /* user-space did not require GRO, but adding XDP
  955. * is supposed to get GRO working
  956. */
  957. dev->features |= NETIF_F_GRO;
  958. netdev_features_change(dev);
  959. }
  960. }
  961. }
  962. for (i = 0; i < dev->real_num_rx_queues; i++) {
  963. rcu_assign_pointer(priv->rq[i].xdp_prog, priv->_xdp_prog);
  964. rcu_assign_pointer(priv->rq[i].napi, &priv->rq[i].xdp_napi);
  965. }
  966. return 0;
  967. }
  968. static void veth_disable_xdp(struct net_device *dev)
  969. {
  970. struct veth_priv *priv = netdev_priv(dev);
  971. int i;
  972. for (i = 0; i < dev->real_num_rx_queues; i++)
  973. rcu_assign_pointer(priv->rq[i].xdp_prog, NULL);
  974. if (!netif_running(dev) || !veth_gro_requested(dev)) {
  975. veth_napi_del(dev);
  976. /* if user-space did not require GRO, since adding XDP
  977. * enabled it, clear it now
  978. */
  979. if (!veth_gro_requested(dev) && netif_running(dev)) {
  980. dev->features &= ~NETIF_F_GRO;
  981. netdev_features_change(dev);
  982. }
  983. }
  984. veth_disable_xdp_range(dev, 0, dev->real_num_rx_queues, false);
  985. }
  986. static int veth_napi_enable_range(struct net_device *dev, int start, int end)
  987. {
  988. struct veth_priv *priv = netdev_priv(dev);
  989. int err, i;
  990. for (i = start; i < end; i++) {
  991. struct veth_rq *rq = &priv->rq[i];
  992. netif_napi_add(dev, &rq->xdp_napi, veth_poll);
  993. }
  994. err = __veth_napi_enable_range(dev, start, end);
  995. if (err) {
  996. for (i = start; i < end; i++) {
  997. struct veth_rq *rq = &priv->rq[i];
  998. netif_napi_del(&rq->xdp_napi);
  999. }
  1000. return err;
  1001. }
  1002. return err;
  1003. }
  1004. static int veth_napi_enable(struct net_device *dev)
  1005. {
  1006. return veth_napi_enable_range(dev, 0, dev->real_num_rx_queues);
  1007. }
  1008. static void veth_disable_range_safe(struct net_device *dev, int start, int end)
  1009. {
  1010. struct veth_priv *priv = netdev_priv(dev);
  1011. if (start >= end)
  1012. return;
  1013. if (priv->_xdp_prog) {
  1014. veth_napi_del_range(dev, start, end);
  1015. veth_disable_xdp_range(dev, start, end, false);
  1016. } else if (veth_gro_requested(dev)) {
  1017. veth_napi_del_range(dev, start, end);
  1018. }
  1019. }
  1020. static int veth_enable_range_safe(struct net_device *dev, int start, int end)
  1021. {
  1022. struct veth_priv *priv = netdev_priv(dev);
  1023. int err;
  1024. if (start >= end)
  1025. return 0;
  1026. if (priv->_xdp_prog) {
  1027. /* these channels are freshly initialized, napi is not on there even
  1028. * when GRO is requeste
  1029. */
  1030. err = veth_enable_xdp_range(dev, start, end, false);
  1031. if (err)
  1032. return err;
  1033. err = __veth_napi_enable_range(dev, start, end);
  1034. if (err) {
  1035. /* on error always delete the newly added napis */
  1036. veth_disable_xdp_range(dev, start, end, true);
  1037. return err;
  1038. }
  1039. } else if (veth_gro_requested(dev)) {
  1040. return veth_napi_enable_range(dev, start, end);
  1041. }
  1042. return 0;
  1043. }
  1044. static int veth_set_channels(struct net_device *dev,
  1045. struct ethtool_channels *ch)
  1046. {
  1047. struct veth_priv *priv = netdev_priv(dev);
  1048. unsigned int old_rx_count, new_rx_count;
  1049. struct veth_priv *peer_priv;
  1050. struct net_device *peer;
  1051. int err;
  1052. /* sanity check. Upper bounds are already enforced by the caller */
  1053. if (!ch->rx_count || !ch->tx_count)
  1054. return -EINVAL;
  1055. /* avoid braking XDP, if that is enabled */
  1056. peer = rtnl_dereference(priv->peer);
  1057. peer_priv = peer ? netdev_priv(peer) : NULL;
  1058. if (priv->_xdp_prog && peer && ch->rx_count < peer->real_num_tx_queues)
  1059. return -EINVAL;
  1060. if (peer && peer_priv && peer_priv->_xdp_prog && ch->tx_count > peer->real_num_rx_queues)
  1061. return -EINVAL;
  1062. old_rx_count = dev->real_num_rx_queues;
  1063. new_rx_count = ch->rx_count;
  1064. if (netif_running(dev)) {
  1065. /* turn device off */
  1066. netif_carrier_off(dev);
  1067. if (peer)
  1068. netif_carrier_off(peer);
  1069. /* try to allocate new resurces, as needed*/
  1070. err = veth_enable_range_safe(dev, old_rx_count, new_rx_count);
  1071. if (err)
  1072. goto out;
  1073. }
  1074. err = netif_set_real_num_rx_queues(dev, ch->rx_count);
  1075. if (err)
  1076. goto revert;
  1077. err = netif_set_real_num_tx_queues(dev, ch->tx_count);
  1078. if (err) {
  1079. int err2 = netif_set_real_num_rx_queues(dev, old_rx_count);
  1080. /* this error condition could happen only if rx and tx change
  1081. * in opposite directions (e.g. tx nr raises, rx nr decreases)
  1082. * and we can't do anything to fully restore the original
  1083. * status
  1084. */
  1085. if (err2)
  1086. pr_warn("Can't restore rx queues config %d -> %d %d",
  1087. new_rx_count, old_rx_count, err2);
  1088. else
  1089. goto revert;
  1090. }
  1091. out:
  1092. if (netif_running(dev)) {
  1093. /* note that we need to swap the arguments WRT the enable part
  1094. * to identify the range we have to disable
  1095. */
  1096. veth_disable_range_safe(dev, new_rx_count, old_rx_count);
  1097. netif_carrier_on(dev);
  1098. if (peer)
  1099. netif_carrier_on(peer);
  1100. }
  1101. return err;
  1102. revert:
  1103. new_rx_count = old_rx_count;
  1104. old_rx_count = ch->rx_count;
  1105. goto out;
  1106. }
  1107. static int veth_open(struct net_device *dev)
  1108. {
  1109. struct veth_priv *priv = netdev_priv(dev);
  1110. struct net_device *peer = rtnl_dereference(priv->peer);
  1111. int err;
  1112. if (!peer)
  1113. return -ENOTCONN;
  1114. if (priv->_xdp_prog) {
  1115. err = veth_enable_xdp(dev);
  1116. if (err)
  1117. return err;
  1118. } else if (veth_gro_requested(dev)) {
  1119. err = veth_napi_enable(dev);
  1120. if (err)
  1121. return err;
  1122. }
  1123. if (peer->flags & IFF_UP) {
  1124. netif_carrier_on(dev);
  1125. netif_carrier_on(peer);
  1126. }
  1127. return 0;
  1128. }
  1129. static int veth_close(struct net_device *dev)
  1130. {
  1131. struct veth_priv *priv = netdev_priv(dev);
  1132. struct net_device *peer = rtnl_dereference(priv->peer);
  1133. netif_carrier_off(dev);
  1134. if (peer)
  1135. netif_carrier_off(peer);
  1136. if (priv->_xdp_prog)
  1137. veth_disable_xdp(dev);
  1138. else if (veth_gro_requested(dev))
  1139. veth_napi_del(dev);
  1140. return 0;
  1141. }
  1142. static int is_valid_veth_mtu(int mtu)
  1143. {
  1144. return mtu >= ETH_MIN_MTU && mtu <= ETH_MAX_MTU;
  1145. }
  1146. static int veth_alloc_queues(struct net_device *dev)
  1147. {
  1148. struct veth_priv *priv = netdev_priv(dev);
  1149. int i;
  1150. priv->rq = kcalloc(dev->num_rx_queues, sizeof(*priv->rq), GFP_KERNEL_ACCOUNT);
  1151. if (!priv->rq)
  1152. return -ENOMEM;
  1153. for (i = 0; i < dev->num_rx_queues; i++) {
  1154. priv->rq[i].dev = dev;
  1155. u64_stats_init(&priv->rq[i].stats.syncp);
  1156. }
  1157. return 0;
  1158. }
  1159. static void veth_free_queues(struct net_device *dev)
  1160. {
  1161. struct veth_priv *priv = netdev_priv(dev);
  1162. kfree(priv->rq);
  1163. }
  1164. static int veth_dev_init(struct net_device *dev)
  1165. {
  1166. int err;
  1167. dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
  1168. if (!dev->lstats)
  1169. return -ENOMEM;
  1170. err = veth_alloc_queues(dev);
  1171. if (err) {
  1172. free_percpu(dev->lstats);
  1173. return err;
  1174. }
  1175. return 0;
  1176. }
  1177. static void veth_dev_free(struct net_device *dev)
  1178. {
  1179. veth_free_queues(dev);
  1180. free_percpu(dev->lstats);
  1181. }
  1182. #ifdef CONFIG_NET_POLL_CONTROLLER
  1183. static void veth_poll_controller(struct net_device *dev)
  1184. {
  1185. /* veth only receives frames when its peer sends one
  1186. * Since it has nothing to do with disabling irqs, we are guaranteed
  1187. * never to have pending data when we poll for it so
  1188. * there is nothing to do here.
  1189. *
  1190. * We need this though so netpoll recognizes us as an interface that
  1191. * supports polling, which enables bridge devices in virt setups to
  1192. * still use netconsole
  1193. */
  1194. }
  1195. #endif /* CONFIG_NET_POLL_CONTROLLER */
  1196. static int veth_get_iflink(const struct net_device *dev)
  1197. {
  1198. struct veth_priv *priv = netdev_priv(dev);
  1199. struct net_device *peer;
  1200. int iflink;
  1201. rcu_read_lock();
  1202. peer = rcu_dereference(priv->peer);
  1203. iflink = peer ? peer->ifindex : 0;
  1204. rcu_read_unlock();
  1205. return iflink;
  1206. }
  1207. static netdev_features_t veth_fix_features(struct net_device *dev,
  1208. netdev_features_t features)
  1209. {
  1210. struct veth_priv *priv = netdev_priv(dev);
  1211. struct net_device *peer;
  1212. peer = rtnl_dereference(priv->peer);
  1213. if (peer) {
  1214. struct veth_priv *peer_priv = netdev_priv(peer);
  1215. if (peer_priv->_xdp_prog)
  1216. features &= ~NETIF_F_GSO_SOFTWARE;
  1217. }
  1218. if (priv->_xdp_prog)
  1219. features |= NETIF_F_GRO;
  1220. return features;
  1221. }
  1222. static int veth_set_features(struct net_device *dev,
  1223. netdev_features_t features)
  1224. {
  1225. netdev_features_t changed = features ^ dev->features;
  1226. struct veth_priv *priv = netdev_priv(dev);
  1227. int err;
  1228. if (!(changed & NETIF_F_GRO) || !(dev->flags & IFF_UP) || priv->_xdp_prog)
  1229. return 0;
  1230. if (features & NETIF_F_GRO) {
  1231. err = veth_napi_enable(dev);
  1232. if (err)
  1233. return err;
  1234. } else {
  1235. veth_napi_del(dev);
  1236. }
  1237. return 0;
  1238. }
  1239. static void veth_set_rx_headroom(struct net_device *dev, int new_hr)
  1240. {
  1241. struct veth_priv *peer_priv, *priv = netdev_priv(dev);
  1242. struct net_device *peer;
  1243. if (new_hr < 0)
  1244. new_hr = 0;
  1245. rcu_read_lock();
  1246. peer = rcu_dereference(priv->peer);
  1247. if (unlikely(!peer))
  1248. goto out;
  1249. peer_priv = netdev_priv(peer);
  1250. priv->requested_headroom = new_hr;
  1251. new_hr = max(priv->requested_headroom, peer_priv->requested_headroom);
  1252. dev->needed_headroom = new_hr;
  1253. peer->needed_headroom = new_hr;
  1254. out:
  1255. rcu_read_unlock();
  1256. }
  1257. static int veth_xdp_set(struct net_device *dev, struct bpf_prog *prog,
  1258. struct netlink_ext_ack *extack)
  1259. {
  1260. struct veth_priv *priv = netdev_priv(dev);
  1261. struct bpf_prog *old_prog;
  1262. struct net_device *peer;
  1263. unsigned int max_mtu;
  1264. int err;
  1265. old_prog = priv->_xdp_prog;
  1266. priv->_xdp_prog = prog;
  1267. peer = rtnl_dereference(priv->peer);
  1268. if (prog) {
  1269. if (!peer) {
  1270. NL_SET_ERR_MSG_MOD(extack, "Cannot set XDP when peer is detached");
  1271. err = -ENOTCONN;
  1272. goto err;
  1273. }
  1274. max_mtu = SKB_WITH_OVERHEAD(PAGE_SIZE - VETH_XDP_HEADROOM) -
  1275. peer->hard_header_len;
  1276. /* Allow increasing the max_mtu if the program supports
  1277. * XDP fragments.
  1278. */
  1279. if (prog->aux->xdp_has_frags)
  1280. max_mtu += PAGE_SIZE * MAX_SKB_FRAGS;
  1281. if (peer->mtu > max_mtu) {
  1282. NL_SET_ERR_MSG_MOD(extack, "Peer MTU is too large to set XDP");
  1283. err = -ERANGE;
  1284. goto err;
  1285. }
  1286. if (dev->real_num_rx_queues < peer->real_num_tx_queues) {
  1287. NL_SET_ERR_MSG_MOD(extack, "XDP expects number of rx queues not less than peer tx queues");
  1288. err = -ENOSPC;
  1289. goto err;
  1290. }
  1291. if (dev->flags & IFF_UP) {
  1292. err = veth_enable_xdp(dev);
  1293. if (err) {
  1294. NL_SET_ERR_MSG_MOD(extack, "Setup for XDP failed");
  1295. goto err;
  1296. }
  1297. }
  1298. if (!old_prog) {
  1299. peer->hw_features &= ~NETIF_F_GSO_SOFTWARE;
  1300. peer->max_mtu = max_mtu;
  1301. }
  1302. }
  1303. if (old_prog) {
  1304. if (!prog) {
  1305. if (dev->flags & IFF_UP)
  1306. veth_disable_xdp(dev);
  1307. if (peer) {
  1308. peer->hw_features |= NETIF_F_GSO_SOFTWARE;
  1309. peer->max_mtu = ETH_MAX_MTU;
  1310. }
  1311. }
  1312. bpf_prog_put(old_prog);
  1313. }
  1314. if ((!!old_prog ^ !!prog) && peer)
  1315. netdev_update_features(peer);
  1316. return 0;
  1317. err:
  1318. priv->_xdp_prog = old_prog;
  1319. return err;
  1320. }
  1321. static int veth_xdp(struct net_device *dev, struct netdev_bpf *xdp)
  1322. {
  1323. switch (xdp->command) {
  1324. case XDP_SETUP_PROG:
  1325. return veth_xdp_set(dev, xdp->prog, xdp->extack);
  1326. default:
  1327. return -EINVAL;
  1328. }
  1329. }
  1330. static const struct net_device_ops veth_netdev_ops = {
  1331. .ndo_init = veth_dev_init,
  1332. .ndo_open = veth_open,
  1333. .ndo_stop = veth_close,
  1334. .ndo_start_xmit = veth_xmit,
  1335. .ndo_get_stats64 = veth_get_stats64,
  1336. .ndo_set_rx_mode = veth_set_multicast_list,
  1337. .ndo_set_mac_address = eth_mac_addr,
  1338. #ifdef CONFIG_NET_POLL_CONTROLLER
  1339. .ndo_poll_controller = veth_poll_controller,
  1340. #endif
  1341. .ndo_get_iflink = veth_get_iflink,
  1342. .ndo_fix_features = veth_fix_features,
  1343. .ndo_set_features = veth_set_features,
  1344. .ndo_features_check = passthru_features_check,
  1345. .ndo_set_rx_headroom = veth_set_rx_headroom,
  1346. .ndo_bpf = veth_xdp,
  1347. .ndo_xdp_xmit = veth_ndo_xdp_xmit,
  1348. .ndo_get_peer_dev = veth_peer_dev,
  1349. };
  1350. #define VETH_FEATURES (NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HW_CSUM | \
  1351. NETIF_F_RXCSUM | NETIF_F_SCTP_CRC | NETIF_F_HIGHDMA | \
  1352. NETIF_F_GSO_SOFTWARE | NETIF_F_GSO_ENCAP_ALL | \
  1353. NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX | \
  1354. NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_STAG_RX )
  1355. static void veth_setup(struct net_device *dev)
  1356. {
  1357. ether_setup(dev);
  1358. dev->priv_flags &= ~IFF_TX_SKB_SHARING;
  1359. dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
  1360. dev->priv_flags |= IFF_NO_QUEUE;
  1361. dev->priv_flags |= IFF_PHONY_HEADROOM;
  1362. dev->netdev_ops = &veth_netdev_ops;
  1363. dev->ethtool_ops = &veth_ethtool_ops;
  1364. dev->features |= NETIF_F_LLTX;
  1365. dev->features |= VETH_FEATURES;
  1366. dev->vlan_features = dev->features &
  1367. ~(NETIF_F_HW_VLAN_CTAG_TX |
  1368. NETIF_F_HW_VLAN_STAG_TX |
  1369. NETIF_F_HW_VLAN_CTAG_RX |
  1370. NETIF_F_HW_VLAN_STAG_RX);
  1371. dev->needs_free_netdev = true;
  1372. dev->priv_destructor = veth_dev_free;
  1373. dev->max_mtu = ETH_MAX_MTU;
  1374. dev->hw_features = VETH_FEATURES;
  1375. dev->hw_enc_features = VETH_FEATURES;
  1376. dev->mpls_features = NETIF_F_HW_CSUM | NETIF_F_GSO_SOFTWARE;
  1377. netif_set_tso_max_size(dev, GSO_MAX_SIZE);
  1378. }
  1379. /*
  1380. * netlink interface
  1381. */
  1382. static int veth_validate(struct nlattr *tb[], struct nlattr *data[],
  1383. struct netlink_ext_ack *extack)
  1384. {
  1385. if (tb[IFLA_ADDRESS]) {
  1386. if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN)
  1387. return -EINVAL;
  1388. if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS])))
  1389. return -EADDRNOTAVAIL;
  1390. }
  1391. if (tb[IFLA_MTU]) {
  1392. if (!is_valid_veth_mtu(nla_get_u32(tb[IFLA_MTU])))
  1393. return -EINVAL;
  1394. }
  1395. return 0;
  1396. }
  1397. static struct rtnl_link_ops veth_link_ops;
  1398. static void veth_disable_gro(struct net_device *dev)
  1399. {
  1400. dev->features &= ~NETIF_F_GRO;
  1401. dev->wanted_features &= ~NETIF_F_GRO;
  1402. netdev_update_features(dev);
  1403. }
  1404. static int veth_init_queues(struct net_device *dev, struct nlattr *tb[])
  1405. {
  1406. int err;
  1407. if (!tb[IFLA_NUM_TX_QUEUES] && dev->num_tx_queues > 1) {
  1408. err = netif_set_real_num_tx_queues(dev, 1);
  1409. if (err)
  1410. return err;
  1411. }
  1412. if (!tb[IFLA_NUM_RX_QUEUES] && dev->num_rx_queues > 1) {
  1413. err = netif_set_real_num_rx_queues(dev, 1);
  1414. if (err)
  1415. return err;
  1416. }
  1417. return 0;
  1418. }
  1419. static int veth_newlink(struct net *src_net, struct net_device *dev,
  1420. struct nlattr *tb[], struct nlattr *data[],
  1421. struct netlink_ext_ack *extack)
  1422. {
  1423. int err;
  1424. struct net_device *peer;
  1425. struct veth_priv *priv;
  1426. char ifname[IFNAMSIZ];
  1427. struct nlattr *peer_tb[IFLA_MAX + 1], **tbp;
  1428. unsigned char name_assign_type;
  1429. struct ifinfomsg *ifmp;
  1430. struct net *net;
  1431. /*
  1432. * create and register peer first
  1433. */
  1434. if (data != NULL && data[VETH_INFO_PEER] != NULL) {
  1435. struct nlattr *nla_peer;
  1436. nla_peer = data[VETH_INFO_PEER];
  1437. ifmp = nla_data(nla_peer);
  1438. err = rtnl_nla_parse_ifinfomsg(peer_tb, nla_peer, extack);
  1439. if (err < 0)
  1440. return err;
  1441. err = veth_validate(peer_tb, NULL, extack);
  1442. if (err < 0)
  1443. return err;
  1444. tbp = peer_tb;
  1445. } else {
  1446. ifmp = NULL;
  1447. tbp = tb;
  1448. }
  1449. if (ifmp && tbp[IFLA_IFNAME]) {
  1450. nla_strscpy(ifname, tbp[IFLA_IFNAME], IFNAMSIZ);
  1451. name_assign_type = NET_NAME_USER;
  1452. } else {
  1453. snprintf(ifname, IFNAMSIZ, DRV_NAME "%%d");
  1454. name_assign_type = NET_NAME_ENUM;
  1455. }
  1456. net = rtnl_link_get_net(src_net, tbp);
  1457. if (IS_ERR(net))
  1458. return PTR_ERR(net);
  1459. peer = rtnl_create_link(net, ifname, name_assign_type,
  1460. &veth_link_ops, tbp, extack);
  1461. if (IS_ERR(peer)) {
  1462. put_net(net);
  1463. return PTR_ERR(peer);
  1464. }
  1465. if (!ifmp || !tbp[IFLA_ADDRESS])
  1466. eth_hw_addr_random(peer);
  1467. if (ifmp && (dev->ifindex != 0))
  1468. peer->ifindex = ifmp->ifi_index;
  1469. netif_inherit_tso_max(peer, dev);
  1470. err = register_netdevice(peer);
  1471. put_net(net);
  1472. net = NULL;
  1473. if (err < 0)
  1474. goto err_register_peer;
  1475. /* keep GRO disabled by default to be consistent with the established
  1476. * veth behavior
  1477. */
  1478. veth_disable_gro(peer);
  1479. netif_carrier_off(peer);
  1480. err = rtnl_configure_link(peer, ifmp);
  1481. if (err < 0)
  1482. goto err_configure_peer;
  1483. /*
  1484. * register dev last
  1485. *
  1486. * note, that since we've registered new device the dev's name
  1487. * should be re-allocated
  1488. */
  1489. if (tb[IFLA_ADDRESS] == NULL)
  1490. eth_hw_addr_random(dev);
  1491. if (tb[IFLA_IFNAME])
  1492. nla_strscpy(dev->name, tb[IFLA_IFNAME], IFNAMSIZ);
  1493. else
  1494. snprintf(dev->name, IFNAMSIZ, DRV_NAME "%%d");
  1495. err = register_netdevice(dev);
  1496. if (err < 0)
  1497. goto err_register_dev;
  1498. netif_carrier_off(dev);
  1499. /*
  1500. * tie the deviced together
  1501. */
  1502. priv = netdev_priv(dev);
  1503. rcu_assign_pointer(priv->peer, peer);
  1504. err = veth_init_queues(dev, tb);
  1505. if (err)
  1506. goto err_queues;
  1507. priv = netdev_priv(peer);
  1508. rcu_assign_pointer(priv->peer, dev);
  1509. err = veth_init_queues(peer, tb);
  1510. if (err)
  1511. goto err_queues;
  1512. veth_disable_gro(dev);
  1513. return 0;
  1514. err_queues:
  1515. unregister_netdevice(dev);
  1516. err_register_dev:
  1517. /* nothing to do */
  1518. err_configure_peer:
  1519. unregister_netdevice(peer);
  1520. return err;
  1521. err_register_peer:
  1522. free_netdev(peer);
  1523. return err;
  1524. }
  1525. static void veth_dellink(struct net_device *dev, struct list_head *head)
  1526. {
  1527. struct veth_priv *priv;
  1528. struct net_device *peer;
  1529. priv = netdev_priv(dev);
  1530. peer = rtnl_dereference(priv->peer);
  1531. /* Note : dellink() is called from default_device_exit_batch(),
  1532. * before a rcu_synchronize() point. The devices are guaranteed
  1533. * not being freed before one RCU grace period.
  1534. */
  1535. RCU_INIT_POINTER(priv->peer, NULL);
  1536. unregister_netdevice_queue(dev, head);
  1537. if (peer) {
  1538. priv = netdev_priv(peer);
  1539. RCU_INIT_POINTER(priv->peer, NULL);
  1540. unregister_netdevice_queue(peer, head);
  1541. }
  1542. }
  1543. static const struct nla_policy veth_policy[VETH_INFO_MAX + 1] = {
  1544. [VETH_INFO_PEER] = { .len = sizeof(struct ifinfomsg) },
  1545. };
  1546. static struct net *veth_get_link_net(const struct net_device *dev)
  1547. {
  1548. struct veth_priv *priv = netdev_priv(dev);
  1549. struct net_device *peer = rtnl_dereference(priv->peer);
  1550. return peer ? dev_net(peer) : dev_net(dev);
  1551. }
  1552. static unsigned int veth_get_num_queues(void)
  1553. {
  1554. /* enforce the same queue limit as rtnl_create_link */
  1555. int queues = num_possible_cpus();
  1556. if (queues > 4096)
  1557. queues = 4096;
  1558. return queues;
  1559. }
  1560. static struct rtnl_link_ops veth_link_ops = {
  1561. .kind = DRV_NAME,
  1562. .priv_size = sizeof(struct veth_priv),
  1563. .setup = veth_setup,
  1564. .validate = veth_validate,
  1565. .newlink = veth_newlink,
  1566. .dellink = veth_dellink,
  1567. .policy = veth_policy,
  1568. .maxtype = VETH_INFO_MAX,
  1569. .get_link_net = veth_get_link_net,
  1570. .get_num_tx_queues = veth_get_num_queues,
  1571. .get_num_rx_queues = veth_get_num_queues,
  1572. };
  1573. /*
  1574. * init/fini
  1575. */
  1576. static __init int veth_init(void)
  1577. {
  1578. return rtnl_link_register(&veth_link_ops);
  1579. }
  1580. static __exit void veth_exit(void)
  1581. {
  1582. rtnl_link_unregister(&veth_link_ops);
  1583. }
  1584. module_init(veth_init);
  1585. module_exit(veth_exit);
  1586. MODULE_DESCRIPTION("Virtual Ethernet Tunnel");
  1587. MODULE_LICENSE("GPL v2");
  1588. MODULE_ALIAS_RTNL_LINK(DRV_NAME);