siena.c 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /****************************************************************************
  3. * Driver for Solarflare network controllers and boards
  4. * Copyright 2005-2006 Fen Systems Ltd.
  5. * Copyright 2006-2013 Solarflare Communications Inc.
  6. */
  7. #include <linux/bitops.h>
  8. #include <linux/delay.h>
  9. #include <linux/pci.h>
  10. #include <linux/module.h>
  11. #include <linux/slab.h>
  12. #include <linux/random.h>
  13. #include "net_driver.h"
  14. #include "bitfield.h"
  15. #include "efx.h"
  16. #include "efx_common.h"
  17. #include "nic.h"
  18. #include "farch_regs.h"
  19. #include "io.h"
  20. #include "workarounds.h"
  21. #include "mcdi.h"
  22. #include "mcdi_pcol.h"
  23. #include "mcdi_port.h"
  24. #include "mcdi_port_common.h"
  25. #include "selftest.h"
  26. #include "siena_sriov.h"
  27. #include "rx_common.h"
  28. /* Hardware control for SFC9000 family including SFL9021 (aka Siena). */
  29. static void siena_init_wol(struct efx_nic *efx);
  30. static void siena_push_irq_moderation(struct efx_channel *channel)
  31. {
  32. struct efx_nic *efx = channel->efx;
  33. efx_dword_t timer_cmd;
  34. if (channel->irq_moderation_us) {
  35. unsigned int ticks;
  36. ticks = efx_siena_usecs_to_ticks(efx, channel->irq_moderation_us);
  37. EFX_POPULATE_DWORD_2(timer_cmd,
  38. FRF_CZ_TC_TIMER_MODE,
  39. FFE_CZ_TIMER_MODE_INT_HLDOFF,
  40. FRF_CZ_TC_TIMER_VAL,
  41. ticks - 1);
  42. } else {
  43. EFX_POPULATE_DWORD_2(timer_cmd,
  44. FRF_CZ_TC_TIMER_MODE,
  45. FFE_CZ_TIMER_MODE_DIS,
  46. FRF_CZ_TC_TIMER_VAL, 0);
  47. }
  48. efx_writed_page_locked(channel->efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
  49. channel->channel);
  50. }
  51. void efx_siena_prepare_flush(struct efx_nic *efx)
  52. {
  53. if (efx->fc_disable++ == 0)
  54. efx_siena_mcdi_set_mac(efx);
  55. }
  56. void siena_finish_flush(struct efx_nic *efx)
  57. {
  58. if (--efx->fc_disable == 0)
  59. efx_siena_mcdi_set_mac(efx);
  60. }
  61. static const struct efx_farch_register_test siena_register_tests[] = {
  62. { FR_AZ_ADR_REGION,
  63. EFX_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) },
  64. { FR_CZ_USR_EV_CFG,
  65. EFX_OWORD32(0x000103FF, 0x00000000, 0x00000000, 0x00000000) },
  66. { FR_AZ_RX_CFG,
  67. EFX_OWORD32(0xFFFFFFFE, 0xFFFFFFFF, 0x0003FFFF, 0x00000000) },
  68. { FR_AZ_TX_CFG,
  69. EFX_OWORD32(0x7FFF0037, 0xFFFF8000, 0xFFFFFFFF, 0x03FFFFFF) },
  70. { FR_AZ_TX_RESERVED,
  71. EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
  72. { FR_AZ_SRM_TX_DC_CFG,
  73. EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
  74. { FR_AZ_RX_DC_CFG,
  75. EFX_OWORD32(0x00000003, 0x00000000, 0x00000000, 0x00000000) },
  76. { FR_AZ_RX_DC_PF_WM,
  77. EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
  78. { FR_BZ_DP_CTRL,
  79. EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
  80. { FR_BZ_RX_RSS_TKEY,
  81. EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF) },
  82. { FR_CZ_RX_RSS_IPV6_REG1,
  83. EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF) },
  84. { FR_CZ_RX_RSS_IPV6_REG2,
  85. EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF) },
  86. { FR_CZ_RX_RSS_IPV6_REG3,
  87. EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0x00000007, 0x00000000) },
  88. };
  89. static int siena_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
  90. {
  91. enum reset_type reset_method = RESET_TYPE_ALL;
  92. int rc, rc2;
  93. efx_siena_reset_down(efx, reset_method);
  94. /* Reset the chip immediately so that it is completely
  95. * quiescent regardless of what any VF driver does.
  96. */
  97. rc = efx_siena_mcdi_reset(efx, reset_method);
  98. if (rc)
  99. goto out;
  100. tests->registers =
  101. efx_farch_test_registers(efx, siena_register_tests,
  102. ARRAY_SIZE(siena_register_tests))
  103. ? -1 : 1;
  104. rc = efx_siena_mcdi_reset(efx, reset_method);
  105. out:
  106. rc2 = efx_siena_reset_up(efx, reset_method, rc == 0);
  107. return rc ? rc : rc2;
  108. }
  109. /**************************************************************************
  110. *
  111. * PTP
  112. *
  113. **************************************************************************
  114. */
  115. static void siena_ptp_write_host_time(struct efx_nic *efx, u32 host_time)
  116. {
  117. _efx_writed(efx, cpu_to_le32(host_time),
  118. FR_CZ_MC_TREG_SMEM + MC_SMEM_P0_PTP_TIME_OFST);
  119. }
  120. static int siena_ptp_set_ts_config(struct efx_nic *efx,
  121. struct hwtstamp_config *init)
  122. {
  123. int rc;
  124. switch (init->rx_filter) {
  125. case HWTSTAMP_FILTER_NONE:
  126. /* if TX timestamping is still requested then leave PTP on */
  127. return efx_siena_ptp_change_mode(efx,
  128. init->tx_type != HWTSTAMP_TX_OFF,
  129. efx_siena_ptp_get_mode(efx));
  130. case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
  131. case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
  132. case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
  133. init->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
  134. return efx_siena_ptp_change_mode(efx, true, MC_CMD_PTP_MODE_V1);
  135. case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
  136. case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
  137. case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
  138. init->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
  139. rc = efx_siena_ptp_change_mode(efx, true,
  140. MC_CMD_PTP_MODE_V2_ENHANCED);
  141. /* bug 33070 - old versions of the firmware do not support the
  142. * improved UUID filtering option. Similarly old versions of the
  143. * application do not expect it to be enabled. If the firmware
  144. * does not accept the enhanced mode, fall back to the standard
  145. * PTP v2 UUID filtering. */
  146. if (rc != 0)
  147. rc = efx_siena_ptp_change_mode(efx, true,
  148. MC_CMD_PTP_MODE_V2);
  149. return rc;
  150. default:
  151. return -ERANGE;
  152. }
  153. }
  154. /**************************************************************************
  155. *
  156. * Device reset
  157. *
  158. **************************************************************************
  159. */
  160. static int siena_map_reset_flags(u32 *flags)
  161. {
  162. enum {
  163. SIENA_RESET_PORT = (ETH_RESET_DMA | ETH_RESET_FILTER |
  164. ETH_RESET_OFFLOAD | ETH_RESET_MAC |
  165. ETH_RESET_PHY),
  166. SIENA_RESET_MC = (SIENA_RESET_PORT |
  167. ETH_RESET_MGMT << ETH_RESET_SHARED_SHIFT),
  168. };
  169. if ((*flags & SIENA_RESET_MC) == SIENA_RESET_MC) {
  170. *flags &= ~SIENA_RESET_MC;
  171. return RESET_TYPE_WORLD;
  172. }
  173. if ((*flags & SIENA_RESET_PORT) == SIENA_RESET_PORT) {
  174. *flags &= ~SIENA_RESET_PORT;
  175. return RESET_TYPE_ALL;
  176. }
  177. /* no invisible reset implemented */
  178. return -EINVAL;
  179. }
  180. #ifdef CONFIG_EEH
  181. /* When a PCI device is isolated from the bus, a subsequent MMIO read is
  182. * required for the kernel EEH mechanisms to notice. As the Solarflare driver
  183. * was written to minimise MMIO read (for latency) then a periodic call to check
  184. * the EEH status of the device is required so that device recovery can happen
  185. * in a timely fashion.
  186. */
  187. static void siena_monitor(struct efx_nic *efx)
  188. {
  189. struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev);
  190. eeh_dev_check_failure(eehdev);
  191. }
  192. #endif
  193. static int siena_probe_nvconfig(struct efx_nic *efx)
  194. {
  195. u32 caps = 0;
  196. int rc;
  197. rc = efx_siena_mcdi_get_board_cfg(efx, efx->net_dev->perm_addr, NULL,
  198. &caps);
  199. efx->timer_quantum_ns =
  200. (caps & (1 << MC_CMD_CAPABILITIES_TURBO_ACTIVE_LBN)) ?
  201. 3072 : 6144; /* 768 cycles */
  202. efx->timer_max_ns = efx->type->timer_period_max *
  203. efx->timer_quantum_ns;
  204. return rc;
  205. }
  206. static int siena_dimension_resources(struct efx_nic *efx)
  207. {
  208. /* Each port has a small block of internal SRAM dedicated to
  209. * the buffer table and descriptor caches. In theory we can
  210. * map both blocks to one port, but we don't.
  211. */
  212. efx_farch_dimension_resources(efx, FR_CZ_BUF_FULL_TBL_ROWS / 2);
  213. return 0;
  214. }
  215. /* On all Falcon-architecture NICs, PFs use BAR 0 for I/O space and BAR 2(&3)
  216. * for memory.
  217. */
  218. static unsigned int siena_mem_bar(struct efx_nic *efx)
  219. {
  220. return 2;
  221. }
  222. static unsigned int siena_mem_map_size(struct efx_nic *efx)
  223. {
  224. return FR_CZ_MC_TREG_SMEM +
  225. FR_CZ_MC_TREG_SMEM_STEP * FR_CZ_MC_TREG_SMEM_ROWS;
  226. }
  227. static int siena_probe_nic(struct efx_nic *efx)
  228. {
  229. struct siena_nic_data *nic_data;
  230. efx_oword_t reg;
  231. int rc;
  232. /* Allocate storage for hardware specific data */
  233. nic_data = kzalloc(sizeof(struct siena_nic_data), GFP_KERNEL);
  234. if (!nic_data)
  235. return -ENOMEM;
  236. nic_data->efx = efx;
  237. efx->nic_data = nic_data;
  238. if (efx_farch_fpga_ver(efx) != 0) {
  239. netif_err(efx, probe, efx->net_dev,
  240. "Siena FPGA not supported\n");
  241. rc = -ENODEV;
  242. goto fail1;
  243. }
  244. efx->max_channels = EFX_MAX_CHANNELS;
  245. efx->max_vis = EFX_MAX_CHANNELS;
  246. efx->max_tx_channels = EFX_MAX_CHANNELS;
  247. efx->tx_queues_per_channel = 4;
  248. efx_reado(efx, &reg, FR_AZ_CS_DEBUG);
  249. efx->port_num = EFX_OWORD_FIELD(reg, FRF_CZ_CS_PORT_NUM) - 1;
  250. rc = efx_siena_mcdi_init(efx);
  251. if (rc)
  252. goto fail1;
  253. /* Now we can reset the NIC */
  254. rc = efx_siena_mcdi_reset(efx, RESET_TYPE_ALL);
  255. if (rc) {
  256. netif_err(efx, probe, efx->net_dev, "failed to reset NIC\n");
  257. goto fail3;
  258. }
  259. siena_init_wol(efx);
  260. /* Allocate memory for INT_KER */
  261. rc = efx_siena_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t),
  262. GFP_KERNEL);
  263. if (rc)
  264. goto fail4;
  265. BUG_ON(efx->irq_status.dma_addr & 0x0f);
  266. netif_dbg(efx, probe, efx->net_dev,
  267. "INT_KER at %llx (virt %p phys %llx)\n",
  268. (unsigned long long)efx->irq_status.dma_addr,
  269. efx->irq_status.addr,
  270. (unsigned long long)virt_to_phys(efx->irq_status.addr));
  271. /* Read in the non-volatile configuration */
  272. rc = siena_probe_nvconfig(efx);
  273. if (rc == -EINVAL) {
  274. netif_err(efx, probe, efx->net_dev,
  275. "NVRAM is invalid therefore using defaults\n");
  276. efx->phy_type = PHY_TYPE_NONE;
  277. efx->mdio.prtad = MDIO_PRTAD_NONE;
  278. } else if (rc) {
  279. goto fail5;
  280. }
  281. rc = efx_siena_mcdi_mon_probe(efx);
  282. if (rc)
  283. goto fail5;
  284. #ifdef CONFIG_SFC_SIENA_SRIOV
  285. efx_siena_sriov_probe(efx);
  286. #endif
  287. efx_siena_ptp_defer_probe_with_channel(efx);
  288. return 0;
  289. fail5:
  290. efx_siena_free_buffer(efx, &efx->irq_status);
  291. fail4:
  292. fail3:
  293. efx_siena_mcdi_detach(efx);
  294. efx_siena_mcdi_fini(efx);
  295. fail1:
  296. kfree(efx->nic_data);
  297. return rc;
  298. }
  299. static int siena_rx_pull_rss_config(struct efx_nic *efx)
  300. {
  301. efx_oword_t temp;
  302. /* Read from IPv6 RSS key as that's longer (the IPv4 key is just the
  303. * first 128 bits of the same key, assuming it's been set by
  304. * siena_rx_push_rss_config, below)
  305. */
  306. efx_reado(efx, &temp, FR_CZ_RX_RSS_IPV6_REG1);
  307. memcpy(efx->rss_context.rx_hash_key, &temp, sizeof(temp));
  308. efx_reado(efx, &temp, FR_CZ_RX_RSS_IPV6_REG2);
  309. memcpy(efx->rss_context.rx_hash_key + sizeof(temp), &temp, sizeof(temp));
  310. efx_reado(efx, &temp, FR_CZ_RX_RSS_IPV6_REG3);
  311. memcpy(efx->rss_context.rx_hash_key + 2 * sizeof(temp), &temp,
  312. FRF_CZ_RX_RSS_IPV6_TKEY_HI_WIDTH / 8);
  313. efx_farch_rx_pull_indir_table(efx);
  314. return 0;
  315. }
  316. static int siena_rx_push_rss_config(struct efx_nic *efx, bool user,
  317. const u32 *rx_indir_table, const u8 *key)
  318. {
  319. efx_oword_t temp;
  320. /* Set hash key for IPv4 */
  321. if (key)
  322. memcpy(efx->rss_context.rx_hash_key, key, sizeof(temp));
  323. memcpy(&temp, efx->rss_context.rx_hash_key, sizeof(temp));
  324. efx_writeo(efx, &temp, FR_BZ_RX_RSS_TKEY);
  325. /* Enable IPv6 RSS */
  326. BUILD_BUG_ON(sizeof(efx->rss_context.rx_hash_key) <
  327. 2 * sizeof(temp) + FRF_CZ_RX_RSS_IPV6_TKEY_HI_WIDTH / 8 ||
  328. FRF_CZ_RX_RSS_IPV6_TKEY_HI_LBN != 0);
  329. memcpy(&temp, efx->rss_context.rx_hash_key, sizeof(temp));
  330. efx_writeo(efx, &temp, FR_CZ_RX_RSS_IPV6_REG1);
  331. memcpy(&temp, efx->rss_context.rx_hash_key + sizeof(temp), sizeof(temp));
  332. efx_writeo(efx, &temp, FR_CZ_RX_RSS_IPV6_REG2);
  333. EFX_POPULATE_OWORD_2(temp, FRF_CZ_RX_RSS_IPV6_THASH_ENABLE, 1,
  334. FRF_CZ_RX_RSS_IPV6_IP_THASH_ENABLE, 1);
  335. memcpy(&temp, efx->rss_context.rx_hash_key + 2 * sizeof(temp),
  336. FRF_CZ_RX_RSS_IPV6_TKEY_HI_WIDTH / 8);
  337. efx_writeo(efx, &temp, FR_CZ_RX_RSS_IPV6_REG3);
  338. memcpy(efx->rss_context.rx_indir_table, rx_indir_table,
  339. sizeof(efx->rss_context.rx_indir_table));
  340. efx_farch_rx_push_indir_table(efx);
  341. return 0;
  342. }
  343. /* This call performs hardware-specific global initialisation, such as
  344. * defining the descriptor cache sizes and number of RSS channels.
  345. * It does not set up any buffers, descriptor rings or event queues.
  346. */
  347. static int siena_init_nic(struct efx_nic *efx)
  348. {
  349. efx_oword_t temp;
  350. int rc;
  351. /* Recover from a failed assertion post-reset */
  352. rc = efx_siena_mcdi_handle_assertion(efx);
  353. if (rc)
  354. return rc;
  355. /* Squash TX of packets of 16 bytes or less */
  356. efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
  357. EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
  358. efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
  359. /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
  360. * descriptors (which is bad).
  361. */
  362. efx_reado(efx, &temp, FR_AZ_TX_CFG);
  363. EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
  364. EFX_SET_OWORD_FIELD(temp, FRF_CZ_TX_FILTER_EN_BIT, 1);
  365. efx_writeo(efx, &temp, FR_AZ_TX_CFG);
  366. efx_reado(efx, &temp, FR_AZ_RX_CFG);
  367. EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_DESC_PUSH_EN, 0);
  368. EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_INGR_EN, 1);
  369. /* Enable hash insertion. This is broken for the 'Falcon' hash
  370. * if IPv6 hashing is also enabled, so also select Toeplitz
  371. * TCP/IPv4 and IPv4 hashes. */
  372. EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_HASH_INSRT_HDR, 1);
  373. EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_HASH_ALG, 1);
  374. EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_IP_HASH, 1);
  375. EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_USR_BUF_SIZE,
  376. EFX_RX_USR_BUF_SIZE >> 5);
  377. efx_writeo(efx, &temp, FR_AZ_RX_CFG);
  378. siena_rx_push_rss_config(efx, false, efx->rss_context.rx_indir_table, NULL);
  379. efx->rss_context.context_id = 0; /* indicates RSS is active */
  380. /* Enable event logging */
  381. rc = efx_siena_mcdi_log_ctrl(efx, true, false, 0);
  382. if (rc)
  383. return rc;
  384. /* Set destination of both TX and RX Flush events */
  385. EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
  386. efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
  387. EFX_POPULATE_OWORD_1(temp, FRF_CZ_USREV_DIS, 1);
  388. efx_writeo(efx, &temp, FR_CZ_USR_EV_CFG);
  389. efx_farch_init_common(efx);
  390. return 0;
  391. }
  392. static void siena_remove_nic(struct efx_nic *efx)
  393. {
  394. efx_siena_mcdi_mon_remove(efx);
  395. efx_siena_free_buffer(efx, &efx->irq_status);
  396. efx_siena_mcdi_reset(efx, RESET_TYPE_ALL);
  397. efx_siena_mcdi_detach(efx);
  398. efx_siena_mcdi_fini(efx);
  399. /* Tear down the private nic state */
  400. kfree(efx->nic_data);
  401. efx->nic_data = NULL;
  402. }
  403. #define SIENA_DMA_STAT(ext_name, mcdi_name) \
  404. [SIENA_STAT_ ## ext_name] = \
  405. { #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
  406. #define SIENA_OTHER_STAT(ext_name) \
  407. [SIENA_STAT_ ## ext_name] = { #ext_name, 0, 0 }
  408. #define GENERIC_SW_STAT(ext_name) \
  409. [GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
  410. static const struct efx_hw_stat_desc siena_stat_desc[SIENA_STAT_COUNT] = {
  411. SIENA_DMA_STAT(tx_bytes, TX_BYTES),
  412. SIENA_OTHER_STAT(tx_good_bytes),
  413. SIENA_DMA_STAT(tx_bad_bytes, TX_BAD_BYTES),
  414. SIENA_DMA_STAT(tx_packets, TX_PKTS),
  415. SIENA_DMA_STAT(tx_bad, TX_BAD_FCS_PKTS),
  416. SIENA_DMA_STAT(tx_pause, TX_PAUSE_PKTS),
  417. SIENA_DMA_STAT(tx_control, TX_CONTROL_PKTS),
  418. SIENA_DMA_STAT(tx_unicast, TX_UNICAST_PKTS),
  419. SIENA_DMA_STAT(tx_multicast, TX_MULTICAST_PKTS),
  420. SIENA_DMA_STAT(tx_broadcast, TX_BROADCAST_PKTS),
  421. SIENA_DMA_STAT(tx_lt64, TX_LT64_PKTS),
  422. SIENA_DMA_STAT(tx_64, TX_64_PKTS),
  423. SIENA_DMA_STAT(tx_65_to_127, TX_65_TO_127_PKTS),
  424. SIENA_DMA_STAT(tx_128_to_255, TX_128_TO_255_PKTS),
  425. SIENA_DMA_STAT(tx_256_to_511, TX_256_TO_511_PKTS),
  426. SIENA_DMA_STAT(tx_512_to_1023, TX_512_TO_1023_PKTS),
  427. SIENA_DMA_STAT(tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
  428. SIENA_DMA_STAT(tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
  429. SIENA_DMA_STAT(tx_gtjumbo, TX_GTJUMBO_PKTS),
  430. SIENA_OTHER_STAT(tx_collision),
  431. SIENA_DMA_STAT(tx_single_collision, TX_SINGLE_COLLISION_PKTS),
  432. SIENA_DMA_STAT(tx_multiple_collision, TX_MULTIPLE_COLLISION_PKTS),
  433. SIENA_DMA_STAT(tx_excessive_collision, TX_EXCESSIVE_COLLISION_PKTS),
  434. SIENA_DMA_STAT(tx_deferred, TX_DEFERRED_PKTS),
  435. SIENA_DMA_STAT(tx_late_collision, TX_LATE_COLLISION_PKTS),
  436. SIENA_DMA_STAT(tx_excessive_deferred, TX_EXCESSIVE_DEFERRED_PKTS),
  437. SIENA_DMA_STAT(tx_non_tcpudp, TX_NON_TCPUDP_PKTS),
  438. SIENA_DMA_STAT(tx_mac_src_error, TX_MAC_SRC_ERR_PKTS),
  439. SIENA_DMA_STAT(tx_ip_src_error, TX_IP_SRC_ERR_PKTS),
  440. SIENA_DMA_STAT(rx_bytes, RX_BYTES),
  441. SIENA_OTHER_STAT(rx_good_bytes),
  442. SIENA_DMA_STAT(rx_bad_bytes, RX_BAD_BYTES),
  443. SIENA_DMA_STAT(rx_packets, RX_PKTS),
  444. SIENA_DMA_STAT(rx_good, RX_GOOD_PKTS),
  445. SIENA_DMA_STAT(rx_bad, RX_BAD_FCS_PKTS),
  446. SIENA_DMA_STAT(rx_pause, RX_PAUSE_PKTS),
  447. SIENA_DMA_STAT(rx_control, RX_CONTROL_PKTS),
  448. SIENA_DMA_STAT(rx_unicast, RX_UNICAST_PKTS),
  449. SIENA_DMA_STAT(rx_multicast, RX_MULTICAST_PKTS),
  450. SIENA_DMA_STAT(rx_broadcast, RX_BROADCAST_PKTS),
  451. SIENA_DMA_STAT(rx_lt64, RX_UNDERSIZE_PKTS),
  452. SIENA_DMA_STAT(rx_64, RX_64_PKTS),
  453. SIENA_DMA_STAT(rx_65_to_127, RX_65_TO_127_PKTS),
  454. SIENA_DMA_STAT(rx_128_to_255, RX_128_TO_255_PKTS),
  455. SIENA_DMA_STAT(rx_256_to_511, RX_256_TO_511_PKTS),
  456. SIENA_DMA_STAT(rx_512_to_1023, RX_512_TO_1023_PKTS),
  457. SIENA_DMA_STAT(rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
  458. SIENA_DMA_STAT(rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
  459. SIENA_DMA_STAT(rx_gtjumbo, RX_GTJUMBO_PKTS),
  460. SIENA_DMA_STAT(rx_bad_gtjumbo, RX_JABBER_PKTS),
  461. SIENA_DMA_STAT(rx_overflow, RX_OVERFLOW_PKTS),
  462. SIENA_DMA_STAT(rx_false_carrier, RX_FALSE_CARRIER_PKTS),
  463. SIENA_DMA_STAT(rx_symbol_error, RX_SYMBOL_ERROR_PKTS),
  464. SIENA_DMA_STAT(rx_align_error, RX_ALIGN_ERROR_PKTS),
  465. SIENA_DMA_STAT(rx_length_error, RX_LENGTH_ERROR_PKTS),
  466. SIENA_DMA_STAT(rx_internal_error, RX_INTERNAL_ERROR_PKTS),
  467. SIENA_DMA_STAT(rx_nodesc_drop_cnt, RX_NODESC_DROPS),
  468. GENERIC_SW_STAT(rx_nodesc_trunc),
  469. GENERIC_SW_STAT(rx_noskb_drops),
  470. };
  471. static const unsigned long siena_stat_mask[] = {
  472. [0 ... BITS_TO_LONGS(SIENA_STAT_COUNT) - 1] = ~0UL,
  473. };
  474. static size_t siena_describe_nic_stats(struct efx_nic *efx, u8 *names)
  475. {
  476. return efx_siena_describe_stats(siena_stat_desc, SIENA_STAT_COUNT,
  477. siena_stat_mask, names);
  478. }
  479. static int siena_try_update_nic_stats(struct efx_nic *efx)
  480. {
  481. struct siena_nic_data *nic_data = efx->nic_data;
  482. u64 *stats = nic_data->stats;
  483. __le64 *dma_stats;
  484. __le64 generation_start, generation_end;
  485. dma_stats = efx->stats_buffer.addr;
  486. generation_end = dma_stats[efx->num_mac_stats - 1];
  487. if (generation_end == EFX_MC_STATS_GENERATION_INVALID)
  488. return 0;
  489. rmb();
  490. efx_siena_update_stats(siena_stat_desc, SIENA_STAT_COUNT, siena_stat_mask,
  491. stats, efx->stats_buffer.addr, false);
  492. rmb();
  493. generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
  494. if (generation_end != generation_start)
  495. return -EAGAIN;
  496. /* Update derived statistics */
  497. efx_siena_fix_nodesc_drop_stat(efx,
  498. &stats[SIENA_STAT_rx_nodesc_drop_cnt]);
  499. efx_update_diff_stat(&stats[SIENA_STAT_tx_good_bytes],
  500. stats[SIENA_STAT_tx_bytes] -
  501. stats[SIENA_STAT_tx_bad_bytes]);
  502. stats[SIENA_STAT_tx_collision] =
  503. stats[SIENA_STAT_tx_single_collision] +
  504. stats[SIENA_STAT_tx_multiple_collision] +
  505. stats[SIENA_STAT_tx_excessive_collision] +
  506. stats[SIENA_STAT_tx_late_collision];
  507. efx_update_diff_stat(&stats[SIENA_STAT_rx_good_bytes],
  508. stats[SIENA_STAT_rx_bytes] -
  509. stats[SIENA_STAT_rx_bad_bytes]);
  510. efx_siena_update_sw_stats(efx, stats);
  511. return 0;
  512. }
  513. static size_t siena_update_nic_stats(struct efx_nic *efx, u64 *full_stats,
  514. struct rtnl_link_stats64 *core_stats)
  515. {
  516. struct siena_nic_data *nic_data = efx->nic_data;
  517. u64 *stats = nic_data->stats;
  518. int retry;
  519. /* If we're unlucky enough to read statistics wduring the DMA, wait
  520. * up to 10ms for it to finish (typically takes <500us) */
  521. for (retry = 0; retry < 100; ++retry) {
  522. if (siena_try_update_nic_stats(efx) == 0)
  523. break;
  524. udelay(100);
  525. }
  526. if (full_stats)
  527. memcpy(full_stats, stats, sizeof(u64) * SIENA_STAT_COUNT);
  528. if (core_stats) {
  529. core_stats->rx_packets = stats[SIENA_STAT_rx_packets];
  530. core_stats->tx_packets = stats[SIENA_STAT_tx_packets];
  531. core_stats->rx_bytes = stats[SIENA_STAT_rx_bytes];
  532. core_stats->tx_bytes = stats[SIENA_STAT_tx_bytes];
  533. core_stats->rx_dropped = stats[SIENA_STAT_rx_nodesc_drop_cnt] +
  534. stats[GENERIC_STAT_rx_nodesc_trunc] +
  535. stats[GENERIC_STAT_rx_noskb_drops];
  536. core_stats->multicast = stats[SIENA_STAT_rx_multicast];
  537. core_stats->collisions = stats[SIENA_STAT_tx_collision];
  538. core_stats->rx_length_errors =
  539. stats[SIENA_STAT_rx_gtjumbo] +
  540. stats[SIENA_STAT_rx_length_error];
  541. core_stats->rx_crc_errors = stats[SIENA_STAT_rx_bad];
  542. core_stats->rx_frame_errors = stats[SIENA_STAT_rx_align_error];
  543. core_stats->rx_fifo_errors = stats[SIENA_STAT_rx_overflow];
  544. core_stats->tx_window_errors =
  545. stats[SIENA_STAT_tx_late_collision];
  546. core_stats->rx_errors = (core_stats->rx_length_errors +
  547. core_stats->rx_crc_errors +
  548. core_stats->rx_frame_errors +
  549. stats[SIENA_STAT_rx_symbol_error]);
  550. core_stats->tx_errors = (core_stats->tx_window_errors +
  551. stats[SIENA_STAT_tx_bad]);
  552. }
  553. return SIENA_STAT_COUNT;
  554. }
  555. static int siena_mac_reconfigure(struct efx_nic *efx, bool mtu_only __always_unused)
  556. {
  557. MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_MCAST_HASH_IN_LEN);
  558. int rc;
  559. BUILD_BUG_ON(MC_CMD_SET_MCAST_HASH_IN_LEN !=
  560. MC_CMD_SET_MCAST_HASH_IN_HASH0_OFST +
  561. sizeof(efx->multicast_hash));
  562. efx_farch_filter_sync_rx_mode(efx);
  563. WARN_ON(!mutex_is_locked(&efx->mac_lock));
  564. rc = efx_siena_mcdi_set_mac(efx);
  565. if (rc != 0)
  566. return rc;
  567. memcpy(MCDI_PTR(inbuf, SET_MCAST_HASH_IN_HASH0),
  568. efx->multicast_hash.byte, sizeof(efx->multicast_hash));
  569. return efx_siena_mcdi_rpc(efx, MC_CMD_SET_MCAST_HASH,
  570. inbuf, sizeof(inbuf), NULL, 0, NULL);
  571. }
  572. /**************************************************************************
  573. *
  574. * Wake on LAN
  575. *
  576. **************************************************************************
  577. */
  578. static void siena_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
  579. {
  580. struct siena_nic_data *nic_data = efx->nic_data;
  581. wol->supported = WAKE_MAGIC;
  582. if (nic_data->wol_filter_id != -1)
  583. wol->wolopts = WAKE_MAGIC;
  584. else
  585. wol->wolopts = 0;
  586. memset(&wol->sopass, 0, sizeof(wol->sopass));
  587. }
  588. static int siena_set_wol(struct efx_nic *efx, u32 type)
  589. {
  590. struct siena_nic_data *nic_data = efx->nic_data;
  591. int rc;
  592. if (type & ~WAKE_MAGIC)
  593. return -EINVAL;
  594. if (type & WAKE_MAGIC) {
  595. if (nic_data->wol_filter_id != -1)
  596. efx_siena_mcdi_wol_filter_remove(efx,
  597. nic_data->wol_filter_id);
  598. rc = efx_siena_mcdi_wol_filter_set_magic(efx,
  599. efx->net_dev->dev_addr,
  600. &nic_data->wol_filter_id);
  601. if (rc)
  602. goto fail;
  603. pci_wake_from_d3(efx->pci_dev, true);
  604. } else {
  605. rc = efx_siena_mcdi_wol_filter_reset(efx);
  606. nic_data->wol_filter_id = -1;
  607. pci_wake_from_d3(efx->pci_dev, false);
  608. if (rc)
  609. goto fail;
  610. }
  611. return 0;
  612. fail:
  613. netif_err(efx, hw, efx->net_dev, "%s failed: type=%d rc=%d\n",
  614. __func__, type, rc);
  615. return rc;
  616. }
  617. static void siena_init_wol(struct efx_nic *efx)
  618. {
  619. struct siena_nic_data *nic_data = efx->nic_data;
  620. int rc;
  621. rc = efx_siena_mcdi_wol_filter_get_magic(efx, &nic_data->wol_filter_id);
  622. if (rc != 0) {
  623. /* If it failed, attempt to get into a synchronised
  624. * state with MC by resetting any set WoL filters */
  625. efx_siena_mcdi_wol_filter_reset(efx);
  626. nic_data->wol_filter_id = -1;
  627. } else if (nic_data->wol_filter_id != -1) {
  628. pci_wake_from_d3(efx->pci_dev, true);
  629. }
  630. }
  631. /**************************************************************************
  632. *
  633. * MCDI
  634. *
  635. **************************************************************************
  636. */
  637. #define MCDI_PDU(efx) \
  638. (efx_port_num(efx) ? MC_SMEM_P1_PDU_OFST : MC_SMEM_P0_PDU_OFST)
  639. #define MCDI_DOORBELL(efx) \
  640. (efx_port_num(efx) ? MC_SMEM_P1_DOORBELL_OFST : MC_SMEM_P0_DOORBELL_OFST)
  641. #define MCDI_STATUS(efx) \
  642. (efx_port_num(efx) ? MC_SMEM_P1_STATUS_OFST : MC_SMEM_P0_STATUS_OFST)
  643. static void siena_mcdi_request(struct efx_nic *efx,
  644. const efx_dword_t *hdr, size_t hdr_len,
  645. const efx_dword_t *sdu, size_t sdu_len)
  646. {
  647. unsigned pdu = FR_CZ_MC_TREG_SMEM + MCDI_PDU(efx);
  648. unsigned doorbell = FR_CZ_MC_TREG_SMEM + MCDI_DOORBELL(efx);
  649. unsigned int i;
  650. unsigned int inlen_dw = DIV_ROUND_UP(sdu_len, 4);
  651. EFX_WARN_ON_PARANOID(hdr_len != 4);
  652. efx_writed(efx, hdr, pdu);
  653. for (i = 0; i < inlen_dw; i++)
  654. efx_writed(efx, &sdu[i], pdu + hdr_len + 4 * i);
  655. /* Ensure the request is written out before the doorbell */
  656. wmb();
  657. /* ring the doorbell with a distinctive value */
  658. _efx_writed(efx, (__force __le32) 0x45789abc, doorbell);
  659. }
  660. static bool siena_mcdi_poll_response(struct efx_nic *efx)
  661. {
  662. unsigned int pdu = FR_CZ_MC_TREG_SMEM + MCDI_PDU(efx);
  663. efx_dword_t hdr;
  664. efx_readd(efx, &hdr, pdu);
  665. /* All 1's indicates that shared memory is in reset (and is
  666. * not a valid hdr). Wait for it to come out reset before
  667. * completing the command
  668. */
  669. return EFX_DWORD_FIELD(hdr, EFX_DWORD_0) != 0xffffffff &&
  670. EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
  671. }
  672. static void siena_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf,
  673. size_t offset, size_t outlen)
  674. {
  675. unsigned int pdu = FR_CZ_MC_TREG_SMEM + MCDI_PDU(efx);
  676. unsigned int outlen_dw = DIV_ROUND_UP(outlen, 4);
  677. int i;
  678. for (i = 0; i < outlen_dw; i++)
  679. efx_readd(efx, &outbuf[i], pdu + offset + 4 * i);
  680. }
  681. static int siena_mcdi_poll_reboot(struct efx_nic *efx)
  682. {
  683. struct siena_nic_data *nic_data = efx->nic_data;
  684. unsigned int addr = FR_CZ_MC_TREG_SMEM + MCDI_STATUS(efx);
  685. efx_dword_t reg;
  686. u32 value;
  687. efx_readd(efx, &reg, addr);
  688. value = EFX_DWORD_FIELD(reg, EFX_DWORD_0);
  689. if (value == 0)
  690. return 0;
  691. EFX_ZERO_DWORD(reg);
  692. efx_writed(efx, &reg, addr);
  693. /* MAC statistics have been cleared on the NIC; clear the local
  694. * copies that we update with efx_update_diff_stat().
  695. */
  696. nic_data->stats[SIENA_STAT_tx_good_bytes] = 0;
  697. nic_data->stats[SIENA_STAT_rx_good_bytes] = 0;
  698. if (value == MC_STATUS_DWORD_ASSERT)
  699. return -EINTR;
  700. else
  701. return -EIO;
  702. }
  703. /**************************************************************************
  704. *
  705. * MTD
  706. *
  707. **************************************************************************
  708. */
  709. #ifdef CONFIG_SFC_SIENA_MTD
  710. struct siena_nvram_type_info {
  711. int port;
  712. const char *name;
  713. };
  714. static const struct siena_nvram_type_info siena_nvram_types[] = {
  715. [MC_CMD_NVRAM_TYPE_DISABLED_CALLISTO] = { 0, "sfc_dummy_phy" },
  716. [MC_CMD_NVRAM_TYPE_MC_FW] = { 0, "sfc_mcfw" },
  717. [MC_CMD_NVRAM_TYPE_MC_FW_BACKUP] = { 0, "sfc_mcfw_backup" },
  718. [MC_CMD_NVRAM_TYPE_STATIC_CFG_PORT0] = { 0, "sfc_static_cfg" },
  719. [MC_CMD_NVRAM_TYPE_STATIC_CFG_PORT1] = { 1, "sfc_static_cfg" },
  720. [MC_CMD_NVRAM_TYPE_DYNAMIC_CFG_PORT0] = { 0, "sfc_dynamic_cfg" },
  721. [MC_CMD_NVRAM_TYPE_DYNAMIC_CFG_PORT1] = { 1, "sfc_dynamic_cfg" },
  722. [MC_CMD_NVRAM_TYPE_EXP_ROM] = { 0, "sfc_exp_rom" },
  723. [MC_CMD_NVRAM_TYPE_EXP_ROM_CFG_PORT0] = { 0, "sfc_exp_rom_cfg" },
  724. [MC_CMD_NVRAM_TYPE_EXP_ROM_CFG_PORT1] = { 1, "sfc_exp_rom_cfg" },
  725. [MC_CMD_NVRAM_TYPE_PHY_PORT0] = { 0, "sfc_phy_fw" },
  726. [MC_CMD_NVRAM_TYPE_PHY_PORT1] = { 1, "sfc_phy_fw" },
  727. [MC_CMD_NVRAM_TYPE_FPGA] = { 0, "sfc_fpga" },
  728. };
  729. static int siena_mtd_probe_partition(struct efx_nic *efx,
  730. struct efx_mcdi_mtd_partition *part,
  731. unsigned int type)
  732. {
  733. const struct siena_nvram_type_info *info;
  734. size_t size, erase_size;
  735. bool protected;
  736. int rc;
  737. if (type >= ARRAY_SIZE(siena_nvram_types) ||
  738. siena_nvram_types[type].name == NULL)
  739. return -ENODEV;
  740. info = &siena_nvram_types[type];
  741. if (info->port != efx_port_num(efx))
  742. return -ENODEV;
  743. rc = efx_siena_mcdi_nvram_info(efx, type, &size, &erase_size,
  744. &protected);
  745. if (rc)
  746. return rc;
  747. if (protected)
  748. return -ENODEV; /* hide it */
  749. part->nvram_type = type;
  750. part->common.dev_type_name = "Siena NVRAM manager";
  751. part->common.type_name = info->name;
  752. part->common.mtd.type = MTD_NORFLASH;
  753. part->common.mtd.flags = MTD_CAP_NORFLASH;
  754. part->common.mtd.size = size;
  755. part->common.mtd.erasesize = erase_size;
  756. return 0;
  757. }
  758. static int siena_mtd_get_fw_subtypes(struct efx_nic *efx,
  759. struct efx_mcdi_mtd_partition *parts,
  760. size_t n_parts)
  761. {
  762. uint16_t fw_subtype_list[
  763. MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MAXNUM];
  764. size_t i;
  765. int rc;
  766. rc = efx_siena_mcdi_get_board_cfg(efx, NULL, fw_subtype_list, NULL);
  767. if (rc)
  768. return rc;
  769. for (i = 0; i < n_parts; i++)
  770. parts[i].fw_subtype = fw_subtype_list[parts[i].nvram_type];
  771. return 0;
  772. }
  773. static int siena_mtd_probe(struct efx_nic *efx)
  774. {
  775. struct efx_mcdi_mtd_partition *parts;
  776. u32 nvram_types;
  777. unsigned int type;
  778. size_t n_parts;
  779. int rc;
  780. ASSERT_RTNL();
  781. rc = efx_siena_mcdi_nvram_types(efx, &nvram_types);
  782. if (rc)
  783. return rc;
  784. parts = kcalloc(hweight32(nvram_types), sizeof(*parts), GFP_KERNEL);
  785. if (!parts)
  786. return -ENOMEM;
  787. type = 0;
  788. n_parts = 0;
  789. while (nvram_types != 0) {
  790. if (nvram_types & 1) {
  791. rc = siena_mtd_probe_partition(efx, &parts[n_parts],
  792. type);
  793. if (rc == 0)
  794. n_parts++;
  795. else if (rc != -ENODEV)
  796. goto fail;
  797. }
  798. type++;
  799. nvram_types >>= 1;
  800. }
  801. rc = siena_mtd_get_fw_subtypes(efx, parts, n_parts);
  802. if (rc)
  803. goto fail;
  804. rc = efx_siena_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
  805. fail:
  806. if (rc)
  807. kfree(parts);
  808. return rc;
  809. }
  810. #endif /* CONFIG_SFC_SIENA_MTD */
  811. static unsigned int siena_check_caps(const struct efx_nic *efx,
  812. u8 flag, u32 offset)
  813. {
  814. /* Siena did not support MC_CMD_GET_CAPABILITIES */
  815. return 0;
  816. }
  817. static unsigned int efx_siena_recycle_ring_size(const struct efx_nic *efx)
  818. {
  819. /* Maximum link speed is 10G */
  820. return EFX_RECYCLE_RING_SIZE_10G;
  821. }
  822. /**************************************************************************
  823. *
  824. * Revision-dependent attributes used by efx.c and nic.c
  825. *
  826. **************************************************************************
  827. */
  828. const struct efx_nic_type siena_a0_nic_type = {
  829. .is_vf = false,
  830. .mem_bar = siena_mem_bar,
  831. .mem_map_size = siena_mem_map_size,
  832. .probe = siena_probe_nic,
  833. .remove = siena_remove_nic,
  834. .init = siena_init_nic,
  835. .dimension_resources = siena_dimension_resources,
  836. .fini = efx_siena_port_dummy_op_void,
  837. #ifdef CONFIG_EEH
  838. .monitor = siena_monitor,
  839. #else
  840. .monitor = NULL,
  841. #endif
  842. .map_reset_reason = efx_siena_mcdi_map_reset_reason,
  843. .map_reset_flags = siena_map_reset_flags,
  844. .reset = efx_siena_mcdi_reset,
  845. .probe_port = efx_siena_mcdi_port_probe,
  846. .remove_port = efx_siena_mcdi_port_remove,
  847. .fini_dmaq = efx_farch_fini_dmaq,
  848. .prepare_flush = efx_siena_prepare_flush,
  849. .finish_flush = siena_finish_flush,
  850. .prepare_flr = efx_siena_port_dummy_op_void,
  851. .finish_flr = efx_farch_finish_flr,
  852. .describe_stats = siena_describe_nic_stats,
  853. .update_stats = siena_update_nic_stats,
  854. .start_stats = efx_siena_mcdi_mac_start_stats,
  855. .pull_stats = efx_siena_mcdi_mac_pull_stats,
  856. .stop_stats = efx_siena_mcdi_mac_stop_stats,
  857. .push_irq_moderation = siena_push_irq_moderation,
  858. .reconfigure_mac = siena_mac_reconfigure,
  859. .check_mac_fault = efx_siena_mcdi_mac_check_fault,
  860. .reconfigure_port = efx_siena_mcdi_port_reconfigure,
  861. .get_wol = siena_get_wol,
  862. .set_wol = siena_set_wol,
  863. .resume_wol = siena_init_wol,
  864. .test_chip = siena_test_chip,
  865. .test_nvram = efx_siena_mcdi_nvram_test_all,
  866. .mcdi_request = siena_mcdi_request,
  867. .mcdi_poll_response = siena_mcdi_poll_response,
  868. .mcdi_read_response = siena_mcdi_read_response,
  869. .mcdi_poll_reboot = siena_mcdi_poll_reboot,
  870. .irq_enable_master = efx_farch_irq_enable_master,
  871. .irq_test_generate = efx_farch_irq_test_generate,
  872. .irq_disable_non_ev = efx_farch_irq_disable_master,
  873. .irq_handle_msi = efx_farch_msi_interrupt,
  874. .irq_handle_legacy = efx_farch_legacy_interrupt,
  875. .tx_probe = efx_farch_tx_probe,
  876. .tx_init = efx_farch_tx_init,
  877. .tx_remove = efx_farch_tx_remove,
  878. .tx_write = efx_farch_tx_write,
  879. .tx_limit_len = efx_farch_tx_limit_len,
  880. .tx_enqueue = __efx_siena_enqueue_skb,
  881. .rx_push_rss_config = siena_rx_push_rss_config,
  882. .rx_pull_rss_config = siena_rx_pull_rss_config,
  883. .rx_probe = efx_farch_rx_probe,
  884. .rx_init = efx_farch_rx_init,
  885. .rx_remove = efx_farch_rx_remove,
  886. .rx_write = efx_farch_rx_write,
  887. .rx_defer_refill = efx_farch_rx_defer_refill,
  888. .rx_packet = __efx_siena_rx_packet,
  889. .ev_probe = efx_farch_ev_probe,
  890. .ev_init = efx_farch_ev_init,
  891. .ev_fini = efx_farch_ev_fini,
  892. .ev_remove = efx_farch_ev_remove,
  893. .ev_process = efx_farch_ev_process,
  894. .ev_read_ack = efx_farch_ev_read_ack,
  895. .ev_test_generate = efx_farch_ev_test_generate,
  896. .filter_table_probe = efx_farch_filter_table_probe,
  897. .filter_table_restore = efx_farch_filter_table_restore,
  898. .filter_table_remove = efx_farch_filter_table_remove,
  899. .filter_update_rx_scatter = efx_farch_filter_update_rx_scatter,
  900. .filter_insert = efx_farch_filter_insert,
  901. .filter_remove_safe = efx_farch_filter_remove_safe,
  902. .filter_get_safe = efx_farch_filter_get_safe,
  903. .filter_clear_rx = efx_farch_filter_clear_rx,
  904. .filter_count_rx_used = efx_farch_filter_count_rx_used,
  905. .filter_get_rx_id_limit = efx_farch_filter_get_rx_id_limit,
  906. .filter_get_rx_ids = efx_farch_filter_get_rx_ids,
  907. #ifdef CONFIG_RFS_ACCEL
  908. .filter_rfs_expire_one = efx_farch_filter_rfs_expire_one,
  909. #endif
  910. #ifdef CONFIG_SFC_SIENA_MTD
  911. .mtd_probe = siena_mtd_probe,
  912. .mtd_rename = efx_siena_mcdi_mtd_rename,
  913. .mtd_read = efx_siena_mcdi_mtd_read,
  914. .mtd_erase = efx_siena_mcdi_mtd_erase,
  915. .mtd_write = efx_siena_mcdi_mtd_write,
  916. .mtd_sync = efx_siena_mcdi_mtd_sync,
  917. #endif
  918. .ptp_write_host_time = siena_ptp_write_host_time,
  919. .ptp_set_ts_config = siena_ptp_set_ts_config,
  920. #ifdef CONFIG_SFC_SIENA_SRIOV
  921. .sriov_configure = efx_siena_sriov_configure,
  922. .sriov_init = efx_siena_sriov_init,
  923. .sriov_fini = efx_siena_sriov_fini,
  924. .sriov_wanted = efx_siena_sriov_wanted,
  925. .sriov_reset = efx_siena_sriov_reset,
  926. .sriov_flr = efx_siena_sriov_flr,
  927. .sriov_set_vf_mac = efx_siena_sriov_set_vf_mac,
  928. .sriov_set_vf_vlan = efx_siena_sriov_set_vf_vlan,
  929. .sriov_set_vf_spoofchk = efx_siena_sriov_set_vf_spoofchk,
  930. .sriov_get_vf_config = efx_siena_sriov_get_vf_config,
  931. .vswitching_probe = efx_siena_port_dummy_op_int,
  932. .vswitching_restore = efx_siena_port_dummy_op_int,
  933. .vswitching_remove = efx_siena_port_dummy_op_void,
  934. .set_mac_address = efx_siena_sriov_mac_address_changed,
  935. #endif
  936. .revision = EFX_REV_SIENA_A0,
  937. .txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
  938. .rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
  939. .buf_tbl_base = FR_BZ_BUF_FULL_TBL,
  940. .evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
  941. .evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
  942. .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
  943. .rx_prefix_size = FS_BZ_RX_PREFIX_SIZE,
  944. .rx_hash_offset = FS_BZ_RX_PREFIX_HASH_OFST,
  945. .rx_buffer_padding = 0,
  946. .can_rx_scatter = true,
  947. .option_descriptors = false,
  948. .min_interrupt_mode = EFX_INT_MODE_LEGACY,
  949. .timer_period_max = 1 << FRF_CZ_TC_TIMER_VAL_WIDTH,
  950. .offload_features = (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
  951. NETIF_F_RXHASH | NETIF_F_NTUPLE),
  952. .mcdi_max_ver = 1,
  953. .max_rx_ip_filters = FR_BZ_RX_FILTER_TBL0_ROWS,
  954. .hwtstamp_filters = (1 << HWTSTAMP_FILTER_NONE |
  955. 1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT |
  956. 1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT),
  957. .rx_hash_key_size = 16,
  958. .check_caps = siena_check_caps,
  959. .sensor_event = efx_siena_mcdi_sensor_event,
  960. .rx_recycle_ring_size = efx_siena_recycle_ring_size,
  961. };