micrel.c 94 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556
  1. // SPDX-License-Identifier: GPL-2.0+
  2. /*
  3. * drivers/net/phy/micrel.c
  4. *
  5. * Driver for Micrel PHYs
  6. *
  7. * Author: David J. Choi
  8. *
  9. * Copyright (c) 2010-2013 Micrel, Inc.
  10. * Copyright (c) 2014 Johan Hovold <[email protected]>
  11. *
  12. * Support : Micrel Phys:
  13. * Giga phys: ksz9021, ksz9031, ksz9131
  14. * 100/10 Phys : ksz8001, ksz8721, ksz8737, ksz8041
  15. * ksz8021, ksz8031, ksz8051,
  16. * ksz8081, ksz8091,
  17. * ksz8061,
  18. * Switch : ksz8873, ksz886x
  19. * ksz9477
  20. */
  21. #include <linux/bitfield.h>
  22. #include <linux/ethtool_netlink.h>
  23. #include <linux/kernel.h>
  24. #include <linux/module.h>
  25. #include <linux/phy.h>
  26. #include <linux/micrel_phy.h>
  27. #include <linux/of.h>
  28. #include <linux/clk.h>
  29. #include <linux/delay.h>
  30. #include <linux/netdevice.h>
  31. #include <linux/etherdevice.h>
  32. #include <linux/ptp_clock_kernel.h>
  33. #include <linux/ptp_clock.h>
  34. #include <linux/ptp_classify.h>
  35. #include <linux/net_tstamp.h>
  36. #include <linux/gpio/consumer.h>
  37. /* Operation Mode Strap Override */
  38. #define MII_KSZPHY_OMSO 0x16
  39. #define KSZPHY_OMSO_FACTORY_TEST BIT(15)
  40. #define KSZPHY_OMSO_B_CAST_OFF BIT(9)
  41. #define KSZPHY_OMSO_NAND_TREE_ON BIT(5)
  42. #define KSZPHY_OMSO_RMII_OVERRIDE BIT(1)
  43. #define KSZPHY_OMSO_MII_OVERRIDE BIT(0)
  44. /* general Interrupt control/status reg in vendor specific block. */
  45. #define MII_KSZPHY_INTCS 0x1B
  46. #define KSZPHY_INTCS_JABBER BIT(15)
  47. #define KSZPHY_INTCS_RECEIVE_ERR BIT(14)
  48. #define KSZPHY_INTCS_PAGE_RECEIVE BIT(13)
  49. #define KSZPHY_INTCS_PARELLEL BIT(12)
  50. #define KSZPHY_INTCS_LINK_PARTNER_ACK BIT(11)
  51. #define KSZPHY_INTCS_LINK_DOWN BIT(10)
  52. #define KSZPHY_INTCS_REMOTE_FAULT BIT(9)
  53. #define KSZPHY_INTCS_LINK_UP BIT(8)
  54. #define KSZPHY_INTCS_ALL (KSZPHY_INTCS_LINK_UP |\
  55. KSZPHY_INTCS_LINK_DOWN)
  56. #define KSZPHY_INTCS_LINK_DOWN_STATUS BIT(2)
  57. #define KSZPHY_INTCS_LINK_UP_STATUS BIT(0)
  58. #define KSZPHY_INTCS_STATUS (KSZPHY_INTCS_LINK_DOWN_STATUS |\
  59. KSZPHY_INTCS_LINK_UP_STATUS)
  60. /* LinkMD Control/Status */
  61. #define KSZ8081_LMD 0x1d
  62. #define KSZ8081_LMD_ENABLE_TEST BIT(15)
  63. #define KSZ8081_LMD_STAT_NORMAL 0
  64. #define KSZ8081_LMD_STAT_OPEN 1
  65. #define KSZ8081_LMD_STAT_SHORT 2
  66. #define KSZ8081_LMD_STAT_FAIL 3
  67. #define KSZ8081_LMD_STAT_MASK GENMASK(14, 13)
  68. /* Short cable (<10 meter) has been detected by LinkMD */
  69. #define KSZ8081_LMD_SHORT_INDICATOR BIT(12)
  70. #define KSZ8081_LMD_DELTA_TIME_MASK GENMASK(8, 0)
  71. #define KSZ9x31_LMD 0x12
  72. #define KSZ9x31_LMD_VCT_EN BIT(15)
  73. #define KSZ9x31_LMD_VCT_DIS_TX BIT(14)
  74. #define KSZ9x31_LMD_VCT_PAIR(n) (((n) & 0x3) << 12)
  75. #define KSZ9x31_LMD_VCT_SEL_RESULT 0
  76. #define KSZ9x31_LMD_VCT_SEL_THRES_HI BIT(10)
  77. #define KSZ9x31_LMD_VCT_SEL_THRES_LO BIT(11)
  78. #define KSZ9x31_LMD_VCT_SEL_MASK GENMASK(11, 10)
  79. #define KSZ9x31_LMD_VCT_ST_NORMAL 0
  80. #define KSZ9x31_LMD_VCT_ST_OPEN 1
  81. #define KSZ9x31_LMD_VCT_ST_SHORT 2
  82. #define KSZ9x31_LMD_VCT_ST_FAIL 3
  83. #define KSZ9x31_LMD_VCT_ST_MASK GENMASK(9, 8)
  84. #define KSZ9x31_LMD_VCT_DATA_REFLECTED_INVALID BIT(7)
  85. #define KSZ9x31_LMD_VCT_DATA_SIG_WAIT_TOO_LONG BIT(6)
  86. #define KSZ9x31_LMD_VCT_DATA_MASK100 BIT(5)
  87. #define KSZ9x31_LMD_VCT_DATA_NLP_FLP BIT(4)
  88. #define KSZ9x31_LMD_VCT_DATA_LO_PULSE_MASK GENMASK(3, 2)
  89. #define KSZ9x31_LMD_VCT_DATA_HI_PULSE_MASK GENMASK(1, 0)
  90. #define KSZ9x31_LMD_VCT_DATA_MASK GENMASK(7, 0)
  91. #define KSZPHY_WIRE_PAIR_MASK 0x3
  92. #define LAN8814_CABLE_DIAG 0x12
  93. #define LAN8814_CABLE_DIAG_STAT_MASK GENMASK(9, 8)
  94. #define LAN8814_CABLE_DIAG_VCT_DATA_MASK GENMASK(7, 0)
  95. #define LAN8814_PAIR_BIT_SHIFT 12
  96. #define LAN8814_WIRE_PAIR_MASK 0xF
  97. /* Lan8814 general Interrupt control/status reg in GPHY specific block. */
  98. #define LAN8814_INTC 0x18
  99. #define LAN8814_INTS 0x1B
  100. #define LAN8814_INT_LINK_DOWN BIT(2)
  101. #define LAN8814_INT_LINK_UP BIT(0)
  102. #define LAN8814_INT_LINK (LAN8814_INT_LINK_UP |\
  103. LAN8814_INT_LINK_DOWN)
  104. #define LAN8814_INTR_CTRL_REG 0x34
  105. #define LAN8814_INTR_CTRL_REG_POLARITY BIT(1)
  106. #define LAN8814_INTR_CTRL_REG_INTR_ENABLE BIT(0)
  107. /* Represents 1ppm adjustment in 2^32 format with
  108. * each nsec contains 4 clock cycles.
  109. * The value is calculated as following: (1/1000000)/((2^-32)/4)
  110. */
  111. #define LAN8814_1PPM_FORMAT 17179
  112. #define PTP_RX_MOD 0x024F
  113. #define PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3)
  114. #define PTP_RX_TIMESTAMP_EN 0x024D
  115. #define PTP_TX_TIMESTAMP_EN 0x028D
  116. #define PTP_TIMESTAMP_EN_SYNC_ BIT(0)
  117. #define PTP_TIMESTAMP_EN_DREQ_ BIT(1)
  118. #define PTP_TIMESTAMP_EN_PDREQ_ BIT(2)
  119. #define PTP_TIMESTAMP_EN_PDRES_ BIT(3)
  120. #define PTP_TX_PARSE_L2_ADDR_EN 0x0284
  121. #define PTP_RX_PARSE_L2_ADDR_EN 0x0244
  122. #define PTP_TX_PARSE_IP_ADDR_EN 0x0285
  123. #define PTP_RX_PARSE_IP_ADDR_EN 0x0245
  124. #define LTC_HARD_RESET 0x023F
  125. #define LTC_HARD_RESET_ BIT(0)
  126. #define TSU_HARD_RESET 0x02C1
  127. #define TSU_HARD_RESET_ BIT(0)
  128. #define PTP_CMD_CTL 0x0200
  129. #define PTP_CMD_CTL_PTP_DISABLE_ BIT(0)
  130. #define PTP_CMD_CTL_PTP_ENABLE_ BIT(1)
  131. #define PTP_CMD_CTL_PTP_CLOCK_READ_ BIT(3)
  132. #define PTP_CMD_CTL_PTP_CLOCK_LOAD_ BIT(4)
  133. #define PTP_CMD_CTL_PTP_LTC_STEP_SEC_ BIT(5)
  134. #define PTP_CMD_CTL_PTP_LTC_STEP_NSEC_ BIT(6)
  135. #define PTP_CLOCK_SET_SEC_MID 0x0206
  136. #define PTP_CLOCK_SET_SEC_LO 0x0207
  137. #define PTP_CLOCK_SET_NS_HI 0x0208
  138. #define PTP_CLOCK_SET_NS_LO 0x0209
  139. #define PTP_CLOCK_READ_SEC_MID 0x022A
  140. #define PTP_CLOCK_READ_SEC_LO 0x022B
  141. #define PTP_CLOCK_READ_NS_HI 0x022C
  142. #define PTP_CLOCK_READ_NS_LO 0x022D
  143. #define PTP_OPERATING_MODE 0x0241
  144. #define PTP_OPERATING_MODE_STANDALONE_ BIT(0)
  145. #define PTP_TX_MOD 0x028F
  146. #define PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ BIT(12)
  147. #define PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3)
  148. #define PTP_RX_PARSE_CONFIG 0x0242
  149. #define PTP_RX_PARSE_CONFIG_LAYER2_EN_ BIT(0)
  150. #define PTP_RX_PARSE_CONFIG_IPV4_EN_ BIT(1)
  151. #define PTP_RX_PARSE_CONFIG_IPV6_EN_ BIT(2)
  152. #define PTP_TX_PARSE_CONFIG 0x0282
  153. #define PTP_TX_PARSE_CONFIG_LAYER2_EN_ BIT(0)
  154. #define PTP_TX_PARSE_CONFIG_IPV4_EN_ BIT(1)
  155. #define PTP_TX_PARSE_CONFIG_IPV6_EN_ BIT(2)
  156. #define PTP_CLOCK_RATE_ADJ_HI 0x020C
  157. #define PTP_CLOCK_RATE_ADJ_LO 0x020D
  158. #define PTP_CLOCK_RATE_ADJ_DIR_ BIT(15)
  159. #define PTP_LTC_STEP_ADJ_HI 0x0212
  160. #define PTP_LTC_STEP_ADJ_LO 0x0213
  161. #define PTP_LTC_STEP_ADJ_DIR_ BIT(15)
  162. #define LAN8814_INTR_STS_REG 0x0033
  163. #define LAN8814_INTR_STS_REG_1588_TSU0_ BIT(0)
  164. #define LAN8814_INTR_STS_REG_1588_TSU1_ BIT(1)
  165. #define LAN8814_INTR_STS_REG_1588_TSU2_ BIT(2)
  166. #define LAN8814_INTR_STS_REG_1588_TSU3_ BIT(3)
  167. #define PTP_CAP_INFO 0x022A
  168. #define PTP_CAP_INFO_TX_TS_CNT_GET_(reg_val) (((reg_val) & 0x0f00) >> 8)
  169. #define PTP_CAP_INFO_RX_TS_CNT_GET_(reg_val) ((reg_val) & 0x000f)
  170. #define PTP_TX_EGRESS_SEC_HI 0x0296
  171. #define PTP_TX_EGRESS_SEC_LO 0x0297
  172. #define PTP_TX_EGRESS_NS_HI 0x0294
  173. #define PTP_TX_EGRESS_NS_LO 0x0295
  174. #define PTP_TX_MSG_HEADER2 0x0299
  175. #define PTP_RX_INGRESS_SEC_HI 0x0256
  176. #define PTP_RX_INGRESS_SEC_LO 0x0257
  177. #define PTP_RX_INGRESS_NS_HI 0x0254
  178. #define PTP_RX_INGRESS_NS_LO 0x0255
  179. #define PTP_RX_MSG_HEADER2 0x0259
  180. #define PTP_TSU_INT_EN 0x0200
  181. #define PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ BIT(3)
  182. #define PTP_TSU_INT_EN_PTP_TX_TS_EN_ BIT(2)
  183. #define PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_ BIT(1)
  184. #define PTP_TSU_INT_EN_PTP_RX_TS_EN_ BIT(0)
  185. #define PTP_TSU_INT_STS 0x0201
  186. #define PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_ BIT(3)
  187. #define PTP_TSU_INT_STS_PTP_TX_TS_EN_ BIT(2)
  188. #define PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_ BIT(1)
  189. #define PTP_TSU_INT_STS_PTP_RX_TS_EN_ BIT(0)
  190. #define LAN8814_LED_CTRL_1 0x0
  191. #define LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_ BIT(6)
  192. /* PHY Control 1 */
  193. #define MII_KSZPHY_CTRL_1 0x1e
  194. #define KSZ8081_CTRL1_MDIX_STAT BIT(4)
  195. /* PHY Control 2 / PHY Control (if no PHY Control 1) */
  196. #define MII_KSZPHY_CTRL_2 0x1f
  197. #define MII_KSZPHY_CTRL MII_KSZPHY_CTRL_2
  198. /* bitmap of PHY register to set interrupt mode */
  199. #define KSZ8081_CTRL2_HP_MDIX BIT(15)
  200. #define KSZ8081_CTRL2_MDI_MDI_X_SELECT BIT(14)
  201. #define KSZ8081_CTRL2_DISABLE_AUTO_MDIX BIT(13)
  202. #define KSZ8081_CTRL2_FORCE_LINK BIT(11)
  203. #define KSZ8081_CTRL2_POWER_SAVING BIT(10)
  204. #define KSZPHY_CTRL_INT_ACTIVE_HIGH BIT(9)
  205. #define KSZPHY_RMII_REF_CLK_SEL BIT(7)
  206. /* Write/read to/from extended registers */
  207. #define MII_KSZPHY_EXTREG 0x0b
  208. #define KSZPHY_EXTREG_WRITE 0x8000
  209. #define MII_KSZPHY_EXTREG_WRITE 0x0c
  210. #define MII_KSZPHY_EXTREG_READ 0x0d
  211. /* Extended registers */
  212. #define MII_KSZPHY_CLK_CONTROL_PAD_SKEW 0x104
  213. #define MII_KSZPHY_RX_DATA_PAD_SKEW 0x105
  214. #define MII_KSZPHY_TX_DATA_PAD_SKEW 0x106
  215. #define PS_TO_REG 200
  216. #define FIFO_SIZE 8
  217. /*Register 2.10. 15:14 PME Output Select*/
  218. #define MII_KSZPHY_OMSO_PME_N2 BIT(10)
  219. /*Register 2.10. BITS 6, 1 and 0 to detect the type of WOL */
  220. #define MII_KSZPHY_WOL_MAGIC_PKT BIT(6)
  221. #define MII_KSZPHY_WOL_LINK_DOWN BIT(1)
  222. #define MII_KSZPHY_WOL_LINK_UP BIT(0)
  223. /* Register 2.10.15:14 PME Output Select */
  224. #define MII_KSZPHY_WOL_CTRL_PME_N2 BIT(15)
  225. #define MII_KSZPHY_WOL_CTRL_INT_N BIT(14)
  226. /* MMD Address 2h, Register 2h Operation Mode Strap Override*/
  227. #define MII_KSZPHY_OMSO_REG 0x2
  228. /* MMD Address 2h, Register 10h Wake-On-LAN Control */
  229. #define MII_KSZPHY_WOL_CTRL_REG 0x10
  230. struct kszphy_hw_stat {
  231. const char *string;
  232. u8 reg;
  233. u8 bits;
  234. };
  235. static struct kszphy_hw_stat kszphy_hw_stats[] = {
  236. { "phy_receive_errors", 21, 16},
  237. { "phy_idle_errors", 10, 8 },
  238. };
  239. struct kszphy_type {
  240. u32 led_mode_reg;
  241. u16 interrupt_level_mask;
  242. u16 cable_diag_reg;
  243. unsigned long pair_mask;
  244. bool has_broadcast_disable;
  245. bool has_nand_tree_disable;
  246. bool has_rmii_ref_clk_sel;
  247. };
  248. /* Shared structure between the PHYs of the same package. */
  249. struct lan8814_shared_priv {
  250. struct phy_device *phydev;
  251. struct ptp_clock *ptp_clock;
  252. struct ptp_clock_info ptp_clock_info;
  253. /* Reference counter to how many ports in the package are enabling the
  254. * timestamping
  255. */
  256. u8 ref;
  257. /* Lock for ptp_clock and ref */
  258. struct mutex shared_lock;
  259. };
  260. struct lan8814_ptp_rx_ts {
  261. struct list_head list;
  262. u32 seconds;
  263. u32 nsec;
  264. u16 seq_id;
  265. };
  266. struct kszphy_ptp_priv {
  267. struct mii_timestamper mii_ts;
  268. struct phy_device *phydev;
  269. struct sk_buff_head tx_queue;
  270. struct sk_buff_head rx_queue;
  271. struct list_head rx_ts_list;
  272. /* Lock for Rx ts fifo */
  273. spinlock_t rx_ts_lock;
  274. int hwts_tx_type;
  275. enum hwtstamp_rx_filters rx_filter;
  276. int layer;
  277. int version;
  278. };
  279. struct kszphy_priv {
  280. struct kszphy_ptp_priv ptp_priv;
  281. const struct kszphy_type *type;
  282. int led_mode;
  283. u16 vct_ctrl1000;
  284. bool rmii_ref_clk_sel;
  285. bool rmii_ref_clk_sel_val;
  286. u64 stats[ARRAY_SIZE(kszphy_hw_stats)];
  287. };
  288. static const struct kszphy_type lan8814_type = {
  289. .led_mode_reg = ~LAN8814_LED_CTRL_1,
  290. .cable_diag_reg = LAN8814_CABLE_DIAG,
  291. .pair_mask = LAN8814_WIRE_PAIR_MASK,
  292. };
  293. static const struct kszphy_type ksz886x_type = {
  294. .cable_diag_reg = KSZ8081_LMD,
  295. .pair_mask = KSZPHY_WIRE_PAIR_MASK,
  296. };
  297. static const struct kszphy_type ksz8021_type = {
  298. .led_mode_reg = MII_KSZPHY_CTRL_2,
  299. .has_broadcast_disable = true,
  300. .has_nand_tree_disable = true,
  301. .has_rmii_ref_clk_sel = true,
  302. };
  303. static const struct kszphy_type ksz8041_type = {
  304. .led_mode_reg = MII_KSZPHY_CTRL_1,
  305. };
  306. static const struct kszphy_type ksz8051_type = {
  307. .led_mode_reg = MII_KSZPHY_CTRL_2,
  308. .has_nand_tree_disable = true,
  309. };
  310. static const struct kszphy_type ksz8081_type = {
  311. .led_mode_reg = MII_KSZPHY_CTRL_2,
  312. .has_broadcast_disable = true,
  313. .has_nand_tree_disable = true,
  314. .has_rmii_ref_clk_sel = true,
  315. };
  316. static const struct kszphy_type ks8737_type = {
  317. .interrupt_level_mask = BIT(14),
  318. };
  319. static const struct kszphy_type ksz9021_type = {
  320. .interrupt_level_mask = BIT(14),
  321. };
  322. static int kszphy_extended_write(struct phy_device *phydev,
  323. u32 regnum, u16 val)
  324. {
  325. phy_write(phydev, MII_KSZPHY_EXTREG, KSZPHY_EXTREG_WRITE | regnum);
  326. return phy_write(phydev, MII_KSZPHY_EXTREG_WRITE, val);
  327. }
  328. static int kszphy_extended_read(struct phy_device *phydev,
  329. u32 regnum)
  330. {
  331. phy_write(phydev, MII_KSZPHY_EXTREG, regnum);
  332. return phy_read(phydev, MII_KSZPHY_EXTREG_READ);
  333. }
  334. static int kszphy_ack_interrupt(struct phy_device *phydev)
  335. {
  336. /* bit[7..0] int status, which is a read and clear register. */
  337. int rc;
  338. rc = phy_read(phydev, MII_KSZPHY_INTCS);
  339. return (rc < 0) ? rc : 0;
  340. }
  341. static int kszphy_config_intr(struct phy_device *phydev)
  342. {
  343. const struct kszphy_type *type = phydev->drv->driver_data;
  344. int temp, err;
  345. u16 mask;
  346. if (type && type->interrupt_level_mask)
  347. mask = type->interrupt_level_mask;
  348. else
  349. mask = KSZPHY_CTRL_INT_ACTIVE_HIGH;
  350. /* set the interrupt pin active low */
  351. temp = phy_read(phydev, MII_KSZPHY_CTRL);
  352. if (temp < 0)
  353. return temp;
  354. temp &= ~mask;
  355. phy_write(phydev, MII_KSZPHY_CTRL, temp);
  356. /* enable / disable interrupts */
  357. if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
  358. err = kszphy_ack_interrupt(phydev);
  359. if (err)
  360. return err;
  361. temp = KSZPHY_INTCS_ALL;
  362. err = phy_write(phydev, MII_KSZPHY_INTCS, temp);
  363. } else {
  364. temp = 0;
  365. err = phy_write(phydev, MII_KSZPHY_INTCS, temp);
  366. if (err)
  367. return err;
  368. err = kszphy_ack_interrupt(phydev);
  369. }
  370. return err;
  371. }
  372. static irqreturn_t kszphy_handle_interrupt(struct phy_device *phydev)
  373. {
  374. int irq_status;
  375. irq_status = phy_read(phydev, MII_KSZPHY_INTCS);
  376. if (irq_status < 0) {
  377. phy_error(phydev);
  378. return IRQ_NONE;
  379. }
  380. if (!(irq_status & KSZPHY_INTCS_STATUS))
  381. return IRQ_NONE;
  382. phy_trigger_machine(phydev);
  383. return IRQ_HANDLED;
  384. }
  385. static int kszphy_rmii_clk_sel(struct phy_device *phydev, bool val)
  386. {
  387. int ctrl;
  388. ctrl = phy_read(phydev, MII_KSZPHY_CTRL);
  389. if (ctrl < 0)
  390. return ctrl;
  391. if (val)
  392. ctrl |= KSZPHY_RMII_REF_CLK_SEL;
  393. else
  394. ctrl &= ~KSZPHY_RMII_REF_CLK_SEL;
  395. return phy_write(phydev, MII_KSZPHY_CTRL, ctrl);
  396. }
  397. static int kszphy_setup_led(struct phy_device *phydev, u32 reg, int val)
  398. {
  399. int rc, temp, shift;
  400. switch (reg) {
  401. case MII_KSZPHY_CTRL_1:
  402. shift = 14;
  403. break;
  404. case MII_KSZPHY_CTRL_2:
  405. shift = 4;
  406. break;
  407. default:
  408. return -EINVAL;
  409. }
  410. temp = phy_read(phydev, reg);
  411. if (temp < 0) {
  412. rc = temp;
  413. goto out;
  414. }
  415. temp &= ~(3 << shift);
  416. temp |= val << shift;
  417. rc = phy_write(phydev, reg, temp);
  418. out:
  419. if (rc < 0)
  420. phydev_err(phydev, "failed to set led mode\n");
  421. return rc;
  422. }
  423. /* Disable PHY address 0 as the broadcast address, so that it can be used as a
  424. * unique (non-broadcast) address on a shared bus.
  425. */
  426. static int kszphy_broadcast_disable(struct phy_device *phydev)
  427. {
  428. int ret;
  429. ret = phy_read(phydev, MII_KSZPHY_OMSO);
  430. if (ret < 0)
  431. goto out;
  432. ret = phy_write(phydev, MII_KSZPHY_OMSO, ret | KSZPHY_OMSO_B_CAST_OFF);
  433. out:
  434. if (ret)
  435. phydev_err(phydev, "failed to disable broadcast address\n");
  436. return ret;
  437. }
  438. static int kszphy_nand_tree_disable(struct phy_device *phydev)
  439. {
  440. int ret;
  441. ret = phy_read(phydev, MII_KSZPHY_OMSO);
  442. if (ret < 0)
  443. goto out;
  444. if (!(ret & KSZPHY_OMSO_NAND_TREE_ON))
  445. return 0;
  446. ret = phy_write(phydev, MII_KSZPHY_OMSO,
  447. ret & ~KSZPHY_OMSO_NAND_TREE_ON);
  448. out:
  449. if (ret)
  450. phydev_err(phydev, "failed to disable NAND tree mode\n");
  451. return ret;
  452. }
  453. /* Some config bits need to be set again on resume, handle them here. */
  454. static int kszphy_config_reset(struct phy_device *phydev)
  455. {
  456. struct kszphy_priv *priv = phydev->priv;
  457. int ret;
  458. if (priv->rmii_ref_clk_sel) {
  459. ret = kszphy_rmii_clk_sel(phydev, priv->rmii_ref_clk_sel_val);
  460. if (ret) {
  461. phydev_err(phydev,
  462. "failed to set rmii reference clock\n");
  463. return ret;
  464. }
  465. }
  466. if (priv->type && priv->led_mode >= 0)
  467. kszphy_setup_led(phydev, priv->type->led_mode_reg, priv->led_mode);
  468. return 0;
  469. }
  470. static int kszphy_config_init(struct phy_device *phydev)
  471. {
  472. struct kszphy_priv *priv = phydev->priv;
  473. const struct kszphy_type *type;
  474. if (!priv)
  475. return 0;
  476. type = priv->type;
  477. if (type && type->has_broadcast_disable)
  478. kszphy_broadcast_disable(phydev);
  479. if (type && type->has_nand_tree_disable)
  480. kszphy_nand_tree_disable(phydev);
  481. return kszphy_config_reset(phydev);
  482. }
  483. static int ksz8041_fiber_mode(struct phy_device *phydev)
  484. {
  485. struct device_node *of_node = phydev->mdio.dev.of_node;
  486. return of_property_read_bool(of_node, "micrel,fiber-mode");
  487. }
  488. static int ksz8041_config_init(struct phy_device *phydev)
  489. {
  490. __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
  491. /* Limit supported and advertised modes in fiber mode */
  492. if (ksz8041_fiber_mode(phydev)) {
  493. phydev->dev_flags |= MICREL_PHY_FXEN;
  494. linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask);
  495. linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask);
  496. linkmode_and(phydev->supported, phydev->supported, mask);
  497. linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT,
  498. phydev->supported);
  499. linkmode_and(phydev->advertising, phydev->advertising, mask);
  500. linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT,
  501. phydev->advertising);
  502. phydev->autoneg = AUTONEG_DISABLE;
  503. }
  504. return kszphy_config_init(phydev);
  505. }
  506. static int ksz8041_config_aneg(struct phy_device *phydev)
  507. {
  508. /* Skip auto-negotiation in fiber mode */
  509. if (phydev->dev_flags & MICREL_PHY_FXEN) {
  510. phydev->speed = SPEED_100;
  511. return 0;
  512. }
  513. return genphy_config_aneg(phydev);
  514. }
  515. static int ksz8051_ksz8795_match_phy_device(struct phy_device *phydev,
  516. const bool ksz_8051)
  517. {
  518. int ret;
  519. if ((phydev->phy_id & MICREL_PHY_ID_MASK) != PHY_ID_KSZ8051)
  520. return 0;
  521. ret = phy_read(phydev, MII_BMSR);
  522. if (ret < 0)
  523. return ret;
  524. /* KSZ8051 PHY and KSZ8794/KSZ8795/KSZ8765 switch share the same
  525. * exact PHY ID. However, they can be told apart by the extended
  526. * capability registers presence. The KSZ8051 PHY has them while
  527. * the switch does not.
  528. */
  529. ret &= BMSR_ERCAP;
  530. if (ksz_8051)
  531. return ret;
  532. else
  533. return !ret;
  534. }
  535. static int ksz8051_match_phy_device(struct phy_device *phydev)
  536. {
  537. return ksz8051_ksz8795_match_phy_device(phydev, true);
  538. }
  539. static int ksz8081_config_init(struct phy_device *phydev)
  540. {
  541. /* KSZPHY_OMSO_FACTORY_TEST is set at de-assertion of the reset line
  542. * based on the RXER (KSZ8081RNA/RND) or TXC (KSZ8081MNX/RNB) pin. If a
  543. * pull-down is missing, the factory test mode should be cleared by
  544. * manually writing a 0.
  545. */
  546. phy_clear_bits(phydev, MII_KSZPHY_OMSO, KSZPHY_OMSO_FACTORY_TEST);
  547. return kszphy_config_init(phydev);
  548. }
  549. static int ksz8081_config_mdix(struct phy_device *phydev, u8 ctrl)
  550. {
  551. u16 val;
  552. switch (ctrl) {
  553. case ETH_TP_MDI:
  554. val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX;
  555. break;
  556. case ETH_TP_MDI_X:
  557. val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX |
  558. KSZ8081_CTRL2_MDI_MDI_X_SELECT;
  559. break;
  560. case ETH_TP_MDI_AUTO:
  561. val = 0;
  562. break;
  563. default:
  564. return 0;
  565. }
  566. return phy_modify(phydev, MII_KSZPHY_CTRL_2,
  567. KSZ8081_CTRL2_HP_MDIX |
  568. KSZ8081_CTRL2_MDI_MDI_X_SELECT |
  569. KSZ8081_CTRL2_DISABLE_AUTO_MDIX,
  570. KSZ8081_CTRL2_HP_MDIX | val);
  571. }
  572. static int ksz8081_config_aneg(struct phy_device *phydev)
  573. {
  574. int ret;
  575. ret = genphy_config_aneg(phydev);
  576. if (ret)
  577. return ret;
  578. /* The MDI-X configuration is automatically changed by the PHY after
  579. * switching from autoneg off to on. So, take MDI-X configuration under
  580. * own control and set it after autoneg configuration was done.
  581. */
  582. return ksz8081_config_mdix(phydev, phydev->mdix_ctrl);
  583. }
  584. static int ksz8081_mdix_update(struct phy_device *phydev)
  585. {
  586. int ret;
  587. ret = phy_read(phydev, MII_KSZPHY_CTRL_2);
  588. if (ret < 0)
  589. return ret;
  590. if (ret & KSZ8081_CTRL2_DISABLE_AUTO_MDIX) {
  591. if (ret & KSZ8081_CTRL2_MDI_MDI_X_SELECT)
  592. phydev->mdix_ctrl = ETH_TP_MDI_X;
  593. else
  594. phydev->mdix_ctrl = ETH_TP_MDI;
  595. } else {
  596. phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
  597. }
  598. ret = phy_read(phydev, MII_KSZPHY_CTRL_1);
  599. if (ret < 0)
  600. return ret;
  601. if (ret & KSZ8081_CTRL1_MDIX_STAT)
  602. phydev->mdix = ETH_TP_MDI;
  603. else
  604. phydev->mdix = ETH_TP_MDI_X;
  605. return 0;
  606. }
  607. static int ksz8081_read_status(struct phy_device *phydev)
  608. {
  609. int ret;
  610. ret = ksz8081_mdix_update(phydev);
  611. if (ret < 0)
  612. return ret;
  613. return genphy_read_status(phydev);
  614. }
  615. static int ksz8061_config_init(struct phy_device *phydev)
  616. {
  617. int ret;
  618. ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A);
  619. if (ret)
  620. return ret;
  621. return kszphy_config_init(phydev);
  622. }
  623. static int ksz8795_match_phy_device(struct phy_device *phydev)
  624. {
  625. return ksz8051_ksz8795_match_phy_device(phydev, false);
  626. }
  627. static int ksz9021_load_values_from_of(struct phy_device *phydev,
  628. const struct device_node *of_node,
  629. u16 reg,
  630. const char *field1, const char *field2,
  631. const char *field3, const char *field4)
  632. {
  633. int val1 = -1;
  634. int val2 = -2;
  635. int val3 = -3;
  636. int val4 = -4;
  637. int newval;
  638. int matches = 0;
  639. if (!of_property_read_u32(of_node, field1, &val1))
  640. matches++;
  641. if (!of_property_read_u32(of_node, field2, &val2))
  642. matches++;
  643. if (!of_property_read_u32(of_node, field3, &val3))
  644. matches++;
  645. if (!of_property_read_u32(of_node, field4, &val4))
  646. matches++;
  647. if (!matches)
  648. return 0;
  649. if (matches < 4)
  650. newval = kszphy_extended_read(phydev, reg);
  651. else
  652. newval = 0;
  653. if (val1 != -1)
  654. newval = ((newval & 0xfff0) | ((val1 / PS_TO_REG) & 0xf) << 0);
  655. if (val2 != -2)
  656. newval = ((newval & 0xff0f) | ((val2 / PS_TO_REG) & 0xf) << 4);
  657. if (val3 != -3)
  658. newval = ((newval & 0xf0ff) | ((val3 / PS_TO_REG) & 0xf) << 8);
  659. if (val4 != -4)
  660. newval = ((newval & 0x0fff) | ((val4 / PS_TO_REG) & 0xf) << 12);
  661. return kszphy_extended_write(phydev, reg, newval);
  662. }
  663. static int ksz9021_config_init(struct phy_device *phydev)
  664. {
  665. const struct device_node *of_node;
  666. const struct device *dev_walker;
  667. /* The Micrel driver has a deprecated option to place phy OF
  668. * properties in the MAC node. Walk up the tree of devices to
  669. * find a device with an OF node.
  670. */
  671. dev_walker = &phydev->mdio.dev;
  672. do {
  673. of_node = dev_walker->of_node;
  674. dev_walker = dev_walker->parent;
  675. } while (!of_node && dev_walker);
  676. if (of_node) {
  677. ksz9021_load_values_from_of(phydev, of_node,
  678. MII_KSZPHY_CLK_CONTROL_PAD_SKEW,
  679. "txen-skew-ps", "txc-skew-ps",
  680. "rxdv-skew-ps", "rxc-skew-ps");
  681. ksz9021_load_values_from_of(phydev, of_node,
  682. MII_KSZPHY_RX_DATA_PAD_SKEW,
  683. "rxd0-skew-ps", "rxd1-skew-ps",
  684. "rxd2-skew-ps", "rxd3-skew-ps");
  685. ksz9021_load_values_from_of(phydev, of_node,
  686. MII_KSZPHY_TX_DATA_PAD_SKEW,
  687. "txd0-skew-ps", "txd1-skew-ps",
  688. "txd2-skew-ps", "txd3-skew-ps");
  689. }
  690. return 0;
  691. }
  692. #define KSZ9031_PS_TO_REG 60
  693. /* Extended registers */
  694. /* MMD Address 0x0 */
  695. #define MII_KSZ9031RN_FLP_BURST_TX_LO 3
  696. #define MII_KSZ9031RN_FLP_BURST_TX_HI 4
  697. /* MMD Address 0x2 */
  698. #define MII_KSZ9031RN_CONTROL_PAD_SKEW 4
  699. #define MII_KSZ9031RN_RX_CTL_M GENMASK(7, 4)
  700. #define MII_KSZ9031RN_TX_CTL_M GENMASK(3, 0)
  701. #define MII_KSZ9031RN_RX_DATA_PAD_SKEW 5
  702. #define MII_KSZ9031RN_RXD3 GENMASK(15, 12)
  703. #define MII_KSZ9031RN_RXD2 GENMASK(11, 8)
  704. #define MII_KSZ9031RN_RXD1 GENMASK(7, 4)
  705. #define MII_KSZ9031RN_RXD0 GENMASK(3, 0)
  706. #define MII_KSZ9031RN_TX_DATA_PAD_SKEW 6
  707. #define MII_KSZ9031RN_TXD3 GENMASK(15, 12)
  708. #define MII_KSZ9031RN_TXD2 GENMASK(11, 8)
  709. #define MII_KSZ9031RN_TXD1 GENMASK(7, 4)
  710. #define MII_KSZ9031RN_TXD0 GENMASK(3, 0)
  711. #define MII_KSZ9031RN_CLK_PAD_SKEW 8
  712. #define MII_KSZ9031RN_GTX_CLK GENMASK(9, 5)
  713. #define MII_KSZ9031RN_RX_CLK GENMASK(4, 0)
  714. /* KSZ9031 has internal RGMII_IDRX = 1.2ns and RGMII_IDTX = 0ns. To
  715. * provide different RGMII options we need to configure delay offset
  716. * for each pad relative to build in delay.
  717. */
  718. /* keep rx as "No delay adjustment" and set rx_clk to +0.60ns to get delays of
  719. * 1.80ns
  720. */
  721. #define RX_ID 0x7
  722. #define RX_CLK_ID 0x19
  723. /* set rx to +0.30ns and rx_clk to -0.90ns to compensate the
  724. * internal 1.2ns delay.
  725. */
  726. #define RX_ND 0xc
  727. #define RX_CLK_ND 0x0
  728. /* set tx to -0.42ns and tx_clk to +0.96ns to get 1.38ns delay */
  729. #define TX_ID 0x0
  730. #define TX_CLK_ID 0x1f
  731. /* set tx and tx_clk to "No delay adjustment" to keep 0ns
  732. * dealy
  733. */
  734. #define TX_ND 0x7
  735. #define TX_CLK_ND 0xf
  736. /* MMD Address 0x1C */
  737. #define MII_KSZ9031RN_EDPD 0x23
  738. #define MII_KSZ9031RN_EDPD_ENABLE BIT(0)
  739. static int ksz9031_ack_interrupt(struct phy_device *phydev)
  740. {
  741. /* bit[7..0] int status, which is a read and clear register. */
  742. int rc;
  743. u32 reg_value;
  744. rc = phy_read(phydev, MII_KSZPHY_INTCS);
  745. reg_value = phy_read_mmd(phydev, 0x2, MII_KSZPHY_OMSO_REG);
  746. if (reg_value & MII_KSZPHY_OMSO_PME_N2) {
  747. /* PME output is cleared by disabling the PME trigger src */
  748. reg_value = phy_read_mmd(phydev, 0x2, MII_KSZPHY_WOL_CTRL_REG);
  749. reg_value &= ~MII_KSZPHY_WOL_MAGIC_PKT;
  750. reg_value &= ~MII_KSZPHY_WOL_LINK_UP;
  751. reg_value &= ~MII_KSZPHY_WOL_LINK_DOWN;
  752. phy_write_mmd(phydev, 0x2, MII_KSZPHY_WOL_CTRL_REG, reg_value);
  753. reg_value = phy_read_mmd(phydev, 0x2, MII_KSZPHY_WOL_CTRL_REG);
  754. reg_value |= MII_KSZPHY_WOL_MAGIC_PKT;
  755. reg_value |= MII_KSZPHY_WOL_LINK_UP;
  756. reg_value |= MII_KSZPHY_WOL_LINK_DOWN;
  757. phy_write_mmd(phydev, 0x2, MII_KSZPHY_WOL_CTRL_REG, reg_value);
  758. }
  759. return (rc < 0) ? rc : 0;
  760. }
  761. static int ksz9031_config_intr(struct phy_device *phydev)
  762. {
  763. const struct kszphy_type *type = phydev->drv->driver_data;
  764. int temp, err;
  765. u16 mask;
  766. if (type && type->interrupt_level_mask)
  767. mask = type->interrupt_level_mask;
  768. else
  769. mask = KSZPHY_CTRL_INT_ACTIVE_HIGH;
  770. /* set the interrupt pin active low */
  771. temp = phy_read(phydev, MII_KSZPHY_CTRL);
  772. if (temp < 0)
  773. return temp;
  774. temp &= ~mask;
  775. phy_write(phydev, MII_KSZPHY_CTRL, temp);
  776. /* enable / disable interrupts */
  777. if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
  778. err = ksz9031_ack_interrupt(phydev);
  779. if (err)
  780. return err;
  781. temp = KSZPHY_INTCS_ALL;
  782. err = phy_write(phydev, MII_KSZPHY_INTCS, temp);
  783. } else {
  784. temp = 0;
  785. err = phy_write(phydev, MII_KSZPHY_INTCS, temp);
  786. if (err)
  787. return err;
  788. err = ksz9031_ack_interrupt(phydev);
  789. }
  790. return err;
  791. }
  792. static int ksz9031_of_load_skew_values(struct phy_device *phydev,
  793. const struct device_node *of_node,
  794. u16 reg, size_t field_sz,
  795. const char *field[], u8 numfields,
  796. bool *update)
  797. {
  798. int val[4] = {-1, -2, -3, -4};
  799. int matches = 0;
  800. u16 mask;
  801. u16 maxval;
  802. u16 newval;
  803. int i;
  804. for (i = 0; i < numfields; i++)
  805. if (!of_property_read_u32(of_node, field[i], val + i))
  806. matches++;
  807. if (!matches)
  808. return 0;
  809. *update |= true;
  810. if (matches < numfields)
  811. newval = phy_read_mmd(phydev, 2, reg);
  812. else
  813. newval = 0;
  814. maxval = (field_sz == 4) ? 0xf : 0x1f;
  815. for (i = 0; i < numfields; i++)
  816. if (val[i] != -(i + 1)) {
  817. mask = 0xffff;
  818. mask ^= maxval << (field_sz * i);
  819. newval = (newval & mask) |
  820. (((val[i] / KSZ9031_PS_TO_REG) & maxval)
  821. << (field_sz * i));
  822. }
  823. return phy_write_mmd(phydev, 2, reg, newval);
  824. }
  825. /* Center KSZ9031RNX FLP timing at 16ms. */
  826. static int ksz9031_center_flp_timing(struct phy_device *phydev)
  827. {
  828. int result;
  829. result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_HI,
  830. 0x0006);
  831. if (result)
  832. return result;
  833. result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_LO,
  834. 0x1A80);
  835. if (result)
  836. return result;
  837. return genphy_restart_aneg(phydev);
  838. }
  839. /* Enable energy-detect power-down mode */
  840. static int ksz9031_enable_edpd(struct phy_device *phydev)
  841. {
  842. int reg;
  843. reg = phy_read_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD);
  844. if (reg < 0)
  845. return reg;
  846. return phy_write_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD,
  847. reg | MII_KSZ9031RN_EDPD_ENABLE);
  848. }
  849. static int ksz9031_config_rgmii_delay(struct phy_device *phydev)
  850. {
  851. u16 rx, tx, rx_clk, tx_clk;
  852. int ret;
  853. switch (phydev->interface) {
  854. case PHY_INTERFACE_MODE_RGMII:
  855. tx = TX_ND;
  856. tx_clk = TX_CLK_ND;
  857. rx = RX_ND;
  858. rx_clk = RX_CLK_ND;
  859. break;
  860. case PHY_INTERFACE_MODE_RGMII_ID:
  861. tx = TX_ID;
  862. tx_clk = TX_CLK_ID;
  863. rx = RX_ID;
  864. rx_clk = RX_CLK_ID;
  865. break;
  866. case PHY_INTERFACE_MODE_RGMII_RXID:
  867. tx = TX_ND;
  868. tx_clk = TX_CLK_ND;
  869. rx = RX_ID;
  870. rx_clk = RX_CLK_ID;
  871. break;
  872. case PHY_INTERFACE_MODE_RGMII_TXID:
  873. tx = TX_ID;
  874. tx_clk = TX_CLK_ID;
  875. rx = RX_ND;
  876. rx_clk = RX_CLK_ND;
  877. break;
  878. default:
  879. return 0;
  880. }
  881. ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_CONTROL_PAD_SKEW,
  882. FIELD_PREP(MII_KSZ9031RN_RX_CTL_M, rx) |
  883. FIELD_PREP(MII_KSZ9031RN_TX_CTL_M, tx));
  884. if (ret < 0)
  885. return ret;
  886. ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_RX_DATA_PAD_SKEW,
  887. FIELD_PREP(MII_KSZ9031RN_RXD3, rx) |
  888. FIELD_PREP(MII_KSZ9031RN_RXD2, rx) |
  889. FIELD_PREP(MII_KSZ9031RN_RXD1, rx) |
  890. FIELD_PREP(MII_KSZ9031RN_RXD0, rx));
  891. if (ret < 0)
  892. return ret;
  893. ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_TX_DATA_PAD_SKEW,
  894. FIELD_PREP(MII_KSZ9031RN_TXD3, tx) |
  895. FIELD_PREP(MII_KSZ9031RN_TXD2, tx) |
  896. FIELD_PREP(MII_KSZ9031RN_TXD1, tx) |
  897. FIELD_PREP(MII_KSZ9031RN_TXD0, tx));
  898. if (ret < 0)
  899. return ret;
  900. return phy_write_mmd(phydev, 2, MII_KSZ9031RN_CLK_PAD_SKEW,
  901. FIELD_PREP(MII_KSZ9031RN_GTX_CLK, tx_clk) |
  902. FIELD_PREP(MII_KSZ9031RN_RX_CLK, rx_clk));
  903. }
  904. static int ksz9031_config_init(struct phy_device *phydev)
  905. {
  906. const struct device_node *of_node;
  907. static const char *clk_skews[2] = {"rxc-skew-ps", "txc-skew-ps"};
  908. static const char *rx_data_skews[4] = {
  909. "rxd0-skew-ps", "rxd1-skew-ps",
  910. "rxd2-skew-ps", "rxd3-skew-ps"
  911. };
  912. static const char *tx_data_skews[4] = {
  913. "txd0-skew-ps", "txd1-skew-ps",
  914. "txd2-skew-ps", "txd3-skew-ps"
  915. };
  916. static const char *control_skews[2] = {"txen-skew-ps", "rxdv-skew-ps"};
  917. const struct device *dev_walker;
  918. int result;
  919. result = ksz9031_enable_edpd(phydev);
  920. if (result < 0)
  921. return result;
  922. /* The Micrel driver has a deprecated option to place phy OF
  923. * properties in the MAC node. Walk up the tree of devices to
  924. * find a device with an OF node.
  925. */
  926. dev_walker = &phydev->mdio.dev;
  927. do {
  928. of_node = dev_walker->of_node;
  929. dev_walker = dev_walker->parent;
  930. } while (!of_node && dev_walker);
  931. if (of_node) {
  932. bool update = false;
  933. if (phy_interface_is_rgmii(phydev)) {
  934. result = ksz9031_config_rgmii_delay(phydev);
  935. if (result < 0)
  936. return result;
  937. }
  938. ksz9031_of_load_skew_values(phydev, of_node,
  939. MII_KSZ9031RN_CLK_PAD_SKEW, 5,
  940. clk_skews, 2, &update);
  941. ksz9031_of_load_skew_values(phydev, of_node,
  942. MII_KSZ9031RN_CONTROL_PAD_SKEW, 4,
  943. control_skews, 2, &update);
  944. ksz9031_of_load_skew_values(phydev, of_node,
  945. MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4,
  946. rx_data_skews, 4, &update);
  947. ksz9031_of_load_skew_values(phydev, of_node,
  948. MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4,
  949. tx_data_skews, 4, &update);
  950. if (update && !phy_interface_is_rgmii(phydev))
  951. phydev_warn(phydev,
  952. "*-skew-ps values should be used only with RGMII PHY modes\n");
  953. /* Silicon Errata Sheet (DS80000691D or DS80000692D):
  954. * When the device links in the 1000BASE-T slave mode only,
  955. * the optional 125MHz reference output clock (CLK125_NDO)
  956. * has wide duty cycle variation.
  957. *
  958. * The optional CLK125_NDO clock does not meet the RGMII
  959. * 45/55 percent (min/max) duty cycle requirement and therefore
  960. * cannot be used directly by the MAC side for clocking
  961. * applications that have setup/hold time requirements on
  962. * rising and falling clock edges.
  963. *
  964. * Workaround:
  965. * Force the phy to be the master to receive a stable clock
  966. * which meets the duty cycle requirement.
  967. */
  968. if (of_property_read_bool(of_node, "micrel,force-master")) {
  969. result = phy_read(phydev, MII_CTRL1000);
  970. if (result < 0)
  971. goto err_force_master;
  972. /* enable master mode, config & prefer master */
  973. result |= CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER;
  974. result = phy_write(phydev, MII_CTRL1000, result);
  975. if (result < 0)
  976. goto err_force_master;
  977. }
  978. }
  979. return ksz9031_center_flp_timing(phydev);
  980. err_force_master:
  981. phydev_err(phydev, "failed to force the phy to master mode\n");
  982. return result;
  983. }
  984. #define KSZ9131_SKEW_5BIT_MAX 2400
  985. #define KSZ9131_SKEW_4BIT_MAX 800
  986. #define KSZ9131_OFFSET 700
  987. #define KSZ9131_STEP 100
  988. static int ksz9131_of_load_skew_values(struct phy_device *phydev,
  989. struct device_node *of_node,
  990. u16 reg, size_t field_sz,
  991. char *field[], u8 numfields)
  992. {
  993. int val[4] = {-(1 + KSZ9131_OFFSET), -(2 + KSZ9131_OFFSET),
  994. -(3 + KSZ9131_OFFSET), -(4 + KSZ9131_OFFSET)};
  995. int skewval, skewmax = 0;
  996. int matches = 0;
  997. u16 maxval;
  998. u16 newval;
  999. u16 mask;
  1000. int i;
  1001. /* psec properties in dts should mean x pico seconds */
  1002. if (field_sz == 5)
  1003. skewmax = KSZ9131_SKEW_5BIT_MAX;
  1004. else
  1005. skewmax = KSZ9131_SKEW_4BIT_MAX;
  1006. for (i = 0; i < numfields; i++)
  1007. if (!of_property_read_s32(of_node, field[i], &skewval)) {
  1008. if (skewval < -KSZ9131_OFFSET)
  1009. skewval = -KSZ9131_OFFSET;
  1010. else if (skewval > skewmax)
  1011. skewval = skewmax;
  1012. val[i] = skewval + KSZ9131_OFFSET;
  1013. matches++;
  1014. }
  1015. if (!matches)
  1016. return 0;
  1017. if (matches < numfields)
  1018. newval = phy_read_mmd(phydev, 2, reg);
  1019. else
  1020. newval = 0;
  1021. maxval = (field_sz == 4) ? 0xf : 0x1f;
  1022. for (i = 0; i < numfields; i++)
  1023. if (val[i] != -(i + 1 + KSZ9131_OFFSET)) {
  1024. mask = 0xffff;
  1025. mask ^= maxval << (field_sz * i);
  1026. newval = (newval & mask) |
  1027. (((val[i] / KSZ9131_STEP) & maxval)
  1028. << (field_sz * i));
  1029. }
  1030. return phy_write_mmd(phydev, 2, reg, newval);
  1031. }
  1032. #define KSZ9131RN_MMD_COMMON_CTRL_REG 2
  1033. #define KSZ9131RN_RXC_DLL_CTRL 76
  1034. #define KSZ9131RN_TXC_DLL_CTRL 77
  1035. #define KSZ9131RN_DLL_CTRL_BYPASS BIT_MASK(12)
  1036. #define KSZ9131RN_DLL_ENABLE_DELAY 0
  1037. #define KSZ9131RN_DLL_DISABLE_DELAY BIT(12)
  1038. static int ksz9131_config_rgmii_delay(struct phy_device *phydev)
  1039. {
  1040. u16 rxcdll_val, txcdll_val;
  1041. int ret;
  1042. switch (phydev->interface) {
  1043. case PHY_INTERFACE_MODE_RGMII:
  1044. rxcdll_val = KSZ9131RN_DLL_DISABLE_DELAY;
  1045. txcdll_val = KSZ9131RN_DLL_DISABLE_DELAY;
  1046. break;
  1047. case PHY_INTERFACE_MODE_RGMII_ID:
  1048. rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
  1049. txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
  1050. break;
  1051. case PHY_INTERFACE_MODE_RGMII_RXID:
  1052. rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
  1053. txcdll_val = KSZ9131RN_DLL_DISABLE_DELAY;
  1054. break;
  1055. case PHY_INTERFACE_MODE_RGMII_TXID:
  1056. rxcdll_val = KSZ9131RN_DLL_DISABLE_DELAY;
  1057. txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
  1058. break;
  1059. default:
  1060. return 0;
  1061. }
  1062. ret = phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
  1063. KSZ9131RN_RXC_DLL_CTRL, KSZ9131RN_DLL_CTRL_BYPASS,
  1064. rxcdll_val);
  1065. if (ret < 0)
  1066. return ret;
  1067. return phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
  1068. KSZ9131RN_TXC_DLL_CTRL, KSZ9131RN_DLL_CTRL_BYPASS,
  1069. txcdll_val);
  1070. }
  1071. /* Silicon Errata DS80000693B
  1072. *
  1073. * When LEDs are configured in Individual Mode, LED1 is ON in a no-link
  1074. * condition. Workaround is to set register 0x1e, bit 9, this way LED1 behaves
  1075. * according to the datasheet (off if there is no link).
  1076. */
  1077. static int ksz9131_led_errata(struct phy_device *phydev)
  1078. {
  1079. int reg;
  1080. reg = phy_read_mmd(phydev, 2, 0);
  1081. if (reg < 0)
  1082. return reg;
  1083. if (!(reg & BIT(4)))
  1084. return 0;
  1085. return phy_set_bits(phydev, 0x1e, BIT(9));
  1086. }
  1087. static int ksz9131_config_init(struct phy_device *phydev)
  1088. {
  1089. struct device_node *of_node;
  1090. char *clk_skews[2] = {"rxc-skew-psec", "txc-skew-psec"};
  1091. char *rx_data_skews[4] = {
  1092. "rxd0-skew-psec", "rxd1-skew-psec",
  1093. "rxd2-skew-psec", "rxd3-skew-psec"
  1094. };
  1095. char *tx_data_skews[4] = {
  1096. "txd0-skew-psec", "txd1-skew-psec",
  1097. "txd2-skew-psec", "txd3-skew-psec"
  1098. };
  1099. char *control_skews[2] = {"txen-skew-psec", "rxdv-skew-psec"};
  1100. const struct device *dev_walker;
  1101. int ret;
  1102. dev_walker = &phydev->mdio.dev;
  1103. do {
  1104. of_node = dev_walker->of_node;
  1105. dev_walker = dev_walker->parent;
  1106. } while (!of_node && dev_walker);
  1107. if (!of_node)
  1108. return 0;
  1109. if (phy_interface_is_rgmii(phydev)) {
  1110. ret = ksz9131_config_rgmii_delay(phydev);
  1111. if (ret < 0)
  1112. return ret;
  1113. }
  1114. ret = ksz9131_of_load_skew_values(phydev, of_node,
  1115. MII_KSZ9031RN_CLK_PAD_SKEW, 5,
  1116. clk_skews, 2);
  1117. if (ret < 0)
  1118. return ret;
  1119. ret = ksz9131_of_load_skew_values(phydev, of_node,
  1120. MII_KSZ9031RN_CONTROL_PAD_SKEW, 4,
  1121. control_skews, 2);
  1122. if (ret < 0)
  1123. return ret;
  1124. ret = ksz9131_of_load_skew_values(phydev, of_node,
  1125. MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4,
  1126. rx_data_skews, 4);
  1127. if (ret < 0)
  1128. return ret;
  1129. ret = ksz9131_of_load_skew_values(phydev, of_node,
  1130. MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4,
  1131. tx_data_skews, 4);
  1132. if (ret < 0)
  1133. return ret;
  1134. ret = ksz9131_led_errata(phydev);
  1135. if (ret < 0)
  1136. return ret;
  1137. return 0;
  1138. }
  1139. #define KSZ8873MLL_GLOBAL_CONTROL_4 0x06
  1140. #define KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX BIT(6)
  1141. #define KSZ8873MLL_GLOBAL_CONTROL_4_SPEED BIT(4)
  1142. static int ksz8873mll_read_status(struct phy_device *phydev)
  1143. {
  1144. int regval;
  1145. /* dummy read */
  1146. regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4);
  1147. regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4);
  1148. if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX)
  1149. phydev->duplex = DUPLEX_HALF;
  1150. else
  1151. phydev->duplex = DUPLEX_FULL;
  1152. if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_SPEED)
  1153. phydev->speed = SPEED_10;
  1154. else
  1155. phydev->speed = SPEED_100;
  1156. phydev->link = 1;
  1157. phydev->pause = phydev->asym_pause = 0;
  1158. return 0;
  1159. }
  1160. static int ksz9031_get_features(struct phy_device *phydev)
  1161. {
  1162. int ret;
  1163. ret = genphy_read_abilities(phydev);
  1164. if (ret < 0)
  1165. return ret;
  1166. /* Silicon Errata Sheet (DS80000691D or DS80000692D):
  1167. * Whenever the device's Asymmetric Pause capability is set to 1,
  1168. * link-up may fail after a link-up to link-down transition.
  1169. *
  1170. * The Errata Sheet is for ksz9031, but ksz9021 has the same issue
  1171. *
  1172. * Workaround:
  1173. * Do not enable the Asymmetric Pause capability bit.
  1174. */
  1175. linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported);
  1176. /* We force setting the Pause capability as the core will force the
  1177. * Asymmetric Pause capability to 1 otherwise.
  1178. */
  1179. linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported);
  1180. return 0;
  1181. }
  1182. static int ksz9031_read_status(struct phy_device *phydev)
  1183. {
  1184. int err;
  1185. int regval;
  1186. err = genphy_read_status(phydev);
  1187. if (err)
  1188. return err;
  1189. /* Make sure the PHY is not broken. Read idle error count,
  1190. * and reset the PHY if it is maxed out.
  1191. */
  1192. regval = phy_read(phydev, MII_STAT1000);
  1193. if ((regval & 0xFF) == 0xFF) {
  1194. phy_init_hw(phydev);
  1195. phydev->link = 0;
  1196. if (phydev->drv->config_intr &&
  1197. (phydev->irq == PHY_MAC_INTERRUPT || phy_interrupt_is_valid(phydev)))
  1198. phydev->drv->config_intr(phydev);
  1199. return genphy_config_aneg(phydev);
  1200. }
  1201. return 0;
  1202. }
  1203. static int ksz9x31_cable_test_start(struct phy_device *phydev)
  1204. {
  1205. struct kszphy_priv *priv = phydev->priv;
  1206. int ret;
  1207. /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
  1208. * Prior to running the cable diagnostics, Auto-negotiation should
  1209. * be disabled, full duplex set and the link speed set to 1000Mbps
  1210. * via the Basic Control Register.
  1211. */
  1212. ret = phy_modify(phydev, MII_BMCR,
  1213. BMCR_SPEED1000 | BMCR_FULLDPLX |
  1214. BMCR_ANENABLE | BMCR_SPEED100,
  1215. BMCR_SPEED1000 | BMCR_FULLDPLX);
  1216. if (ret)
  1217. return ret;
  1218. /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
  1219. * The Master-Slave configuration should be set to Slave by writing
  1220. * a value of 0x1000 to the Auto-Negotiation Master Slave Control
  1221. * Register.
  1222. */
  1223. ret = phy_read(phydev, MII_CTRL1000);
  1224. if (ret < 0)
  1225. return ret;
  1226. /* Cache these bits, they need to be restored once LinkMD finishes. */
  1227. priv->vct_ctrl1000 = ret & (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
  1228. ret &= ~(CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
  1229. ret |= CTL1000_ENABLE_MASTER;
  1230. return phy_write(phydev, MII_CTRL1000, ret);
  1231. }
  1232. static int ksz9x31_cable_test_result_trans(u16 status)
  1233. {
  1234. switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) {
  1235. case KSZ9x31_LMD_VCT_ST_NORMAL:
  1236. return ETHTOOL_A_CABLE_RESULT_CODE_OK;
  1237. case KSZ9x31_LMD_VCT_ST_OPEN:
  1238. return ETHTOOL_A_CABLE_RESULT_CODE_OPEN;
  1239. case KSZ9x31_LMD_VCT_ST_SHORT:
  1240. return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT;
  1241. case KSZ9x31_LMD_VCT_ST_FAIL:
  1242. fallthrough;
  1243. default:
  1244. return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC;
  1245. }
  1246. }
  1247. static bool ksz9x31_cable_test_failed(u16 status)
  1248. {
  1249. int stat = FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status);
  1250. return stat == KSZ9x31_LMD_VCT_ST_FAIL;
  1251. }
  1252. static bool ksz9x31_cable_test_fault_length_valid(u16 status)
  1253. {
  1254. switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) {
  1255. case KSZ9x31_LMD_VCT_ST_OPEN:
  1256. fallthrough;
  1257. case KSZ9x31_LMD_VCT_ST_SHORT:
  1258. return true;
  1259. }
  1260. return false;
  1261. }
  1262. static int ksz9x31_cable_test_fault_length(struct phy_device *phydev, u16 stat)
  1263. {
  1264. int dt = FIELD_GET(KSZ9x31_LMD_VCT_DATA_MASK, stat);
  1265. /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
  1266. *
  1267. * distance to fault = (VCT_DATA - 22) * 4 / cable propagation velocity
  1268. */
  1269. if ((phydev->phy_id & MICREL_PHY_ID_MASK) == PHY_ID_KSZ9131)
  1270. dt = clamp(dt - 22, 0, 255);
  1271. return (dt * 400) / 10;
  1272. }
  1273. static int ksz9x31_cable_test_wait_for_completion(struct phy_device *phydev)
  1274. {
  1275. int val, ret;
  1276. ret = phy_read_poll_timeout(phydev, KSZ9x31_LMD, val,
  1277. !(val & KSZ9x31_LMD_VCT_EN),
  1278. 30000, 100000, true);
  1279. return ret < 0 ? ret : 0;
  1280. }
  1281. static int ksz9x31_cable_test_get_pair(int pair)
  1282. {
  1283. static const int ethtool_pair[] = {
  1284. ETHTOOL_A_CABLE_PAIR_A,
  1285. ETHTOOL_A_CABLE_PAIR_B,
  1286. ETHTOOL_A_CABLE_PAIR_C,
  1287. ETHTOOL_A_CABLE_PAIR_D,
  1288. };
  1289. return ethtool_pair[pair];
  1290. }
  1291. static int ksz9x31_cable_test_one_pair(struct phy_device *phydev, int pair)
  1292. {
  1293. int ret, val;
  1294. /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
  1295. * To test each individual cable pair, set the cable pair in the Cable
  1296. * Diagnostics Test Pair (VCT_PAIR[1:0]) field of the LinkMD Cable
  1297. * Diagnostic Register, along with setting the Cable Diagnostics Test
  1298. * Enable (VCT_EN) bit. The Cable Diagnostics Test Enable (VCT_EN) bit
  1299. * will self clear when the test is concluded.
  1300. */
  1301. ret = phy_write(phydev, KSZ9x31_LMD,
  1302. KSZ9x31_LMD_VCT_EN | KSZ9x31_LMD_VCT_PAIR(pair));
  1303. if (ret)
  1304. return ret;
  1305. ret = ksz9x31_cable_test_wait_for_completion(phydev);
  1306. if (ret)
  1307. return ret;
  1308. val = phy_read(phydev, KSZ9x31_LMD);
  1309. if (val < 0)
  1310. return val;
  1311. if (ksz9x31_cable_test_failed(val))
  1312. return -EAGAIN;
  1313. ret = ethnl_cable_test_result(phydev,
  1314. ksz9x31_cable_test_get_pair(pair),
  1315. ksz9x31_cable_test_result_trans(val));
  1316. if (ret)
  1317. return ret;
  1318. if (!ksz9x31_cable_test_fault_length_valid(val))
  1319. return 0;
  1320. return ethnl_cable_test_fault_length(phydev,
  1321. ksz9x31_cable_test_get_pair(pair),
  1322. ksz9x31_cable_test_fault_length(phydev, val));
  1323. }
  1324. static int ksz9x31_cable_test_get_status(struct phy_device *phydev,
  1325. bool *finished)
  1326. {
  1327. struct kszphy_priv *priv = phydev->priv;
  1328. unsigned long pair_mask = 0xf;
  1329. int retries = 20;
  1330. int pair, ret, rv;
  1331. *finished = false;
  1332. /* Try harder if link partner is active */
  1333. while (pair_mask && retries--) {
  1334. for_each_set_bit(pair, &pair_mask, 4) {
  1335. ret = ksz9x31_cable_test_one_pair(phydev, pair);
  1336. if (ret == -EAGAIN)
  1337. continue;
  1338. if (ret < 0)
  1339. return ret;
  1340. clear_bit(pair, &pair_mask);
  1341. }
  1342. /* If link partner is in autonegotiation mode it will send 2ms
  1343. * of FLPs with at least 6ms of silence.
  1344. * Add 2ms sleep to have better chances to hit this silence.
  1345. */
  1346. if (pair_mask)
  1347. usleep_range(2000, 3000);
  1348. }
  1349. /* Report remaining unfinished pair result as unknown. */
  1350. for_each_set_bit(pair, &pair_mask, 4) {
  1351. ret = ethnl_cable_test_result(phydev,
  1352. ksz9x31_cable_test_get_pair(pair),
  1353. ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC);
  1354. }
  1355. *finished = true;
  1356. /* Restore cached bits from before LinkMD got started. */
  1357. rv = phy_modify(phydev, MII_CTRL1000,
  1358. CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER,
  1359. priv->vct_ctrl1000);
  1360. if (rv)
  1361. return rv;
  1362. return ret;
  1363. }
  1364. static int ksz8873mll_config_aneg(struct phy_device *phydev)
  1365. {
  1366. return 0;
  1367. }
  1368. static int ksz886x_config_mdix(struct phy_device *phydev, u8 ctrl)
  1369. {
  1370. u16 val;
  1371. switch (ctrl) {
  1372. case ETH_TP_MDI:
  1373. val = KSZ886X_BMCR_DISABLE_AUTO_MDIX;
  1374. break;
  1375. case ETH_TP_MDI_X:
  1376. /* Note: The naming of the bit KSZ886X_BMCR_FORCE_MDI is bit
  1377. * counter intuitive, the "-X" in "1 = Force MDI" in the data
  1378. * sheet seems to be missing:
  1379. * 1 = Force MDI (sic!) (transmit on RX+/RX- pins)
  1380. * 0 = Normal operation (transmit on TX+/TX- pins)
  1381. */
  1382. val = KSZ886X_BMCR_DISABLE_AUTO_MDIX | KSZ886X_BMCR_FORCE_MDI;
  1383. break;
  1384. case ETH_TP_MDI_AUTO:
  1385. val = 0;
  1386. break;
  1387. default:
  1388. return 0;
  1389. }
  1390. return phy_modify(phydev, MII_BMCR,
  1391. KSZ886X_BMCR_HP_MDIX | KSZ886X_BMCR_FORCE_MDI |
  1392. KSZ886X_BMCR_DISABLE_AUTO_MDIX,
  1393. KSZ886X_BMCR_HP_MDIX | val);
  1394. }
  1395. static int ksz886x_config_aneg(struct phy_device *phydev)
  1396. {
  1397. int ret;
  1398. ret = genphy_config_aneg(phydev);
  1399. if (ret)
  1400. return ret;
  1401. /* The MDI-X configuration is automatically changed by the PHY after
  1402. * switching from autoneg off to on. So, take MDI-X configuration under
  1403. * own control and set it after autoneg configuration was done.
  1404. */
  1405. return ksz886x_config_mdix(phydev, phydev->mdix_ctrl);
  1406. }
  1407. static int ksz886x_mdix_update(struct phy_device *phydev)
  1408. {
  1409. int ret;
  1410. ret = phy_read(phydev, MII_BMCR);
  1411. if (ret < 0)
  1412. return ret;
  1413. if (ret & KSZ886X_BMCR_DISABLE_AUTO_MDIX) {
  1414. if (ret & KSZ886X_BMCR_FORCE_MDI)
  1415. phydev->mdix_ctrl = ETH_TP_MDI_X;
  1416. else
  1417. phydev->mdix_ctrl = ETH_TP_MDI;
  1418. } else {
  1419. phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
  1420. }
  1421. ret = phy_read(phydev, MII_KSZPHY_CTRL);
  1422. if (ret < 0)
  1423. return ret;
  1424. /* Same reverse logic as KSZ886X_BMCR_FORCE_MDI */
  1425. if (ret & KSZ886X_CTRL_MDIX_STAT)
  1426. phydev->mdix = ETH_TP_MDI_X;
  1427. else
  1428. phydev->mdix = ETH_TP_MDI;
  1429. return 0;
  1430. }
  1431. static int ksz886x_read_status(struct phy_device *phydev)
  1432. {
  1433. int ret;
  1434. ret = ksz886x_mdix_update(phydev);
  1435. if (ret < 0)
  1436. return ret;
  1437. return genphy_read_status(phydev);
  1438. }
  1439. static int kszphy_get_sset_count(struct phy_device *phydev)
  1440. {
  1441. return ARRAY_SIZE(kszphy_hw_stats);
  1442. }
  1443. static void kszphy_get_strings(struct phy_device *phydev, u8 *data)
  1444. {
  1445. int i;
  1446. for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++) {
  1447. strscpy(data + i * ETH_GSTRING_LEN,
  1448. kszphy_hw_stats[i].string, ETH_GSTRING_LEN);
  1449. }
  1450. }
  1451. static u64 kszphy_get_stat(struct phy_device *phydev, int i)
  1452. {
  1453. struct kszphy_hw_stat stat = kszphy_hw_stats[i];
  1454. struct kszphy_priv *priv = phydev->priv;
  1455. int val;
  1456. u64 ret;
  1457. val = phy_read(phydev, stat.reg);
  1458. if (val < 0) {
  1459. ret = U64_MAX;
  1460. } else {
  1461. val = val & ((1 << stat.bits) - 1);
  1462. priv->stats[i] += val;
  1463. ret = priv->stats[i];
  1464. }
  1465. return ret;
  1466. }
  1467. static void kszphy_get_stats(struct phy_device *phydev,
  1468. struct ethtool_stats *stats, u64 *data)
  1469. {
  1470. int i;
  1471. for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++)
  1472. data[i] = kszphy_get_stat(phydev, i);
  1473. }
  1474. static int kszphy_suspend(struct phy_device *phydev)
  1475. {
  1476. /* Disable PHY Interrupts */
  1477. if (phy_interrupt_is_valid(phydev)) {
  1478. phydev->interrupts = PHY_INTERRUPT_DISABLED;
  1479. if (phydev->drv->config_intr)
  1480. phydev->drv->config_intr(phydev);
  1481. }
  1482. return genphy_suspend(phydev);
  1483. }
  1484. static void kszphy_parse_led_mode(struct phy_device *phydev)
  1485. {
  1486. const struct kszphy_type *type = phydev->drv->driver_data;
  1487. const struct device_node *np = phydev->mdio.dev.of_node;
  1488. struct kszphy_priv *priv = phydev->priv;
  1489. int ret;
  1490. if (type && type->led_mode_reg) {
  1491. ret = of_property_read_u32(np, "micrel,led-mode",
  1492. &priv->led_mode);
  1493. if (ret)
  1494. priv->led_mode = -1;
  1495. if (priv->led_mode > 3) {
  1496. phydev_err(phydev, "invalid led mode: 0x%02x\n",
  1497. priv->led_mode);
  1498. priv->led_mode = -1;
  1499. }
  1500. } else {
  1501. priv->led_mode = -1;
  1502. }
  1503. }
  1504. static int kszphy_resume(struct phy_device *phydev)
  1505. {
  1506. int ret;
  1507. genphy_resume(phydev);
  1508. /* After switching from power-down to normal mode, an internal global
  1509. * reset is automatically generated. Wait a minimum of 1 ms before
  1510. * read/write access to the PHY registers.
  1511. */
  1512. usleep_range(1000, 2000);
  1513. ret = kszphy_config_reset(phydev);
  1514. if (ret)
  1515. return ret;
  1516. /* Enable PHY Interrupts */
  1517. if (phy_interrupt_is_valid(phydev)) {
  1518. phydev->interrupts = PHY_INTERRUPT_ENABLED;
  1519. if (phydev->drv->config_intr)
  1520. phydev->drv->config_intr(phydev);
  1521. }
  1522. return 0;
  1523. }
  1524. static int kszphy_probe(struct phy_device *phydev)
  1525. {
  1526. const struct kszphy_type *type = phydev->drv->driver_data;
  1527. const struct device_node *np = phydev->mdio.dev.of_node;
  1528. struct kszphy_priv *priv;
  1529. struct clk *clk;
  1530. priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
  1531. if (!priv)
  1532. return -ENOMEM;
  1533. phydev->priv = priv;
  1534. priv->type = type;
  1535. kszphy_parse_led_mode(phydev);
  1536. clk = devm_clk_get(&phydev->mdio.dev, "rmii-ref");
  1537. /* NOTE: clk may be NULL if building without CONFIG_HAVE_CLK */
  1538. if (!IS_ERR_OR_NULL(clk)) {
  1539. unsigned long rate = clk_get_rate(clk);
  1540. bool rmii_ref_clk_sel_25_mhz;
  1541. if (type)
  1542. priv->rmii_ref_clk_sel = type->has_rmii_ref_clk_sel;
  1543. rmii_ref_clk_sel_25_mhz = of_property_read_bool(np,
  1544. "micrel,rmii-reference-clock-select-25-mhz");
  1545. if (rate > 24500000 && rate < 25500000) {
  1546. priv->rmii_ref_clk_sel_val = rmii_ref_clk_sel_25_mhz;
  1547. } else if (rate > 49500000 && rate < 50500000) {
  1548. priv->rmii_ref_clk_sel_val = !rmii_ref_clk_sel_25_mhz;
  1549. } else {
  1550. phydev_err(phydev, "Clock rate out of range: %ld\n",
  1551. rate);
  1552. return -EINVAL;
  1553. }
  1554. }
  1555. if (ksz8041_fiber_mode(phydev))
  1556. phydev->port = PORT_FIBRE;
  1557. /* Support legacy board-file configuration */
  1558. if (phydev->dev_flags & MICREL_PHY_50MHZ_CLK) {
  1559. priv->rmii_ref_clk_sel = true;
  1560. priv->rmii_ref_clk_sel_val = true;
  1561. }
  1562. return 0;
  1563. }
  1564. static void ksz9031_set_wol_settings(struct phy_device *phydev)
  1565. {
  1566. u32 reg_value;
  1567. /* Enable both PHY and PME_N2 interrupts */
  1568. reg_value = phy_read_mmd(phydev, 0x2, MII_KSZPHY_WOL_CTRL_REG);
  1569. reg_value |= MII_KSZPHY_WOL_CTRL_PME_N2;
  1570. reg_value &= ~MII_KSZPHY_WOL_CTRL_INT_N;
  1571. reg_value |= MII_KSZPHY_WOL_MAGIC_PKT;
  1572. reg_value |= MII_KSZPHY_WOL_LINK_UP;
  1573. reg_value |= MII_KSZPHY_WOL_LINK_DOWN;
  1574. phy_write_mmd(phydev, 0x2, MII_KSZPHY_WOL_CTRL_REG, reg_value);
  1575. }
  1576. static int ksz9031_set_wol(struct phy_device *phydev,
  1577. struct ethtool_wolinfo *wol)
  1578. {
  1579. struct net_device *ndev = phydev->attached_dev;
  1580. const u8 *mac;
  1581. int ret = 0;
  1582. u32 reg_value;
  1583. if (!ndev)
  1584. return -ENODEV;
  1585. if (wol->wolopts & WAKE_MAGIC) {
  1586. mac = (const u8 *)ndev->dev_addr;
  1587. if (!is_valid_ether_addr(mac))
  1588. return -EINVAL;
  1589. phy_write_mmd(phydev, 0x2, 0x11, mac[5] | (mac[4] << 8));
  1590. phy_write_mmd(phydev, 0x2, 0x12, mac[3] | (mac[2] << 8));
  1591. phy_write_mmd(phydev, 0x2, 0x13, mac[1] | (mac[0] << 8));
  1592. /* Enable WOL interrupt for magic pkt, link up and down */
  1593. ksz9031_set_wol_settings(phydev);
  1594. /* Enable PME_N2 output */
  1595. reg_value = phy_read_mmd(phydev, 0x2, MII_KSZPHY_OMSO_REG);
  1596. reg_value |= MII_KSZPHY_OMSO_PME_N2;
  1597. phy_write_mmd(phydev, 0x2, MII_KSZPHY_OMSO_REG, reg_value);
  1598. }
  1599. return ret;
  1600. }
  1601. static void ksz9031_get_wol(struct phy_device *phydev,
  1602. struct ethtool_wolinfo *wol)
  1603. {
  1604. u32 reg_value;
  1605. wol->supported = WAKE_MAGIC;
  1606. wol->wolopts = 0;
  1607. reg_value = phy_read_mmd(phydev, 0x2, MII_KSZPHY_OMSO_REG);
  1608. if (reg_value & MII_KSZPHY_OMSO_PME_N2)
  1609. wol->wolopts |= WAKE_MAGIC;
  1610. }
  1611. static int ksz9031_suspend(struct phy_device *phydev)
  1612. {
  1613. int value;
  1614. int wol_enabled;
  1615. u32 reg_value;
  1616. reg_value = phy_read_mmd(phydev, 0x2, MII_KSZPHY_OMSO_REG);
  1617. wol_enabled = reg_value & MII_KSZPHY_OMSO_PME_N2;
  1618. value = phy_read(phydev, MII_BMCR);
  1619. if (wol_enabled)
  1620. value |= BMCR_ISOLATE;
  1621. else
  1622. value |= BMCR_PDOWN;
  1623. phy_write(phydev, MII_BMCR, value);
  1624. return 0;
  1625. }
  1626. static int ksz9031_resume(struct phy_device *phydev)
  1627. {
  1628. int value;
  1629. value = phy_read(phydev, MII_BMCR);
  1630. value &= ~(BMCR_PDOWN | BMCR_ISOLATE);
  1631. phy_write(phydev, MII_BMCR, value);
  1632. return 0;
  1633. }
  1634. static int lan8814_cable_test_start(struct phy_device *phydev)
  1635. {
  1636. /* If autoneg is enabled, we won't be able to test cross pair
  1637. * short. In this case, the PHY will "detect" a link and
  1638. * confuse the internal state machine - disable auto neg here.
  1639. * Set the speed to 1000mbit and full duplex.
  1640. */
  1641. return phy_modify(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100,
  1642. BMCR_SPEED1000 | BMCR_FULLDPLX);
  1643. }
  1644. static int ksz886x_cable_test_start(struct phy_device *phydev)
  1645. {
  1646. if (phydev->dev_flags & MICREL_KSZ8_P1_ERRATA)
  1647. return -EOPNOTSUPP;
  1648. /* If autoneg is enabled, we won't be able to test cross pair
  1649. * short. In this case, the PHY will "detect" a link and
  1650. * confuse the internal state machine - disable auto neg here.
  1651. * If autoneg is disabled, we should set the speed to 10mbit.
  1652. */
  1653. return phy_clear_bits(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100);
  1654. }
  1655. static __always_inline int ksz886x_cable_test_result_trans(u16 status, u16 mask)
  1656. {
  1657. switch (FIELD_GET(mask, status)) {
  1658. case KSZ8081_LMD_STAT_NORMAL:
  1659. return ETHTOOL_A_CABLE_RESULT_CODE_OK;
  1660. case KSZ8081_LMD_STAT_SHORT:
  1661. return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT;
  1662. case KSZ8081_LMD_STAT_OPEN:
  1663. return ETHTOOL_A_CABLE_RESULT_CODE_OPEN;
  1664. case KSZ8081_LMD_STAT_FAIL:
  1665. fallthrough;
  1666. default:
  1667. return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC;
  1668. }
  1669. }
  1670. static __always_inline bool ksz886x_cable_test_failed(u16 status, u16 mask)
  1671. {
  1672. return FIELD_GET(mask, status) ==
  1673. KSZ8081_LMD_STAT_FAIL;
  1674. }
  1675. static __always_inline bool ksz886x_cable_test_fault_length_valid(u16 status, u16 mask)
  1676. {
  1677. switch (FIELD_GET(mask, status)) {
  1678. case KSZ8081_LMD_STAT_OPEN:
  1679. fallthrough;
  1680. case KSZ8081_LMD_STAT_SHORT:
  1681. return true;
  1682. }
  1683. return false;
  1684. }
  1685. static __always_inline int ksz886x_cable_test_fault_length(struct phy_device *phydev,
  1686. u16 status, u16 data_mask)
  1687. {
  1688. int dt;
  1689. /* According to the data sheet the distance to the fault is
  1690. * DELTA_TIME * 0.4 meters for ksz phys.
  1691. * (DELTA_TIME - 22) * 0.8 for lan8814 phy.
  1692. */
  1693. dt = FIELD_GET(data_mask, status);
  1694. if ((phydev->phy_id & MICREL_PHY_ID_MASK) == PHY_ID_LAN8814)
  1695. return ((dt - 22) * 800) / 10;
  1696. else
  1697. return (dt * 400) / 10;
  1698. }
  1699. static int ksz886x_cable_test_wait_for_completion(struct phy_device *phydev)
  1700. {
  1701. const struct kszphy_type *type = phydev->drv->driver_data;
  1702. int val, ret;
  1703. ret = phy_read_poll_timeout(phydev, type->cable_diag_reg, val,
  1704. !(val & KSZ8081_LMD_ENABLE_TEST),
  1705. 30000, 100000, true);
  1706. return ret < 0 ? ret : 0;
  1707. }
  1708. static int lan8814_cable_test_one_pair(struct phy_device *phydev, int pair)
  1709. {
  1710. static const int ethtool_pair[] = { ETHTOOL_A_CABLE_PAIR_A,
  1711. ETHTOOL_A_CABLE_PAIR_B,
  1712. ETHTOOL_A_CABLE_PAIR_C,
  1713. ETHTOOL_A_CABLE_PAIR_D,
  1714. };
  1715. u32 fault_length;
  1716. int ret;
  1717. int val;
  1718. val = KSZ8081_LMD_ENABLE_TEST;
  1719. val = val | (pair << LAN8814_PAIR_BIT_SHIFT);
  1720. ret = phy_write(phydev, LAN8814_CABLE_DIAG, val);
  1721. if (ret < 0)
  1722. return ret;
  1723. ret = ksz886x_cable_test_wait_for_completion(phydev);
  1724. if (ret)
  1725. return ret;
  1726. val = phy_read(phydev, LAN8814_CABLE_DIAG);
  1727. if (val < 0)
  1728. return val;
  1729. if (ksz886x_cable_test_failed(val, LAN8814_CABLE_DIAG_STAT_MASK))
  1730. return -EAGAIN;
  1731. ret = ethnl_cable_test_result(phydev, ethtool_pair[pair],
  1732. ksz886x_cable_test_result_trans(val,
  1733. LAN8814_CABLE_DIAG_STAT_MASK
  1734. ));
  1735. if (ret)
  1736. return ret;
  1737. if (!ksz886x_cable_test_fault_length_valid(val, LAN8814_CABLE_DIAG_STAT_MASK))
  1738. return 0;
  1739. fault_length = ksz886x_cable_test_fault_length(phydev, val,
  1740. LAN8814_CABLE_DIAG_VCT_DATA_MASK);
  1741. return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length);
  1742. }
  1743. static int ksz886x_cable_test_one_pair(struct phy_device *phydev, int pair)
  1744. {
  1745. static const int ethtool_pair[] = {
  1746. ETHTOOL_A_CABLE_PAIR_A,
  1747. ETHTOOL_A_CABLE_PAIR_B,
  1748. };
  1749. int ret, val, mdix;
  1750. u32 fault_length;
  1751. /* There is no way to choice the pair, like we do one ksz9031.
  1752. * We can workaround this limitation by using the MDI-X functionality.
  1753. */
  1754. if (pair == 0)
  1755. mdix = ETH_TP_MDI;
  1756. else
  1757. mdix = ETH_TP_MDI_X;
  1758. switch (phydev->phy_id & MICREL_PHY_ID_MASK) {
  1759. case PHY_ID_KSZ8081:
  1760. ret = ksz8081_config_mdix(phydev, mdix);
  1761. break;
  1762. case PHY_ID_KSZ886X:
  1763. ret = ksz886x_config_mdix(phydev, mdix);
  1764. break;
  1765. default:
  1766. ret = -ENODEV;
  1767. }
  1768. if (ret)
  1769. return ret;
  1770. /* Now we are ready to fire. This command will send a 100ns pulse
  1771. * to the pair.
  1772. */
  1773. ret = phy_write(phydev, KSZ8081_LMD, KSZ8081_LMD_ENABLE_TEST);
  1774. if (ret)
  1775. return ret;
  1776. ret = ksz886x_cable_test_wait_for_completion(phydev);
  1777. if (ret)
  1778. return ret;
  1779. val = phy_read(phydev, KSZ8081_LMD);
  1780. if (val < 0)
  1781. return val;
  1782. if (ksz886x_cable_test_failed(val, KSZ8081_LMD_STAT_MASK))
  1783. return -EAGAIN;
  1784. ret = ethnl_cable_test_result(phydev, ethtool_pair[pair],
  1785. ksz886x_cable_test_result_trans(val, KSZ8081_LMD_STAT_MASK));
  1786. if (ret)
  1787. return ret;
  1788. if (!ksz886x_cable_test_fault_length_valid(val, KSZ8081_LMD_STAT_MASK))
  1789. return 0;
  1790. fault_length = ksz886x_cable_test_fault_length(phydev, val, KSZ8081_LMD_DELTA_TIME_MASK);
  1791. return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length);
  1792. }
  1793. static int ksz886x_cable_test_get_status(struct phy_device *phydev,
  1794. bool *finished)
  1795. {
  1796. const struct kszphy_type *type = phydev->drv->driver_data;
  1797. unsigned long pair_mask = type->pair_mask;
  1798. int retries = 20;
  1799. int pair, ret;
  1800. *finished = false;
  1801. /* Try harder if link partner is active */
  1802. while (pair_mask && retries--) {
  1803. for_each_set_bit(pair, &pair_mask, 4) {
  1804. if (type->cable_diag_reg == LAN8814_CABLE_DIAG)
  1805. ret = lan8814_cable_test_one_pair(phydev, pair);
  1806. else
  1807. ret = ksz886x_cable_test_one_pair(phydev, pair);
  1808. if (ret == -EAGAIN)
  1809. continue;
  1810. if (ret < 0)
  1811. return ret;
  1812. clear_bit(pair, &pair_mask);
  1813. }
  1814. /* If link partner is in autonegotiation mode it will send 2ms
  1815. * of FLPs with at least 6ms of silence.
  1816. * Add 2ms sleep to have better chances to hit this silence.
  1817. */
  1818. if (pair_mask)
  1819. msleep(2);
  1820. }
  1821. *finished = true;
  1822. return ret;
  1823. }
  1824. #define LAN_EXT_PAGE_ACCESS_CONTROL 0x16
  1825. #define LAN_EXT_PAGE_ACCESS_ADDRESS_DATA 0x17
  1826. #define LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC 0x4000
  1827. #define LAN8814_QSGMII_SOFT_RESET 0x43
  1828. #define LAN8814_QSGMII_SOFT_RESET_BIT BIT(0)
  1829. #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG 0x13
  1830. #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA BIT(3)
  1831. #define LAN8814_ALIGN_SWAP 0x4a
  1832. #define LAN8814_ALIGN_TX_A_B_SWAP 0x1
  1833. #define LAN8814_ALIGN_TX_A_B_SWAP_MASK GENMASK(2, 0)
  1834. #define LAN8804_ALIGN_SWAP 0x4a
  1835. #define LAN8804_ALIGN_TX_A_B_SWAP 0x1
  1836. #define LAN8804_ALIGN_TX_A_B_SWAP_MASK GENMASK(2, 0)
  1837. #define LAN8814_CLOCK_MANAGEMENT 0xd
  1838. #define LAN8814_LINK_QUALITY 0x8e
  1839. static int lanphy_read_page_reg(struct phy_device *phydev, int page, u32 addr)
  1840. {
  1841. int data;
  1842. phy_lock_mdio_bus(phydev);
  1843. __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page);
  1844. __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr);
  1845. __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL,
  1846. (page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC));
  1847. data = __phy_read(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA);
  1848. phy_unlock_mdio_bus(phydev);
  1849. return data;
  1850. }
  1851. static int lanphy_write_page_reg(struct phy_device *phydev, int page, u16 addr,
  1852. u16 val)
  1853. {
  1854. phy_lock_mdio_bus(phydev);
  1855. __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page);
  1856. __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr);
  1857. __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL,
  1858. page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC);
  1859. val = __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, val);
  1860. if (val != 0)
  1861. phydev_err(phydev, "Error: phy_write has returned error %d\n",
  1862. val);
  1863. phy_unlock_mdio_bus(phydev);
  1864. return val;
  1865. }
  1866. static int lan8814_config_ts_intr(struct phy_device *phydev, bool enable)
  1867. {
  1868. u16 val = 0;
  1869. if (enable)
  1870. val = PTP_TSU_INT_EN_PTP_TX_TS_EN_ |
  1871. PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ |
  1872. PTP_TSU_INT_EN_PTP_RX_TS_EN_ |
  1873. PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_;
  1874. return lanphy_write_page_reg(phydev, 5, PTP_TSU_INT_EN, val);
  1875. }
  1876. static void lan8814_ptp_rx_ts_get(struct phy_device *phydev,
  1877. u32 *seconds, u32 *nano_seconds, u16 *seq_id)
  1878. {
  1879. *seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_HI);
  1880. *seconds = (*seconds << 16) |
  1881. lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_LO);
  1882. *nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_HI);
  1883. *nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
  1884. lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_LO);
  1885. *seq_id = lanphy_read_page_reg(phydev, 5, PTP_RX_MSG_HEADER2);
  1886. }
  1887. static void lan8814_ptp_tx_ts_get(struct phy_device *phydev,
  1888. u32 *seconds, u32 *nano_seconds, u16 *seq_id)
  1889. {
  1890. *seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_HI);
  1891. *seconds = *seconds << 16 |
  1892. lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_LO);
  1893. *nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_HI);
  1894. *nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
  1895. lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_LO);
  1896. *seq_id = lanphy_read_page_reg(phydev, 5, PTP_TX_MSG_HEADER2);
  1897. }
  1898. static int lan8814_ts_info(struct mii_timestamper *mii_ts, struct ethtool_ts_info *info)
  1899. {
  1900. struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
  1901. struct phy_device *phydev = ptp_priv->phydev;
  1902. struct lan8814_shared_priv *shared = phydev->shared->priv;
  1903. info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE |
  1904. SOF_TIMESTAMPING_RX_HARDWARE |
  1905. SOF_TIMESTAMPING_RAW_HARDWARE;
  1906. info->phc_index = ptp_clock_index(shared->ptp_clock);
  1907. info->tx_types =
  1908. (1 << HWTSTAMP_TX_OFF) |
  1909. (1 << HWTSTAMP_TX_ON) |
  1910. (1 << HWTSTAMP_TX_ONESTEP_SYNC);
  1911. info->rx_filters =
  1912. (1 << HWTSTAMP_FILTER_NONE) |
  1913. (1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
  1914. (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
  1915. (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
  1916. (1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
  1917. return 0;
  1918. }
  1919. static void lan8814_flush_fifo(struct phy_device *phydev, bool egress)
  1920. {
  1921. int i;
  1922. for (i = 0; i < FIFO_SIZE; ++i)
  1923. lanphy_read_page_reg(phydev, 5,
  1924. egress ? PTP_TX_MSG_HEADER2 : PTP_RX_MSG_HEADER2);
  1925. /* Read to clear overflow status bit */
  1926. lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS);
  1927. }
  1928. static int lan8814_hwtstamp(struct mii_timestamper *mii_ts, struct ifreq *ifr)
  1929. {
  1930. struct kszphy_ptp_priv *ptp_priv =
  1931. container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
  1932. struct phy_device *phydev = ptp_priv->phydev;
  1933. struct lan8814_shared_priv *shared = phydev->shared->priv;
  1934. struct lan8814_ptp_rx_ts *rx_ts, *tmp;
  1935. struct hwtstamp_config config;
  1936. int txcfg = 0, rxcfg = 0;
  1937. int pkt_ts_enable;
  1938. if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
  1939. return -EFAULT;
  1940. ptp_priv->hwts_tx_type = config.tx_type;
  1941. ptp_priv->rx_filter = config.rx_filter;
  1942. switch (config.rx_filter) {
  1943. case HWTSTAMP_FILTER_NONE:
  1944. ptp_priv->layer = 0;
  1945. ptp_priv->version = 0;
  1946. break;
  1947. case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
  1948. case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
  1949. case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
  1950. ptp_priv->layer = PTP_CLASS_L4;
  1951. ptp_priv->version = PTP_CLASS_V2;
  1952. break;
  1953. case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
  1954. case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
  1955. case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
  1956. ptp_priv->layer = PTP_CLASS_L2;
  1957. ptp_priv->version = PTP_CLASS_V2;
  1958. break;
  1959. case HWTSTAMP_FILTER_PTP_V2_EVENT:
  1960. case HWTSTAMP_FILTER_PTP_V2_SYNC:
  1961. case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
  1962. ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2;
  1963. ptp_priv->version = PTP_CLASS_V2;
  1964. break;
  1965. default:
  1966. return -ERANGE;
  1967. }
  1968. if (ptp_priv->layer & PTP_CLASS_L2) {
  1969. rxcfg = PTP_RX_PARSE_CONFIG_LAYER2_EN_;
  1970. txcfg = PTP_TX_PARSE_CONFIG_LAYER2_EN_;
  1971. } else if (ptp_priv->layer & PTP_CLASS_L4) {
  1972. rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_;
  1973. txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_;
  1974. }
  1975. lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_PARSE_CONFIG, rxcfg);
  1976. lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_PARSE_CONFIG, txcfg);
  1977. pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ |
  1978. PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_;
  1979. lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_TIMESTAMP_EN, pkt_ts_enable);
  1980. lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_TIMESTAMP_EN, pkt_ts_enable);
  1981. if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC)
  1982. lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD,
  1983. PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_);
  1984. if (config.rx_filter != HWTSTAMP_FILTER_NONE)
  1985. lan8814_config_ts_intr(ptp_priv->phydev, true);
  1986. else
  1987. lan8814_config_ts_intr(ptp_priv->phydev, false);
  1988. mutex_lock(&shared->shared_lock);
  1989. if (config.rx_filter != HWTSTAMP_FILTER_NONE)
  1990. shared->ref++;
  1991. else
  1992. shared->ref--;
  1993. if (shared->ref)
  1994. lanphy_write_page_reg(ptp_priv->phydev, 4, PTP_CMD_CTL,
  1995. PTP_CMD_CTL_PTP_ENABLE_);
  1996. else
  1997. lanphy_write_page_reg(ptp_priv->phydev, 4, PTP_CMD_CTL,
  1998. PTP_CMD_CTL_PTP_DISABLE_);
  1999. mutex_unlock(&shared->shared_lock);
  2000. /* In case of multiple starts and stops, these needs to be cleared */
  2001. list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) {
  2002. list_del(&rx_ts->list);
  2003. kfree(rx_ts);
  2004. }
  2005. skb_queue_purge(&ptp_priv->rx_queue);
  2006. skb_queue_purge(&ptp_priv->tx_queue);
  2007. lan8814_flush_fifo(ptp_priv->phydev, false);
  2008. lan8814_flush_fifo(ptp_priv->phydev, true);
  2009. return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? -EFAULT : 0;
  2010. }
  2011. static void lan8814_txtstamp(struct mii_timestamper *mii_ts,
  2012. struct sk_buff *skb, int type)
  2013. {
  2014. struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
  2015. switch (ptp_priv->hwts_tx_type) {
  2016. case HWTSTAMP_TX_ONESTEP_SYNC:
  2017. if (ptp_msg_is_sync(skb, type)) {
  2018. kfree_skb(skb);
  2019. return;
  2020. }
  2021. fallthrough;
  2022. case HWTSTAMP_TX_ON:
  2023. skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
  2024. skb_queue_tail(&ptp_priv->tx_queue, skb);
  2025. break;
  2026. case HWTSTAMP_TX_OFF:
  2027. default:
  2028. kfree_skb(skb);
  2029. break;
  2030. }
  2031. }
  2032. static void lan8814_get_sig_rx(struct sk_buff *skb, u16 *sig)
  2033. {
  2034. struct ptp_header *ptp_header;
  2035. u32 type;
  2036. skb_push(skb, ETH_HLEN);
  2037. type = ptp_classify_raw(skb);
  2038. ptp_header = ptp_parse_header(skb, type);
  2039. skb_pull_inline(skb, ETH_HLEN);
  2040. *sig = (__force u16)(ntohs(ptp_header->sequence_id));
  2041. }
  2042. static bool lan8814_match_rx_ts(struct kszphy_ptp_priv *ptp_priv,
  2043. struct sk_buff *skb)
  2044. {
  2045. struct skb_shared_hwtstamps *shhwtstamps;
  2046. struct lan8814_ptp_rx_ts *rx_ts, *tmp;
  2047. unsigned long flags;
  2048. bool ret = false;
  2049. u16 skb_sig;
  2050. lan8814_get_sig_rx(skb, &skb_sig);
  2051. /* Iterate over all RX timestamps and match it with the received skbs */
  2052. spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags);
  2053. list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) {
  2054. /* Check if we found the signature we were looking for. */
  2055. if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id)))
  2056. continue;
  2057. shhwtstamps = skb_hwtstamps(skb);
  2058. memset(shhwtstamps, 0, sizeof(*shhwtstamps));
  2059. shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds,
  2060. rx_ts->nsec);
  2061. list_del(&rx_ts->list);
  2062. kfree(rx_ts);
  2063. ret = true;
  2064. break;
  2065. }
  2066. spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags);
  2067. if (ret)
  2068. netif_rx(skb);
  2069. return ret;
  2070. }
  2071. static bool lan8814_rxtstamp(struct mii_timestamper *mii_ts, struct sk_buff *skb, int type)
  2072. {
  2073. struct kszphy_ptp_priv *ptp_priv =
  2074. container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
  2075. if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE ||
  2076. type == PTP_CLASS_NONE)
  2077. return false;
  2078. if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0)
  2079. return false;
  2080. /* If we failed to match then add it to the queue for when the timestamp
  2081. * will come
  2082. */
  2083. if (!lan8814_match_rx_ts(ptp_priv, skb))
  2084. skb_queue_tail(&ptp_priv->rx_queue, skb);
  2085. return true;
  2086. }
  2087. static void lan8814_ptp_clock_set(struct phy_device *phydev,
  2088. u32 seconds, u32 nano_seconds)
  2089. {
  2090. u32 sec_low, sec_high, nsec_low, nsec_high;
  2091. sec_low = seconds & 0xffff;
  2092. sec_high = (seconds >> 16) & 0xffff;
  2093. nsec_low = nano_seconds & 0xffff;
  2094. nsec_high = (nano_seconds >> 16) & 0x3fff;
  2095. lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_LO, sec_low);
  2096. lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_MID, sec_high);
  2097. lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_LO, nsec_low);
  2098. lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_HI, nsec_high);
  2099. lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_LOAD_);
  2100. }
  2101. static void lan8814_ptp_clock_get(struct phy_device *phydev,
  2102. u32 *seconds, u32 *nano_seconds)
  2103. {
  2104. lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_READ_);
  2105. *seconds = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_MID);
  2106. *seconds = (*seconds << 16) |
  2107. lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_LO);
  2108. *nano_seconds = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_HI);
  2109. *nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
  2110. lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_LO);
  2111. }
  2112. static int lan8814_ptpci_gettime64(struct ptp_clock_info *ptpci,
  2113. struct timespec64 *ts)
  2114. {
  2115. struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
  2116. ptp_clock_info);
  2117. struct phy_device *phydev = shared->phydev;
  2118. u32 nano_seconds;
  2119. u32 seconds;
  2120. mutex_lock(&shared->shared_lock);
  2121. lan8814_ptp_clock_get(phydev, &seconds, &nano_seconds);
  2122. mutex_unlock(&shared->shared_lock);
  2123. ts->tv_sec = seconds;
  2124. ts->tv_nsec = nano_seconds;
  2125. return 0;
  2126. }
  2127. static int lan8814_ptpci_settime64(struct ptp_clock_info *ptpci,
  2128. const struct timespec64 *ts)
  2129. {
  2130. struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
  2131. ptp_clock_info);
  2132. struct phy_device *phydev = shared->phydev;
  2133. mutex_lock(&shared->shared_lock);
  2134. lan8814_ptp_clock_set(phydev, ts->tv_sec, ts->tv_nsec);
  2135. mutex_unlock(&shared->shared_lock);
  2136. return 0;
  2137. }
  2138. static void lan8814_ptp_clock_step(struct phy_device *phydev,
  2139. s64 time_step_ns)
  2140. {
  2141. u32 nano_seconds_step;
  2142. u64 abs_time_step_ns;
  2143. u32 unsigned_seconds;
  2144. u32 nano_seconds;
  2145. u32 remainder;
  2146. s32 seconds;
  2147. if (time_step_ns > 15000000000LL) {
  2148. /* convert to clock set */
  2149. lan8814_ptp_clock_get(phydev, &unsigned_seconds, &nano_seconds);
  2150. unsigned_seconds += div_u64_rem(time_step_ns, 1000000000LL,
  2151. &remainder);
  2152. nano_seconds += remainder;
  2153. if (nano_seconds >= 1000000000) {
  2154. unsigned_seconds++;
  2155. nano_seconds -= 1000000000;
  2156. }
  2157. lan8814_ptp_clock_set(phydev, unsigned_seconds, nano_seconds);
  2158. return;
  2159. } else if (time_step_ns < -15000000000LL) {
  2160. /* convert to clock set */
  2161. time_step_ns = -time_step_ns;
  2162. lan8814_ptp_clock_get(phydev, &unsigned_seconds, &nano_seconds);
  2163. unsigned_seconds -= div_u64_rem(time_step_ns, 1000000000LL,
  2164. &remainder);
  2165. nano_seconds_step = remainder;
  2166. if (nano_seconds < nano_seconds_step) {
  2167. unsigned_seconds--;
  2168. nano_seconds += 1000000000;
  2169. }
  2170. nano_seconds -= nano_seconds_step;
  2171. lan8814_ptp_clock_set(phydev, unsigned_seconds,
  2172. nano_seconds);
  2173. return;
  2174. }
  2175. /* do clock step */
  2176. if (time_step_ns >= 0) {
  2177. abs_time_step_ns = (u64)time_step_ns;
  2178. seconds = (s32)div_u64_rem(abs_time_step_ns, 1000000000,
  2179. &remainder);
  2180. nano_seconds = remainder;
  2181. } else {
  2182. abs_time_step_ns = (u64)(-time_step_ns);
  2183. seconds = -((s32)div_u64_rem(abs_time_step_ns, 1000000000,
  2184. &remainder));
  2185. nano_seconds = remainder;
  2186. if (nano_seconds > 0) {
  2187. /* subtracting nano seconds is not allowed
  2188. * convert to subtracting from seconds,
  2189. * and adding to nanoseconds
  2190. */
  2191. seconds--;
  2192. nano_seconds = (1000000000 - nano_seconds);
  2193. }
  2194. }
  2195. if (nano_seconds > 0) {
  2196. /* add 8 ns to cover the likely normal increment */
  2197. nano_seconds += 8;
  2198. }
  2199. if (nano_seconds >= 1000000000) {
  2200. /* carry into seconds */
  2201. seconds++;
  2202. nano_seconds -= 1000000000;
  2203. }
  2204. while (seconds) {
  2205. if (seconds > 0) {
  2206. u32 adjustment_value = (u32)seconds;
  2207. u16 adjustment_value_lo, adjustment_value_hi;
  2208. if (adjustment_value > 0xF)
  2209. adjustment_value = 0xF;
  2210. adjustment_value_lo = adjustment_value & 0xffff;
  2211. adjustment_value_hi = (adjustment_value >> 16) & 0x3fff;
  2212. lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
  2213. adjustment_value_lo);
  2214. lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
  2215. PTP_LTC_STEP_ADJ_DIR_ |
  2216. adjustment_value_hi);
  2217. seconds -= ((s32)adjustment_value);
  2218. } else {
  2219. u32 adjustment_value = (u32)(-seconds);
  2220. u16 adjustment_value_lo, adjustment_value_hi;
  2221. if (adjustment_value > 0xF)
  2222. adjustment_value = 0xF;
  2223. adjustment_value_lo = adjustment_value & 0xffff;
  2224. adjustment_value_hi = (adjustment_value >> 16) & 0x3fff;
  2225. lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
  2226. adjustment_value_lo);
  2227. lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
  2228. adjustment_value_hi);
  2229. seconds += ((s32)adjustment_value);
  2230. }
  2231. lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL,
  2232. PTP_CMD_CTL_PTP_LTC_STEP_SEC_);
  2233. }
  2234. if (nano_seconds) {
  2235. u16 nano_seconds_lo;
  2236. u16 nano_seconds_hi;
  2237. nano_seconds_lo = nano_seconds & 0xffff;
  2238. nano_seconds_hi = (nano_seconds >> 16) & 0x3fff;
  2239. lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
  2240. nano_seconds_lo);
  2241. lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
  2242. PTP_LTC_STEP_ADJ_DIR_ |
  2243. nano_seconds_hi);
  2244. lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL,
  2245. PTP_CMD_CTL_PTP_LTC_STEP_NSEC_);
  2246. }
  2247. }
  2248. static int lan8814_ptpci_adjtime(struct ptp_clock_info *ptpci, s64 delta)
  2249. {
  2250. struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
  2251. ptp_clock_info);
  2252. struct phy_device *phydev = shared->phydev;
  2253. mutex_lock(&shared->shared_lock);
  2254. lan8814_ptp_clock_step(phydev, delta);
  2255. mutex_unlock(&shared->shared_lock);
  2256. return 0;
  2257. }
  2258. static int lan8814_ptpci_adjfine(struct ptp_clock_info *ptpci, long scaled_ppm)
  2259. {
  2260. struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
  2261. ptp_clock_info);
  2262. struct phy_device *phydev = shared->phydev;
  2263. u16 kszphy_rate_adj_lo, kszphy_rate_adj_hi;
  2264. bool positive = true;
  2265. u32 kszphy_rate_adj;
  2266. if (scaled_ppm < 0) {
  2267. scaled_ppm = -scaled_ppm;
  2268. positive = false;
  2269. }
  2270. kszphy_rate_adj = LAN8814_1PPM_FORMAT * (scaled_ppm >> 16);
  2271. kszphy_rate_adj += (LAN8814_1PPM_FORMAT * (0xffff & scaled_ppm)) >> 16;
  2272. kszphy_rate_adj_lo = kszphy_rate_adj & 0xffff;
  2273. kszphy_rate_adj_hi = (kszphy_rate_adj >> 16) & 0x3fff;
  2274. if (positive)
  2275. kszphy_rate_adj_hi |= PTP_CLOCK_RATE_ADJ_DIR_;
  2276. mutex_lock(&shared->shared_lock);
  2277. lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_HI, kszphy_rate_adj_hi);
  2278. lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_LO, kszphy_rate_adj_lo);
  2279. mutex_unlock(&shared->shared_lock);
  2280. return 0;
  2281. }
  2282. static void lan8814_get_sig_tx(struct sk_buff *skb, u16 *sig)
  2283. {
  2284. struct ptp_header *ptp_header;
  2285. u32 type;
  2286. type = ptp_classify_raw(skb);
  2287. ptp_header = ptp_parse_header(skb, type);
  2288. *sig = (__force u16)(ntohs(ptp_header->sequence_id));
  2289. }
  2290. static void lan8814_dequeue_tx_skb(struct kszphy_ptp_priv *ptp_priv)
  2291. {
  2292. struct phy_device *phydev = ptp_priv->phydev;
  2293. struct skb_shared_hwtstamps shhwtstamps;
  2294. struct sk_buff *skb, *skb_tmp;
  2295. unsigned long flags;
  2296. u32 seconds, nsec;
  2297. bool ret = false;
  2298. u16 skb_sig;
  2299. u16 seq_id;
  2300. lan8814_ptp_tx_ts_get(phydev, &seconds, &nsec, &seq_id);
  2301. spin_lock_irqsave(&ptp_priv->tx_queue.lock, flags);
  2302. skb_queue_walk_safe(&ptp_priv->tx_queue, skb, skb_tmp) {
  2303. lan8814_get_sig_tx(skb, &skb_sig);
  2304. if (memcmp(&skb_sig, &seq_id, sizeof(seq_id)))
  2305. continue;
  2306. __skb_unlink(skb, &ptp_priv->tx_queue);
  2307. ret = true;
  2308. break;
  2309. }
  2310. spin_unlock_irqrestore(&ptp_priv->tx_queue.lock, flags);
  2311. if (ret) {
  2312. memset(&shhwtstamps, 0, sizeof(shhwtstamps));
  2313. shhwtstamps.hwtstamp = ktime_set(seconds, nsec);
  2314. skb_complete_tx_timestamp(skb, &shhwtstamps);
  2315. }
  2316. }
  2317. static void lan8814_get_tx_ts(struct kszphy_ptp_priv *ptp_priv)
  2318. {
  2319. struct phy_device *phydev = ptp_priv->phydev;
  2320. u32 reg;
  2321. do {
  2322. lan8814_dequeue_tx_skb(ptp_priv);
  2323. /* If other timestamps are available in the FIFO,
  2324. * process them.
  2325. */
  2326. reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO);
  2327. } while (PTP_CAP_INFO_TX_TS_CNT_GET_(reg) > 0);
  2328. }
  2329. static bool lan8814_match_skb(struct kszphy_ptp_priv *ptp_priv,
  2330. struct lan8814_ptp_rx_ts *rx_ts)
  2331. {
  2332. struct skb_shared_hwtstamps *shhwtstamps;
  2333. struct sk_buff *skb, *skb_tmp;
  2334. unsigned long flags;
  2335. bool ret = false;
  2336. u16 skb_sig;
  2337. spin_lock_irqsave(&ptp_priv->rx_queue.lock, flags);
  2338. skb_queue_walk_safe(&ptp_priv->rx_queue, skb, skb_tmp) {
  2339. lan8814_get_sig_rx(skb, &skb_sig);
  2340. if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id)))
  2341. continue;
  2342. __skb_unlink(skb, &ptp_priv->rx_queue);
  2343. ret = true;
  2344. break;
  2345. }
  2346. spin_unlock_irqrestore(&ptp_priv->rx_queue.lock, flags);
  2347. if (ret) {
  2348. shhwtstamps = skb_hwtstamps(skb);
  2349. memset(shhwtstamps, 0, sizeof(*shhwtstamps));
  2350. shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, rx_ts->nsec);
  2351. netif_rx(skb);
  2352. }
  2353. return ret;
  2354. }
  2355. static void lan8814_get_rx_ts(struct kszphy_ptp_priv *ptp_priv)
  2356. {
  2357. struct phy_device *phydev = ptp_priv->phydev;
  2358. struct lan8814_ptp_rx_ts *rx_ts;
  2359. unsigned long flags;
  2360. u32 reg;
  2361. do {
  2362. rx_ts = kzalloc(sizeof(*rx_ts), GFP_KERNEL);
  2363. if (!rx_ts)
  2364. return;
  2365. lan8814_ptp_rx_ts_get(phydev, &rx_ts->seconds, &rx_ts->nsec,
  2366. &rx_ts->seq_id);
  2367. /* If we failed to match the skb add it to the queue for when
  2368. * the frame will come
  2369. */
  2370. if (!lan8814_match_skb(ptp_priv, rx_ts)) {
  2371. spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags);
  2372. list_add(&rx_ts->list, &ptp_priv->rx_ts_list);
  2373. spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags);
  2374. } else {
  2375. kfree(rx_ts);
  2376. }
  2377. /* If other timestamps are available in the FIFO,
  2378. * process them.
  2379. */
  2380. reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO);
  2381. } while (PTP_CAP_INFO_RX_TS_CNT_GET_(reg) > 0);
  2382. }
  2383. static void lan8814_handle_ptp_interrupt(struct phy_device *phydev)
  2384. {
  2385. struct kszphy_priv *priv = phydev->priv;
  2386. struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
  2387. u16 status;
  2388. status = lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS);
  2389. if (status & PTP_TSU_INT_STS_PTP_TX_TS_EN_)
  2390. lan8814_get_tx_ts(ptp_priv);
  2391. if (status & PTP_TSU_INT_STS_PTP_RX_TS_EN_)
  2392. lan8814_get_rx_ts(ptp_priv);
  2393. if (status & PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_) {
  2394. lan8814_flush_fifo(phydev, true);
  2395. skb_queue_purge(&ptp_priv->tx_queue);
  2396. }
  2397. if (status & PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_) {
  2398. lan8814_flush_fifo(phydev, false);
  2399. skb_queue_purge(&ptp_priv->rx_queue);
  2400. }
  2401. }
  2402. static int lan8804_config_init(struct phy_device *phydev)
  2403. {
  2404. int val;
  2405. /* MDI-X setting for swap A,B transmit */
  2406. val = lanphy_read_page_reg(phydev, 2, LAN8804_ALIGN_SWAP);
  2407. val &= ~LAN8804_ALIGN_TX_A_B_SWAP_MASK;
  2408. val |= LAN8804_ALIGN_TX_A_B_SWAP;
  2409. lanphy_write_page_reg(phydev, 2, LAN8804_ALIGN_SWAP, val);
  2410. /* Make sure that the PHY will not stop generating the clock when the
  2411. * link partner goes down
  2412. */
  2413. lanphy_write_page_reg(phydev, 31, LAN8814_CLOCK_MANAGEMENT, 0x27e);
  2414. lanphy_read_page_reg(phydev, 1, LAN8814_LINK_QUALITY);
  2415. return 0;
  2416. }
  2417. static irqreturn_t lan8804_handle_interrupt(struct phy_device *phydev)
  2418. {
  2419. int status;
  2420. status = phy_read(phydev, LAN8814_INTS);
  2421. if (status < 0) {
  2422. phy_error(phydev);
  2423. return IRQ_NONE;
  2424. }
  2425. if (status > 0)
  2426. phy_trigger_machine(phydev);
  2427. return IRQ_HANDLED;
  2428. }
  2429. #define LAN8804_OUTPUT_CONTROL 25
  2430. #define LAN8804_OUTPUT_CONTROL_INTR_BUFFER BIT(14)
  2431. #define LAN8804_CONTROL 31
  2432. #define LAN8804_CONTROL_INTR_POLARITY BIT(14)
  2433. static int lan8804_config_intr(struct phy_device *phydev)
  2434. {
  2435. int err;
  2436. /* This is an internal PHY of lan966x and is not possible to change the
  2437. * polarity on the GIC found in lan966x, therefore change the polarity
  2438. * of the interrupt in the PHY from being active low instead of active
  2439. * high.
  2440. */
  2441. phy_write(phydev, LAN8804_CONTROL, LAN8804_CONTROL_INTR_POLARITY);
  2442. /* By default interrupt buffer is open-drain in which case the interrupt
  2443. * can be active only low. Therefore change the interrupt buffer to be
  2444. * push-pull to be able to change interrupt polarity
  2445. */
  2446. phy_write(phydev, LAN8804_OUTPUT_CONTROL,
  2447. LAN8804_OUTPUT_CONTROL_INTR_BUFFER);
  2448. if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
  2449. err = phy_read(phydev, LAN8814_INTS);
  2450. if (err < 0)
  2451. return err;
  2452. err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK);
  2453. if (err)
  2454. return err;
  2455. } else {
  2456. err = phy_write(phydev, LAN8814_INTC, 0);
  2457. if (err)
  2458. return err;
  2459. err = phy_read(phydev, LAN8814_INTS);
  2460. if (err < 0)
  2461. return err;
  2462. }
  2463. return 0;
  2464. }
  2465. static irqreturn_t lan8814_handle_interrupt(struct phy_device *phydev)
  2466. {
  2467. int irq_status, tsu_irq_status;
  2468. int ret = IRQ_NONE;
  2469. irq_status = phy_read(phydev, LAN8814_INTS);
  2470. if (irq_status < 0) {
  2471. phy_error(phydev);
  2472. return IRQ_NONE;
  2473. }
  2474. if (irq_status & LAN8814_INT_LINK) {
  2475. phy_trigger_machine(phydev);
  2476. ret = IRQ_HANDLED;
  2477. }
  2478. while (1) {
  2479. tsu_irq_status = lanphy_read_page_reg(phydev, 4,
  2480. LAN8814_INTR_STS_REG);
  2481. if (tsu_irq_status > 0 &&
  2482. (tsu_irq_status & (LAN8814_INTR_STS_REG_1588_TSU0_ |
  2483. LAN8814_INTR_STS_REG_1588_TSU1_ |
  2484. LAN8814_INTR_STS_REG_1588_TSU2_ |
  2485. LAN8814_INTR_STS_REG_1588_TSU3_))) {
  2486. lan8814_handle_ptp_interrupt(phydev);
  2487. ret = IRQ_HANDLED;
  2488. } else {
  2489. break;
  2490. }
  2491. }
  2492. return ret;
  2493. }
  2494. static int lan8814_ack_interrupt(struct phy_device *phydev)
  2495. {
  2496. /* bit[12..0] int status, which is a read and clear register. */
  2497. int rc;
  2498. rc = phy_read(phydev, LAN8814_INTS);
  2499. return (rc < 0) ? rc : 0;
  2500. }
  2501. static int lan8814_config_intr(struct phy_device *phydev)
  2502. {
  2503. int err;
  2504. lanphy_write_page_reg(phydev, 4, LAN8814_INTR_CTRL_REG,
  2505. LAN8814_INTR_CTRL_REG_POLARITY |
  2506. LAN8814_INTR_CTRL_REG_INTR_ENABLE);
  2507. /* enable / disable interrupts */
  2508. if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
  2509. err = lan8814_ack_interrupt(phydev);
  2510. if (err)
  2511. return err;
  2512. err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK);
  2513. } else {
  2514. err = phy_write(phydev, LAN8814_INTC, 0);
  2515. if (err)
  2516. return err;
  2517. err = lan8814_ack_interrupt(phydev);
  2518. }
  2519. return err;
  2520. }
  2521. static void lan8814_ptp_init(struct phy_device *phydev)
  2522. {
  2523. struct kszphy_priv *priv = phydev->priv;
  2524. struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
  2525. u32 temp;
  2526. if (!IS_ENABLED(CONFIG_PTP_1588_CLOCK) ||
  2527. !IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING))
  2528. return;
  2529. lanphy_write_page_reg(phydev, 5, TSU_HARD_RESET, TSU_HARD_RESET_);
  2530. temp = lanphy_read_page_reg(phydev, 5, PTP_TX_MOD);
  2531. temp |= PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_;
  2532. lanphy_write_page_reg(phydev, 5, PTP_TX_MOD, temp);
  2533. temp = lanphy_read_page_reg(phydev, 5, PTP_RX_MOD);
  2534. temp |= PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_;
  2535. lanphy_write_page_reg(phydev, 5, PTP_RX_MOD, temp);
  2536. lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_CONFIG, 0);
  2537. lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_CONFIG, 0);
  2538. /* Removing default registers configs related to L2 and IP */
  2539. lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_L2_ADDR_EN, 0);
  2540. lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_L2_ADDR_EN, 0);
  2541. lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_IP_ADDR_EN, 0);
  2542. lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_IP_ADDR_EN, 0);
  2543. skb_queue_head_init(&ptp_priv->tx_queue);
  2544. skb_queue_head_init(&ptp_priv->rx_queue);
  2545. INIT_LIST_HEAD(&ptp_priv->rx_ts_list);
  2546. spin_lock_init(&ptp_priv->rx_ts_lock);
  2547. ptp_priv->phydev = phydev;
  2548. ptp_priv->mii_ts.rxtstamp = lan8814_rxtstamp;
  2549. ptp_priv->mii_ts.txtstamp = lan8814_txtstamp;
  2550. ptp_priv->mii_ts.hwtstamp = lan8814_hwtstamp;
  2551. ptp_priv->mii_ts.ts_info = lan8814_ts_info;
  2552. phydev->mii_ts = &ptp_priv->mii_ts;
  2553. }
  2554. static int lan8814_ptp_probe_once(struct phy_device *phydev)
  2555. {
  2556. struct lan8814_shared_priv *shared = phydev->shared->priv;
  2557. if (!IS_ENABLED(CONFIG_PTP_1588_CLOCK) ||
  2558. !IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING))
  2559. return 0;
  2560. /* Initialise shared lock for clock*/
  2561. mutex_init(&shared->shared_lock);
  2562. shared->ptp_clock_info.owner = THIS_MODULE;
  2563. snprintf(shared->ptp_clock_info.name, 30, "%s", phydev->drv->name);
  2564. shared->ptp_clock_info.max_adj = 31249999;
  2565. shared->ptp_clock_info.n_alarm = 0;
  2566. shared->ptp_clock_info.n_ext_ts = 0;
  2567. shared->ptp_clock_info.n_pins = 0;
  2568. shared->ptp_clock_info.pps = 0;
  2569. shared->ptp_clock_info.pin_config = NULL;
  2570. shared->ptp_clock_info.adjfine = lan8814_ptpci_adjfine;
  2571. shared->ptp_clock_info.adjtime = lan8814_ptpci_adjtime;
  2572. shared->ptp_clock_info.gettime64 = lan8814_ptpci_gettime64;
  2573. shared->ptp_clock_info.settime64 = lan8814_ptpci_settime64;
  2574. shared->ptp_clock_info.getcrosststamp = NULL;
  2575. shared->ptp_clock = ptp_clock_register(&shared->ptp_clock_info,
  2576. &phydev->mdio.dev);
  2577. if (IS_ERR_OR_NULL(shared->ptp_clock)) {
  2578. phydev_err(phydev, "ptp_clock_register failed %lu\n",
  2579. PTR_ERR(shared->ptp_clock));
  2580. return -EINVAL;
  2581. }
  2582. phydev_dbg(phydev, "successfully registered ptp clock\n");
  2583. shared->phydev = phydev;
  2584. /* The EP.4 is shared between all the PHYs in the package and also it
  2585. * can be accessed by any of the PHYs
  2586. */
  2587. lanphy_write_page_reg(phydev, 4, LTC_HARD_RESET, LTC_HARD_RESET_);
  2588. lanphy_write_page_reg(phydev, 4, PTP_OPERATING_MODE,
  2589. PTP_OPERATING_MODE_STANDALONE_);
  2590. return 0;
  2591. }
  2592. static void lan8814_setup_led(struct phy_device *phydev, int val)
  2593. {
  2594. int temp;
  2595. temp = lanphy_read_page_reg(phydev, 5, LAN8814_LED_CTRL_1);
  2596. if (val)
  2597. temp |= LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_;
  2598. else
  2599. temp &= ~LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_;
  2600. lanphy_write_page_reg(phydev, 5, LAN8814_LED_CTRL_1, temp);
  2601. }
  2602. static int lan8814_config_init(struct phy_device *phydev)
  2603. {
  2604. struct kszphy_priv *lan8814 = phydev->priv;
  2605. int val;
  2606. /* Reset the PHY */
  2607. val = lanphy_read_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET);
  2608. val |= LAN8814_QSGMII_SOFT_RESET_BIT;
  2609. lanphy_write_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET, val);
  2610. /* Disable ANEG with QSGMII PCS Host side */
  2611. val = lanphy_read_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG);
  2612. val &= ~LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA;
  2613. lanphy_write_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG, val);
  2614. /* MDI-X setting for swap A,B transmit */
  2615. val = lanphy_read_page_reg(phydev, 2, LAN8814_ALIGN_SWAP);
  2616. val &= ~LAN8814_ALIGN_TX_A_B_SWAP_MASK;
  2617. val |= LAN8814_ALIGN_TX_A_B_SWAP;
  2618. lanphy_write_page_reg(phydev, 2, LAN8814_ALIGN_SWAP, val);
  2619. if (lan8814->led_mode >= 0)
  2620. lan8814_setup_led(phydev, lan8814->led_mode);
  2621. return 0;
  2622. }
  2623. /* It is expected that there will not be any 'lan8814_take_coma_mode'
  2624. * function called in suspend. Because the GPIO line can be shared, so if one of
  2625. * the phys goes back in coma mode, then all the other PHYs will go, which is
  2626. * wrong.
  2627. */
  2628. static int lan8814_release_coma_mode(struct phy_device *phydev)
  2629. {
  2630. struct gpio_desc *gpiod;
  2631. gpiod = devm_gpiod_get_optional(&phydev->mdio.dev, "coma-mode",
  2632. GPIOD_OUT_HIGH_OPEN_DRAIN |
  2633. GPIOD_FLAGS_BIT_NONEXCLUSIVE);
  2634. if (IS_ERR(gpiod))
  2635. return PTR_ERR(gpiod);
  2636. gpiod_set_consumer_name(gpiod, "LAN8814 coma mode");
  2637. gpiod_set_value_cansleep(gpiod, 0);
  2638. return 0;
  2639. }
  2640. static int lan8814_probe(struct phy_device *phydev)
  2641. {
  2642. const struct kszphy_type *type = phydev->drv->driver_data;
  2643. struct kszphy_priv *priv;
  2644. u16 addr;
  2645. int err;
  2646. priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
  2647. if (!priv)
  2648. return -ENOMEM;
  2649. phydev->priv = priv;
  2650. priv->type = type;
  2651. kszphy_parse_led_mode(phydev);
  2652. /* Strap-in value for PHY address, below register read gives starting
  2653. * phy address value
  2654. */
  2655. addr = lanphy_read_page_reg(phydev, 4, 0) & 0x1F;
  2656. devm_phy_package_join(&phydev->mdio.dev, phydev,
  2657. addr, sizeof(struct lan8814_shared_priv));
  2658. if (phy_package_init_once(phydev)) {
  2659. err = lan8814_release_coma_mode(phydev);
  2660. if (err)
  2661. return err;
  2662. err = lan8814_ptp_probe_once(phydev);
  2663. if (err)
  2664. return err;
  2665. }
  2666. lan8814_ptp_init(phydev);
  2667. return 0;
  2668. }
  2669. static struct phy_driver ksphy_driver[] = {
  2670. {
  2671. .phy_id = PHY_ID_KS8737,
  2672. .phy_id_mask = MICREL_PHY_ID_MASK,
  2673. .name = "Micrel KS8737",
  2674. /* PHY_BASIC_FEATURES */
  2675. .driver_data = &ks8737_type,
  2676. .probe = kszphy_probe,
  2677. .config_init = kszphy_config_init,
  2678. .config_intr = kszphy_config_intr,
  2679. .handle_interrupt = kszphy_handle_interrupt,
  2680. .suspend = kszphy_suspend,
  2681. .resume = kszphy_resume,
  2682. }, {
  2683. .phy_id = PHY_ID_KSZ8021,
  2684. .phy_id_mask = 0x00ffffff,
  2685. .name = "Micrel KSZ8021 or KSZ8031",
  2686. /* PHY_BASIC_FEATURES */
  2687. .driver_data = &ksz8021_type,
  2688. .probe = kszphy_probe,
  2689. .config_init = kszphy_config_init,
  2690. .config_intr = kszphy_config_intr,
  2691. .handle_interrupt = kszphy_handle_interrupt,
  2692. .get_sset_count = kszphy_get_sset_count,
  2693. .get_strings = kszphy_get_strings,
  2694. .get_stats = kszphy_get_stats,
  2695. .suspend = kszphy_suspend,
  2696. .resume = kszphy_resume,
  2697. }, {
  2698. .phy_id = PHY_ID_KSZ8031,
  2699. .phy_id_mask = 0x00ffffff,
  2700. .name = "Micrel KSZ8031",
  2701. /* PHY_BASIC_FEATURES */
  2702. .driver_data = &ksz8021_type,
  2703. .probe = kszphy_probe,
  2704. .config_init = kszphy_config_init,
  2705. .config_intr = kszphy_config_intr,
  2706. .handle_interrupt = kszphy_handle_interrupt,
  2707. .get_sset_count = kszphy_get_sset_count,
  2708. .get_strings = kszphy_get_strings,
  2709. .get_stats = kszphy_get_stats,
  2710. .suspend = kszphy_suspend,
  2711. .resume = kszphy_resume,
  2712. }, {
  2713. .phy_id = PHY_ID_KSZ8041,
  2714. .phy_id_mask = MICREL_PHY_ID_MASK,
  2715. .name = "Micrel KSZ8041",
  2716. /* PHY_BASIC_FEATURES */
  2717. .driver_data = &ksz8041_type,
  2718. .probe = kszphy_probe,
  2719. .config_init = ksz8041_config_init,
  2720. .config_aneg = ksz8041_config_aneg,
  2721. .config_intr = kszphy_config_intr,
  2722. .handle_interrupt = kszphy_handle_interrupt,
  2723. .get_sset_count = kszphy_get_sset_count,
  2724. .get_strings = kszphy_get_strings,
  2725. .get_stats = kszphy_get_stats,
  2726. /* No suspend/resume callbacks because of errata DS80000700A,
  2727. * receiver error following software power down.
  2728. */
  2729. }, {
  2730. .phy_id = PHY_ID_KSZ8041RNLI,
  2731. .phy_id_mask = MICREL_PHY_ID_MASK,
  2732. .name = "Micrel KSZ8041RNLI",
  2733. /* PHY_BASIC_FEATURES */
  2734. .driver_data = &ksz8041_type,
  2735. .probe = kszphy_probe,
  2736. .config_init = kszphy_config_init,
  2737. .config_intr = kszphy_config_intr,
  2738. .handle_interrupt = kszphy_handle_interrupt,
  2739. .get_sset_count = kszphy_get_sset_count,
  2740. .get_strings = kszphy_get_strings,
  2741. .get_stats = kszphy_get_stats,
  2742. .suspend = kszphy_suspend,
  2743. .resume = kszphy_resume,
  2744. }, {
  2745. .name = "Micrel KSZ8051",
  2746. /* PHY_BASIC_FEATURES */
  2747. .driver_data = &ksz8051_type,
  2748. .probe = kszphy_probe,
  2749. .config_init = kszphy_config_init,
  2750. .config_intr = kszphy_config_intr,
  2751. .handle_interrupt = kszphy_handle_interrupt,
  2752. .get_sset_count = kszphy_get_sset_count,
  2753. .get_strings = kszphy_get_strings,
  2754. .get_stats = kszphy_get_stats,
  2755. .match_phy_device = ksz8051_match_phy_device,
  2756. .suspend = kszphy_suspend,
  2757. .resume = kszphy_resume,
  2758. }, {
  2759. .phy_id = PHY_ID_KSZ8001,
  2760. .name = "Micrel KSZ8001 or KS8721",
  2761. .phy_id_mask = 0x00fffffc,
  2762. /* PHY_BASIC_FEATURES */
  2763. .driver_data = &ksz8041_type,
  2764. .probe = kszphy_probe,
  2765. .config_init = kszphy_config_init,
  2766. .config_intr = kszphy_config_intr,
  2767. .handle_interrupt = kszphy_handle_interrupt,
  2768. .get_sset_count = kszphy_get_sset_count,
  2769. .get_strings = kszphy_get_strings,
  2770. .get_stats = kszphy_get_stats,
  2771. .suspend = kszphy_suspend,
  2772. .resume = kszphy_resume,
  2773. }, {
  2774. .phy_id = PHY_ID_KSZ8081,
  2775. .name = "Micrel KSZ8081 or KSZ8091",
  2776. .phy_id_mask = MICREL_PHY_ID_MASK,
  2777. .flags = PHY_POLL_CABLE_TEST,
  2778. /* PHY_BASIC_FEATURES */
  2779. .driver_data = &ksz8081_type,
  2780. .probe = kszphy_probe,
  2781. .config_init = ksz8081_config_init,
  2782. .soft_reset = genphy_soft_reset,
  2783. .config_aneg = ksz8081_config_aneg,
  2784. .read_status = ksz8081_read_status,
  2785. .config_intr = kszphy_config_intr,
  2786. .handle_interrupt = kszphy_handle_interrupt,
  2787. .get_sset_count = kszphy_get_sset_count,
  2788. .get_strings = kszphy_get_strings,
  2789. .get_stats = kszphy_get_stats,
  2790. .suspend = kszphy_suspend,
  2791. .resume = kszphy_resume,
  2792. .cable_test_start = ksz886x_cable_test_start,
  2793. .cable_test_get_status = ksz886x_cable_test_get_status,
  2794. }, {
  2795. .phy_id = PHY_ID_KSZ8061,
  2796. .name = "Micrel KSZ8061",
  2797. .phy_id_mask = MICREL_PHY_ID_MASK,
  2798. /* PHY_BASIC_FEATURES */
  2799. .probe = kszphy_probe,
  2800. .config_init = ksz8061_config_init,
  2801. .config_intr = kszphy_config_intr,
  2802. .handle_interrupt = kszphy_handle_interrupt,
  2803. .suspend = kszphy_suspend,
  2804. .resume = kszphy_resume,
  2805. }, {
  2806. .phy_id = PHY_ID_KSZ9021,
  2807. .phy_id_mask = 0x000ffffe,
  2808. .name = "Micrel KSZ9021 Gigabit PHY",
  2809. /* PHY_GBIT_FEATURES */
  2810. .driver_data = &ksz9021_type,
  2811. .probe = kszphy_probe,
  2812. .get_features = ksz9031_get_features,
  2813. .config_init = ksz9021_config_init,
  2814. .config_intr = kszphy_config_intr,
  2815. .handle_interrupt = kszphy_handle_interrupt,
  2816. .get_sset_count = kszphy_get_sset_count,
  2817. .get_strings = kszphy_get_strings,
  2818. .get_stats = kszphy_get_stats,
  2819. .suspend = kszphy_suspend,
  2820. .resume = kszphy_resume,
  2821. .read_mmd = genphy_read_mmd_unsupported,
  2822. .write_mmd = genphy_write_mmd_unsupported,
  2823. }, {
  2824. .phy_id = PHY_ID_KSZ9031,
  2825. .phy_id_mask = MICREL_PHY_ID_MASK,
  2826. .name = "Micrel KSZ9031 Gigabit PHY",
  2827. .flags = PHY_POLL_CABLE_TEST,
  2828. .driver_data = &ksz9021_type,
  2829. .probe = kszphy_probe,
  2830. .get_features = ksz9031_get_features,
  2831. .config_init = ksz9031_config_init,
  2832. .soft_reset = genphy_soft_reset,
  2833. .read_status = ksz9031_read_status,
  2834. .config_intr = ksz9031_config_intr,
  2835. .handle_interrupt = kszphy_handle_interrupt,
  2836. .get_sset_count = kszphy_get_sset_count,
  2837. .get_strings = kszphy_get_strings,
  2838. .get_stats = kszphy_get_stats,
  2839. .set_wol = ksz9031_set_wol,
  2840. .get_wol = ksz9031_get_wol,
  2841. .suspend = ksz9031_suspend,
  2842. .resume = ksz9031_resume,
  2843. .cable_test_start = ksz9x31_cable_test_start,
  2844. .cable_test_get_status = ksz9x31_cable_test_get_status,
  2845. }, {
  2846. .phy_id = PHY_ID_LAN8814,
  2847. .phy_id_mask = MICREL_PHY_ID_MASK,
  2848. .name = "Microchip INDY Gigabit Quad PHY",
  2849. .flags = PHY_POLL_CABLE_TEST,
  2850. .config_init = lan8814_config_init,
  2851. .driver_data = &lan8814_type,
  2852. .probe = lan8814_probe,
  2853. .soft_reset = genphy_soft_reset,
  2854. .read_status = ksz9031_read_status,
  2855. .get_sset_count = kszphy_get_sset_count,
  2856. .get_strings = kszphy_get_strings,
  2857. .get_stats = kszphy_get_stats,
  2858. .suspend = genphy_suspend,
  2859. .resume = kszphy_resume,
  2860. .config_intr = lan8814_config_intr,
  2861. .handle_interrupt = lan8814_handle_interrupt,
  2862. .cable_test_start = lan8814_cable_test_start,
  2863. .cable_test_get_status = ksz886x_cable_test_get_status,
  2864. }, {
  2865. .phy_id = PHY_ID_LAN8804,
  2866. .phy_id_mask = MICREL_PHY_ID_MASK,
  2867. .name = "Microchip LAN966X Gigabit PHY",
  2868. .config_init = lan8804_config_init,
  2869. .driver_data = &ksz9021_type,
  2870. .probe = kszphy_probe,
  2871. .soft_reset = genphy_soft_reset,
  2872. .read_status = ksz9031_read_status,
  2873. .get_sset_count = kszphy_get_sset_count,
  2874. .get_strings = kszphy_get_strings,
  2875. .get_stats = kszphy_get_stats,
  2876. .suspend = genphy_suspend,
  2877. .resume = kszphy_resume,
  2878. .config_intr = lan8804_config_intr,
  2879. .handle_interrupt = lan8804_handle_interrupt,
  2880. }, {
  2881. .phy_id = PHY_ID_KSZ9131,
  2882. .phy_id_mask = MICREL_PHY_ID_MASK,
  2883. .name = "Microchip KSZ9131 Gigabit PHY",
  2884. /* PHY_GBIT_FEATURES */
  2885. .flags = PHY_POLL_CABLE_TEST,
  2886. .driver_data = &ksz9021_type,
  2887. .probe = kszphy_probe,
  2888. .config_init = ksz9131_config_init,
  2889. .config_intr = kszphy_config_intr,
  2890. .handle_interrupt = kszphy_handle_interrupt,
  2891. .get_sset_count = kszphy_get_sset_count,
  2892. .get_strings = kszphy_get_strings,
  2893. .get_stats = kszphy_get_stats,
  2894. .suspend = kszphy_suspend,
  2895. .resume = kszphy_resume,
  2896. .cable_test_start = ksz9x31_cable_test_start,
  2897. .cable_test_get_status = ksz9x31_cable_test_get_status,
  2898. }, {
  2899. .phy_id = PHY_ID_KSZ8873MLL,
  2900. .phy_id_mask = MICREL_PHY_ID_MASK,
  2901. .name = "Micrel KSZ8873MLL Switch",
  2902. /* PHY_BASIC_FEATURES */
  2903. .config_init = kszphy_config_init,
  2904. .config_aneg = ksz8873mll_config_aneg,
  2905. .read_status = ksz8873mll_read_status,
  2906. .suspend = genphy_suspend,
  2907. .resume = genphy_resume,
  2908. }, {
  2909. .phy_id = PHY_ID_KSZ886X,
  2910. .phy_id_mask = MICREL_PHY_ID_MASK,
  2911. .name = "Micrel KSZ8851 Ethernet MAC or KSZ886X Switch",
  2912. .driver_data = &ksz886x_type,
  2913. /* PHY_BASIC_FEATURES */
  2914. .flags = PHY_POLL_CABLE_TEST,
  2915. .config_init = kszphy_config_init,
  2916. .config_aneg = ksz886x_config_aneg,
  2917. .read_status = ksz886x_read_status,
  2918. .suspend = genphy_suspend,
  2919. .resume = genphy_resume,
  2920. .cable_test_start = ksz886x_cable_test_start,
  2921. .cable_test_get_status = ksz886x_cable_test_get_status,
  2922. }, {
  2923. .name = "Micrel KSZ87XX Switch",
  2924. /* PHY_BASIC_FEATURES */
  2925. .config_init = kszphy_config_init,
  2926. .match_phy_device = ksz8795_match_phy_device,
  2927. .suspend = genphy_suspend,
  2928. .resume = genphy_resume,
  2929. }, {
  2930. .phy_id = PHY_ID_KSZ9477,
  2931. .phy_id_mask = MICREL_PHY_ID_MASK,
  2932. .name = "Microchip KSZ9477",
  2933. /* PHY_GBIT_FEATURES */
  2934. .config_init = kszphy_config_init,
  2935. .config_intr = kszphy_config_intr,
  2936. .handle_interrupt = kszphy_handle_interrupt,
  2937. .suspend = genphy_suspend,
  2938. .resume = genphy_resume,
  2939. } };
  2940. module_phy_driver(ksphy_driver);
  2941. MODULE_DESCRIPTION("Micrel PHY driver");
  2942. MODULE_AUTHOR("David J. Choi");
  2943. MODULE_LICENSE("GPL");
  2944. static struct mdio_device_id __maybe_unused micrel_tbl[] = {
  2945. { PHY_ID_KSZ9021, 0x000ffffe },
  2946. { PHY_ID_KSZ9031, MICREL_PHY_ID_MASK },
  2947. { PHY_ID_KSZ9131, MICREL_PHY_ID_MASK },
  2948. { PHY_ID_KSZ8001, 0x00fffffc },
  2949. { PHY_ID_KS8737, MICREL_PHY_ID_MASK },
  2950. { PHY_ID_KSZ8021, 0x00ffffff },
  2951. { PHY_ID_KSZ8031, 0x00ffffff },
  2952. { PHY_ID_KSZ8041, MICREL_PHY_ID_MASK },
  2953. { PHY_ID_KSZ8051, MICREL_PHY_ID_MASK },
  2954. { PHY_ID_KSZ8061, MICREL_PHY_ID_MASK },
  2955. { PHY_ID_KSZ8081, MICREL_PHY_ID_MASK },
  2956. { PHY_ID_KSZ8873MLL, MICREL_PHY_ID_MASK },
  2957. { PHY_ID_KSZ886X, MICREL_PHY_ID_MASK },
  2958. { PHY_ID_LAN8814, MICREL_PHY_ID_MASK },
  2959. { PHY_ID_LAN8804, MICREL_PHY_ID_MASK },
  2960. { }
  2961. };
  2962. MODULE_DEVICE_TABLE(mdio, micrel_tbl);