ravb_main.c 80 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098
  1. // SPDX-License-Identifier: GPL-2.0
  2. /* Renesas Ethernet AVB device driver
  3. *
  4. * Copyright (C) 2014-2019 Renesas Electronics Corporation
  5. * Copyright (C) 2015 Renesas Solutions Corp.
  6. * Copyright (C) 2015-2016 Cogent Embedded, Inc. <[email protected]>
  7. *
  8. * Based on the SuperH Ethernet driver
  9. */
  10. #include <linux/cache.h>
  11. #include <linux/clk.h>
  12. #include <linux/delay.h>
  13. #include <linux/dma-mapping.h>
  14. #include <linux/err.h>
  15. #include <linux/etherdevice.h>
  16. #include <linux/ethtool.h>
  17. #include <linux/if_vlan.h>
  18. #include <linux/kernel.h>
  19. #include <linux/list.h>
  20. #include <linux/module.h>
  21. #include <linux/net_tstamp.h>
  22. #include <linux/of.h>
  23. #include <linux/of_device.h>
  24. #include <linux/of_irq.h>
  25. #include <linux/of_mdio.h>
  26. #include <linux/of_net.h>
  27. #include <linux/pm_runtime.h>
  28. #include <linux/slab.h>
  29. #include <linux/spinlock.h>
  30. #include <linux/sys_soc.h>
  31. #include <linux/reset.h>
  32. #include <linux/math64.h>
  33. #include "ravb.h"
  34. #define RAVB_DEF_MSG_ENABLE \
  35. (NETIF_MSG_LINK | \
  36. NETIF_MSG_TIMER | \
  37. NETIF_MSG_RX_ERR | \
  38. NETIF_MSG_TX_ERR)
  39. static const char *ravb_rx_irqs[NUM_RX_QUEUE] = {
  40. "ch0", /* RAVB_BE */
  41. "ch1", /* RAVB_NC */
  42. };
  43. static const char *ravb_tx_irqs[NUM_TX_QUEUE] = {
  44. "ch18", /* RAVB_BE */
  45. "ch19", /* RAVB_NC */
  46. };
  47. void ravb_modify(struct net_device *ndev, enum ravb_reg reg, u32 clear,
  48. u32 set)
  49. {
  50. ravb_write(ndev, (ravb_read(ndev, reg) & ~clear) | set, reg);
  51. }
  52. int ravb_wait(struct net_device *ndev, enum ravb_reg reg, u32 mask, u32 value)
  53. {
  54. int i;
  55. for (i = 0; i < 10000; i++) {
  56. if ((ravb_read(ndev, reg) & mask) == value)
  57. return 0;
  58. udelay(10);
  59. }
  60. return -ETIMEDOUT;
  61. }
  62. static int ravb_config(struct net_device *ndev)
  63. {
  64. int error;
  65. /* Set config mode */
  66. ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
  67. /* Check if the operating mode is changed to the config mode */
  68. error = ravb_wait(ndev, CSR, CSR_OPS, CSR_OPS_CONFIG);
  69. if (error)
  70. netdev_err(ndev, "failed to switch device to config mode\n");
  71. return error;
  72. }
  73. static void ravb_set_rate_gbeth(struct net_device *ndev)
  74. {
  75. struct ravb_private *priv = netdev_priv(ndev);
  76. switch (priv->speed) {
  77. case 10: /* 10BASE */
  78. ravb_write(ndev, GBETH_GECMR_SPEED_10, GECMR);
  79. break;
  80. case 100: /* 100BASE */
  81. ravb_write(ndev, GBETH_GECMR_SPEED_100, GECMR);
  82. break;
  83. case 1000: /* 1000BASE */
  84. ravb_write(ndev, GBETH_GECMR_SPEED_1000, GECMR);
  85. break;
  86. }
  87. }
  88. static void ravb_set_rate_rcar(struct net_device *ndev)
  89. {
  90. struct ravb_private *priv = netdev_priv(ndev);
  91. switch (priv->speed) {
  92. case 100: /* 100BASE */
  93. ravb_write(ndev, GECMR_SPEED_100, GECMR);
  94. break;
  95. case 1000: /* 1000BASE */
  96. ravb_write(ndev, GECMR_SPEED_1000, GECMR);
  97. break;
  98. }
  99. }
  100. static void ravb_set_buffer_align(struct sk_buff *skb)
  101. {
  102. u32 reserve = (unsigned long)skb->data & (RAVB_ALIGN - 1);
  103. if (reserve)
  104. skb_reserve(skb, RAVB_ALIGN - reserve);
  105. }
  106. /* Get MAC address from the MAC address registers
  107. *
  108. * Ethernet AVB device doesn't have ROM for MAC address.
  109. * This function gets the MAC address that was used by a bootloader.
  110. */
  111. static void ravb_read_mac_address(struct device_node *np,
  112. struct net_device *ndev)
  113. {
  114. int ret;
  115. ret = of_get_ethdev_address(np, ndev);
  116. if (ret) {
  117. u32 mahr = ravb_read(ndev, MAHR);
  118. u32 malr = ravb_read(ndev, MALR);
  119. u8 addr[ETH_ALEN];
  120. addr[0] = (mahr >> 24) & 0xFF;
  121. addr[1] = (mahr >> 16) & 0xFF;
  122. addr[2] = (mahr >> 8) & 0xFF;
  123. addr[3] = (mahr >> 0) & 0xFF;
  124. addr[4] = (malr >> 8) & 0xFF;
  125. addr[5] = (malr >> 0) & 0xFF;
  126. eth_hw_addr_set(ndev, addr);
  127. }
  128. }
  129. static void ravb_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
  130. {
  131. struct ravb_private *priv = container_of(ctrl, struct ravb_private,
  132. mdiobb);
  133. ravb_modify(priv->ndev, PIR, mask, set ? mask : 0);
  134. }
  135. /* MDC pin control */
  136. static void ravb_set_mdc(struct mdiobb_ctrl *ctrl, int level)
  137. {
  138. ravb_mdio_ctrl(ctrl, PIR_MDC, level);
  139. }
  140. /* Data I/O pin control */
  141. static void ravb_set_mdio_dir(struct mdiobb_ctrl *ctrl, int output)
  142. {
  143. ravb_mdio_ctrl(ctrl, PIR_MMD, output);
  144. }
  145. /* Set data bit */
  146. static void ravb_set_mdio_data(struct mdiobb_ctrl *ctrl, int value)
  147. {
  148. ravb_mdio_ctrl(ctrl, PIR_MDO, value);
  149. }
  150. /* Get data bit */
  151. static int ravb_get_mdio_data(struct mdiobb_ctrl *ctrl)
  152. {
  153. struct ravb_private *priv = container_of(ctrl, struct ravb_private,
  154. mdiobb);
  155. return (ravb_read(priv->ndev, PIR) & PIR_MDI) != 0;
  156. }
  157. /* MDIO bus control struct */
  158. static const struct mdiobb_ops bb_ops = {
  159. .owner = THIS_MODULE,
  160. .set_mdc = ravb_set_mdc,
  161. .set_mdio_dir = ravb_set_mdio_dir,
  162. .set_mdio_data = ravb_set_mdio_data,
  163. .get_mdio_data = ravb_get_mdio_data,
  164. };
  165. /* Free TX skb function for AVB-IP */
  166. static int ravb_tx_free(struct net_device *ndev, int q, bool free_txed_only)
  167. {
  168. struct ravb_private *priv = netdev_priv(ndev);
  169. struct net_device_stats *stats = &priv->stats[q];
  170. unsigned int num_tx_desc = priv->num_tx_desc;
  171. struct ravb_tx_desc *desc;
  172. unsigned int entry;
  173. int free_num = 0;
  174. u32 size;
  175. for (; priv->cur_tx[q] - priv->dirty_tx[q] > 0; priv->dirty_tx[q]++) {
  176. bool txed;
  177. entry = priv->dirty_tx[q] % (priv->num_tx_ring[q] *
  178. num_tx_desc);
  179. desc = &priv->tx_ring[q][entry];
  180. txed = desc->die_dt == DT_FEMPTY;
  181. if (free_txed_only && !txed)
  182. break;
  183. /* Descriptor type must be checked before all other reads */
  184. dma_rmb();
  185. size = le16_to_cpu(desc->ds_tagl) & TX_DS;
  186. /* Free the original skb. */
  187. if (priv->tx_skb[q][entry / num_tx_desc]) {
  188. dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
  189. size, DMA_TO_DEVICE);
  190. /* Last packet descriptor? */
  191. if (entry % num_tx_desc == num_tx_desc - 1) {
  192. entry /= num_tx_desc;
  193. dev_kfree_skb_any(priv->tx_skb[q][entry]);
  194. priv->tx_skb[q][entry] = NULL;
  195. if (txed)
  196. stats->tx_packets++;
  197. }
  198. free_num++;
  199. }
  200. if (txed)
  201. stats->tx_bytes += size;
  202. desc->die_dt = DT_EEMPTY;
  203. }
  204. return free_num;
  205. }
  206. static void ravb_rx_ring_free_gbeth(struct net_device *ndev, int q)
  207. {
  208. struct ravb_private *priv = netdev_priv(ndev);
  209. unsigned int ring_size;
  210. unsigned int i;
  211. if (!priv->gbeth_rx_ring)
  212. return;
  213. for (i = 0; i < priv->num_rx_ring[q]; i++) {
  214. struct ravb_rx_desc *desc = &priv->gbeth_rx_ring[i];
  215. if (!dma_mapping_error(ndev->dev.parent,
  216. le32_to_cpu(desc->dptr)))
  217. dma_unmap_single(ndev->dev.parent,
  218. le32_to_cpu(desc->dptr),
  219. GBETH_RX_BUFF_MAX,
  220. DMA_FROM_DEVICE);
  221. }
  222. ring_size = sizeof(struct ravb_rx_desc) * (priv->num_rx_ring[q] + 1);
  223. dma_free_coherent(ndev->dev.parent, ring_size, priv->gbeth_rx_ring,
  224. priv->rx_desc_dma[q]);
  225. priv->gbeth_rx_ring = NULL;
  226. }
  227. static void ravb_rx_ring_free_rcar(struct net_device *ndev, int q)
  228. {
  229. struct ravb_private *priv = netdev_priv(ndev);
  230. unsigned int ring_size;
  231. unsigned int i;
  232. if (!priv->rx_ring[q])
  233. return;
  234. for (i = 0; i < priv->num_rx_ring[q]; i++) {
  235. struct ravb_ex_rx_desc *desc = &priv->rx_ring[q][i];
  236. if (!dma_mapping_error(ndev->dev.parent,
  237. le32_to_cpu(desc->dptr)))
  238. dma_unmap_single(ndev->dev.parent,
  239. le32_to_cpu(desc->dptr),
  240. RX_BUF_SZ,
  241. DMA_FROM_DEVICE);
  242. }
  243. ring_size = sizeof(struct ravb_ex_rx_desc) *
  244. (priv->num_rx_ring[q] + 1);
  245. dma_free_coherent(ndev->dev.parent, ring_size, priv->rx_ring[q],
  246. priv->rx_desc_dma[q]);
  247. priv->rx_ring[q] = NULL;
  248. }
  249. /* Free skb's and DMA buffers for Ethernet AVB */
  250. static void ravb_ring_free(struct net_device *ndev, int q)
  251. {
  252. struct ravb_private *priv = netdev_priv(ndev);
  253. const struct ravb_hw_info *info = priv->info;
  254. unsigned int num_tx_desc = priv->num_tx_desc;
  255. unsigned int ring_size;
  256. unsigned int i;
  257. info->rx_ring_free(ndev, q);
  258. if (priv->tx_ring[q]) {
  259. ravb_tx_free(ndev, q, false);
  260. ring_size = sizeof(struct ravb_tx_desc) *
  261. (priv->num_tx_ring[q] * num_tx_desc + 1);
  262. dma_free_coherent(ndev->dev.parent, ring_size, priv->tx_ring[q],
  263. priv->tx_desc_dma[q]);
  264. priv->tx_ring[q] = NULL;
  265. }
  266. /* Free RX skb ringbuffer */
  267. if (priv->rx_skb[q]) {
  268. for (i = 0; i < priv->num_rx_ring[q]; i++)
  269. dev_kfree_skb(priv->rx_skb[q][i]);
  270. }
  271. kfree(priv->rx_skb[q]);
  272. priv->rx_skb[q] = NULL;
  273. /* Free aligned TX buffers */
  274. kfree(priv->tx_align[q]);
  275. priv->tx_align[q] = NULL;
  276. /* Free TX skb ringbuffer.
  277. * SKBs are freed by ravb_tx_free() call above.
  278. */
  279. kfree(priv->tx_skb[q]);
  280. priv->tx_skb[q] = NULL;
  281. }
  282. static void ravb_rx_ring_format_gbeth(struct net_device *ndev, int q)
  283. {
  284. struct ravb_private *priv = netdev_priv(ndev);
  285. struct ravb_rx_desc *rx_desc;
  286. unsigned int rx_ring_size;
  287. dma_addr_t dma_addr;
  288. unsigned int i;
  289. rx_ring_size = sizeof(*rx_desc) * priv->num_rx_ring[q];
  290. memset(priv->gbeth_rx_ring, 0, rx_ring_size);
  291. /* Build RX ring buffer */
  292. for (i = 0; i < priv->num_rx_ring[q]; i++) {
  293. /* RX descriptor */
  294. rx_desc = &priv->gbeth_rx_ring[i];
  295. rx_desc->ds_cc = cpu_to_le16(GBETH_RX_DESC_DATA_SIZE);
  296. dma_addr = dma_map_single(ndev->dev.parent, priv->rx_skb[q][i]->data,
  297. GBETH_RX_BUFF_MAX,
  298. DMA_FROM_DEVICE);
  299. /* We just set the data size to 0 for a failed mapping which
  300. * should prevent DMA from happening...
  301. */
  302. if (dma_mapping_error(ndev->dev.parent, dma_addr))
  303. rx_desc->ds_cc = cpu_to_le16(0);
  304. rx_desc->dptr = cpu_to_le32(dma_addr);
  305. rx_desc->die_dt = DT_FEMPTY;
  306. }
  307. rx_desc = &priv->gbeth_rx_ring[i];
  308. rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
  309. rx_desc->die_dt = DT_LINKFIX; /* type */
  310. }
  311. static void ravb_rx_ring_format_rcar(struct net_device *ndev, int q)
  312. {
  313. struct ravb_private *priv = netdev_priv(ndev);
  314. struct ravb_ex_rx_desc *rx_desc;
  315. unsigned int rx_ring_size = sizeof(*rx_desc) * priv->num_rx_ring[q];
  316. dma_addr_t dma_addr;
  317. unsigned int i;
  318. memset(priv->rx_ring[q], 0, rx_ring_size);
  319. /* Build RX ring buffer */
  320. for (i = 0; i < priv->num_rx_ring[q]; i++) {
  321. /* RX descriptor */
  322. rx_desc = &priv->rx_ring[q][i];
  323. rx_desc->ds_cc = cpu_to_le16(RX_BUF_SZ);
  324. dma_addr = dma_map_single(ndev->dev.parent, priv->rx_skb[q][i]->data,
  325. RX_BUF_SZ,
  326. DMA_FROM_DEVICE);
  327. /* We just set the data size to 0 for a failed mapping which
  328. * should prevent DMA from happening...
  329. */
  330. if (dma_mapping_error(ndev->dev.parent, dma_addr))
  331. rx_desc->ds_cc = cpu_to_le16(0);
  332. rx_desc->dptr = cpu_to_le32(dma_addr);
  333. rx_desc->die_dt = DT_FEMPTY;
  334. }
  335. rx_desc = &priv->rx_ring[q][i];
  336. rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
  337. rx_desc->die_dt = DT_LINKFIX; /* type */
  338. }
  339. /* Format skb and descriptor buffer for Ethernet AVB */
  340. static void ravb_ring_format(struct net_device *ndev, int q)
  341. {
  342. struct ravb_private *priv = netdev_priv(ndev);
  343. const struct ravb_hw_info *info = priv->info;
  344. unsigned int num_tx_desc = priv->num_tx_desc;
  345. struct ravb_tx_desc *tx_desc;
  346. struct ravb_desc *desc;
  347. unsigned int tx_ring_size = sizeof(*tx_desc) * priv->num_tx_ring[q] *
  348. num_tx_desc;
  349. unsigned int i;
  350. priv->cur_rx[q] = 0;
  351. priv->cur_tx[q] = 0;
  352. priv->dirty_rx[q] = 0;
  353. priv->dirty_tx[q] = 0;
  354. info->rx_ring_format(ndev, q);
  355. memset(priv->tx_ring[q], 0, tx_ring_size);
  356. /* Build TX ring buffer */
  357. for (i = 0, tx_desc = priv->tx_ring[q]; i < priv->num_tx_ring[q];
  358. i++, tx_desc++) {
  359. tx_desc->die_dt = DT_EEMPTY;
  360. if (num_tx_desc > 1) {
  361. tx_desc++;
  362. tx_desc->die_dt = DT_EEMPTY;
  363. }
  364. }
  365. tx_desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
  366. tx_desc->die_dt = DT_LINKFIX; /* type */
  367. /* RX descriptor base address for best effort */
  368. desc = &priv->desc_bat[RX_QUEUE_OFFSET + q];
  369. desc->die_dt = DT_LINKFIX; /* type */
  370. desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
  371. /* TX descriptor base address for best effort */
  372. desc = &priv->desc_bat[q];
  373. desc->die_dt = DT_LINKFIX; /* type */
  374. desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
  375. }
  376. static void *ravb_alloc_rx_desc_gbeth(struct net_device *ndev, int q)
  377. {
  378. struct ravb_private *priv = netdev_priv(ndev);
  379. unsigned int ring_size;
  380. ring_size = sizeof(struct ravb_rx_desc) * (priv->num_rx_ring[q] + 1);
  381. priv->gbeth_rx_ring = dma_alloc_coherent(ndev->dev.parent, ring_size,
  382. &priv->rx_desc_dma[q],
  383. GFP_KERNEL);
  384. return priv->gbeth_rx_ring;
  385. }
  386. static void *ravb_alloc_rx_desc_rcar(struct net_device *ndev, int q)
  387. {
  388. struct ravb_private *priv = netdev_priv(ndev);
  389. unsigned int ring_size;
  390. ring_size = sizeof(struct ravb_ex_rx_desc) * (priv->num_rx_ring[q] + 1);
  391. priv->rx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
  392. &priv->rx_desc_dma[q],
  393. GFP_KERNEL);
  394. return priv->rx_ring[q];
  395. }
  396. /* Init skb and descriptor buffer for Ethernet AVB */
  397. static int ravb_ring_init(struct net_device *ndev, int q)
  398. {
  399. struct ravb_private *priv = netdev_priv(ndev);
  400. const struct ravb_hw_info *info = priv->info;
  401. unsigned int num_tx_desc = priv->num_tx_desc;
  402. unsigned int ring_size;
  403. struct sk_buff *skb;
  404. unsigned int i;
  405. /* Allocate RX and TX skb rings */
  406. priv->rx_skb[q] = kcalloc(priv->num_rx_ring[q],
  407. sizeof(*priv->rx_skb[q]), GFP_KERNEL);
  408. priv->tx_skb[q] = kcalloc(priv->num_tx_ring[q],
  409. sizeof(*priv->tx_skb[q]), GFP_KERNEL);
  410. if (!priv->rx_skb[q] || !priv->tx_skb[q])
  411. goto error;
  412. for (i = 0; i < priv->num_rx_ring[q]; i++) {
  413. skb = __netdev_alloc_skb(ndev, info->max_rx_len, GFP_KERNEL);
  414. if (!skb)
  415. goto error;
  416. ravb_set_buffer_align(skb);
  417. priv->rx_skb[q][i] = skb;
  418. }
  419. if (num_tx_desc > 1) {
  420. /* Allocate rings for the aligned buffers */
  421. priv->tx_align[q] = kmalloc(DPTR_ALIGN * priv->num_tx_ring[q] +
  422. DPTR_ALIGN - 1, GFP_KERNEL);
  423. if (!priv->tx_align[q])
  424. goto error;
  425. }
  426. /* Allocate all RX descriptors. */
  427. if (!info->alloc_rx_desc(ndev, q))
  428. goto error;
  429. priv->dirty_rx[q] = 0;
  430. /* Allocate all TX descriptors. */
  431. ring_size = sizeof(struct ravb_tx_desc) *
  432. (priv->num_tx_ring[q] * num_tx_desc + 1);
  433. priv->tx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
  434. &priv->tx_desc_dma[q],
  435. GFP_KERNEL);
  436. if (!priv->tx_ring[q])
  437. goto error;
  438. return 0;
  439. error:
  440. ravb_ring_free(ndev, q);
  441. return -ENOMEM;
  442. }
  443. static void ravb_emac_init_gbeth(struct net_device *ndev)
  444. {
  445. struct ravb_private *priv = netdev_priv(ndev);
  446. if (priv->phy_interface == PHY_INTERFACE_MODE_MII) {
  447. ravb_write(ndev, (1000 << 16) | CXR35_SEL_XMII_MII, CXR35);
  448. ravb_modify(ndev, CXR31, CXR31_SEL_LINK0 | CXR31_SEL_LINK1, 0);
  449. } else {
  450. ravb_write(ndev, (1000 << 16) | CXR35_SEL_XMII_RGMII, CXR35);
  451. ravb_modify(ndev, CXR31, CXR31_SEL_LINK0 | CXR31_SEL_LINK1,
  452. CXR31_SEL_LINK0);
  453. }
  454. /* Receive frame limit set register */
  455. ravb_write(ndev, GBETH_RX_BUFF_MAX + ETH_FCS_LEN, RFLR);
  456. /* EMAC Mode: PAUSE prohibition; Duplex; TX; RX; CRC Pass Through */
  457. ravb_write(ndev, ECMR_ZPF | ((priv->duplex > 0) ? ECMR_DM : 0) |
  458. ECMR_TE | ECMR_RE | ECMR_RCPT |
  459. ECMR_TXF | ECMR_RXF, ECMR);
  460. ravb_set_rate_gbeth(ndev);
  461. /* Set MAC address */
  462. ravb_write(ndev,
  463. (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
  464. (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
  465. ravb_write(ndev, (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
  466. /* E-MAC status register clear */
  467. ravb_write(ndev, ECSR_ICD | ECSR_LCHNG | ECSR_PFRI, ECSR);
  468. ravb_write(ndev, CSR0_TPE | CSR0_RPE, CSR0);
  469. /* E-MAC interrupt enable register */
  470. ravb_write(ndev, ECSIPR_ICDIP, ECSIPR);
  471. }
  472. static void ravb_emac_init_rcar(struct net_device *ndev)
  473. {
  474. /* Receive frame limit set register */
  475. ravb_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN, RFLR);
  476. /* EMAC Mode: PAUSE prohibition; Duplex; RX Checksum; TX; RX */
  477. ravb_write(ndev, ECMR_ZPF | ECMR_DM |
  478. (ndev->features & NETIF_F_RXCSUM ? ECMR_RCSC : 0) |
  479. ECMR_TE | ECMR_RE, ECMR);
  480. ravb_set_rate_rcar(ndev);
  481. /* Set MAC address */
  482. ravb_write(ndev,
  483. (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
  484. (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
  485. ravb_write(ndev,
  486. (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
  487. /* E-MAC status register clear */
  488. ravb_write(ndev, ECSR_ICD | ECSR_MPD, ECSR);
  489. /* E-MAC interrupt enable register */
  490. ravb_write(ndev, ECSIPR_ICDIP | ECSIPR_MPDIP | ECSIPR_LCHNGIP, ECSIPR);
  491. }
  492. /* E-MAC init function */
  493. static void ravb_emac_init(struct net_device *ndev)
  494. {
  495. struct ravb_private *priv = netdev_priv(ndev);
  496. const struct ravb_hw_info *info = priv->info;
  497. info->emac_init(ndev);
  498. }
  499. static int ravb_dmac_init_gbeth(struct net_device *ndev)
  500. {
  501. int error;
  502. error = ravb_ring_init(ndev, RAVB_BE);
  503. if (error)
  504. return error;
  505. /* Descriptor format */
  506. ravb_ring_format(ndev, RAVB_BE);
  507. /* Set DMAC RX */
  508. ravb_write(ndev, 0x60000000, RCR);
  509. /* Set Max Frame Length (RTC) */
  510. ravb_write(ndev, 0x7ffc0000 | GBETH_RX_BUFF_MAX, RTC);
  511. /* Set FIFO size */
  512. ravb_write(ndev, 0x00222200, TGC);
  513. ravb_write(ndev, 0, TCCR);
  514. /* Frame receive */
  515. ravb_write(ndev, RIC0_FRE0, RIC0);
  516. /* Disable FIFO full warning */
  517. ravb_write(ndev, 0x0, RIC1);
  518. /* Receive FIFO full error, descriptor empty */
  519. ravb_write(ndev, RIC2_QFE0 | RIC2_RFFE, RIC2);
  520. ravb_write(ndev, TIC_FTE0, TIC);
  521. return 0;
  522. }
  523. static int ravb_dmac_init_rcar(struct net_device *ndev)
  524. {
  525. struct ravb_private *priv = netdev_priv(ndev);
  526. const struct ravb_hw_info *info = priv->info;
  527. int error;
  528. error = ravb_ring_init(ndev, RAVB_BE);
  529. if (error)
  530. return error;
  531. error = ravb_ring_init(ndev, RAVB_NC);
  532. if (error) {
  533. ravb_ring_free(ndev, RAVB_BE);
  534. return error;
  535. }
  536. /* Descriptor format */
  537. ravb_ring_format(ndev, RAVB_BE);
  538. ravb_ring_format(ndev, RAVB_NC);
  539. /* Set AVB RX */
  540. ravb_write(ndev,
  541. RCR_EFFS | RCR_ENCF | RCR_ETS0 | RCR_ESF | 0x18000000, RCR);
  542. /* Set FIFO size */
  543. ravb_write(ndev, TGC_TQP_AVBMODE1 | 0x00112200, TGC);
  544. /* Timestamp enable */
  545. ravb_write(ndev, TCCR_TFEN, TCCR);
  546. /* Interrupt init: */
  547. if (info->multi_irqs) {
  548. /* Clear DIL.DPLx */
  549. ravb_write(ndev, 0, DIL);
  550. /* Set queue specific interrupt */
  551. ravb_write(ndev, CIE_CRIE | CIE_CTIE | CIE_CL0M, CIE);
  552. }
  553. /* Frame receive */
  554. ravb_write(ndev, RIC0_FRE0 | RIC0_FRE1, RIC0);
  555. /* Disable FIFO full warning */
  556. ravb_write(ndev, 0, RIC1);
  557. /* Receive FIFO full error, descriptor empty */
  558. ravb_write(ndev, RIC2_QFE0 | RIC2_QFE1 | RIC2_RFFE, RIC2);
  559. /* Frame transmitted, timestamp FIFO updated */
  560. ravb_write(ndev, TIC_FTE0 | TIC_FTE1 | TIC_TFUE, TIC);
  561. return 0;
  562. }
  563. /* Device init function for Ethernet AVB */
  564. static int ravb_dmac_init(struct net_device *ndev)
  565. {
  566. struct ravb_private *priv = netdev_priv(ndev);
  567. const struct ravb_hw_info *info = priv->info;
  568. int error;
  569. /* Set CONFIG mode */
  570. error = ravb_config(ndev);
  571. if (error)
  572. return error;
  573. error = info->dmac_init(ndev);
  574. if (error)
  575. return error;
  576. /* Setting the control will start the AVB-DMAC process. */
  577. ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_OPERATION);
  578. return 0;
  579. }
  580. static void ravb_get_tx_tstamp(struct net_device *ndev)
  581. {
  582. struct ravb_private *priv = netdev_priv(ndev);
  583. struct ravb_tstamp_skb *ts_skb, *ts_skb2;
  584. struct skb_shared_hwtstamps shhwtstamps;
  585. struct sk_buff *skb;
  586. struct timespec64 ts;
  587. u16 tag, tfa_tag;
  588. int count;
  589. u32 tfa2;
  590. count = (ravb_read(ndev, TSR) & TSR_TFFL) >> 8;
  591. while (count--) {
  592. tfa2 = ravb_read(ndev, TFA2);
  593. tfa_tag = (tfa2 & TFA2_TST) >> 16;
  594. ts.tv_nsec = (u64)ravb_read(ndev, TFA0);
  595. ts.tv_sec = ((u64)(tfa2 & TFA2_TSV) << 32) |
  596. ravb_read(ndev, TFA1);
  597. memset(&shhwtstamps, 0, sizeof(shhwtstamps));
  598. shhwtstamps.hwtstamp = timespec64_to_ktime(ts);
  599. list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list,
  600. list) {
  601. skb = ts_skb->skb;
  602. tag = ts_skb->tag;
  603. list_del(&ts_skb->list);
  604. kfree(ts_skb);
  605. if (tag == tfa_tag) {
  606. skb_tstamp_tx(skb, &shhwtstamps);
  607. dev_consume_skb_any(skb);
  608. break;
  609. } else {
  610. dev_kfree_skb_any(skb);
  611. }
  612. }
  613. ravb_modify(ndev, TCCR, TCCR_TFR, TCCR_TFR);
  614. }
  615. }
  616. static void ravb_rx_csum(struct sk_buff *skb)
  617. {
  618. u8 *hw_csum;
  619. /* The hardware checksum is contained in sizeof(__sum16) (2) bytes
  620. * appended to packet data
  621. */
  622. if (unlikely(skb->len < sizeof(__sum16)))
  623. return;
  624. hw_csum = skb_tail_pointer(skb) - sizeof(__sum16);
  625. skb->csum = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum));
  626. skb->ip_summed = CHECKSUM_COMPLETE;
  627. skb_trim(skb, skb->len - sizeof(__sum16));
  628. }
  629. static struct sk_buff *ravb_get_skb_gbeth(struct net_device *ndev, int entry,
  630. struct ravb_rx_desc *desc)
  631. {
  632. struct ravb_private *priv = netdev_priv(ndev);
  633. struct sk_buff *skb;
  634. skb = priv->rx_skb[RAVB_BE][entry];
  635. priv->rx_skb[RAVB_BE][entry] = NULL;
  636. dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
  637. ALIGN(GBETH_RX_BUFF_MAX, 16), DMA_FROM_DEVICE);
  638. return skb;
  639. }
  640. /* Packet receive function for Gigabit Ethernet */
  641. static bool ravb_rx_gbeth(struct net_device *ndev, int *quota, int q)
  642. {
  643. struct ravb_private *priv = netdev_priv(ndev);
  644. const struct ravb_hw_info *info = priv->info;
  645. struct net_device_stats *stats;
  646. struct ravb_rx_desc *desc;
  647. struct sk_buff *skb;
  648. dma_addr_t dma_addr;
  649. u8 desc_status;
  650. int boguscnt;
  651. u16 pkt_len;
  652. u8 die_dt;
  653. int entry;
  654. int limit;
  655. entry = priv->cur_rx[q] % priv->num_rx_ring[q];
  656. boguscnt = priv->dirty_rx[q] + priv->num_rx_ring[q] - priv->cur_rx[q];
  657. stats = &priv->stats[q];
  658. boguscnt = min(boguscnt, *quota);
  659. limit = boguscnt;
  660. desc = &priv->gbeth_rx_ring[entry];
  661. while (desc->die_dt != DT_FEMPTY) {
  662. /* Descriptor type must be checked before all other reads */
  663. dma_rmb();
  664. desc_status = desc->msc;
  665. pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS;
  666. if (--boguscnt < 0)
  667. break;
  668. /* We use 0-byte descriptors to mark the DMA mapping errors */
  669. if (!pkt_len)
  670. continue;
  671. if (desc_status & MSC_MC)
  672. stats->multicast++;
  673. if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF | MSC_CEEF)) {
  674. stats->rx_errors++;
  675. if (desc_status & MSC_CRC)
  676. stats->rx_crc_errors++;
  677. if (desc_status & MSC_RFE)
  678. stats->rx_frame_errors++;
  679. if (desc_status & (MSC_RTLF | MSC_RTSF))
  680. stats->rx_length_errors++;
  681. if (desc_status & MSC_CEEF)
  682. stats->rx_missed_errors++;
  683. } else {
  684. die_dt = desc->die_dt & 0xF0;
  685. switch (die_dt) {
  686. case DT_FSINGLE:
  687. skb = ravb_get_skb_gbeth(ndev, entry, desc);
  688. skb_put(skb, pkt_len);
  689. skb->protocol = eth_type_trans(skb, ndev);
  690. napi_gro_receive(&priv->napi[q], skb);
  691. stats->rx_packets++;
  692. stats->rx_bytes += pkt_len;
  693. break;
  694. case DT_FSTART:
  695. priv->rx_1st_skb = ravb_get_skb_gbeth(ndev, entry, desc);
  696. skb_put(priv->rx_1st_skb, pkt_len);
  697. break;
  698. case DT_FMID:
  699. skb = ravb_get_skb_gbeth(ndev, entry, desc);
  700. skb_copy_to_linear_data_offset(priv->rx_1st_skb,
  701. priv->rx_1st_skb->len,
  702. skb->data,
  703. pkt_len);
  704. skb_put(priv->rx_1st_skb, pkt_len);
  705. dev_kfree_skb(skb);
  706. break;
  707. case DT_FEND:
  708. skb = ravb_get_skb_gbeth(ndev, entry, desc);
  709. skb_copy_to_linear_data_offset(priv->rx_1st_skb,
  710. priv->rx_1st_skb->len,
  711. skb->data,
  712. pkt_len);
  713. skb_put(priv->rx_1st_skb, pkt_len);
  714. dev_kfree_skb(skb);
  715. priv->rx_1st_skb->protocol =
  716. eth_type_trans(priv->rx_1st_skb, ndev);
  717. napi_gro_receive(&priv->napi[q],
  718. priv->rx_1st_skb);
  719. stats->rx_packets++;
  720. stats->rx_bytes += pkt_len;
  721. break;
  722. }
  723. }
  724. entry = (++priv->cur_rx[q]) % priv->num_rx_ring[q];
  725. desc = &priv->gbeth_rx_ring[entry];
  726. }
  727. /* Refill the RX ring buffers. */
  728. for (; priv->cur_rx[q] - priv->dirty_rx[q] > 0; priv->dirty_rx[q]++) {
  729. entry = priv->dirty_rx[q] % priv->num_rx_ring[q];
  730. desc = &priv->gbeth_rx_ring[entry];
  731. desc->ds_cc = cpu_to_le16(GBETH_RX_DESC_DATA_SIZE);
  732. if (!priv->rx_skb[q][entry]) {
  733. skb = netdev_alloc_skb(ndev, info->max_rx_len);
  734. if (!skb)
  735. break;
  736. ravb_set_buffer_align(skb);
  737. dma_addr = dma_map_single(ndev->dev.parent,
  738. skb->data,
  739. GBETH_RX_BUFF_MAX,
  740. DMA_FROM_DEVICE);
  741. skb_checksum_none_assert(skb);
  742. /* We just set the data size to 0 for a failed mapping
  743. * which should prevent DMA from happening...
  744. */
  745. if (dma_mapping_error(ndev->dev.parent, dma_addr))
  746. desc->ds_cc = cpu_to_le16(0);
  747. desc->dptr = cpu_to_le32(dma_addr);
  748. priv->rx_skb[q][entry] = skb;
  749. }
  750. /* Descriptor type must be set after all the above writes */
  751. dma_wmb();
  752. desc->die_dt = DT_FEMPTY;
  753. }
  754. *quota -= limit - (++boguscnt);
  755. return boguscnt <= 0;
  756. }
  757. /* Packet receive function for Ethernet AVB */
  758. static bool ravb_rx_rcar(struct net_device *ndev, int *quota, int q)
  759. {
  760. struct ravb_private *priv = netdev_priv(ndev);
  761. const struct ravb_hw_info *info = priv->info;
  762. int entry = priv->cur_rx[q] % priv->num_rx_ring[q];
  763. int boguscnt = (priv->dirty_rx[q] + priv->num_rx_ring[q]) -
  764. priv->cur_rx[q];
  765. struct net_device_stats *stats = &priv->stats[q];
  766. struct ravb_ex_rx_desc *desc;
  767. struct sk_buff *skb;
  768. dma_addr_t dma_addr;
  769. struct timespec64 ts;
  770. u8 desc_status;
  771. u16 pkt_len;
  772. int limit;
  773. boguscnt = min(boguscnt, *quota);
  774. limit = boguscnt;
  775. desc = &priv->rx_ring[q][entry];
  776. while (desc->die_dt != DT_FEMPTY) {
  777. /* Descriptor type must be checked before all other reads */
  778. dma_rmb();
  779. desc_status = desc->msc;
  780. pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS;
  781. if (--boguscnt < 0)
  782. break;
  783. /* We use 0-byte descriptors to mark the DMA mapping errors */
  784. if (!pkt_len)
  785. continue;
  786. if (desc_status & MSC_MC)
  787. stats->multicast++;
  788. if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF |
  789. MSC_CEEF)) {
  790. stats->rx_errors++;
  791. if (desc_status & MSC_CRC)
  792. stats->rx_crc_errors++;
  793. if (desc_status & MSC_RFE)
  794. stats->rx_frame_errors++;
  795. if (desc_status & (MSC_RTLF | MSC_RTSF))
  796. stats->rx_length_errors++;
  797. if (desc_status & MSC_CEEF)
  798. stats->rx_missed_errors++;
  799. } else {
  800. u32 get_ts = priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE;
  801. skb = priv->rx_skb[q][entry];
  802. priv->rx_skb[q][entry] = NULL;
  803. dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
  804. RX_BUF_SZ,
  805. DMA_FROM_DEVICE);
  806. get_ts &= (q == RAVB_NC) ?
  807. RAVB_RXTSTAMP_TYPE_V2_L2_EVENT :
  808. ~RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
  809. if (get_ts) {
  810. struct skb_shared_hwtstamps *shhwtstamps;
  811. shhwtstamps = skb_hwtstamps(skb);
  812. memset(shhwtstamps, 0, sizeof(*shhwtstamps));
  813. ts.tv_sec = ((u64) le16_to_cpu(desc->ts_sh) <<
  814. 32) | le32_to_cpu(desc->ts_sl);
  815. ts.tv_nsec = le32_to_cpu(desc->ts_n);
  816. shhwtstamps->hwtstamp = timespec64_to_ktime(ts);
  817. }
  818. skb_put(skb, pkt_len);
  819. skb->protocol = eth_type_trans(skb, ndev);
  820. if (ndev->features & NETIF_F_RXCSUM)
  821. ravb_rx_csum(skb);
  822. napi_gro_receive(&priv->napi[q], skb);
  823. stats->rx_packets++;
  824. stats->rx_bytes += pkt_len;
  825. }
  826. entry = (++priv->cur_rx[q]) % priv->num_rx_ring[q];
  827. desc = &priv->rx_ring[q][entry];
  828. }
  829. /* Refill the RX ring buffers. */
  830. for (; priv->cur_rx[q] - priv->dirty_rx[q] > 0; priv->dirty_rx[q]++) {
  831. entry = priv->dirty_rx[q] % priv->num_rx_ring[q];
  832. desc = &priv->rx_ring[q][entry];
  833. desc->ds_cc = cpu_to_le16(RX_BUF_SZ);
  834. if (!priv->rx_skb[q][entry]) {
  835. skb = netdev_alloc_skb(ndev, info->max_rx_len);
  836. if (!skb)
  837. break; /* Better luck next round. */
  838. ravb_set_buffer_align(skb);
  839. dma_addr = dma_map_single(ndev->dev.parent, skb->data,
  840. le16_to_cpu(desc->ds_cc),
  841. DMA_FROM_DEVICE);
  842. skb_checksum_none_assert(skb);
  843. /* We just set the data size to 0 for a failed mapping
  844. * which should prevent DMA from happening...
  845. */
  846. if (dma_mapping_error(ndev->dev.parent, dma_addr))
  847. desc->ds_cc = cpu_to_le16(0);
  848. desc->dptr = cpu_to_le32(dma_addr);
  849. priv->rx_skb[q][entry] = skb;
  850. }
  851. /* Descriptor type must be set after all the above writes */
  852. dma_wmb();
  853. desc->die_dt = DT_FEMPTY;
  854. }
  855. *quota -= limit - (++boguscnt);
  856. return boguscnt <= 0;
  857. }
  858. /* Packet receive function for Ethernet AVB */
  859. static bool ravb_rx(struct net_device *ndev, int *quota, int q)
  860. {
  861. struct ravb_private *priv = netdev_priv(ndev);
  862. const struct ravb_hw_info *info = priv->info;
  863. return info->receive(ndev, quota, q);
  864. }
  865. static void ravb_rcv_snd_disable(struct net_device *ndev)
  866. {
  867. /* Disable TX and RX */
  868. ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
  869. }
  870. static void ravb_rcv_snd_enable(struct net_device *ndev)
  871. {
  872. /* Enable TX and RX */
  873. ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
  874. }
  875. /* function for waiting dma process finished */
  876. static int ravb_stop_dma(struct net_device *ndev)
  877. {
  878. struct ravb_private *priv = netdev_priv(ndev);
  879. const struct ravb_hw_info *info = priv->info;
  880. int error;
  881. /* Wait for stopping the hardware TX process */
  882. error = ravb_wait(ndev, TCCR, info->tccr_mask, 0);
  883. if (error)
  884. return error;
  885. error = ravb_wait(ndev, CSR, CSR_TPO0 | CSR_TPO1 | CSR_TPO2 | CSR_TPO3,
  886. 0);
  887. if (error)
  888. return error;
  889. /* Stop the E-MAC's RX/TX processes. */
  890. ravb_rcv_snd_disable(ndev);
  891. /* Wait for stopping the RX DMA process */
  892. error = ravb_wait(ndev, CSR, CSR_RPO, 0);
  893. if (error)
  894. return error;
  895. /* Stop AVB-DMAC process */
  896. return ravb_config(ndev);
  897. }
  898. /* E-MAC interrupt handler */
  899. static void ravb_emac_interrupt_unlocked(struct net_device *ndev)
  900. {
  901. struct ravb_private *priv = netdev_priv(ndev);
  902. u32 ecsr, psr;
  903. ecsr = ravb_read(ndev, ECSR);
  904. ravb_write(ndev, ecsr, ECSR); /* clear interrupt */
  905. if (ecsr & ECSR_MPD)
  906. pm_wakeup_event(&priv->pdev->dev, 0);
  907. if (ecsr & ECSR_ICD)
  908. ndev->stats.tx_carrier_errors++;
  909. if (ecsr & ECSR_LCHNG) {
  910. /* Link changed */
  911. if (priv->no_avb_link)
  912. return;
  913. psr = ravb_read(ndev, PSR);
  914. if (priv->avb_link_active_low)
  915. psr ^= PSR_LMON;
  916. if (!(psr & PSR_LMON)) {
  917. /* DIsable RX and TX */
  918. ravb_rcv_snd_disable(ndev);
  919. } else {
  920. /* Enable RX and TX */
  921. ravb_rcv_snd_enable(ndev);
  922. }
  923. }
  924. }
  925. static irqreturn_t ravb_emac_interrupt(int irq, void *dev_id)
  926. {
  927. struct net_device *ndev = dev_id;
  928. struct ravb_private *priv = netdev_priv(ndev);
  929. spin_lock(&priv->lock);
  930. ravb_emac_interrupt_unlocked(ndev);
  931. spin_unlock(&priv->lock);
  932. return IRQ_HANDLED;
  933. }
  934. /* Error interrupt handler */
  935. static void ravb_error_interrupt(struct net_device *ndev)
  936. {
  937. struct ravb_private *priv = netdev_priv(ndev);
  938. u32 eis, ris2;
  939. eis = ravb_read(ndev, EIS);
  940. ravb_write(ndev, ~(EIS_QFS | EIS_RESERVED), EIS);
  941. if (eis & EIS_QFS) {
  942. ris2 = ravb_read(ndev, RIS2);
  943. ravb_write(ndev, ~(RIS2_QFF0 | RIS2_QFF1 | RIS2_RFFF | RIS2_RESERVED),
  944. RIS2);
  945. /* Receive Descriptor Empty int */
  946. if (ris2 & RIS2_QFF0)
  947. priv->stats[RAVB_BE].rx_over_errors++;
  948. /* Receive Descriptor Empty int */
  949. if (ris2 & RIS2_QFF1)
  950. priv->stats[RAVB_NC].rx_over_errors++;
  951. /* Receive FIFO Overflow int */
  952. if (ris2 & RIS2_RFFF)
  953. priv->rx_fifo_errors++;
  954. }
  955. }
  956. static bool ravb_queue_interrupt(struct net_device *ndev, int q)
  957. {
  958. struct ravb_private *priv = netdev_priv(ndev);
  959. const struct ravb_hw_info *info = priv->info;
  960. u32 ris0 = ravb_read(ndev, RIS0);
  961. u32 ric0 = ravb_read(ndev, RIC0);
  962. u32 tis = ravb_read(ndev, TIS);
  963. u32 tic = ravb_read(ndev, TIC);
  964. if (((ris0 & ric0) & BIT(q)) || ((tis & tic) & BIT(q))) {
  965. if (napi_schedule_prep(&priv->napi[q])) {
  966. /* Mask RX and TX interrupts */
  967. if (!info->irq_en_dis) {
  968. ravb_write(ndev, ric0 & ~BIT(q), RIC0);
  969. ravb_write(ndev, tic & ~BIT(q), TIC);
  970. } else {
  971. ravb_write(ndev, BIT(q), RID0);
  972. ravb_write(ndev, BIT(q), TID);
  973. }
  974. __napi_schedule(&priv->napi[q]);
  975. } else {
  976. netdev_warn(ndev,
  977. "ignoring interrupt, rx status 0x%08x, rx mask 0x%08x,\n",
  978. ris0, ric0);
  979. netdev_warn(ndev,
  980. " tx status 0x%08x, tx mask 0x%08x.\n",
  981. tis, tic);
  982. }
  983. return true;
  984. }
  985. return false;
  986. }
  987. static bool ravb_timestamp_interrupt(struct net_device *ndev)
  988. {
  989. u32 tis = ravb_read(ndev, TIS);
  990. if (tis & TIS_TFUF) {
  991. ravb_write(ndev, ~(TIS_TFUF | TIS_RESERVED), TIS);
  992. ravb_get_tx_tstamp(ndev);
  993. return true;
  994. }
  995. return false;
  996. }
  997. static irqreturn_t ravb_interrupt(int irq, void *dev_id)
  998. {
  999. struct net_device *ndev = dev_id;
  1000. struct ravb_private *priv = netdev_priv(ndev);
  1001. const struct ravb_hw_info *info = priv->info;
  1002. irqreturn_t result = IRQ_NONE;
  1003. u32 iss;
  1004. spin_lock(&priv->lock);
  1005. /* Get interrupt status */
  1006. iss = ravb_read(ndev, ISS);
  1007. /* Received and transmitted interrupts */
  1008. if (iss & (ISS_FRS | ISS_FTS | ISS_TFUS)) {
  1009. int q;
  1010. /* Timestamp updated */
  1011. if (ravb_timestamp_interrupt(ndev))
  1012. result = IRQ_HANDLED;
  1013. /* Network control and best effort queue RX/TX */
  1014. if (info->nc_queues) {
  1015. for (q = RAVB_NC; q >= RAVB_BE; q--) {
  1016. if (ravb_queue_interrupt(ndev, q))
  1017. result = IRQ_HANDLED;
  1018. }
  1019. } else {
  1020. if (ravb_queue_interrupt(ndev, RAVB_BE))
  1021. result = IRQ_HANDLED;
  1022. }
  1023. }
  1024. /* E-MAC status summary */
  1025. if (iss & ISS_MS) {
  1026. ravb_emac_interrupt_unlocked(ndev);
  1027. result = IRQ_HANDLED;
  1028. }
  1029. /* Error status summary */
  1030. if (iss & ISS_ES) {
  1031. ravb_error_interrupt(ndev);
  1032. result = IRQ_HANDLED;
  1033. }
  1034. /* gPTP interrupt status summary */
  1035. if (iss & ISS_CGIS) {
  1036. ravb_ptp_interrupt(ndev);
  1037. result = IRQ_HANDLED;
  1038. }
  1039. spin_unlock(&priv->lock);
  1040. return result;
  1041. }
  1042. /* Timestamp/Error/gPTP interrupt handler */
  1043. static irqreturn_t ravb_multi_interrupt(int irq, void *dev_id)
  1044. {
  1045. struct net_device *ndev = dev_id;
  1046. struct ravb_private *priv = netdev_priv(ndev);
  1047. irqreturn_t result = IRQ_NONE;
  1048. u32 iss;
  1049. spin_lock(&priv->lock);
  1050. /* Get interrupt status */
  1051. iss = ravb_read(ndev, ISS);
  1052. /* Timestamp updated */
  1053. if ((iss & ISS_TFUS) && ravb_timestamp_interrupt(ndev))
  1054. result = IRQ_HANDLED;
  1055. /* Error status summary */
  1056. if (iss & ISS_ES) {
  1057. ravb_error_interrupt(ndev);
  1058. result = IRQ_HANDLED;
  1059. }
  1060. /* gPTP interrupt status summary */
  1061. if (iss & ISS_CGIS) {
  1062. ravb_ptp_interrupt(ndev);
  1063. result = IRQ_HANDLED;
  1064. }
  1065. spin_unlock(&priv->lock);
  1066. return result;
  1067. }
  1068. static irqreturn_t ravb_dma_interrupt(int irq, void *dev_id, int q)
  1069. {
  1070. struct net_device *ndev = dev_id;
  1071. struct ravb_private *priv = netdev_priv(ndev);
  1072. irqreturn_t result = IRQ_NONE;
  1073. spin_lock(&priv->lock);
  1074. /* Network control/Best effort queue RX/TX */
  1075. if (ravb_queue_interrupt(ndev, q))
  1076. result = IRQ_HANDLED;
  1077. spin_unlock(&priv->lock);
  1078. return result;
  1079. }
  1080. static irqreturn_t ravb_be_interrupt(int irq, void *dev_id)
  1081. {
  1082. return ravb_dma_interrupt(irq, dev_id, RAVB_BE);
  1083. }
  1084. static irqreturn_t ravb_nc_interrupt(int irq, void *dev_id)
  1085. {
  1086. return ravb_dma_interrupt(irq, dev_id, RAVB_NC);
  1087. }
  1088. static int ravb_poll(struct napi_struct *napi, int budget)
  1089. {
  1090. struct net_device *ndev = napi->dev;
  1091. struct ravb_private *priv = netdev_priv(ndev);
  1092. const struct ravb_hw_info *info = priv->info;
  1093. bool gptp = info->gptp || info->ccc_gac;
  1094. struct ravb_rx_desc *desc;
  1095. unsigned long flags;
  1096. int q = napi - priv->napi;
  1097. int mask = BIT(q);
  1098. int quota = budget;
  1099. unsigned int entry;
  1100. if (!gptp) {
  1101. entry = priv->cur_rx[q] % priv->num_rx_ring[q];
  1102. desc = &priv->gbeth_rx_ring[entry];
  1103. }
  1104. /* Processing RX Descriptor Ring */
  1105. /* Clear RX interrupt */
  1106. ravb_write(ndev, ~(mask | RIS0_RESERVED), RIS0);
  1107. if (gptp || desc->die_dt != DT_FEMPTY) {
  1108. if (ravb_rx(ndev, &quota, q))
  1109. goto out;
  1110. }
  1111. /* Processing TX Descriptor Ring */
  1112. spin_lock_irqsave(&priv->lock, flags);
  1113. /* Clear TX interrupt */
  1114. ravb_write(ndev, ~(mask | TIS_RESERVED), TIS);
  1115. ravb_tx_free(ndev, q, true);
  1116. netif_wake_subqueue(ndev, q);
  1117. spin_unlock_irqrestore(&priv->lock, flags);
  1118. napi_complete(napi);
  1119. /* Re-enable RX/TX interrupts */
  1120. spin_lock_irqsave(&priv->lock, flags);
  1121. if (!info->irq_en_dis) {
  1122. ravb_modify(ndev, RIC0, mask, mask);
  1123. ravb_modify(ndev, TIC, mask, mask);
  1124. } else {
  1125. ravb_write(ndev, mask, RIE0);
  1126. ravb_write(ndev, mask, TIE);
  1127. }
  1128. spin_unlock_irqrestore(&priv->lock, flags);
  1129. /* Receive error message handling */
  1130. priv->rx_over_errors = priv->stats[RAVB_BE].rx_over_errors;
  1131. if (info->nc_queues)
  1132. priv->rx_over_errors += priv->stats[RAVB_NC].rx_over_errors;
  1133. if (priv->rx_over_errors != ndev->stats.rx_over_errors)
  1134. ndev->stats.rx_over_errors = priv->rx_over_errors;
  1135. if (priv->rx_fifo_errors != ndev->stats.rx_fifo_errors)
  1136. ndev->stats.rx_fifo_errors = priv->rx_fifo_errors;
  1137. out:
  1138. return budget - quota;
  1139. }
  1140. static void ravb_set_duplex_gbeth(struct net_device *ndev)
  1141. {
  1142. struct ravb_private *priv = netdev_priv(ndev);
  1143. ravb_modify(ndev, ECMR, ECMR_DM, priv->duplex > 0 ? ECMR_DM : 0);
  1144. }
  1145. /* PHY state control function */
  1146. static void ravb_adjust_link(struct net_device *ndev)
  1147. {
  1148. struct ravb_private *priv = netdev_priv(ndev);
  1149. const struct ravb_hw_info *info = priv->info;
  1150. struct phy_device *phydev = ndev->phydev;
  1151. bool new_state = false;
  1152. unsigned long flags;
  1153. spin_lock_irqsave(&priv->lock, flags);
  1154. /* Disable TX and RX right over here, if E-MAC change is ignored */
  1155. if (priv->no_avb_link)
  1156. ravb_rcv_snd_disable(ndev);
  1157. if (phydev->link) {
  1158. if (info->half_duplex && phydev->duplex != priv->duplex) {
  1159. new_state = true;
  1160. priv->duplex = phydev->duplex;
  1161. ravb_set_duplex_gbeth(ndev);
  1162. }
  1163. if (phydev->speed != priv->speed) {
  1164. new_state = true;
  1165. priv->speed = phydev->speed;
  1166. info->set_rate(ndev);
  1167. }
  1168. if (!priv->link) {
  1169. ravb_modify(ndev, ECMR, ECMR_TXF, 0);
  1170. new_state = true;
  1171. priv->link = phydev->link;
  1172. }
  1173. } else if (priv->link) {
  1174. new_state = true;
  1175. priv->link = 0;
  1176. priv->speed = 0;
  1177. if (info->half_duplex)
  1178. priv->duplex = -1;
  1179. }
  1180. /* Enable TX and RX right over here, if E-MAC change is ignored */
  1181. if (priv->no_avb_link && phydev->link)
  1182. ravb_rcv_snd_enable(ndev);
  1183. spin_unlock_irqrestore(&priv->lock, flags);
  1184. if (new_state && netif_msg_link(priv))
  1185. phy_print_status(phydev);
  1186. }
  1187. static const struct soc_device_attribute r8a7795es10[] = {
  1188. { .soc_id = "r8a7795", .revision = "ES1.0", },
  1189. { /* sentinel */ }
  1190. };
  1191. /* PHY init function */
  1192. static int ravb_phy_init(struct net_device *ndev)
  1193. {
  1194. struct device_node *np = ndev->dev.parent->of_node;
  1195. struct ravb_private *priv = netdev_priv(ndev);
  1196. const struct ravb_hw_info *info = priv->info;
  1197. struct phy_device *phydev;
  1198. struct device_node *pn;
  1199. phy_interface_t iface;
  1200. int err;
  1201. priv->link = 0;
  1202. priv->speed = 0;
  1203. priv->duplex = -1;
  1204. /* Try connecting to PHY */
  1205. pn = of_parse_phandle(np, "phy-handle", 0);
  1206. if (!pn) {
  1207. /* In the case of a fixed PHY, the DT node associated
  1208. * to the PHY is the Ethernet MAC DT node.
  1209. */
  1210. if (of_phy_is_fixed_link(np)) {
  1211. err = of_phy_register_fixed_link(np);
  1212. if (err)
  1213. return err;
  1214. }
  1215. pn = of_node_get(np);
  1216. }
  1217. iface = priv->rgmii_override ? PHY_INTERFACE_MODE_RGMII
  1218. : priv->phy_interface;
  1219. phydev = of_phy_connect(ndev, pn, ravb_adjust_link, 0, iface);
  1220. of_node_put(pn);
  1221. if (!phydev) {
  1222. netdev_err(ndev, "failed to connect PHY\n");
  1223. err = -ENOENT;
  1224. goto err_deregister_fixed_link;
  1225. }
  1226. /* This driver only support 10/100Mbit speeds on R-Car H3 ES1.0
  1227. * at this time.
  1228. */
  1229. if (soc_device_match(r8a7795es10)) {
  1230. phy_set_max_speed(phydev, SPEED_100);
  1231. netdev_info(ndev, "limited PHY to 100Mbit/s\n");
  1232. }
  1233. if (!info->half_duplex) {
  1234. /* 10BASE, Pause and Asym Pause is not supported */
  1235. phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Half_BIT);
  1236. phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Full_BIT);
  1237. phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Pause_BIT);
  1238. phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Asym_Pause_BIT);
  1239. /* Half Duplex is not supported */
  1240. phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
  1241. phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_100baseT_Half_BIT);
  1242. }
  1243. phy_attached_info(phydev);
  1244. return 0;
  1245. err_deregister_fixed_link:
  1246. if (of_phy_is_fixed_link(np))
  1247. of_phy_deregister_fixed_link(np);
  1248. return err;
  1249. }
  1250. /* PHY control start function */
  1251. static int ravb_phy_start(struct net_device *ndev)
  1252. {
  1253. int error;
  1254. error = ravb_phy_init(ndev);
  1255. if (error)
  1256. return error;
  1257. phy_start(ndev->phydev);
  1258. return 0;
  1259. }
  1260. static u32 ravb_get_msglevel(struct net_device *ndev)
  1261. {
  1262. struct ravb_private *priv = netdev_priv(ndev);
  1263. return priv->msg_enable;
  1264. }
  1265. static void ravb_set_msglevel(struct net_device *ndev, u32 value)
  1266. {
  1267. struct ravb_private *priv = netdev_priv(ndev);
  1268. priv->msg_enable = value;
  1269. }
  1270. static const char ravb_gstrings_stats_gbeth[][ETH_GSTRING_LEN] = {
  1271. "rx_queue_0_current",
  1272. "tx_queue_0_current",
  1273. "rx_queue_0_dirty",
  1274. "tx_queue_0_dirty",
  1275. "rx_queue_0_packets",
  1276. "tx_queue_0_packets",
  1277. "rx_queue_0_bytes",
  1278. "tx_queue_0_bytes",
  1279. "rx_queue_0_mcast_packets",
  1280. "rx_queue_0_errors",
  1281. "rx_queue_0_crc_errors",
  1282. "rx_queue_0_frame_errors",
  1283. "rx_queue_0_length_errors",
  1284. "rx_queue_0_csum_offload_errors",
  1285. "rx_queue_0_over_errors",
  1286. };
  1287. static const char ravb_gstrings_stats[][ETH_GSTRING_LEN] = {
  1288. "rx_queue_0_current",
  1289. "tx_queue_0_current",
  1290. "rx_queue_0_dirty",
  1291. "tx_queue_0_dirty",
  1292. "rx_queue_0_packets",
  1293. "tx_queue_0_packets",
  1294. "rx_queue_0_bytes",
  1295. "tx_queue_0_bytes",
  1296. "rx_queue_0_mcast_packets",
  1297. "rx_queue_0_errors",
  1298. "rx_queue_0_crc_errors",
  1299. "rx_queue_0_frame_errors",
  1300. "rx_queue_0_length_errors",
  1301. "rx_queue_0_missed_errors",
  1302. "rx_queue_0_over_errors",
  1303. "rx_queue_1_current",
  1304. "tx_queue_1_current",
  1305. "rx_queue_1_dirty",
  1306. "tx_queue_1_dirty",
  1307. "rx_queue_1_packets",
  1308. "tx_queue_1_packets",
  1309. "rx_queue_1_bytes",
  1310. "tx_queue_1_bytes",
  1311. "rx_queue_1_mcast_packets",
  1312. "rx_queue_1_errors",
  1313. "rx_queue_1_crc_errors",
  1314. "rx_queue_1_frame_errors",
  1315. "rx_queue_1_length_errors",
  1316. "rx_queue_1_missed_errors",
  1317. "rx_queue_1_over_errors",
  1318. };
  1319. static int ravb_get_sset_count(struct net_device *netdev, int sset)
  1320. {
  1321. struct ravb_private *priv = netdev_priv(netdev);
  1322. const struct ravb_hw_info *info = priv->info;
  1323. switch (sset) {
  1324. case ETH_SS_STATS:
  1325. return info->stats_len;
  1326. default:
  1327. return -EOPNOTSUPP;
  1328. }
  1329. }
  1330. static void ravb_get_ethtool_stats(struct net_device *ndev,
  1331. struct ethtool_stats *estats, u64 *data)
  1332. {
  1333. struct ravb_private *priv = netdev_priv(ndev);
  1334. const struct ravb_hw_info *info = priv->info;
  1335. int num_rx_q;
  1336. int i = 0;
  1337. int q;
  1338. num_rx_q = info->nc_queues ? NUM_RX_QUEUE : 1;
  1339. /* Device-specific stats */
  1340. for (q = RAVB_BE; q < num_rx_q; q++) {
  1341. struct net_device_stats *stats = &priv->stats[q];
  1342. data[i++] = priv->cur_rx[q];
  1343. data[i++] = priv->cur_tx[q];
  1344. data[i++] = priv->dirty_rx[q];
  1345. data[i++] = priv->dirty_tx[q];
  1346. data[i++] = stats->rx_packets;
  1347. data[i++] = stats->tx_packets;
  1348. data[i++] = stats->rx_bytes;
  1349. data[i++] = stats->tx_bytes;
  1350. data[i++] = stats->multicast;
  1351. data[i++] = stats->rx_errors;
  1352. data[i++] = stats->rx_crc_errors;
  1353. data[i++] = stats->rx_frame_errors;
  1354. data[i++] = stats->rx_length_errors;
  1355. data[i++] = stats->rx_missed_errors;
  1356. data[i++] = stats->rx_over_errors;
  1357. }
  1358. }
  1359. static void ravb_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
  1360. {
  1361. struct ravb_private *priv = netdev_priv(ndev);
  1362. const struct ravb_hw_info *info = priv->info;
  1363. switch (stringset) {
  1364. case ETH_SS_STATS:
  1365. memcpy(data, info->gstrings_stats, info->gstrings_size);
  1366. break;
  1367. }
  1368. }
  1369. static void ravb_get_ringparam(struct net_device *ndev,
  1370. struct ethtool_ringparam *ring,
  1371. struct kernel_ethtool_ringparam *kernel_ring,
  1372. struct netlink_ext_ack *extack)
  1373. {
  1374. struct ravb_private *priv = netdev_priv(ndev);
  1375. ring->rx_max_pending = BE_RX_RING_MAX;
  1376. ring->tx_max_pending = BE_TX_RING_MAX;
  1377. ring->rx_pending = priv->num_rx_ring[RAVB_BE];
  1378. ring->tx_pending = priv->num_tx_ring[RAVB_BE];
  1379. }
  1380. static int ravb_set_ringparam(struct net_device *ndev,
  1381. struct ethtool_ringparam *ring,
  1382. struct kernel_ethtool_ringparam *kernel_ring,
  1383. struct netlink_ext_ack *extack)
  1384. {
  1385. struct ravb_private *priv = netdev_priv(ndev);
  1386. const struct ravb_hw_info *info = priv->info;
  1387. int error;
  1388. if (ring->tx_pending > BE_TX_RING_MAX ||
  1389. ring->rx_pending > BE_RX_RING_MAX ||
  1390. ring->tx_pending < BE_TX_RING_MIN ||
  1391. ring->rx_pending < BE_RX_RING_MIN)
  1392. return -EINVAL;
  1393. if (ring->rx_mini_pending || ring->rx_jumbo_pending)
  1394. return -EINVAL;
  1395. if (netif_running(ndev)) {
  1396. netif_device_detach(ndev);
  1397. /* Stop PTP Clock driver */
  1398. if (info->gptp)
  1399. ravb_ptp_stop(ndev);
  1400. /* Wait for DMA stopping */
  1401. error = ravb_stop_dma(ndev);
  1402. if (error) {
  1403. netdev_err(ndev,
  1404. "cannot set ringparam! Any AVB processes are still running?\n");
  1405. return error;
  1406. }
  1407. synchronize_irq(ndev->irq);
  1408. /* Free all the skb's in the RX queue and the DMA buffers. */
  1409. ravb_ring_free(ndev, RAVB_BE);
  1410. if (info->nc_queues)
  1411. ravb_ring_free(ndev, RAVB_NC);
  1412. }
  1413. /* Set new parameters */
  1414. priv->num_rx_ring[RAVB_BE] = ring->rx_pending;
  1415. priv->num_tx_ring[RAVB_BE] = ring->tx_pending;
  1416. if (netif_running(ndev)) {
  1417. error = ravb_dmac_init(ndev);
  1418. if (error) {
  1419. netdev_err(ndev,
  1420. "%s: ravb_dmac_init() failed, error %d\n",
  1421. __func__, error);
  1422. return error;
  1423. }
  1424. ravb_emac_init(ndev);
  1425. /* Initialise PTP Clock driver */
  1426. if (info->gptp)
  1427. ravb_ptp_init(ndev, priv->pdev);
  1428. netif_device_attach(ndev);
  1429. }
  1430. return 0;
  1431. }
  1432. static int ravb_get_ts_info(struct net_device *ndev,
  1433. struct ethtool_ts_info *info)
  1434. {
  1435. struct ravb_private *priv = netdev_priv(ndev);
  1436. const struct ravb_hw_info *hw_info = priv->info;
  1437. info->so_timestamping =
  1438. SOF_TIMESTAMPING_TX_SOFTWARE |
  1439. SOF_TIMESTAMPING_RX_SOFTWARE |
  1440. SOF_TIMESTAMPING_SOFTWARE |
  1441. SOF_TIMESTAMPING_TX_HARDWARE |
  1442. SOF_TIMESTAMPING_RX_HARDWARE |
  1443. SOF_TIMESTAMPING_RAW_HARDWARE;
  1444. info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
  1445. info->rx_filters =
  1446. (1 << HWTSTAMP_FILTER_NONE) |
  1447. (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
  1448. (1 << HWTSTAMP_FILTER_ALL);
  1449. if (hw_info->gptp || hw_info->ccc_gac)
  1450. info->phc_index = ptp_clock_index(priv->ptp.clock);
  1451. return 0;
  1452. }
  1453. static void ravb_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
  1454. {
  1455. struct ravb_private *priv = netdev_priv(ndev);
  1456. wol->supported = WAKE_MAGIC;
  1457. wol->wolopts = priv->wol_enabled ? WAKE_MAGIC : 0;
  1458. }
  1459. static int ravb_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
  1460. {
  1461. struct ravb_private *priv = netdev_priv(ndev);
  1462. const struct ravb_hw_info *info = priv->info;
  1463. if (!info->magic_pkt || (wol->wolopts & ~WAKE_MAGIC))
  1464. return -EOPNOTSUPP;
  1465. priv->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
  1466. device_set_wakeup_enable(&priv->pdev->dev, priv->wol_enabled);
  1467. return 0;
  1468. }
  1469. static const struct ethtool_ops ravb_ethtool_ops = {
  1470. .nway_reset = phy_ethtool_nway_reset,
  1471. .get_msglevel = ravb_get_msglevel,
  1472. .set_msglevel = ravb_set_msglevel,
  1473. .get_link = ethtool_op_get_link,
  1474. .get_strings = ravb_get_strings,
  1475. .get_ethtool_stats = ravb_get_ethtool_stats,
  1476. .get_sset_count = ravb_get_sset_count,
  1477. .get_ringparam = ravb_get_ringparam,
  1478. .set_ringparam = ravb_set_ringparam,
  1479. .get_ts_info = ravb_get_ts_info,
  1480. .get_link_ksettings = phy_ethtool_get_link_ksettings,
  1481. .set_link_ksettings = phy_ethtool_set_link_ksettings,
  1482. .get_wol = ravb_get_wol,
  1483. .set_wol = ravb_set_wol,
  1484. };
  1485. static inline int ravb_hook_irq(unsigned int irq, irq_handler_t handler,
  1486. struct net_device *ndev, struct device *dev,
  1487. const char *ch)
  1488. {
  1489. char *name;
  1490. int error;
  1491. name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s", ndev->name, ch);
  1492. if (!name)
  1493. return -ENOMEM;
  1494. error = request_irq(irq, handler, 0, name, ndev);
  1495. if (error)
  1496. netdev_err(ndev, "cannot request IRQ %s\n", name);
  1497. return error;
  1498. }
  1499. /* Network device open function for Ethernet AVB */
  1500. static int ravb_open(struct net_device *ndev)
  1501. {
  1502. struct ravb_private *priv = netdev_priv(ndev);
  1503. const struct ravb_hw_info *info = priv->info;
  1504. struct platform_device *pdev = priv->pdev;
  1505. struct device *dev = &pdev->dev;
  1506. int error;
  1507. napi_enable(&priv->napi[RAVB_BE]);
  1508. if (info->nc_queues)
  1509. napi_enable(&priv->napi[RAVB_NC]);
  1510. if (!info->multi_irqs) {
  1511. error = request_irq(ndev->irq, ravb_interrupt, IRQF_SHARED,
  1512. ndev->name, ndev);
  1513. if (error) {
  1514. netdev_err(ndev, "cannot request IRQ\n");
  1515. goto out_napi_off;
  1516. }
  1517. } else {
  1518. error = ravb_hook_irq(ndev->irq, ravb_multi_interrupt, ndev,
  1519. dev, "ch22:multi");
  1520. if (error)
  1521. goto out_napi_off;
  1522. error = ravb_hook_irq(priv->emac_irq, ravb_emac_interrupt, ndev,
  1523. dev, "ch24:emac");
  1524. if (error)
  1525. goto out_free_irq;
  1526. error = ravb_hook_irq(priv->rx_irqs[RAVB_BE], ravb_be_interrupt,
  1527. ndev, dev, "ch0:rx_be");
  1528. if (error)
  1529. goto out_free_irq_emac;
  1530. error = ravb_hook_irq(priv->tx_irqs[RAVB_BE], ravb_be_interrupt,
  1531. ndev, dev, "ch18:tx_be");
  1532. if (error)
  1533. goto out_free_irq_be_rx;
  1534. error = ravb_hook_irq(priv->rx_irqs[RAVB_NC], ravb_nc_interrupt,
  1535. ndev, dev, "ch1:rx_nc");
  1536. if (error)
  1537. goto out_free_irq_be_tx;
  1538. error = ravb_hook_irq(priv->tx_irqs[RAVB_NC], ravb_nc_interrupt,
  1539. ndev, dev, "ch19:tx_nc");
  1540. if (error)
  1541. goto out_free_irq_nc_rx;
  1542. if (info->err_mgmt_irqs) {
  1543. error = ravb_hook_irq(priv->erra_irq, ravb_multi_interrupt,
  1544. ndev, dev, "err_a");
  1545. if (error)
  1546. goto out_free_irq_nc_tx;
  1547. error = ravb_hook_irq(priv->mgmta_irq, ravb_multi_interrupt,
  1548. ndev, dev, "mgmt_a");
  1549. if (error)
  1550. goto out_free_irq_erra;
  1551. }
  1552. }
  1553. /* Device init */
  1554. error = ravb_dmac_init(ndev);
  1555. if (error)
  1556. goto out_free_irq_mgmta;
  1557. ravb_emac_init(ndev);
  1558. /* Initialise PTP Clock driver */
  1559. if (info->gptp)
  1560. ravb_ptp_init(ndev, priv->pdev);
  1561. /* PHY control start */
  1562. error = ravb_phy_start(ndev);
  1563. if (error)
  1564. goto out_ptp_stop;
  1565. netif_tx_start_all_queues(ndev);
  1566. return 0;
  1567. out_ptp_stop:
  1568. /* Stop PTP Clock driver */
  1569. if (info->gptp)
  1570. ravb_ptp_stop(ndev);
  1571. ravb_stop_dma(ndev);
  1572. out_free_irq_mgmta:
  1573. if (!info->multi_irqs)
  1574. goto out_free_irq;
  1575. if (info->err_mgmt_irqs)
  1576. free_irq(priv->mgmta_irq, ndev);
  1577. out_free_irq_erra:
  1578. if (info->err_mgmt_irqs)
  1579. free_irq(priv->erra_irq, ndev);
  1580. out_free_irq_nc_tx:
  1581. free_irq(priv->tx_irqs[RAVB_NC], ndev);
  1582. out_free_irq_nc_rx:
  1583. free_irq(priv->rx_irqs[RAVB_NC], ndev);
  1584. out_free_irq_be_tx:
  1585. free_irq(priv->tx_irqs[RAVB_BE], ndev);
  1586. out_free_irq_be_rx:
  1587. free_irq(priv->rx_irqs[RAVB_BE], ndev);
  1588. out_free_irq_emac:
  1589. free_irq(priv->emac_irq, ndev);
  1590. out_free_irq:
  1591. free_irq(ndev->irq, ndev);
  1592. out_napi_off:
  1593. if (info->nc_queues)
  1594. napi_disable(&priv->napi[RAVB_NC]);
  1595. napi_disable(&priv->napi[RAVB_BE]);
  1596. return error;
  1597. }
  1598. /* Timeout function for Ethernet AVB */
  1599. static void ravb_tx_timeout(struct net_device *ndev, unsigned int txqueue)
  1600. {
  1601. struct ravb_private *priv = netdev_priv(ndev);
  1602. netif_err(priv, tx_err, ndev,
  1603. "transmit timed out, status %08x, resetting...\n",
  1604. ravb_read(ndev, ISS));
  1605. /* tx_errors count up */
  1606. ndev->stats.tx_errors++;
  1607. schedule_work(&priv->work);
  1608. }
  1609. static void ravb_tx_timeout_work(struct work_struct *work)
  1610. {
  1611. struct ravb_private *priv = container_of(work, struct ravb_private,
  1612. work);
  1613. const struct ravb_hw_info *info = priv->info;
  1614. struct net_device *ndev = priv->ndev;
  1615. int error;
  1616. if (!rtnl_trylock()) {
  1617. usleep_range(1000, 2000);
  1618. schedule_work(&priv->work);
  1619. return;
  1620. }
  1621. netif_tx_stop_all_queues(ndev);
  1622. /* Stop PTP Clock driver */
  1623. if (info->gptp)
  1624. ravb_ptp_stop(ndev);
  1625. /* Wait for DMA stopping */
  1626. if (ravb_stop_dma(ndev)) {
  1627. /* If ravb_stop_dma() fails, the hardware is still operating
  1628. * for TX and/or RX. So, this should not call the following
  1629. * functions because ravb_dmac_init() is possible to fail too.
  1630. * Also, this should not retry ravb_stop_dma() again and again
  1631. * here because it's possible to wait forever. So, this just
  1632. * re-enables the TX and RX and skip the following
  1633. * re-initialization procedure.
  1634. */
  1635. ravb_rcv_snd_enable(ndev);
  1636. goto out;
  1637. }
  1638. ravb_ring_free(ndev, RAVB_BE);
  1639. if (info->nc_queues)
  1640. ravb_ring_free(ndev, RAVB_NC);
  1641. /* Device init */
  1642. error = ravb_dmac_init(ndev);
  1643. if (error) {
  1644. /* If ravb_dmac_init() fails, descriptors are freed. So, this
  1645. * should return here to avoid re-enabling the TX and RX in
  1646. * ravb_emac_init().
  1647. */
  1648. netdev_err(ndev, "%s: ravb_dmac_init() failed, error %d\n",
  1649. __func__, error);
  1650. goto out_unlock;
  1651. }
  1652. ravb_emac_init(ndev);
  1653. out:
  1654. /* Initialise PTP Clock driver */
  1655. if (info->gptp)
  1656. ravb_ptp_init(ndev, priv->pdev);
  1657. netif_tx_start_all_queues(ndev);
  1658. out_unlock:
  1659. rtnl_unlock();
  1660. }
  1661. /* Packet transmit function for Ethernet AVB */
  1662. static netdev_tx_t ravb_start_xmit(struct sk_buff *skb, struct net_device *ndev)
  1663. {
  1664. struct ravb_private *priv = netdev_priv(ndev);
  1665. const struct ravb_hw_info *info = priv->info;
  1666. unsigned int num_tx_desc = priv->num_tx_desc;
  1667. u16 q = skb_get_queue_mapping(skb);
  1668. struct ravb_tstamp_skb *ts_skb;
  1669. struct ravb_tx_desc *desc;
  1670. unsigned long flags;
  1671. u32 dma_addr;
  1672. void *buffer;
  1673. u32 entry;
  1674. u32 len;
  1675. spin_lock_irqsave(&priv->lock, flags);
  1676. if (priv->cur_tx[q] - priv->dirty_tx[q] > (priv->num_tx_ring[q] - 1) *
  1677. num_tx_desc) {
  1678. netif_err(priv, tx_queued, ndev,
  1679. "still transmitting with the full ring!\n");
  1680. netif_stop_subqueue(ndev, q);
  1681. spin_unlock_irqrestore(&priv->lock, flags);
  1682. return NETDEV_TX_BUSY;
  1683. }
  1684. if (skb_put_padto(skb, ETH_ZLEN))
  1685. goto exit;
  1686. entry = priv->cur_tx[q] % (priv->num_tx_ring[q] * num_tx_desc);
  1687. priv->tx_skb[q][entry / num_tx_desc] = skb;
  1688. if (num_tx_desc > 1) {
  1689. buffer = PTR_ALIGN(priv->tx_align[q], DPTR_ALIGN) +
  1690. entry / num_tx_desc * DPTR_ALIGN;
  1691. len = PTR_ALIGN(skb->data, DPTR_ALIGN) - skb->data;
  1692. /* Zero length DMA descriptors are problematic as they seem
  1693. * to terminate DMA transfers. Avoid them by simply using a
  1694. * length of DPTR_ALIGN (4) when skb data is aligned to
  1695. * DPTR_ALIGN.
  1696. *
  1697. * As skb is guaranteed to have at least ETH_ZLEN (60)
  1698. * bytes of data by the call to skb_put_padto() above this
  1699. * is safe with respect to both the length of the first DMA
  1700. * descriptor (len) overflowing the available data and the
  1701. * length of the second DMA descriptor (skb->len - len)
  1702. * being negative.
  1703. */
  1704. if (len == 0)
  1705. len = DPTR_ALIGN;
  1706. memcpy(buffer, skb->data, len);
  1707. dma_addr = dma_map_single(ndev->dev.parent, buffer, len,
  1708. DMA_TO_DEVICE);
  1709. if (dma_mapping_error(ndev->dev.parent, dma_addr))
  1710. goto drop;
  1711. desc = &priv->tx_ring[q][entry];
  1712. desc->ds_tagl = cpu_to_le16(len);
  1713. desc->dptr = cpu_to_le32(dma_addr);
  1714. buffer = skb->data + len;
  1715. len = skb->len - len;
  1716. dma_addr = dma_map_single(ndev->dev.parent, buffer, len,
  1717. DMA_TO_DEVICE);
  1718. if (dma_mapping_error(ndev->dev.parent, dma_addr))
  1719. goto unmap;
  1720. desc++;
  1721. } else {
  1722. desc = &priv->tx_ring[q][entry];
  1723. len = skb->len;
  1724. dma_addr = dma_map_single(ndev->dev.parent, skb->data, skb->len,
  1725. DMA_TO_DEVICE);
  1726. if (dma_mapping_error(ndev->dev.parent, dma_addr))
  1727. goto drop;
  1728. }
  1729. desc->ds_tagl = cpu_to_le16(len);
  1730. desc->dptr = cpu_to_le32(dma_addr);
  1731. /* TX timestamp required */
  1732. if (info->gptp || info->ccc_gac) {
  1733. if (q == RAVB_NC) {
  1734. ts_skb = kmalloc(sizeof(*ts_skb), GFP_ATOMIC);
  1735. if (!ts_skb) {
  1736. if (num_tx_desc > 1) {
  1737. desc--;
  1738. dma_unmap_single(ndev->dev.parent, dma_addr,
  1739. len, DMA_TO_DEVICE);
  1740. }
  1741. goto unmap;
  1742. }
  1743. ts_skb->skb = skb_get(skb);
  1744. ts_skb->tag = priv->ts_skb_tag++;
  1745. priv->ts_skb_tag &= 0x3ff;
  1746. list_add_tail(&ts_skb->list, &priv->ts_skb_list);
  1747. /* TAG and timestamp required flag */
  1748. skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
  1749. desc->tagh_tsr = (ts_skb->tag >> 4) | TX_TSR;
  1750. desc->ds_tagl |= cpu_to_le16(ts_skb->tag << 12);
  1751. }
  1752. skb_tx_timestamp(skb);
  1753. }
  1754. /* Descriptor type must be set after all the above writes */
  1755. dma_wmb();
  1756. if (num_tx_desc > 1) {
  1757. desc->die_dt = DT_FEND;
  1758. desc--;
  1759. desc->die_dt = DT_FSTART;
  1760. } else {
  1761. desc->die_dt = DT_FSINGLE;
  1762. }
  1763. ravb_modify(ndev, TCCR, TCCR_TSRQ0 << q, TCCR_TSRQ0 << q);
  1764. priv->cur_tx[q] += num_tx_desc;
  1765. if (priv->cur_tx[q] - priv->dirty_tx[q] >
  1766. (priv->num_tx_ring[q] - 1) * num_tx_desc &&
  1767. !ravb_tx_free(ndev, q, true))
  1768. netif_stop_subqueue(ndev, q);
  1769. exit:
  1770. spin_unlock_irqrestore(&priv->lock, flags);
  1771. return NETDEV_TX_OK;
  1772. unmap:
  1773. dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
  1774. le16_to_cpu(desc->ds_tagl), DMA_TO_DEVICE);
  1775. drop:
  1776. dev_kfree_skb_any(skb);
  1777. priv->tx_skb[q][entry / num_tx_desc] = NULL;
  1778. goto exit;
  1779. }
  1780. static u16 ravb_select_queue(struct net_device *ndev, struct sk_buff *skb,
  1781. struct net_device *sb_dev)
  1782. {
  1783. /* If skb needs TX timestamp, it is handled in network control queue */
  1784. return (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) ? RAVB_NC :
  1785. RAVB_BE;
  1786. }
  1787. static struct net_device_stats *ravb_get_stats(struct net_device *ndev)
  1788. {
  1789. struct ravb_private *priv = netdev_priv(ndev);
  1790. const struct ravb_hw_info *info = priv->info;
  1791. struct net_device_stats *nstats, *stats0, *stats1;
  1792. nstats = &ndev->stats;
  1793. stats0 = &priv->stats[RAVB_BE];
  1794. if (info->tx_counters) {
  1795. nstats->tx_dropped += ravb_read(ndev, TROCR);
  1796. ravb_write(ndev, 0, TROCR); /* (write clear) */
  1797. }
  1798. if (info->carrier_counters) {
  1799. nstats->collisions += ravb_read(ndev, CXR41);
  1800. ravb_write(ndev, 0, CXR41); /* (write clear) */
  1801. nstats->tx_carrier_errors += ravb_read(ndev, CXR42);
  1802. ravb_write(ndev, 0, CXR42); /* (write clear) */
  1803. }
  1804. nstats->rx_packets = stats0->rx_packets;
  1805. nstats->tx_packets = stats0->tx_packets;
  1806. nstats->rx_bytes = stats0->rx_bytes;
  1807. nstats->tx_bytes = stats0->tx_bytes;
  1808. nstats->multicast = stats0->multicast;
  1809. nstats->rx_errors = stats0->rx_errors;
  1810. nstats->rx_crc_errors = stats0->rx_crc_errors;
  1811. nstats->rx_frame_errors = stats0->rx_frame_errors;
  1812. nstats->rx_length_errors = stats0->rx_length_errors;
  1813. nstats->rx_missed_errors = stats0->rx_missed_errors;
  1814. nstats->rx_over_errors = stats0->rx_over_errors;
  1815. if (info->nc_queues) {
  1816. stats1 = &priv->stats[RAVB_NC];
  1817. nstats->rx_packets += stats1->rx_packets;
  1818. nstats->tx_packets += stats1->tx_packets;
  1819. nstats->rx_bytes += stats1->rx_bytes;
  1820. nstats->tx_bytes += stats1->tx_bytes;
  1821. nstats->multicast += stats1->multicast;
  1822. nstats->rx_errors += stats1->rx_errors;
  1823. nstats->rx_crc_errors += stats1->rx_crc_errors;
  1824. nstats->rx_frame_errors += stats1->rx_frame_errors;
  1825. nstats->rx_length_errors += stats1->rx_length_errors;
  1826. nstats->rx_missed_errors += stats1->rx_missed_errors;
  1827. nstats->rx_over_errors += stats1->rx_over_errors;
  1828. }
  1829. return nstats;
  1830. }
  1831. /* Update promiscuous bit */
  1832. static void ravb_set_rx_mode(struct net_device *ndev)
  1833. {
  1834. struct ravb_private *priv = netdev_priv(ndev);
  1835. unsigned long flags;
  1836. spin_lock_irqsave(&priv->lock, flags);
  1837. ravb_modify(ndev, ECMR, ECMR_PRM,
  1838. ndev->flags & IFF_PROMISC ? ECMR_PRM : 0);
  1839. spin_unlock_irqrestore(&priv->lock, flags);
  1840. }
  1841. /* Device close function for Ethernet AVB */
  1842. static int ravb_close(struct net_device *ndev)
  1843. {
  1844. struct device_node *np = ndev->dev.parent->of_node;
  1845. struct ravb_private *priv = netdev_priv(ndev);
  1846. const struct ravb_hw_info *info = priv->info;
  1847. struct ravb_tstamp_skb *ts_skb, *ts_skb2;
  1848. netif_tx_stop_all_queues(ndev);
  1849. /* Disable interrupts by clearing the interrupt masks. */
  1850. ravb_write(ndev, 0, RIC0);
  1851. ravb_write(ndev, 0, RIC2);
  1852. ravb_write(ndev, 0, TIC);
  1853. /* Stop PTP Clock driver */
  1854. if (info->gptp)
  1855. ravb_ptp_stop(ndev);
  1856. /* Set the config mode to stop the AVB-DMAC's processes */
  1857. if (ravb_stop_dma(ndev) < 0)
  1858. netdev_err(ndev,
  1859. "device will be stopped after h/w processes are done.\n");
  1860. /* Clear the timestamp list */
  1861. if (info->gptp || info->ccc_gac) {
  1862. list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list, list) {
  1863. list_del(&ts_skb->list);
  1864. kfree_skb(ts_skb->skb);
  1865. kfree(ts_skb);
  1866. }
  1867. }
  1868. /* PHY disconnect */
  1869. if (ndev->phydev) {
  1870. phy_stop(ndev->phydev);
  1871. phy_disconnect(ndev->phydev);
  1872. if (of_phy_is_fixed_link(np))
  1873. of_phy_deregister_fixed_link(np);
  1874. }
  1875. cancel_work_sync(&priv->work);
  1876. if (info->multi_irqs) {
  1877. free_irq(priv->tx_irqs[RAVB_NC], ndev);
  1878. free_irq(priv->rx_irqs[RAVB_NC], ndev);
  1879. free_irq(priv->tx_irqs[RAVB_BE], ndev);
  1880. free_irq(priv->rx_irqs[RAVB_BE], ndev);
  1881. free_irq(priv->emac_irq, ndev);
  1882. if (info->err_mgmt_irqs) {
  1883. free_irq(priv->erra_irq, ndev);
  1884. free_irq(priv->mgmta_irq, ndev);
  1885. }
  1886. }
  1887. free_irq(ndev->irq, ndev);
  1888. if (info->nc_queues)
  1889. napi_disable(&priv->napi[RAVB_NC]);
  1890. napi_disable(&priv->napi[RAVB_BE]);
  1891. /* Free all the skb's in the RX queue and the DMA buffers. */
  1892. ravb_ring_free(ndev, RAVB_BE);
  1893. if (info->nc_queues)
  1894. ravb_ring_free(ndev, RAVB_NC);
  1895. return 0;
  1896. }
  1897. static int ravb_hwtstamp_get(struct net_device *ndev, struct ifreq *req)
  1898. {
  1899. struct ravb_private *priv = netdev_priv(ndev);
  1900. struct hwtstamp_config config;
  1901. config.flags = 0;
  1902. config.tx_type = priv->tstamp_tx_ctrl ? HWTSTAMP_TX_ON :
  1903. HWTSTAMP_TX_OFF;
  1904. switch (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE) {
  1905. case RAVB_RXTSTAMP_TYPE_V2_L2_EVENT:
  1906. config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
  1907. break;
  1908. case RAVB_RXTSTAMP_TYPE_ALL:
  1909. config.rx_filter = HWTSTAMP_FILTER_ALL;
  1910. break;
  1911. default:
  1912. config.rx_filter = HWTSTAMP_FILTER_NONE;
  1913. }
  1914. return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
  1915. -EFAULT : 0;
  1916. }
  1917. /* Control hardware time stamping */
  1918. static int ravb_hwtstamp_set(struct net_device *ndev, struct ifreq *req)
  1919. {
  1920. struct ravb_private *priv = netdev_priv(ndev);
  1921. struct hwtstamp_config config;
  1922. u32 tstamp_rx_ctrl = RAVB_RXTSTAMP_ENABLED;
  1923. u32 tstamp_tx_ctrl;
  1924. if (copy_from_user(&config, req->ifr_data, sizeof(config)))
  1925. return -EFAULT;
  1926. switch (config.tx_type) {
  1927. case HWTSTAMP_TX_OFF:
  1928. tstamp_tx_ctrl = 0;
  1929. break;
  1930. case HWTSTAMP_TX_ON:
  1931. tstamp_tx_ctrl = RAVB_TXTSTAMP_ENABLED;
  1932. break;
  1933. default:
  1934. return -ERANGE;
  1935. }
  1936. switch (config.rx_filter) {
  1937. case HWTSTAMP_FILTER_NONE:
  1938. tstamp_rx_ctrl = 0;
  1939. break;
  1940. case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
  1941. tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
  1942. break;
  1943. default:
  1944. config.rx_filter = HWTSTAMP_FILTER_ALL;
  1945. tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_ALL;
  1946. }
  1947. priv->tstamp_tx_ctrl = tstamp_tx_ctrl;
  1948. priv->tstamp_rx_ctrl = tstamp_rx_ctrl;
  1949. return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
  1950. -EFAULT : 0;
  1951. }
  1952. /* ioctl to device function */
  1953. static int ravb_do_ioctl(struct net_device *ndev, struct ifreq *req, int cmd)
  1954. {
  1955. struct phy_device *phydev = ndev->phydev;
  1956. if (!netif_running(ndev))
  1957. return -EINVAL;
  1958. if (!phydev)
  1959. return -ENODEV;
  1960. switch (cmd) {
  1961. case SIOCGHWTSTAMP:
  1962. return ravb_hwtstamp_get(ndev, req);
  1963. case SIOCSHWTSTAMP:
  1964. return ravb_hwtstamp_set(ndev, req);
  1965. }
  1966. return phy_mii_ioctl(phydev, req, cmd);
  1967. }
  1968. static int ravb_change_mtu(struct net_device *ndev, int new_mtu)
  1969. {
  1970. struct ravb_private *priv = netdev_priv(ndev);
  1971. ndev->mtu = new_mtu;
  1972. if (netif_running(ndev)) {
  1973. synchronize_irq(priv->emac_irq);
  1974. ravb_emac_init(ndev);
  1975. }
  1976. netdev_update_features(ndev);
  1977. return 0;
  1978. }
  1979. static void ravb_set_rx_csum(struct net_device *ndev, bool enable)
  1980. {
  1981. struct ravb_private *priv = netdev_priv(ndev);
  1982. unsigned long flags;
  1983. spin_lock_irqsave(&priv->lock, flags);
  1984. /* Disable TX and RX */
  1985. ravb_rcv_snd_disable(ndev);
  1986. /* Modify RX Checksum setting */
  1987. ravb_modify(ndev, ECMR, ECMR_RCSC, enable ? ECMR_RCSC : 0);
  1988. /* Enable TX and RX */
  1989. ravb_rcv_snd_enable(ndev);
  1990. spin_unlock_irqrestore(&priv->lock, flags);
  1991. }
  1992. static int ravb_set_features_gbeth(struct net_device *ndev,
  1993. netdev_features_t features)
  1994. {
  1995. /* Place holder */
  1996. return 0;
  1997. }
  1998. static int ravb_set_features_rcar(struct net_device *ndev,
  1999. netdev_features_t features)
  2000. {
  2001. netdev_features_t changed = ndev->features ^ features;
  2002. if (changed & NETIF_F_RXCSUM)
  2003. ravb_set_rx_csum(ndev, features & NETIF_F_RXCSUM);
  2004. ndev->features = features;
  2005. return 0;
  2006. }
  2007. static int ravb_set_features(struct net_device *ndev,
  2008. netdev_features_t features)
  2009. {
  2010. struct ravb_private *priv = netdev_priv(ndev);
  2011. const struct ravb_hw_info *info = priv->info;
  2012. return info->set_feature(ndev, features);
  2013. }
  2014. static const struct net_device_ops ravb_netdev_ops = {
  2015. .ndo_open = ravb_open,
  2016. .ndo_stop = ravb_close,
  2017. .ndo_start_xmit = ravb_start_xmit,
  2018. .ndo_select_queue = ravb_select_queue,
  2019. .ndo_get_stats = ravb_get_stats,
  2020. .ndo_set_rx_mode = ravb_set_rx_mode,
  2021. .ndo_tx_timeout = ravb_tx_timeout,
  2022. .ndo_eth_ioctl = ravb_do_ioctl,
  2023. .ndo_change_mtu = ravb_change_mtu,
  2024. .ndo_validate_addr = eth_validate_addr,
  2025. .ndo_set_mac_address = eth_mac_addr,
  2026. .ndo_set_features = ravb_set_features,
  2027. };
  2028. /* MDIO bus init function */
  2029. static int ravb_mdio_init(struct ravb_private *priv)
  2030. {
  2031. struct platform_device *pdev = priv->pdev;
  2032. struct device *dev = &pdev->dev;
  2033. struct phy_device *phydev;
  2034. struct device_node *pn;
  2035. int error;
  2036. /* Bitbang init */
  2037. priv->mdiobb.ops = &bb_ops;
  2038. /* MII controller setting */
  2039. priv->mii_bus = alloc_mdio_bitbang(&priv->mdiobb);
  2040. if (!priv->mii_bus)
  2041. return -ENOMEM;
  2042. /* Hook up MII support for ethtool */
  2043. priv->mii_bus->name = "ravb_mii";
  2044. priv->mii_bus->parent = dev;
  2045. snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
  2046. pdev->name, pdev->id);
  2047. /* Register MDIO bus */
  2048. error = of_mdiobus_register(priv->mii_bus, dev->of_node);
  2049. if (error)
  2050. goto out_free_bus;
  2051. pn = of_parse_phandle(dev->of_node, "phy-handle", 0);
  2052. phydev = of_phy_find_device(pn);
  2053. if (phydev) {
  2054. phydev->mac_managed_pm = true;
  2055. put_device(&phydev->mdio.dev);
  2056. }
  2057. of_node_put(pn);
  2058. return 0;
  2059. out_free_bus:
  2060. free_mdio_bitbang(priv->mii_bus);
  2061. return error;
  2062. }
  2063. /* MDIO bus release function */
  2064. static int ravb_mdio_release(struct ravb_private *priv)
  2065. {
  2066. /* Unregister mdio bus */
  2067. mdiobus_unregister(priv->mii_bus);
  2068. /* Free bitbang info */
  2069. free_mdio_bitbang(priv->mii_bus);
  2070. return 0;
  2071. }
  2072. static const struct ravb_hw_info ravb_gen3_hw_info = {
  2073. .rx_ring_free = ravb_rx_ring_free_rcar,
  2074. .rx_ring_format = ravb_rx_ring_format_rcar,
  2075. .alloc_rx_desc = ravb_alloc_rx_desc_rcar,
  2076. .receive = ravb_rx_rcar,
  2077. .set_rate = ravb_set_rate_rcar,
  2078. .set_feature = ravb_set_features_rcar,
  2079. .dmac_init = ravb_dmac_init_rcar,
  2080. .emac_init = ravb_emac_init_rcar,
  2081. .gstrings_stats = ravb_gstrings_stats,
  2082. .gstrings_size = sizeof(ravb_gstrings_stats),
  2083. .net_hw_features = NETIF_F_RXCSUM,
  2084. .net_features = NETIF_F_RXCSUM,
  2085. .stats_len = ARRAY_SIZE(ravb_gstrings_stats),
  2086. .max_rx_len = RX_BUF_SZ + RAVB_ALIGN - 1,
  2087. .tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3,
  2088. .rx_max_buf_size = SZ_2K,
  2089. .internal_delay = 1,
  2090. .tx_counters = 1,
  2091. .multi_irqs = 1,
  2092. .irq_en_dis = 1,
  2093. .ccc_gac = 1,
  2094. .nc_queues = 1,
  2095. .magic_pkt = 1,
  2096. };
  2097. static const struct ravb_hw_info ravb_gen2_hw_info = {
  2098. .rx_ring_free = ravb_rx_ring_free_rcar,
  2099. .rx_ring_format = ravb_rx_ring_format_rcar,
  2100. .alloc_rx_desc = ravb_alloc_rx_desc_rcar,
  2101. .receive = ravb_rx_rcar,
  2102. .set_rate = ravb_set_rate_rcar,
  2103. .set_feature = ravb_set_features_rcar,
  2104. .dmac_init = ravb_dmac_init_rcar,
  2105. .emac_init = ravb_emac_init_rcar,
  2106. .gstrings_stats = ravb_gstrings_stats,
  2107. .gstrings_size = sizeof(ravb_gstrings_stats),
  2108. .net_hw_features = NETIF_F_RXCSUM,
  2109. .net_features = NETIF_F_RXCSUM,
  2110. .stats_len = ARRAY_SIZE(ravb_gstrings_stats),
  2111. .max_rx_len = RX_BUF_SZ + RAVB_ALIGN - 1,
  2112. .tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3,
  2113. .rx_max_buf_size = SZ_2K,
  2114. .aligned_tx = 1,
  2115. .gptp = 1,
  2116. .nc_queues = 1,
  2117. .magic_pkt = 1,
  2118. };
  2119. static const struct ravb_hw_info ravb_rzv2m_hw_info = {
  2120. .rx_ring_free = ravb_rx_ring_free_rcar,
  2121. .rx_ring_format = ravb_rx_ring_format_rcar,
  2122. .alloc_rx_desc = ravb_alloc_rx_desc_rcar,
  2123. .receive = ravb_rx_rcar,
  2124. .set_rate = ravb_set_rate_rcar,
  2125. .set_feature = ravb_set_features_rcar,
  2126. .dmac_init = ravb_dmac_init_rcar,
  2127. .emac_init = ravb_emac_init_rcar,
  2128. .gstrings_stats = ravb_gstrings_stats,
  2129. .gstrings_size = sizeof(ravb_gstrings_stats),
  2130. .net_hw_features = NETIF_F_RXCSUM,
  2131. .net_features = NETIF_F_RXCSUM,
  2132. .stats_len = ARRAY_SIZE(ravb_gstrings_stats),
  2133. .max_rx_len = RX_BUF_SZ + RAVB_ALIGN - 1,
  2134. .tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3,
  2135. .rx_max_buf_size = SZ_2K,
  2136. .multi_irqs = 1,
  2137. .err_mgmt_irqs = 1,
  2138. .gptp = 1,
  2139. .gptp_ref_clk = 1,
  2140. .nc_queues = 1,
  2141. .magic_pkt = 1,
  2142. };
  2143. static const struct ravb_hw_info gbeth_hw_info = {
  2144. .rx_ring_free = ravb_rx_ring_free_gbeth,
  2145. .rx_ring_format = ravb_rx_ring_format_gbeth,
  2146. .alloc_rx_desc = ravb_alloc_rx_desc_gbeth,
  2147. .receive = ravb_rx_gbeth,
  2148. .set_rate = ravb_set_rate_gbeth,
  2149. .set_feature = ravb_set_features_gbeth,
  2150. .dmac_init = ravb_dmac_init_gbeth,
  2151. .emac_init = ravb_emac_init_gbeth,
  2152. .gstrings_stats = ravb_gstrings_stats_gbeth,
  2153. .gstrings_size = sizeof(ravb_gstrings_stats_gbeth),
  2154. .stats_len = ARRAY_SIZE(ravb_gstrings_stats_gbeth),
  2155. .max_rx_len = ALIGN(GBETH_RX_BUFF_MAX, RAVB_ALIGN),
  2156. .tccr_mask = TCCR_TSRQ0,
  2157. .rx_max_buf_size = SZ_8K,
  2158. .aligned_tx = 1,
  2159. .tx_counters = 1,
  2160. .carrier_counters = 1,
  2161. .half_duplex = 1,
  2162. };
  2163. static const struct of_device_id ravb_match_table[] = {
  2164. { .compatible = "renesas,etheravb-r8a7790", .data = &ravb_gen2_hw_info },
  2165. { .compatible = "renesas,etheravb-r8a7794", .data = &ravb_gen2_hw_info },
  2166. { .compatible = "renesas,etheravb-rcar-gen2", .data = &ravb_gen2_hw_info },
  2167. { .compatible = "renesas,etheravb-r8a7795", .data = &ravb_gen3_hw_info },
  2168. { .compatible = "renesas,etheravb-rcar-gen3", .data = &ravb_gen3_hw_info },
  2169. { .compatible = "renesas,etheravb-rcar-gen4", .data = &ravb_gen3_hw_info },
  2170. { .compatible = "renesas,etheravb-rzv2m", .data = &ravb_rzv2m_hw_info },
  2171. { .compatible = "renesas,rzg2l-gbeth", .data = &gbeth_hw_info },
  2172. { }
  2173. };
  2174. MODULE_DEVICE_TABLE(of, ravb_match_table);
  2175. static int ravb_set_gti(struct net_device *ndev)
  2176. {
  2177. struct ravb_private *priv = netdev_priv(ndev);
  2178. const struct ravb_hw_info *info = priv->info;
  2179. struct device *dev = ndev->dev.parent;
  2180. unsigned long rate;
  2181. uint64_t inc;
  2182. if (info->gptp_ref_clk)
  2183. rate = clk_get_rate(priv->gptp_clk);
  2184. else
  2185. rate = clk_get_rate(priv->clk);
  2186. if (!rate)
  2187. return -EINVAL;
  2188. inc = div64_ul(1000000000ULL << 20, rate);
  2189. if (inc < GTI_TIV_MIN || inc > GTI_TIV_MAX) {
  2190. dev_err(dev, "gti.tiv increment 0x%llx is outside the range 0x%x - 0x%x\n",
  2191. inc, GTI_TIV_MIN, GTI_TIV_MAX);
  2192. return -EINVAL;
  2193. }
  2194. ravb_write(ndev, inc, GTI);
  2195. return 0;
  2196. }
  2197. static void ravb_set_config_mode(struct net_device *ndev)
  2198. {
  2199. struct ravb_private *priv = netdev_priv(ndev);
  2200. const struct ravb_hw_info *info = priv->info;
  2201. if (info->gptp) {
  2202. ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
  2203. /* Set CSEL value */
  2204. ravb_modify(ndev, CCC, CCC_CSEL, CCC_CSEL_HPB);
  2205. } else if (info->ccc_gac) {
  2206. ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG |
  2207. CCC_GAC | CCC_CSEL_HPB);
  2208. } else {
  2209. ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
  2210. }
  2211. }
  2212. /* Set tx and rx clock internal delay modes */
  2213. static void ravb_parse_delay_mode(struct device_node *np, struct net_device *ndev)
  2214. {
  2215. struct ravb_private *priv = netdev_priv(ndev);
  2216. bool explicit_delay = false;
  2217. u32 delay;
  2218. if (!of_property_read_u32(np, "rx-internal-delay-ps", &delay)) {
  2219. /* Valid values are 0 and 1800, according to DT bindings */
  2220. priv->rxcidm = !!delay;
  2221. explicit_delay = true;
  2222. }
  2223. if (!of_property_read_u32(np, "tx-internal-delay-ps", &delay)) {
  2224. /* Valid values are 0 and 2000, according to DT bindings */
  2225. priv->txcidm = !!delay;
  2226. explicit_delay = true;
  2227. }
  2228. if (explicit_delay)
  2229. return;
  2230. /* Fall back to legacy rgmii-*id behavior */
  2231. if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
  2232. priv->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID) {
  2233. priv->rxcidm = 1;
  2234. priv->rgmii_override = 1;
  2235. }
  2236. if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
  2237. priv->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) {
  2238. priv->txcidm = 1;
  2239. priv->rgmii_override = 1;
  2240. }
  2241. }
  2242. static void ravb_set_delay_mode(struct net_device *ndev)
  2243. {
  2244. struct ravb_private *priv = netdev_priv(ndev);
  2245. u32 set = 0;
  2246. if (priv->rxcidm)
  2247. set |= APSR_RDM;
  2248. if (priv->txcidm)
  2249. set |= APSR_TDM;
  2250. ravb_modify(ndev, APSR, APSR_RDM | APSR_TDM, set);
  2251. }
  2252. static int ravb_probe(struct platform_device *pdev)
  2253. {
  2254. struct device_node *np = pdev->dev.of_node;
  2255. const struct ravb_hw_info *info;
  2256. struct reset_control *rstc;
  2257. struct ravb_private *priv;
  2258. struct net_device *ndev;
  2259. int error, irq, q;
  2260. struct resource *res;
  2261. int i;
  2262. if (!np) {
  2263. dev_err(&pdev->dev,
  2264. "this driver is required to be instantiated from device tree\n");
  2265. return -EINVAL;
  2266. }
  2267. rstc = devm_reset_control_get_optional_exclusive(&pdev->dev, NULL);
  2268. if (IS_ERR(rstc))
  2269. return dev_err_probe(&pdev->dev, PTR_ERR(rstc),
  2270. "failed to get cpg reset\n");
  2271. ndev = alloc_etherdev_mqs(sizeof(struct ravb_private),
  2272. NUM_TX_QUEUE, NUM_RX_QUEUE);
  2273. if (!ndev)
  2274. return -ENOMEM;
  2275. info = of_device_get_match_data(&pdev->dev);
  2276. ndev->features = info->net_features;
  2277. ndev->hw_features = info->net_hw_features;
  2278. error = reset_control_deassert(rstc);
  2279. if (error)
  2280. goto out_free_netdev;
  2281. pm_runtime_enable(&pdev->dev);
  2282. error = pm_runtime_resume_and_get(&pdev->dev);
  2283. if (error < 0)
  2284. goto out_rpm_disable;
  2285. if (info->multi_irqs) {
  2286. if (info->err_mgmt_irqs)
  2287. irq = platform_get_irq_byname(pdev, "dia");
  2288. else
  2289. irq = platform_get_irq_byname(pdev, "ch22");
  2290. } else {
  2291. irq = platform_get_irq(pdev, 0);
  2292. }
  2293. if (irq < 0) {
  2294. error = irq;
  2295. goto out_release;
  2296. }
  2297. ndev->irq = irq;
  2298. SET_NETDEV_DEV(ndev, &pdev->dev);
  2299. priv = netdev_priv(ndev);
  2300. priv->info = info;
  2301. priv->rstc = rstc;
  2302. priv->ndev = ndev;
  2303. priv->pdev = pdev;
  2304. priv->num_tx_ring[RAVB_BE] = BE_TX_RING_SIZE;
  2305. priv->num_rx_ring[RAVB_BE] = BE_RX_RING_SIZE;
  2306. if (info->nc_queues) {
  2307. priv->num_tx_ring[RAVB_NC] = NC_TX_RING_SIZE;
  2308. priv->num_rx_ring[RAVB_NC] = NC_RX_RING_SIZE;
  2309. }
  2310. priv->addr = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
  2311. if (IS_ERR(priv->addr)) {
  2312. error = PTR_ERR(priv->addr);
  2313. goto out_release;
  2314. }
  2315. /* The Ether-specific entries in the device structure. */
  2316. ndev->base_addr = res->start;
  2317. spin_lock_init(&priv->lock);
  2318. INIT_WORK(&priv->work, ravb_tx_timeout_work);
  2319. error = of_get_phy_mode(np, &priv->phy_interface);
  2320. if (error && error != -ENODEV)
  2321. goto out_release;
  2322. priv->no_avb_link = of_property_read_bool(np, "renesas,no-ether-link");
  2323. priv->avb_link_active_low =
  2324. of_property_read_bool(np, "renesas,ether-link-active-low");
  2325. if (info->multi_irqs) {
  2326. if (info->err_mgmt_irqs)
  2327. irq = platform_get_irq_byname(pdev, "line3");
  2328. else
  2329. irq = platform_get_irq_byname(pdev, "ch24");
  2330. if (irq < 0) {
  2331. error = irq;
  2332. goto out_release;
  2333. }
  2334. priv->emac_irq = irq;
  2335. for (i = 0; i < NUM_RX_QUEUE; i++) {
  2336. irq = platform_get_irq_byname(pdev, ravb_rx_irqs[i]);
  2337. if (irq < 0) {
  2338. error = irq;
  2339. goto out_release;
  2340. }
  2341. priv->rx_irqs[i] = irq;
  2342. }
  2343. for (i = 0; i < NUM_TX_QUEUE; i++) {
  2344. irq = platform_get_irq_byname(pdev, ravb_tx_irqs[i]);
  2345. if (irq < 0) {
  2346. error = irq;
  2347. goto out_release;
  2348. }
  2349. priv->tx_irqs[i] = irq;
  2350. }
  2351. if (info->err_mgmt_irqs) {
  2352. irq = platform_get_irq_byname(pdev, "err_a");
  2353. if (irq < 0) {
  2354. error = irq;
  2355. goto out_release;
  2356. }
  2357. priv->erra_irq = irq;
  2358. irq = platform_get_irq_byname(pdev, "mgmt_a");
  2359. if (irq < 0) {
  2360. error = irq;
  2361. goto out_release;
  2362. }
  2363. priv->mgmta_irq = irq;
  2364. }
  2365. }
  2366. priv->clk = devm_clk_get(&pdev->dev, NULL);
  2367. if (IS_ERR(priv->clk)) {
  2368. error = PTR_ERR(priv->clk);
  2369. goto out_release;
  2370. }
  2371. priv->refclk = devm_clk_get_optional(&pdev->dev, "refclk");
  2372. if (IS_ERR(priv->refclk)) {
  2373. error = PTR_ERR(priv->refclk);
  2374. goto out_release;
  2375. }
  2376. clk_prepare_enable(priv->refclk);
  2377. if (info->gptp_ref_clk) {
  2378. priv->gptp_clk = devm_clk_get(&pdev->dev, "gptp");
  2379. if (IS_ERR(priv->gptp_clk)) {
  2380. error = PTR_ERR(priv->gptp_clk);
  2381. goto out_disable_refclk;
  2382. }
  2383. clk_prepare_enable(priv->gptp_clk);
  2384. }
  2385. ndev->max_mtu = info->rx_max_buf_size - (ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
  2386. ndev->min_mtu = ETH_MIN_MTU;
  2387. /* FIXME: R-Car Gen2 has 4byte alignment restriction for tx buffer
  2388. * Use two descriptor to handle such situation. First descriptor to
  2389. * handle aligned data buffer and second descriptor to handle the
  2390. * overflow data because of alignment.
  2391. */
  2392. priv->num_tx_desc = info->aligned_tx ? 2 : 1;
  2393. /* Set function */
  2394. ndev->netdev_ops = &ravb_netdev_ops;
  2395. ndev->ethtool_ops = &ravb_ethtool_ops;
  2396. /* Set AVB config mode */
  2397. ravb_set_config_mode(ndev);
  2398. if (info->gptp || info->ccc_gac) {
  2399. /* Set GTI value */
  2400. error = ravb_set_gti(ndev);
  2401. if (error)
  2402. goto out_disable_gptp_clk;
  2403. /* Request GTI loading */
  2404. ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
  2405. }
  2406. if (info->internal_delay) {
  2407. ravb_parse_delay_mode(np, ndev);
  2408. ravb_set_delay_mode(ndev);
  2409. }
  2410. /* Allocate descriptor base address table */
  2411. priv->desc_bat_size = sizeof(struct ravb_desc) * DBAT_ENTRY_NUM;
  2412. priv->desc_bat = dma_alloc_coherent(ndev->dev.parent, priv->desc_bat_size,
  2413. &priv->desc_bat_dma, GFP_KERNEL);
  2414. if (!priv->desc_bat) {
  2415. dev_err(&pdev->dev,
  2416. "Cannot allocate desc base address table (size %d bytes)\n",
  2417. priv->desc_bat_size);
  2418. error = -ENOMEM;
  2419. goto out_disable_gptp_clk;
  2420. }
  2421. for (q = RAVB_BE; q < DBAT_ENTRY_NUM; q++)
  2422. priv->desc_bat[q].die_dt = DT_EOS;
  2423. ravb_write(ndev, priv->desc_bat_dma, DBAT);
  2424. /* Initialise HW timestamp list */
  2425. INIT_LIST_HEAD(&priv->ts_skb_list);
  2426. /* Initialise PTP Clock driver */
  2427. if (info->ccc_gac)
  2428. ravb_ptp_init(ndev, pdev);
  2429. /* Debug message level */
  2430. priv->msg_enable = RAVB_DEF_MSG_ENABLE;
  2431. /* Read and set MAC address */
  2432. ravb_read_mac_address(np, ndev);
  2433. if (!is_valid_ether_addr(ndev->dev_addr)) {
  2434. dev_warn(&pdev->dev,
  2435. "no valid MAC address supplied, using a random one\n");
  2436. eth_hw_addr_random(ndev);
  2437. }
  2438. /* MDIO bus init */
  2439. error = ravb_mdio_init(priv);
  2440. if (error) {
  2441. dev_err(&pdev->dev, "failed to initialize MDIO\n");
  2442. goto out_dma_free;
  2443. }
  2444. netif_napi_add(ndev, &priv->napi[RAVB_BE], ravb_poll);
  2445. if (info->nc_queues)
  2446. netif_napi_add(ndev, &priv->napi[RAVB_NC], ravb_poll);
  2447. /* Network device register */
  2448. error = register_netdev(ndev);
  2449. if (error)
  2450. goto out_napi_del;
  2451. device_set_wakeup_capable(&pdev->dev, 1);
  2452. /* Print device information */
  2453. netdev_info(ndev, "Base address at %#x, %pM, IRQ %d.\n",
  2454. (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
  2455. platform_set_drvdata(pdev, ndev);
  2456. return 0;
  2457. out_napi_del:
  2458. if (info->nc_queues)
  2459. netif_napi_del(&priv->napi[RAVB_NC]);
  2460. netif_napi_del(&priv->napi[RAVB_BE]);
  2461. ravb_mdio_release(priv);
  2462. out_dma_free:
  2463. dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
  2464. priv->desc_bat_dma);
  2465. /* Stop PTP Clock driver */
  2466. if (info->ccc_gac)
  2467. ravb_ptp_stop(ndev);
  2468. out_disable_gptp_clk:
  2469. clk_disable_unprepare(priv->gptp_clk);
  2470. out_disable_refclk:
  2471. clk_disable_unprepare(priv->refclk);
  2472. out_release:
  2473. pm_runtime_put(&pdev->dev);
  2474. out_rpm_disable:
  2475. pm_runtime_disable(&pdev->dev);
  2476. reset_control_assert(rstc);
  2477. out_free_netdev:
  2478. free_netdev(ndev);
  2479. return error;
  2480. }
  2481. static int ravb_remove(struct platform_device *pdev)
  2482. {
  2483. struct net_device *ndev = platform_get_drvdata(pdev);
  2484. struct ravb_private *priv = netdev_priv(ndev);
  2485. const struct ravb_hw_info *info = priv->info;
  2486. unregister_netdev(ndev);
  2487. if (info->nc_queues)
  2488. netif_napi_del(&priv->napi[RAVB_NC]);
  2489. netif_napi_del(&priv->napi[RAVB_BE]);
  2490. ravb_mdio_release(priv);
  2491. /* Stop PTP Clock driver */
  2492. if (info->ccc_gac)
  2493. ravb_ptp_stop(ndev);
  2494. dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
  2495. priv->desc_bat_dma);
  2496. /* Set reset mode */
  2497. ravb_write(ndev, CCC_OPC_RESET, CCC);
  2498. clk_disable_unprepare(priv->gptp_clk);
  2499. clk_disable_unprepare(priv->refclk);
  2500. pm_runtime_put_sync(&pdev->dev);
  2501. pm_runtime_disable(&pdev->dev);
  2502. reset_control_assert(priv->rstc);
  2503. free_netdev(ndev);
  2504. platform_set_drvdata(pdev, NULL);
  2505. return 0;
  2506. }
  2507. static int ravb_wol_setup(struct net_device *ndev)
  2508. {
  2509. struct ravb_private *priv = netdev_priv(ndev);
  2510. const struct ravb_hw_info *info = priv->info;
  2511. /* Disable interrupts by clearing the interrupt masks. */
  2512. ravb_write(ndev, 0, RIC0);
  2513. ravb_write(ndev, 0, RIC2);
  2514. ravb_write(ndev, 0, TIC);
  2515. /* Only allow ECI interrupts */
  2516. synchronize_irq(priv->emac_irq);
  2517. if (info->nc_queues)
  2518. napi_disable(&priv->napi[RAVB_NC]);
  2519. napi_disable(&priv->napi[RAVB_BE]);
  2520. ravb_write(ndev, ECSIPR_MPDIP, ECSIPR);
  2521. /* Enable MagicPacket */
  2522. ravb_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE);
  2523. return enable_irq_wake(priv->emac_irq);
  2524. }
  2525. static int ravb_wol_restore(struct net_device *ndev)
  2526. {
  2527. struct ravb_private *priv = netdev_priv(ndev);
  2528. const struct ravb_hw_info *info = priv->info;
  2529. if (info->nc_queues)
  2530. napi_enable(&priv->napi[RAVB_NC]);
  2531. napi_enable(&priv->napi[RAVB_BE]);
  2532. /* Disable MagicPacket */
  2533. ravb_modify(ndev, ECMR, ECMR_MPDE, 0);
  2534. ravb_close(ndev);
  2535. return disable_irq_wake(priv->emac_irq);
  2536. }
  2537. static int __maybe_unused ravb_suspend(struct device *dev)
  2538. {
  2539. struct net_device *ndev = dev_get_drvdata(dev);
  2540. struct ravb_private *priv = netdev_priv(ndev);
  2541. int ret;
  2542. if (!netif_running(ndev))
  2543. return 0;
  2544. netif_device_detach(ndev);
  2545. if (priv->wol_enabled)
  2546. ret = ravb_wol_setup(ndev);
  2547. else
  2548. ret = ravb_close(ndev);
  2549. if (priv->info->ccc_gac)
  2550. ravb_ptp_stop(ndev);
  2551. return ret;
  2552. }
  2553. static int __maybe_unused ravb_resume(struct device *dev)
  2554. {
  2555. struct net_device *ndev = dev_get_drvdata(dev);
  2556. struct ravb_private *priv = netdev_priv(ndev);
  2557. const struct ravb_hw_info *info = priv->info;
  2558. int ret = 0;
  2559. /* If WoL is enabled set reset mode to rearm the WoL logic */
  2560. if (priv->wol_enabled)
  2561. ravb_write(ndev, CCC_OPC_RESET, CCC);
  2562. /* All register have been reset to default values.
  2563. * Restore all registers which where setup at probe time and
  2564. * reopen device if it was running before system suspended.
  2565. */
  2566. /* Set AVB config mode */
  2567. ravb_set_config_mode(ndev);
  2568. if (info->gptp || info->ccc_gac) {
  2569. /* Set GTI value */
  2570. ret = ravb_set_gti(ndev);
  2571. if (ret)
  2572. return ret;
  2573. /* Request GTI loading */
  2574. ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
  2575. }
  2576. if (info->internal_delay)
  2577. ravb_set_delay_mode(ndev);
  2578. /* Restore descriptor base address table */
  2579. ravb_write(ndev, priv->desc_bat_dma, DBAT);
  2580. if (priv->info->ccc_gac)
  2581. ravb_ptp_init(ndev, priv->pdev);
  2582. if (netif_running(ndev)) {
  2583. if (priv->wol_enabled) {
  2584. ret = ravb_wol_restore(ndev);
  2585. if (ret)
  2586. return ret;
  2587. }
  2588. ret = ravb_open(ndev);
  2589. if (ret < 0)
  2590. return ret;
  2591. ravb_set_rx_mode(ndev);
  2592. netif_device_attach(ndev);
  2593. }
  2594. return ret;
  2595. }
  2596. static int __maybe_unused ravb_runtime_nop(struct device *dev)
  2597. {
  2598. /* Runtime PM callback shared between ->runtime_suspend()
  2599. * and ->runtime_resume(). Simply returns success.
  2600. *
  2601. * This driver re-initializes all registers after
  2602. * pm_runtime_get_sync() anyway so there is no need
  2603. * to save and restore registers here.
  2604. */
  2605. return 0;
  2606. }
  2607. static const struct dev_pm_ops ravb_dev_pm_ops = {
  2608. SET_SYSTEM_SLEEP_PM_OPS(ravb_suspend, ravb_resume)
  2609. SET_RUNTIME_PM_OPS(ravb_runtime_nop, ravb_runtime_nop, NULL)
  2610. };
  2611. static struct platform_driver ravb_driver = {
  2612. .probe = ravb_probe,
  2613. .remove = ravb_remove,
  2614. .driver = {
  2615. .name = "ravb",
  2616. .pm = &ravb_dev_pm_ops,
  2617. .of_match_table = ravb_match_table,
  2618. },
  2619. };
  2620. module_platform_driver(ravb_driver);
  2621. MODULE_AUTHOR("Mitsuhiro Kimura, Masaru Nagai");
  2622. MODULE_DESCRIPTION("Renesas Ethernet AVB driver");
  2623. MODULE_LICENSE("GPL v2");