qla3xxx.c 101 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928
  1. // SPDX-License-Identifier: GPL-2.0-or-later
  2. /*
  3. * QLogic QLA3xxx NIC HBA Driver
  4. * Copyright (c) 2003-2006 QLogic Corporation
  5. */
  6. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  7. #include <linux/kernel.h>
  8. #include <linux/types.h>
  9. #include <linux/module.h>
  10. #include <linux/list.h>
  11. #include <linux/pci.h>
  12. #include <linux/dma-mapping.h>
  13. #include <linux/sched.h>
  14. #include <linux/slab.h>
  15. #include <linux/dmapool.h>
  16. #include <linux/mempool.h>
  17. #include <linux/spinlock.h>
  18. #include <linux/kthread.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/errno.h>
  21. #include <linux/ioport.h>
  22. #include <linux/ip.h>
  23. #include <linux/in.h>
  24. #include <linux/if_arp.h>
  25. #include <linux/if_ether.h>
  26. #include <linux/netdevice.h>
  27. #include <linux/etherdevice.h>
  28. #include <linux/ethtool.h>
  29. #include <linux/skbuff.h>
  30. #include <linux/rtnetlink.h>
  31. #include <linux/if_vlan.h>
  32. #include <linux/delay.h>
  33. #include <linux/mm.h>
  34. #include <linux/prefetch.h>
  35. #include "qla3xxx.h"
  36. #define DRV_NAME "qla3xxx"
  37. #define DRV_STRING "QLogic ISP3XXX Network Driver"
  38. #define DRV_VERSION "v2.03.00-k5"
  39. static const char ql3xxx_driver_name[] = DRV_NAME;
  40. static const char ql3xxx_driver_version[] = DRV_VERSION;
  41. #define TIMED_OUT_MSG \
  42. "Timed out waiting for management port to get free before issuing command\n"
  43. MODULE_AUTHOR("QLogic Corporation");
  44. MODULE_DESCRIPTION("QLogic ISP3XXX Network Driver " DRV_VERSION " ");
  45. MODULE_LICENSE("GPL");
  46. MODULE_VERSION(DRV_VERSION);
  47. static const u32 default_msg
  48. = NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK
  49. | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN;
  50. static int debug = -1; /* defaults above */
  51. module_param(debug, int, 0);
  52. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  53. static int msi;
  54. module_param(msi, int, 0);
  55. MODULE_PARM_DESC(msi, "Turn on Message Signaled Interrupts.");
  56. static const struct pci_device_id ql3xxx_pci_tbl[] = {
  57. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3022_DEVICE_ID)},
  58. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3032_DEVICE_ID)},
  59. /* required last entry */
  60. {0,}
  61. };
  62. MODULE_DEVICE_TABLE(pci, ql3xxx_pci_tbl);
  63. /*
  64. * These are the known PHY's which are used
  65. */
  66. enum PHY_DEVICE_TYPE {
  67. PHY_TYPE_UNKNOWN = 0,
  68. PHY_VITESSE_VSC8211,
  69. PHY_AGERE_ET1011C,
  70. MAX_PHY_DEV_TYPES
  71. };
  72. struct PHY_DEVICE_INFO {
  73. const enum PHY_DEVICE_TYPE phyDevice;
  74. const u32 phyIdOUI;
  75. const u16 phyIdModel;
  76. const char *name;
  77. };
  78. static const struct PHY_DEVICE_INFO PHY_DEVICES[] = {
  79. {PHY_TYPE_UNKNOWN, 0x000000, 0x0, "PHY_TYPE_UNKNOWN"},
  80. {PHY_VITESSE_VSC8211, 0x0003f1, 0xb, "PHY_VITESSE_VSC8211"},
  81. {PHY_AGERE_ET1011C, 0x00a0bc, 0x1, "PHY_AGERE_ET1011C"},
  82. };
  83. /*
  84. * Caller must take hw_lock.
  85. */
  86. static int ql_sem_spinlock(struct ql3_adapter *qdev,
  87. u32 sem_mask, u32 sem_bits)
  88. {
  89. struct ql3xxx_port_registers __iomem *port_regs =
  90. qdev->mem_map_registers;
  91. u32 value;
  92. unsigned int seconds = 3;
  93. do {
  94. writel((sem_mask | sem_bits),
  95. &port_regs->CommonRegs.semaphoreReg);
  96. value = readl(&port_regs->CommonRegs.semaphoreReg);
  97. if ((value & (sem_mask >> 16)) == sem_bits)
  98. return 0;
  99. mdelay(1000);
  100. } while (--seconds);
  101. return -1;
  102. }
  103. static void ql_sem_unlock(struct ql3_adapter *qdev, u32 sem_mask)
  104. {
  105. struct ql3xxx_port_registers __iomem *port_regs =
  106. qdev->mem_map_registers;
  107. writel(sem_mask, &port_regs->CommonRegs.semaphoreReg);
  108. readl(&port_regs->CommonRegs.semaphoreReg);
  109. }
  110. static int ql_sem_lock(struct ql3_adapter *qdev, u32 sem_mask, u32 sem_bits)
  111. {
  112. struct ql3xxx_port_registers __iomem *port_regs =
  113. qdev->mem_map_registers;
  114. u32 value;
  115. writel((sem_mask | sem_bits), &port_regs->CommonRegs.semaphoreReg);
  116. value = readl(&port_regs->CommonRegs.semaphoreReg);
  117. return ((value & (sem_mask >> 16)) == sem_bits);
  118. }
  119. /*
  120. * Caller holds hw_lock.
  121. */
  122. static int ql_wait_for_drvr_lock(struct ql3_adapter *qdev)
  123. {
  124. int i = 0;
  125. do {
  126. if (ql_sem_lock(qdev,
  127. QL_DRVR_SEM_MASK,
  128. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index)
  129. * 2) << 1)) {
  130. netdev_printk(KERN_DEBUG, qdev->ndev,
  131. "driver lock acquired\n");
  132. return 1;
  133. }
  134. mdelay(1000);
  135. } while (++i < 10);
  136. netdev_err(qdev->ndev, "Timed out waiting for driver lock...\n");
  137. return 0;
  138. }
  139. static void ql_set_register_page(struct ql3_adapter *qdev, u32 page)
  140. {
  141. struct ql3xxx_port_registers __iomem *port_regs =
  142. qdev->mem_map_registers;
  143. writel(((ISP_CONTROL_NP_MASK << 16) | page),
  144. &port_regs->CommonRegs.ispControlStatus);
  145. readl(&port_regs->CommonRegs.ispControlStatus);
  146. qdev->current_page = page;
  147. }
  148. static u32 ql_read_common_reg_l(struct ql3_adapter *qdev, u32 __iomem *reg)
  149. {
  150. u32 value;
  151. unsigned long hw_flags;
  152. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  153. value = readl(reg);
  154. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  155. return value;
  156. }
  157. static u32 ql_read_common_reg(struct ql3_adapter *qdev, u32 __iomem *reg)
  158. {
  159. return readl(reg);
  160. }
  161. static u32 ql_read_page0_reg_l(struct ql3_adapter *qdev, u32 __iomem *reg)
  162. {
  163. u32 value;
  164. unsigned long hw_flags;
  165. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  166. if (qdev->current_page != 0)
  167. ql_set_register_page(qdev, 0);
  168. value = readl(reg);
  169. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  170. return value;
  171. }
  172. static u32 ql_read_page0_reg(struct ql3_adapter *qdev, u32 __iomem *reg)
  173. {
  174. if (qdev->current_page != 0)
  175. ql_set_register_page(qdev, 0);
  176. return readl(reg);
  177. }
  178. static void ql_write_common_reg_l(struct ql3_adapter *qdev,
  179. u32 __iomem *reg, u32 value)
  180. {
  181. unsigned long hw_flags;
  182. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  183. writel(value, reg);
  184. readl(reg);
  185. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  186. }
  187. static void ql_write_common_reg(struct ql3_adapter *qdev,
  188. u32 __iomem *reg, u32 value)
  189. {
  190. writel(value, reg);
  191. readl(reg);
  192. }
  193. static void ql_write_nvram_reg(struct ql3_adapter *qdev,
  194. u32 __iomem *reg, u32 value)
  195. {
  196. writel(value, reg);
  197. readl(reg);
  198. udelay(1);
  199. }
  200. static void ql_write_page0_reg(struct ql3_adapter *qdev,
  201. u32 __iomem *reg, u32 value)
  202. {
  203. if (qdev->current_page != 0)
  204. ql_set_register_page(qdev, 0);
  205. writel(value, reg);
  206. readl(reg);
  207. }
  208. /*
  209. * Caller holds hw_lock. Only called during init.
  210. */
  211. static void ql_write_page1_reg(struct ql3_adapter *qdev,
  212. u32 __iomem *reg, u32 value)
  213. {
  214. if (qdev->current_page != 1)
  215. ql_set_register_page(qdev, 1);
  216. writel(value, reg);
  217. readl(reg);
  218. }
  219. /*
  220. * Caller holds hw_lock. Only called during init.
  221. */
  222. static void ql_write_page2_reg(struct ql3_adapter *qdev,
  223. u32 __iomem *reg, u32 value)
  224. {
  225. if (qdev->current_page != 2)
  226. ql_set_register_page(qdev, 2);
  227. writel(value, reg);
  228. readl(reg);
  229. }
  230. static void ql_disable_interrupts(struct ql3_adapter *qdev)
  231. {
  232. struct ql3xxx_port_registers __iomem *port_regs =
  233. qdev->mem_map_registers;
  234. ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
  235. (ISP_IMR_ENABLE_INT << 16));
  236. }
  237. static void ql_enable_interrupts(struct ql3_adapter *qdev)
  238. {
  239. struct ql3xxx_port_registers __iomem *port_regs =
  240. qdev->mem_map_registers;
  241. ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
  242. ((0xff << 16) | ISP_IMR_ENABLE_INT));
  243. }
  244. static void ql_release_to_lrg_buf_free_list(struct ql3_adapter *qdev,
  245. struct ql_rcv_buf_cb *lrg_buf_cb)
  246. {
  247. dma_addr_t map;
  248. int err;
  249. lrg_buf_cb->next = NULL;
  250. if (qdev->lrg_buf_free_tail == NULL) { /* The list is empty */
  251. qdev->lrg_buf_free_head = qdev->lrg_buf_free_tail = lrg_buf_cb;
  252. } else {
  253. qdev->lrg_buf_free_tail->next = lrg_buf_cb;
  254. qdev->lrg_buf_free_tail = lrg_buf_cb;
  255. }
  256. if (!lrg_buf_cb->skb) {
  257. lrg_buf_cb->skb = netdev_alloc_skb(qdev->ndev,
  258. qdev->lrg_buffer_len);
  259. if (unlikely(!lrg_buf_cb->skb)) {
  260. qdev->lrg_buf_skb_check++;
  261. } else {
  262. /*
  263. * We save some space to copy the ethhdr from first
  264. * buffer
  265. */
  266. skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
  267. map = dma_map_single(&qdev->pdev->dev,
  268. lrg_buf_cb->skb->data,
  269. qdev->lrg_buffer_len - QL_HEADER_SPACE,
  270. DMA_FROM_DEVICE);
  271. err = dma_mapping_error(&qdev->pdev->dev, map);
  272. if (err) {
  273. netdev_err(qdev->ndev,
  274. "PCI mapping failed with error: %d\n",
  275. err);
  276. dev_kfree_skb(lrg_buf_cb->skb);
  277. lrg_buf_cb->skb = NULL;
  278. qdev->lrg_buf_skb_check++;
  279. return;
  280. }
  281. lrg_buf_cb->buf_phy_addr_low =
  282. cpu_to_le32(LS_64BITS(map));
  283. lrg_buf_cb->buf_phy_addr_high =
  284. cpu_to_le32(MS_64BITS(map));
  285. dma_unmap_addr_set(lrg_buf_cb, mapaddr, map);
  286. dma_unmap_len_set(lrg_buf_cb, maplen,
  287. qdev->lrg_buffer_len -
  288. QL_HEADER_SPACE);
  289. }
  290. }
  291. qdev->lrg_buf_free_count++;
  292. }
  293. static struct ql_rcv_buf_cb *ql_get_from_lrg_buf_free_list(struct ql3_adapter
  294. *qdev)
  295. {
  296. struct ql_rcv_buf_cb *lrg_buf_cb = qdev->lrg_buf_free_head;
  297. if (lrg_buf_cb != NULL) {
  298. qdev->lrg_buf_free_head = lrg_buf_cb->next;
  299. if (qdev->lrg_buf_free_head == NULL)
  300. qdev->lrg_buf_free_tail = NULL;
  301. qdev->lrg_buf_free_count--;
  302. }
  303. return lrg_buf_cb;
  304. }
  305. static u32 addrBits = EEPROM_NO_ADDR_BITS;
  306. static u32 dataBits = EEPROM_NO_DATA_BITS;
  307. static void fm93c56a_deselect(struct ql3_adapter *qdev);
  308. static void eeprom_readword(struct ql3_adapter *qdev, u32 eepromAddr,
  309. unsigned short *value);
  310. /*
  311. * Caller holds hw_lock.
  312. */
  313. static void fm93c56a_select(struct ql3_adapter *qdev)
  314. {
  315. struct ql3xxx_port_registers __iomem *port_regs =
  316. qdev->mem_map_registers;
  317. __iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
  318. qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_1;
  319. ql_write_nvram_reg(qdev, spir, ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
  320. }
  321. /*
  322. * Caller holds hw_lock.
  323. */
  324. static void fm93c56a_cmd(struct ql3_adapter *qdev, u32 cmd, u32 eepromAddr)
  325. {
  326. int i;
  327. u32 mask;
  328. u32 dataBit;
  329. u32 previousBit;
  330. struct ql3xxx_port_registers __iomem *port_regs =
  331. qdev->mem_map_registers;
  332. __iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
  333. /* Clock in a zero, then do the start bit */
  334. ql_write_nvram_reg(qdev, spir,
  335. (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  336. AUBURN_EEPROM_DO_1));
  337. ql_write_nvram_reg(qdev, spir,
  338. (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  339. AUBURN_EEPROM_DO_1 | AUBURN_EEPROM_CLK_RISE));
  340. ql_write_nvram_reg(qdev, spir,
  341. (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  342. AUBURN_EEPROM_DO_1 | AUBURN_EEPROM_CLK_FALL));
  343. mask = 1 << (FM93C56A_CMD_BITS - 1);
  344. /* Force the previous data bit to be different */
  345. previousBit = 0xffff;
  346. for (i = 0; i < FM93C56A_CMD_BITS; i++) {
  347. dataBit = (cmd & mask)
  348. ? AUBURN_EEPROM_DO_1
  349. : AUBURN_EEPROM_DO_0;
  350. if (previousBit != dataBit) {
  351. /* If the bit changed, change the DO state to match */
  352. ql_write_nvram_reg(qdev, spir,
  353. (ISP_NVRAM_MASK |
  354. qdev->eeprom_cmd_data | dataBit));
  355. previousBit = dataBit;
  356. }
  357. ql_write_nvram_reg(qdev, spir,
  358. (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  359. dataBit | AUBURN_EEPROM_CLK_RISE));
  360. ql_write_nvram_reg(qdev, spir,
  361. (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  362. dataBit | AUBURN_EEPROM_CLK_FALL));
  363. cmd = cmd << 1;
  364. }
  365. mask = 1 << (addrBits - 1);
  366. /* Force the previous data bit to be different */
  367. previousBit = 0xffff;
  368. for (i = 0; i < addrBits; i++) {
  369. dataBit = (eepromAddr & mask) ? AUBURN_EEPROM_DO_1
  370. : AUBURN_EEPROM_DO_0;
  371. if (previousBit != dataBit) {
  372. /*
  373. * If the bit changed, then change the DO state to
  374. * match
  375. */
  376. ql_write_nvram_reg(qdev, spir,
  377. (ISP_NVRAM_MASK |
  378. qdev->eeprom_cmd_data | dataBit));
  379. previousBit = dataBit;
  380. }
  381. ql_write_nvram_reg(qdev, spir,
  382. (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  383. dataBit | AUBURN_EEPROM_CLK_RISE));
  384. ql_write_nvram_reg(qdev, spir,
  385. (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  386. dataBit | AUBURN_EEPROM_CLK_FALL));
  387. eepromAddr = eepromAddr << 1;
  388. }
  389. }
  390. /*
  391. * Caller holds hw_lock.
  392. */
  393. static void fm93c56a_deselect(struct ql3_adapter *qdev)
  394. {
  395. struct ql3xxx_port_registers __iomem *port_regs =
  396. qdev->mem_map_registers;
  397. __iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
  398. qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_0;
  399. ql_write_nvram_reg(qdev, spir, ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
  400. }
  401. /*
  402. * Caller holds hw_lock.
  403. */
  404. static void fm93c56a_datain(struct ql3_adapter *qdev, unsigned short *value)
  405. {
  406. int i;
  407. u32 data = 0;
  408. u32 dataBit;
  409. struct ql3xxx_port_registers __iomem *port_regs =
  410. qdev->mem_map_registers;
  411. __iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
  412. /* Read the data bits */
  413. /* The first bit is a dummy. Clock right over it. */
  414. for (i = 0; i < dataBits; i++) {
  415. ql_write_nvram_reg(qdev, spir,
  416. ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  417. AUBURN_EEPROM_CLK_RISE);
  418. ql_write_nvram_reg(qdev, spir,
  419. ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  420. AUBURN_EEPROM_CLK_FALL);
  421. dataBit = (ql_read_common_reg(qdev, spir) &
  422. AUBURN_EEPROM_DI_1) ? 1 : 0;
  423. data = (data << 1) | dataBit;
  424. }
  425. *value = (u16)data;
  426. }
  427. /*
  428. * Caller holds hw_lock.
  429. */
  430. static void eeprom_readword(struct ql3_adapter *qdev,
  431. u32 eepromAddr, unsigned short *value)
  432. {
  433. fm93c56a_select(qdev);
  434. fm93c56a_cmd(qdev, (int)FM93C56A_READ, eepromAddr);
  435. fm93c56a_datain(qdev, value);
  436. fm93c56a_deselect(qdev);
  437. }
  438. static void ql_set_mac_addr(struct net_device *ndev, u16 *addr)
  439. {
  440. __le16 buf[ETH_ALEN / 2];
  441. buf[0] = cpu_to_le16(addr[0]);
  442. buf[1] = cpu_to_le16(addr[1]);
  443. buf[2] = cpu_to_le16(addr[2]);
  444. eth_hw_addr_set(ndev, (u8 *)buf);
  445. }
  446. static int ql_get_nvram_params(struct ql3_adapter *qdev)
  447. {
  448. u16 *pEEPROMData;
  449. u16 checksum = 0;
  450. u32 index;
  451. unsigned long hw_flags;
  452. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  453. pEEPROMData = (u16 *)&qdev->nvram_data;
  454. qdev->eeprom_cmd_data = 0;
  455. if (ql_sem_spinlock(qdev, QL_NVRAM_SEM_MASK,
  456. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  457. 2) << 10)) {
  458. pr_err("%s: Failed ql_sem_spinlock()\n", __func__);
  459. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  460. return -1;
  461. }
  462. for (index = 0; index < EEPROM_SIZE; index++) {
  463. eeprom_readword(qdev, index, pEEPROMData);
  464. checksum += *pEEPROMData;
  465. pEEPROMData++;
  466. }
  467. ql_sem_unlock(qdev, QL_NVRAM_SEM_MASK);
  468. if (checksum != 0) {
  469. netdev_err(qdev->ndev, "checksum should be zero, is %x!!\n",
  470. checksum);
  471. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  472. return -1;
  473. }
  474. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  475. return checksum;
  476. }
  477. static const u32 PHYAddr[2] = {
  478. PORT0_PHY_ADDRESS, PORT1_PHY_ADDRESS
  479. };
  480. static int ql_wait_for_mii_ready(struct ql3_adapter *qdev)
  481. {
  482. struct ql3xxx_port_registers __iomem *port_regs =
  483. qdev->mem_map_registers;
  484. u32 temp;
  485. int count = 1000;
  486. while (count) {
  487. temp = ql_read_page0_reg(qdev, &port_regs->macMIIStatusReg);
  488. if (!(temp & MAC_MII_STATUS_BSY))
  489. return 0;
  490. udelay(10);
  491. count--;
  492. }
  493. return -1;
  494. }
  495. static void ql_mii_enable_scan_mode(struct ql3_adapter *qdev)
  496. {
  497. struct ql3xxx_port_registers __iomem *port_regs =
  498. qdev->mem_map_registers;
  499. u32 scanControl;
  500. if (qdev->numPorts > 1) {
  501. /* Auto scan will cycle through multiple ports */
  502. scanControl = MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC;
  503. } else {
  504. scanControl = MAC_MII_CONTROL_SC;
  505. }
  506. /*
  507. * Scan register 1 of PHY/PETBI,
  508. * Set up to scan both devices
  509. * The autoscan starts from the first register, completes
  510. * the last one before rolling over to the first
  511. */
  512. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  513. PHYAddr[0] | MII_SCAN_REGISTER);
  514. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  515. (scanControl) |
  516. ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS) << 16));
  517. }
  518. static u8 ql_mii_disable_scan_mode(struct ql3_adapter *qdev)
  519. {
  520. u8 ret;
  521. struct ql3xxx_port_registers __iomem *port_regs =
  522. qdev->mem_map_registers;
  523. /* See if scan mode is enabled before we turn it off */
  524. if (ql_read_page0_reg(qdev, &port_regs->macMIIMgmtControlReg) &
  525. (MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC)) {
  526. /* Scan is enabled */
  527. ret = 1;
  528. } else {
  529. /* Scan is disabled */
  530. ret = 0;
  531. }
  532. /*
  533. * When disabling scan mode you must first change the MII register
  534. * address
  535. */
  536. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  537. PHYAddr[0] | MII_SCAN_REGISTER);
  538. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  539. ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS |
  540. MAC_MII_CONTROL_RC) << 16));
  541. return ret;
  542. }
  543. static int ql_mii_write_reg_ex(struct ql3_adapter *qdev,
  544. u16 regAddr, u16 value, u32 phyAddr)
  545. {
  546. struct ql3xxx_port_registers __iomem *port_regs =
  547. qdev->mem_map_registers;
  548. u8 scanWasEnabled;
  549. scanWasEnabled = ql_mii_disable_scan_mode(qdev);
  550. if (ql_wait_for_mii_ready(qdev)) {
  551. netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
  552. return -1;
  553. }
  554. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  555. phyAddr | regAddr);
  556. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
  557. /* Wait for write to complete 9/10/04 SJP */
  558. if (ql_wait_for_mii_ready(qdev)) {
  559. netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
  560. return -1;
  561. }
  562. if (scanWasEnabled)
  563. ql_mii_enable_scan_mode(qdev);
  564. return 0;
  565. }
  566. static int ql_mii_read_reg_ex(struct ql3_adapter *qdev, u16 regAddr,
  567. u16 *value, u32 phyAddr)
  568. {
  569. struct ql3xxx_port_registers __iomem *port_regs =
  570. qdev->mem_map_registers;
  571. u8 scanWasEnabled;
  572. u32 temp;
  573. scanWasEnabled = ql_mii_disable_scan_mode(qdev);
  574. if (ql_wait_for_mii_ready(qdev)) {
  575. netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
  576. return -1;
  577. }
  578. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  579. phyAddr | regAddr);
  580. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  581. (MAC_MII_CONTROL_RC << 16));
  582. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  583. (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
  584. /* Wait for the read to complete */
  585. if (ql_wait_for_mii_ready(qdev)) {
  586. netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
  587. return -1;
  588. }
  589. temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
  590. *value = (u16) temp;
  591. if (scanWasEnabled)
  592. ql_mii_enable_scan_mode(qdev);
  593. return 0;
  594. }
  595. static int ql_mii_write_reg(struct ql3_adapter *qdev, u16 regAddr, u16 value)
  596. {
  597. struct ql3xxx_port_registers __iomem *port_regs =
  598. qdev->mem_map_registers;
  599. ql_mii_disable_scan_mode(qdev);
  600. if (ql_wait_for_mii_ready(qdev)) {
  601. netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
  602. return -1;
  603. }
  604. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  605. qdev->PHYAddr | regAddr);
  606. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
  607. /* Wait for write to complete. */
  608. if (ql_wait_for_mii_ready(qdev)) {
  609. netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
  610. return -1;
  611. }
  612. ql_mii_enable_scan_mode(qdev);
  613. return 0;
  614. }
  615. static int ql_mii_read_reg(struct ql3_adapter *qdev, u16 regAddr, u16 *value)
  616. {
  617. u32 temp;
  618. struct ql3xxx_port_registers __iomem *port_regs =
  619. qdev->mem_map_registers;
  620. ql_mii_disable_scan_mode(qdev);
  621. if (ql_wait_for_mii_ready(qdev)) {
  622. netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
  623. return -1;
  624. }
  625. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  626. qdev->PHYAddr | regAddr);
  627. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  628. (MAC_MII_CONTROL_RC << 16));
  629. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  630. (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
  631. /* Wait for the read to complete */
  632. if (ql_wait_for_mii_ready(qdev)) {
  633. netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
  634. return -1;
  635. }
  636. temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
  637. *value = (u16) temp;
  638. ql_mii_enable_scan_mode(qdev);
  639. return 0;
  640. }
  641. static void ql_petbi_reset(struct ql3_adapter *qdev)
  642. {
  643. ql_mii_write_reg(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET);
  644. }
  645. static void ql_petbi_start_neg(struct ql3_adapter *qdev)
  646. {
  647. u16 reg;
  648. /* Enable Auto-negotiation sense */
  649. ql_mii_read_reg(qdev, PETBI_TBI_CTRL, &reg);
  650. reg |= PETBI_TBI_AUTO_SENSE;
  651. ql_mii_write_reg(qdev, PETBI_TBI_CTRL, reg);
  652. ql_mii_write_reg(qdev, PETBI_NEG_ADVER,
  653. PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX);
  654. ql_mii_write_reg(qdev, PETBI_CONTROL_REG,
  655. PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
  656. PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000);
  657. }
  658. static void ql_petbi_reset_ex(struct ql3_adapter *qdev)
  659. {
  660. ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET,
  661. PHYAddr[qdev->mac_index]);
  662. }
  663. static void ql_petbi_start_neg_ex(struct ql3_adapter *qdev)
  664. {
  665. u16 reg;
  666. /* Enable Auto-negotiation sense */
  667. ql_mii_read_reg_ex(qdev, PETBI_TBI_CTRL, &reg,
  668. PHYAddr[qdev->mac_index]);
  669. reg |= PETBI_TBI_AUTO_SENSE;
  670. ql_mii_write_reg_ex(qdev, PETBI_TBI_CTRL, reg,
  671. PHYAddr[qdev->mac_index]);
  672. ql_mii_write_reg_ex(qdev, PETBI_NEG_ADVER,
  673. PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX,
  674. PHYAddr[qdev->mac_index]);
  675. ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG,
  676. PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
  677. PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000,
  678. PHYAddr[qdev->mac_index]);
  679. }
  680. static void ql_petbi_init(struct ql3_adapter *qdev)
  681. {
  682. ql_petbi_reset(qdev);
  683. ql_petbi_start_neg(qdev);
  684. }
  685. static void ql_petbi_init_ex(struct ql3_adapter *qdev)
  686. {
  687. ql_petbi_reset_ex(qdev);
  688. ql_petbi_start_neg_ex(qdev);
  689. }
  690. static int ql_is_petbi_neg_pause(struct ql3_adapter *qdev)
  691. {
  692. u16 reg;
  693. if (ql_mii_read_reg(qdev, PETBI_NEG_PARTNER, &reg) < 0)
  694. return 0;
  695. return (reg & PETBI_NEG_PAUSE_MASK) == PETBI_NEG_PAUSE;
  696. }
  697. static void phyAgereSpecificInit(struct ql3_adapter *qdev, u32 miiAddr)
  698. {
  699. netdev_info(qdev->ndev, "enabling Agere specific PHY\n");
  700. /* power down device bit 11 = 1 */
  701. ql_mii_write_reg_ex(qdev, 0x00, 0x1940, miiAddr);
  702. /* enable diagnostic mode bit 2 = 1 */
  703. ql_mii_write_reg_ex(qdev, 0x12, 0x840e, miiAddr);
  704. /* 1000MB amplitude adjust (see Agere errata) */
  705. ql_mii_write_reg_ex(qdev, 0x10, 0x8805, miiAddr);
  706. /* 1000MB amplitude adjust (see Agere errata) */
  707. ql_mii_write_reg_ex(qdev, 0x11, 0xf03e, miiAddr);
  708. /* 100MB amplitude adjust (see Agere errata) */
  709. ql_mii_write_reg_ex(qdev, 0x10, 0x8806, miiAddr);
  710. /* 100MB amplitude adjust (see Agere errata) */
  711. ql_mii_write_reg_ex(qdev, 0x11, 0x003e, miiAddr);
  712. /* 10MB amplitude adjust (see Agere errata) */
  713. ql_mii_write_reg_ex(qdev, 0x10, 0x8807, miiAddr);
  714. /* 10MB amplitude adjust (see Agere errata) */
  715. ql_mii_write_reg_ex(qdev, 0x11, 0x1f00, miiAddr);
  716. /* point to hidden reg 0x2806 */
  717. ql_mii_write_reg_ex(qdev, 0x10, 0x2806, miiAddr);
  718. /* Write new PHYAD w/bit 5 set */
  719. ql_mii_write_reg_ex(qdev, 0x11,
  720. 0x0020 | (PHYAddr[qdev->mac_index] >> 8), miiAddr);
  721. /*
  722. * Disable diagnostic mode bit 2 = 0
  723. * Power up device bit 11 = 0
  724. * Link up (on) and activity (blink)
  725. */
  726. ql_mii_write_reg(qdev, 0x12, 0x840a);
  727. ql_mii_write_reg(qdev, 0x00, 0x1140);
  728. ql_mii_write_reg(qdev, 0x1c, 0xfaf0);
  729. }
  730. static enum PHY_DEVICE_TYPE getPhyType(struct ql3_adapter *qdev,
  731. u16 phyIdReg0, u16 phyIdReg1)
  732. {
  733. enum PHY_DEVICE_TYPE result = PHY_TYPE_UNKNOWN;
  734. u32 oui;
  735. u16 model;
  736. int i;
  737. if (phyIdReg0 == 0xffff)
  738. return result;
  739. if (phyIdReg1 == 0xffff)
  740. return result;
  741. /* oui is split between two registers */
  742. oui = (phyIdReg0 << 6) | ((phyIdReg1 & PHY_OUI_1_MASK) >> 10);
  743. model = (phyIdReg1 & PHY_MODEL_MASK) >> 4;
  744. /* Scan table for this PHY */
  745. for (i = 0; i < MAX_PHY_DEV_TYPES; i++) {
  746. if ((oui == PHY_DEVICES[i].phyIdOUI) &&
  747. (model == PHY_DEVICES[i].phyIdModel)) {
  748. netdev_info(qdev->ndev, "Phy: %s\n",
  749. PHY_DEVICES[i].name);
  750. result = PHY_DEVICES[i].phyDevice;
  751. break;
  752. }
  753. }
  754. return result;
  755. }
  756. static int ql_phy_get_speed(struct ql3_adapter *qdev)
  757. {
  758. u16 reg;
  759. switch (qdev->phyType) {
  760. case PHY_AGERE_ET1011C: {
  761. if (ql_mii_read_reg(qdev, 0x1A, &reg) < 0)
  762. return 0;
  763. reg = (reg >> 8) & 3;
  764. break;
  765. }
  766. default:
  767. if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
  768. return 0;
  769. reg = (((reg & 0x18) >> 3) & 3);
  770. }
  771. switch (reg) {
  772. case 2:
  773. return SPEED_1000;
  774. case 1:
  775. return SPEED_100;
  776. case 0:
  777. return SPEED_10;
  778. default:
  779. return -1;
  780. }
  781. }
  782. static int ql_is_full_dup(struct ql3_adapter *qdev)
  783. {
  784. u16 reg;
  785. switch (qdev->phyType) {
  786. case PHY_AGERE_ET1011C: {
  787. if (ql_mii_read_reg(qdev, 0x1A, &reg))
  788. return 0;
  789. return ((reg & 0x0080) && (reg & 0x1000)) != 0;
  790. }
  791. case PHY_VITESSE_VSC8211:
  792. default: {
  793. if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
  794. return 0;
  795. return (reg & PHY_AUX_DUPLEX_STAT) != 0;
  796. }
  797. }
  798. }
  799. static int ql_is_phy_neg_pause(struct ql3_adapter *qdev)
  800. {
  801. u16 reg;
  802. if (ql_mii_read_reg(qdev, PHY_NEG_PARTNER, &reg) < 0)
  803. return 0;
  804. return (reg & PHY_NEG_PAUSE) != 0;
  805. }
  806. static int PHY_Setup(struct ql3_adapter *qdev)
  807. {
  808. u16 reg1;
  809. u16 reg2;
  810. bool agereAddrChangeNeeded = false;
  811. u32 miiAddr = 0;
  812. int err;
  813. /* Determine the PHY we are using by reading the ID's */
  814. err = ql_mii_read_reg(qdev, PHY_ID_0_REG, &reg1);
  815. if (err != 0) {
  816. netdev_err(qdev->ndev, "Could not read from reg PHY_ID_0_REG\n");
  817. return err;
  818. }
  819. err = ql_mii_read_reg(qdev, PHY_ID_1_REG, &reg2);
  820. if (err != 0) {
  821. netdev_err(qdev->ndev, "Could not read from reg PHY_ID_1_REG\n");
  822. return err;
  823. }
  824. /* Check if we have a Agere PHY */
  825. if ((reg1 == 0xffff) || (reg2 == 0xffff)) {
  826. /* Determine which MII address we should be using
  827. determined by the index of the card */
  828. if (qdev->mac_index == 0)
  829. miiAddr = MII_AGERE_ADDR_1;
  830. else
  831. miiAddr = MII_AGERE_ADDR_2;
  832. err = ql_mii_read_reg_ex(qdev, PHY_ID_0_REG, &reg1, miiAddr);
  833. if (err != 0) {
  834. netdev_err(qdev->ndev,
  835. "Could not read from reg PHY_ID_0_REG after Agere detected\n");
  836. return err;
  837. }
  838. err = ql_mii_read_reg_ex(qdev, PHY_ID_1_REG, &reg2, miiAddr);
  839. if (err != 0) {
  840. netdev_err(qdev->ndev, "Could not read from reg PHY_ID_1_REG after Agere detected\n");
  841. return err;
  842. }
  843. /* We need to remember to initialize the Agere PHY */
  844. agereAddrChangeNeeded = true;
  845. }
  846. /* Determine the particular PHY we have on board to apply
  847. PHY specific initializations */
  848. qdev->phyType = getPhyType(qdev, reg1, reg2);
  849. if ((qdev->phyType == PHY_AGERE_ET1011C) && agereAddrChangeNeeded) {
  850. /* need this here so address gets changed */
  851. phyAgereSpecificInit(qdev, miiAddr);
  852. } else if (qdev->phyType == PHY_TYPE_UNKNOWN) {
  853. netdev_err(qdev->ndev, "PHY is unknown\n");
  854. return -EIO;
  855. }
  856. return 0;
  857. }
  858. /*
  859. * Caller holds hw_lock.
  860. */
  861. static void ql_mac_enable(struct ql3_adapter *qdev, u32 enable)
  862. {
  863. struct ql3xxx_port_registers __iomem *port_regs =
  864. qdev->mem_map_registers;
  865. u32 value;
  866. if (enable)
  867. value = (MAC_CONFIG_REG_PE | (MAC_CONFIG_REG_PE << 16));
  868. else
  869. value = (MAC_CONFIG_REG_PE << 16);
  870. if (qdev->mac_index)
  871. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  872. else
  873. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  874. }
  875. /*
  876. * Caller holds hw_lock.
  877. */
  878. static void ql_mac_cfg_soft_reset(struct ql3_adapter *qdev, u32 enable)
  879. {
  880. struct ql3xxx_port_registers __iomem *port_regs =
  881. qdev->mem_map_registers;
  882. u32 value;
  883. if (enable)
  884. value = (MAC_CONFIG_REG_SR | (MAC_CONFIG_REG_SR << 16));
  885. else
  886. value = (MAC_CONFIG_REG_SR << 16);
  887. if (qdev->mac_index)
  888. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  889. else
  890. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  891. }
  892. /*
  893. * Caller holds hw_lock.
  894. */
  895. static void ql_mac_cfg_gig(struct ql3_adapter *qdev, u32 enable)
  896. {
  897. struct ql3xxx_port_registers __iomem *port_regs =
  898. qdev->mem_map_registers;
  899. u32 value;
  900. if (enable)
  901. value = (MAC_CONFIG_REG_GM | (MAC_CONFIG_REG_GM << 16));
  902. else
  903. value = (MAC_CONFIG_REG_GM << 16);
  904. if (qdev->mac_index)
  905. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  906. else
  907. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  908. }
  909. /*
  910. * Caller holds hw_lock.
  911. */
  912. static void ql_mac_cfg_full_dup(struct ql3_adapter *qdev, u32 enable)
  913. {
  914. struct ql3xxx_port_registers __iomem *port_regs =
  915. qdev->mem_map_registers;
  916. u32 value;
  917. if (enable)
  918. value = (MAC_CONFIG_REG_FD | (MAC_CONFIG_REG_FD << 16));
  919. else
  920. value = (MAC_CONFIG_REG_FD << 16);
  921. if (qdev->mac_index)
  922. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  923. else
  924. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  925. }
  926. /*
  927. * Caller holds hw_lock.
  928. */
  929. static void ql_mac_cfg_pause(struct ql3_adapter *qdev, u32 enable)
  930. {
  931. struct ql3xxx_port_registers __iomem *port_regs =
  932. qdev->mem_map_registers;
  933. u32 value;
  934. if (enable)
  935. value =
  936. ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) |
  937. ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16));
  938. else
  939. value = ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16);
  940. if (qdev->mac_index)
  941. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  942. else
  943. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  944. }
  945. /*
  946. * Caller holds hw_lock.
  947. */
  948. static int ql_is_fiber(struct ql3_adapter *qdev)
  949. {
  950. struct ql3xxx_port_registers __iomem *port_regs =
  951. qdev->mem_map_registers;
  952. u32 bitToCheck = 0;
  953. u32 temp;
  954. switch (qdev->mac_index) {
  955. case 0:
  956. bitToCheck = PORT_STATUS_SM0;
  957. break;
  958. case 1:
  959. bitToCheck = PORT_STATUS_SM1;
  960. break;
  961. }
  962. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  963. return (temp & bitToCheck) != 0;
  964. }
  965. static int ql_is_auto_cfg(struct ql3_adapter *qdev)
  966. {
  967. u16 reg;
  968. ql_mii_read_reg(qdev, 0x00, &reg);
  969. return (reg & 0x1000) != 0;
  970. }
  971. /*
  972. * Caller holds hw_lock.
  973. */
  974. static int ql_is_auto_neg_complete(struct ql3_adapter *qdev)
  975. {
  976. struct ql3xxx_port_registers __iomem *port_regs =
  977. qdev->mem_map_registers;
  978. u32 bitToCheck = 0;
  979. u32 temp;
  980. switch (qdev->mac_index) {
  981. case 0:
  982. bitToCheck = PORT_STATUS_AC0;
  983. break;
  984. case 1:
  985. bitToCheck = PORT_STATUS_AC1;
  986. break;
  987. }
  988. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  989. if (temp & bitToCheck) {
  990. netif_info(qdev, link, qdev->ndev, "Auto-Negotiate complete\n");
  991. return 1;
  992. }
  993. netif_info(qdev, link, qdev->ndev, "Auto-Negotiate incomplete\n");
  994. return 0;
  995. }
  996. /*
  997. * ql_is_neg_pause() returns 1 if pause was negotiated to be on
  998. */
  999. static int ql_is_neg_pause(struct ql3_adapter *qdev)
  1000. {
  1001. if (ql_is_fiber(qdev))
  1002. return ql_is_petbi_neg_pause(qdev);
  1003. else
  1004. return ql_is_phy_neg_pause(qdev);
  1005. }
  1006. static int ql_auto_neg_error(struct ql3_adapter *qdev)
  1007. {
  1008. struct ql3xxx_port_registers __iomem *port_regs =
  1009. qdev->mem_map_registers;
  1010. u32 bitToCheck = 0;
  1011. u32 temp;
  1012. switch (qdev->mac_index) {
  1013. case 0:
  1014. bitToCheck = PORT_STATUS_AE0;
  1015. break;
  1016. case 1:
  1017. bitToCheck = PORT_STATUS_AE1;
  1018. break;
  1019. }
  1020. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  1021. return (temp & bitToCheck) != 0;
  1022. }
  1023. static u32 ql_get_link_speed(struct ql3_adapter *qdev)
  1024. {
  1025. if (ql_is_fiber(qdev))
  1026. return SPEED_1000;
  1027. else
  1028. return ql_phy_get_speed(qdev);
  1029. }
  1030. static int ql_is_link_full_dup(struct ql3_adapter *qdev)
  1031. {
  1032. if (ql_is_fiber(qdev))
  1033. return 1;
  1034. else
  1035. return ql_is_full_dup(qdev);
  1036. }
  1037. /*
  1038. * Caller holds hw_lock.
  1039. */
  1040. static int ql_link_down_detect(struct ql3_adapter *qdev)
  1041. {
  1042. struct ql3xxx_port_registers __iomem *port_regs =
  1043. qdev->mem_map_registers;
  1044. u32 bitToCheck = 0;
  1045. u32 temp;
  1046. switch (qdev->mac_index) {
  1047. case 0:
  1048. bitToCheck = ISP_CONTROL_LINK_DN_0;
  1049. break;
  1050. case 1:
  1051. bitToCheck = ISP_CONTROL_LINK_DN_1;
  1052. break;
  1053. }
  1054. temp =
  1055. ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus);
  1056. return (temp & bitToCheck) != 0;
  1057. }
  1058. /*
  1059. * Caller holds hw_lock.
  1060. */
  1061. static int ql_link_down_detect_clear(struct ql3_adapter *qdev)
  1062. {
  1063. struct ql3xxx_port_registers __iomem *port_regs =
  1064. qdev->mem_map_registers;
  1065. switch (qdev->mac_index) {
  1066. case 0:
  1067. ql_write_common_reg(qdev,
  1068. &port_regs->CommonRegs.ispControlStatus,
  1069. (ISP_CONTROL_LINK_DN_0) |
  1070. (ISP_CONTROL_LINK_DN_0 << 16));
  1071. break;
  1072. case 1:
  1073. ql_write_common_reg(qdev,
  1074. &port_regs->CommonRegs.ispControlStatus,
  1075. (ISP_CONTROL_LINK_DN_1) |
  1076. (ISP_CONTROL_LINK_DN_1 << 16));
  1077. break;
  1078. default:
  1079. return 1;
  1080. }
  1081. return 0;
  1082. }
  1083. /*
  1084. * Caller holds hw_lock.
  1085. */
  1086. static int ql_this_adapter_controls_port(struct ql3_adapter *qdev)
  1087. {
  1088. struct ql3xxx_port_registers __iomem *port_regs =
  1089. qdev->mem_map_registers;
  1090. u32 bitToCheck = 0;
  1091. u32 temp;
  1092. switch (qdev->mac_index) {
  1093. case 0:
  1094. bitToCheck = PORT_STATUS_F1_ENABLED;
  1095. break;
  1096. case 1:
  1097. bitToCheck = PORT_STATUS_F3_ENABLED;
  1098. break;
  1099. default:
  1100. break;
  1101. }
  1102. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  1103. if (temp & bitToCheck) {
  1104. netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
  1105. "not link master\n");
  1106. return 0;
  1107. }
  1108. netif_printk(qdev, link, KERN_DEBUG, qdev->ndev, "link master\n");
  1109. return 1;
  1110. }
  1111. static void ql_phy_reset_ex(struct ql3_adapter *qdev)
  1112. {
  1113. ql_mii_write_reg_ex(qdev, CONTROL_REG, PHY_CTRL_SOFT_RESET,
  1114. PHYAddr[qdev->mac_index]);
  1115. }
  1116. static void ql_phy_start_neg_ex(struct ql3_adapter *qdev)
  1117. {
  1118. u16 reg;
  1119. u16 portConfiguration;
  1120. if (qdev->phyType == PHY_AGERE_ET1011C)
  1121. ql_mii_write_reg(qdev, 0x13, 0x0000);
  1122. /* turn off external loopback */
  1123. if (qdev->mac_index == 0)
  1124. portConfiguration =
  1125. qdev->nvram_data.macCfg_port0.portConfiguration;
  1126. else
  1127. portConfiguration =
  1128. qdev->nvram_data.macCfg_port1.portConfiguration;
  1129. /* Some HBA's in the field are set to 0 and they need to
  1130. be reinterpreted with a default value */
  1131. if (portConfiguration == 0)
  1132. portConfiguration = PORT_CONFIG_DEFAULT;
  1133. /* Set the 1000 advertisements */
  1134. ql_mii_read_reg_ex(qdev, PHY_GIG_CONTROL, &reg,
  1135. PHYAddr[qdev->mac_index]);
  1136. reg &= ~PHY_GIG_ALL_PARAMS;
  1137. if (portConfiguration & PORT_CONFIG_1000MB_SPEED) {
  1138. if (portConfiguration & PORT_CONFIG_FULL_DUPLEX_ENABLED)
  1139. reg |= PHY_GIG_ADV_1000F;
  1140. else
  1141. reg |= PHY_GIG_ADV_1000H;
  1142. }
  1143. ql_mii_write_reg_ex(qdev, PHY_GIG_CONTROL, reg,
  1144. PHYAddr[qdev->mac_index]);
  1145. /* Set the 10/100 & pause negotiation advertisements */
  1146. ql_mii_read_reg_ex(qdev, PHY_NEG_ADVER, &reg,
  1147. PHYAddr[qdev->mac_index]);
  1148. reg &= ~PHY_NEG_ALL_PARAMS;
  1149. if (portConfiguration & PORT_CONFIG_SYM_PAUSE_ENABLED)
  1150. reg |= PHY_NEG_ASY_PAUSE | PHY_NEG_SYM_PAUSE;
  1151. if (portConfiguration & PORT_CONFIG_FULL_DUPLEX_ENABLED) {
  1152. if (portConfiguration & PORT_CONFIG_100MB_SPEED)
  1153. reg |= PHY_NEG_ADV_100F;
  1154. if (portConfiguration & PORT_CONFIG_10MB_SPEED)
  1155. reg |= PHY_NEG_ADV_10F;
  1156. }
  1157. if (portConfiguration & PORT_CONFIG_HALF_DUPLEX_ENABLED) {
  1158. if (portConfiguration & PORT_CONFIG_100MB_SPEED)
  1159. reg |= PHY_NEG_ADV_100H;
  1160. if (portConfiguration & PORT_CONFIG_10MB_SPEED)
  1161. reg |= PHY_NEG_ADV_10H;
  1162. }
  1163. if (portConfiguration & PORT_CONFIG_1000MB_SPEED)
  1164. reg |= 1;
  1165. ql_mii_write_reg_ex(qdev, PHY_NEG_ADVER, reg,
  1166. PHYAddr[qdev->mac_index]);
  1167. ql_mii_read_reg_ex(qdev, CONTROL_REG, &reg, PHYAddr[qdev->mac_index]);
  1168. ql_mii_write_reg_ex(qdev, CONTROL_REG,
  1169. reg | PHY_CTRL_RESTART_NEG | PHY_CTRL_AUTO_NEG,
  1170. PHYAddr[qdev->mac_index]);
  1171. }
  1172. static void ql_phy_init_ex(struct ql3_adapter *qdev)
  1173. {
  1174. ql_phy_reset_ex(qdev);
  1175. PHY_Setup(qdev);
  1176. ql_phy_start_neg_ex(qdev);
  1177. }
  1178. /*
  1179. * Caller holds hw_lock.
  1180. */
  1181. static u32 ql_get_link_state(struct ql3_adapter *qdev)
  1182. {
  1183. struct ql3xxx_port_registers __iomem *port_regs =
  1184. qdev->mem_map_registers;
  1185. u32 bitToCheck = 0;
  1186. u32 temp, linkState;
  1187. switch (qdev->mac_index) {
  1188. case 0:
  1189. bitToCheck = PORT_STATUS_UP0;
  1190. break;
  1191. case 1:
  1192. bitToCheck = PORT_STATUS_UP1;
  1193. break;
  1194. }
  1195. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  1196. if (temp & bitToCheck)
  1197. linkState = LS_UP;
  1198. else
  1199. linkState = LS_DOWN;
  1200. return linkState;
  1201. }
  1202. static int ql_port_start(struct ql3_adapter *qdev)
  1203. {
  1204. if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1205. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1206. 2) << 7)) {
  1207. netdev_err(qdev->ndev, "Could not get hw lock for GIO\n");
  1208. return -1;
  1209. }
  1210. if (ql_is_fiber(qdev)) {
  1211. ql_petbi_init(qdev);
  1212. } else {
  1213. /* Copper port */
  1214. ql_phy_init_ex(qdev);
  1215. }
  1216. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1217. return 0;
  1218. }
  1219. static int ql_finish_auto_neg(struct ql3_adapter *qdev)
  1220. {
  1221. if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1222. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1223. 2) << 7))
  1224. return -1;
  1225. if (!ql_auto_neg_error(qdev)) {
  1226. if (test_bit(QL_LINK_MASTER, &qdev->flags)) {
  1227. /* configure the MAC */
  1228. netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
  1229. "Configuring link\n");
  1230. ql_mac_cfg_soft_reset(qdev, 1);
  1231. ql_mac_cfg_gig(qdev,
  1232. (ql_get_link_speed
  1233. (qdev) ==
  1234. SPEED_1000));
  1235. ql_mac_cfg_full_dup(qdev,
  1236. ql_is_link_full_dup
  1237. (qdev));
  1238. ql_mac_cfg_pause(qdev,
  1239. ql_is_neg_pause
  1240. (qdev));
  1241. ql_mac_cfg_soft_reset(qdev, 0);
  1242. /* enable the MAC */
  1243. netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
  1244. "Enabling mac\n");
  1245. ql_mac_enable(qdev, 1);
  1246. }
  1247. qdev->port_link_state = LS_UP;
  1248. netif_start_queue(qdev->ndev);
  1249. netif_carrier_on(qdev->ndev);
  1250. netif_info(qdev, link, qdev->ndev,
  1251. "Link is up at %d Mbps, %s duplex\n",
  1252. ql_get_link_speed(qdev),
  1253. ql_is_link_full_dup(qdev) ? "full" : "half");
  1254. } else { /* Remote error detected */
  1255. if (test_bit(QL_LINK_MASTER, &qdev->flags)) {
  1256. netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
  1257. "Remote error detected. Calling ql_port_start()\n");
  1258. /*
  1259. * ql_port_start() is shared code and needs
  1260. * to lock the PHY on it's own.
  1261. */
  1262. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1263. if (ql_port_start(qdev)) /* Restart port */
  1264. return -1;
  1265. return 0;
  1266. }
  1267. }
  1268. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1269. return 0;
  1270. }
  1271. static void ql_link_state_machine_work(struct work_struct *work)
  1272. {
  1273. struct ql3_adapter *qdev =
  1274. container_of(work, struct ql3_adapter, link_state_work.work);
  1275. u32 curr_link_state;
  1276. unsigned long hw_flags;
  1277. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1278. curr_link_state = ql_get_link_state(qdev);
  1279. if (test_bit(QL_RESET_ACTIVE, &qdev->flags)) {
  1280. netif_info(qdev, link, qdev->ndev,
  1281. "Reset in progress, skip processing link state\n");
  1282. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1283. /* Restart timer on 2 second interval. */
  1284. mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
  1285. return;
  1286. }
  1287. switch (qdev->port_link_state) {
  1288. default:
  1289. if (test_bit(QL_LINK_MASTER, &qdev->flags))
  1290. ql_port_start(qdev);
  1291. qdev->port_link_state = LS_DOWN;
  1292. fallthrough;
  1293. case LS_DOWN:
  1294. if (curr_link_state == LS_UP) {
  1295. netif_info(qdev, link, qdev->ndev, "Link is up\n");
  1296. if (ql_is_auto_neg_complete(qdev))
  1297. ql_finish_auto_neg(qdev);
  1298. if (qdev->port_link_state == LS_UP)
  1299. ql_link_down_detect_clear(qdev);
  1300. qdev->port_link_state = LS_UP;
  1301. }
  1302. break;
  1303. case LS_UP:
  1304. /*
  1305. * See if the link is currently down or went down and came
  1306. * back up
  1307. */
  1308. if (curr_link_state == LS_DOWN) {
  1309. netif_info(qdev, link, qdev->ndev, "Link is down\n");
  1310. qdev->port_link_state = LS_DOWN;
  1311. }
  1312. if (ql_link_down_detect(qdev))
  1313. qdev->port_link_state = LS_DOWN;
  1314. break;
  1315. }
  1316. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1317. /* Restart timer on 2 second interval. */
  1318. mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
  1319. }
  1320. /*
  1321. * Caller must take hw_lock and QL_PHY_GIO_SEM.
  1322. */
  1323. static void ql_get_phy_owner(struct ql3_adapter *qdev)
  1324. {
  1325. if (ql_this_adapter_controls_port(qdev))
  1326. set_bit(QL_LINK_MASTER, &qdev->flags);
  1327. else
  1328. clear_bit(QL_LINK_MASTER, &qdev->flags);
  1329. }
  1330. /*
  1331. * Caller must take hw_lock and QL_PHY_GIO_SEM.
  1332. */
  1333. static void ql_init_scan_mode(struct ql3_adapter *qdev)
  1334. {
  1335. ql_mii_enable_scan_mode(qdev);
  1336. if (test_bit(QL_LINK_OPTICAL, &qdev->flags)) {
  1337. if (ql_this_adapter_controls_port(qdev))
  1338. ql_petbi_init_ex(qdev);
  1339. } else {
  1340. if (ql_this_adapter_controls_port(qdev))
  1341. ql_phy_init_ex(qdev);
  1342. }
  1343. }
  1344. /*
  1345. * MII_Setup needs to be called before taking the PHY out of reset
  1346. * so that the management interface clock speed can be set properly.
  1347. * It would be better if we had a way to disable MDC until after the
  1348. * PHY is out of reset, but we don't have that capability.
  1349. */
  1350. static int ql_mii_setup(struct ql3_adapter *qdev)
  1351. {
  1352. u32 reg;
  1353. struct ql3xxx_port_registers __iomem *port_regs =
  1354. qdev->mem_map_registers;
  1355. if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1356. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1357. 2) << 7))
  1358. return -1;
  1359. if (qdev->device_id == QL3032_DEVICE_ID)
  1360. ql_write_page0_reg(qdev,
  1361. &port_regs->macMIIMgmtControlReg, 0x0f00000);
  1362. /* Divide 125MHz clock by 28 to meet PHY timing requirements */
  1363. reg = MAC_MII_CONTROL_CLK_SEL_DIV28;
  1364. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  1365. reg | ((MAC_MII_CONTROL_CLK_SEL_MASK) << 16));
  1366. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1367. return 0;
  1368. }
  1369. #define SUPPORTED_OPTICAL_MODES (SUPPORTED_1000baseT_Full | \
  1370. SUPPORTED_FIBRE | \
  1371. SUPPORTED_Autoneg)
  1372. #define SUPPORTED_TP_MODES (SUPPORTED_10baseT_Half | \
  1373. SUPPORTED_10baseT_Full | \
  1374. SUPPORTED_100baseT_Half | \
  1375. SUPPORTED_100baseT_Full | \
  1376. SUPPORTED_1000baseT_Half | \
  1377. SUPPORTED_1000baseT_Full | \
  1378. SUPPORTED_Autoneg | \
  1379. SUPPORTED_TP) \
  1380. static u32 ql_supported_modes(struct ql3_adapter *qdev)
  1381. {
  1382. if (test_bit(QL_LINK_OPTICAL, &qdev->flags))
  1383. return SUPPORTED_OPTICAL_MODES;
  1384. return SUPPORTED_TP_MODES;
  1385. }
  1386. static int ql_get_auto_cfg_status(struct ql3_adapter *qdev)
  1387. {
  1388. int status;
  1389. unsigned long hw_flags;
  1390. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1391. if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1392. (QL_RESOURCE_BITS_BASE_CODE |
  1393. (qdev->mac_index) * 2) << 7)) {
  1394. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1395. return 0;
  1396. }
  1397. status = ql_is_auto_cfg(qdev);
  1398. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1399. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1400. return status;
  1401. }
  1402. static u32 ql_get_speed(struct ql3_adapter *qdev)
  1403. {
  1404. u32 status;
  1405. unsigned long hw_flags;
  1406. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1407. if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1408. (QL_RESOURCE_BITS_BASE_CODE |
  1409. (qdev->mac_index) * 2) << 7)) {
  1410. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1411. return 0;
  1412. }
  1413. status = ql_get_link_speed(qdev);
  1414. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1415. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1416. return status;
  1417. }
  1418. static int ql_get_full_dup(struct ql3_adapter *qdev)
  1419. {
  1420. int status;
  1421. unsigned long hw_flags;
  1422. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1423. if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1424. (QL_RESOURCE_BITS_BASE_CODE |
  1425. (qdev->mac_index) * 2) << 7)) {
  1426. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1427. return 0;
  1428. }
  1429. status = ql_is_link_full_dup(qdev);
  1430. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1431. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1432. return status;
  1433. }
  1434. static int ql_get_link_ksettings(struct net_device *ndev,
  1435. struct ethtool_link_ksettings *cmd)
  1436. {
  1437. struct ql3_adapter *qdev = netdev_priv(ndev);
  1438. u32 supported, advertising;
  1439. supported = ql_supported_modes(qdev);
  1440. if (test_bit(QL_LINK_OPTICAL, &qdev->flags)) {
  1441. cmd->base.port = PORT_FIBRE;
  1442. } else {
  1443. cmd->base.port = PORT_TP;
  1444. cmd->base.phy_address = qdev->PHYAddr;
  1445. }
  1446. advertising = ql_supported_modes(qdev);
  1447. cmd->base.autoneg = ql_get_auto_cfg_status(qdev);
  1448. cmd->base.speed = ql_get_speed(qdev);
  1449. cmd->base.duplex = ql_get_full_dup(qdev);
  1450. ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
  1451. supported);
  1452. ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
  1453. advertising);
  1454. return 0;
  1455. }
  1456. static void ql_get_drvinfo(struct net_device *ndev,
  1457. struct ethtool_drvinfo *drvinfo)
  1458. {
  1459. struct ql3_adapter *qdev = netdev_priv(ndev);
  1460. strscpy(drvinfo->driver, ql3xxx_driver_name, sizeof(drvinfo->driver));
  1461. strscpy(drvinfo->version, ql3xxx_driver_version,
  1462. sizeof(drvinfo->version));
  1463. strscpy(drvinfo->bus_info, pci_name(qdev->pdev),
  1464. sizeof(drvinfo->bus_info));
  1465. }
  1466. static u32 ql_get_msglevel(struct net_device *ndev)
  1467. {
  1468. struct ql3_adapter *qdev = netdev_priv(ndev);
  1469. return qdev->msg_enable;
  1470. }
  1471. static void ql_set_msglevel(struct net_device *ndev, u32 value)
  1472. {
  1473. struct ql3_adapter *qdev = netdev_priv(ndev);
  1474. qdev->msg_enable = value;
  1475. }
  1476. static void ql_get_pauseparam(struct net_device *ndev,
  1477. struct ethtool_pauseparam *pause)
  1478. {
  1479. struct ql3_adapter *qdev = netdev_priv(ndev);
  1480. struct ql3xxx_port_registers __iomem *port_regs =
  1481. qdev->mem_map_registers;
  1482. u32 reg;
  1483. if (qdev->mac_index == 0)
  1484. reg = ql_read_page0_reg(qdev, &port_regs->mac0ConfigReg);
  1485. else
  1486. reg = ql_read_page0_reg(qdev, &port_regs->mac1ConfigReg);
  1487. pause->autoneg = ql_get_auto_cfg_status(qdev);
  1488. pause->rx_pause = (reg & MAC_CONFIG_REG_RF) >> 2;
  1489. pause->tx_pause = (reg & MAC_CONFIG_REG_TF) >> 1;
  1490. }
  1491. static const struct ethtool_ops ql3xxx_ethtool_ops = {
  1492. .get_drvinfo = ql_get_drvinfo,
  1493. .get_link = ethtool_op_get_link,
  1494. .get_msglevel = ql_get_msglevel,
  1495. .set_msglevel = ql_set_msglevel,
  1496. .get_pauseparam = ql_get_pauseparam,
  1497. .get_link_ksettings = ql_get_link_ksettings,
  1498. };
  1499. static int ql_populate_free_queue(struct ql3_adapter *qdev)
  1500. {
  1501. struct ql_rcv_buf_cb *lrg_buf_cb = qdev->lrg_buf_free_head;
  1502. dma_addr_t map;
  1503. int err;
  1504. while (lrg_buf_cb) {
  1505. if (!lrg_buf_cb->skb) {
  1506. lrg_buf_cb->skb =
  1507. netdev_alloc_skb(qdev->ndev,
  1508. qdev->lrg_buffer_len);
  1509. if (unlikely(!lrg_buf_cb->skb)) {
  1510. netdev_printk(KERN_DEBUG, qdev->ndev,
  1511. "Failed netdev_alloc_skb()\n");
  1512. break;
  1513. } else {
  1514. /*
  1515. * We save some space to copy the ethhdr from
  1516. * first buffer
  1517. */
  1518. skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
  1519. map = dma_map_single(&qdev->pdev->dev,
  1520. lrg_buf_cb->skb->data,
  1521. qdev->lrg_buffer_len - QL_HEADER_SPACE,
  1522. DMA_FROM_DEVICE);
  1523. err = dma_mapping_error(&qdev->pdev->dev, map);
  1524. if (err) {
  1525. netdev_err(qdev->ndev,
  1526. "PCI mapping failed with error: %d\n",
  1527. err);
  1528. dev_kfree_skb(lrg_buf_cb->skb);
  1529. lrg_buf_cb->skb = NULL;
  1530. break;
  1531. }
  1532. lrg_buf_cb->buf_phy_addr_low =
  1533. cpu_to_le32(LS_64BITS(map));
  1534. lrg_buf_cb->buf_phy_addr_high =
  1535. cpu_to_le32(MS_64BITS(map));
  1536. dma_unmap_addr_set(lrg_buf_cb, mapaddr, map);
  1537. dma_unmap_len_set(lrg_buf_cb, maplen,
  1538. qdev->lrg_buffer_len -
  1539. QL_HEADER_SPACE);
  1540. --qdev->lrg_buf_skb_check;
  1541. if (!qdev->lrg_buf_skb_check)
  1542. return 1;
  1543. }
  1544. }
  1545. lrg_buf_cb = lrg_buf_cb->next;
  1546. }
  1547. return 0;
  1548. }
  1549. /*
  1550. * Caller holds hw_lock.
  1551. */
  1552. static void ql_update_small_bufq_prod_index(struct ql3_adapter *qdev)
  1553. {
  1554. struct ql3xxx_port_registers __iomem *port_regs =
  1555. qdev->mem_map_registers;
  1556. if (qdev->small_buf_release_cnt >= 16) {
  1557. while (qdev->small_buf_release_cnt >= 16) {
  1558. qdev->small_buf_q_producer_index++;
  1559. if (qdev->small_buf_q_producer_index ==
  1560. NUM_SBUFQ_ENTRIES)
  1561. qdev->small_buf_q_producer_index = 0;
  1562. qdev->small_buf_release_cnt -= 8;
  1563. }
  1564. wmb();
  1565. writel_relaxed(qdev->small_buf_q_producer_index,
  1566. &port_regs->CommonRegs.rxSmallQProducerIndex);
  1567. }
  1568. }
  1569. /*
  1570. * Caller holds hw_lock.
  1571. */
  1572. static void ql_update_lrg_bufq_prod_index(struct ql3_adapter *qdev)
  1573. {
  1574. struct bufq_addr_element *lrg_buf_q_ele;
  1575. int i;
  1576. struct ql_rcv_buf_cb *lrg_buf_cb;
  1577. struct ql3xxx_port_registers __iomem *port_regs =
  1578. qdev->mem_map_registers;
  1579. if ((qdev->lrg_buf_free_count >= 8) &&
  1580. (qdev->lrg_buf_release_cnt >= 16)) {
  1581. if (qdev->lrg_buf_skb_check)
  1582. if (!ql_populate_free_queue(qdev))
  1583. return;
  1584. lrg_buf_q_ele = qdev->lrg_buf_next_free;
  1585. while ((qdev->lrg_buf_release_cnt >= 16) &&
  1586. (qdev->lrg_buf_free_count >= 8)) {
  1587. for (i = 0; i < 8; i++) {
  1588. lrg_buf_cb =
  1589. ql_get_from_lrg_buf_free_list(qdev);
  1590. lrg_buf_q_ele->addr_high =
  1591. lrg_buf_cb->buf_phy_addr_high;
  1592. lrg_buf_q_ele->addr_low =
  1593. lrg_buf_cb->buf_phy_addr_low;
  1594. lrg_buf_q_ele++;
  1595. qdev->lrg_buf_release_cnt--;
  1596. }
  1597. qdev->lrg_buf_q_producer_index++;
  1598. if (qdev->lrg_buf_q_producer_index ==
  1599. qdev->num_lbufq_entries)
  1600. qdev->lrg_buf_q_producer_index = 0;
  1601. if (qdev->lrg_buf_q_producer_index ==
  1602. (qdev->num_lbufq_entries - 1)) {
  1603. lrg_buf_q_ele = qdev->lrg_buf_q_virt_addr;
  1604. }
  1605. }
  1606. wmb();
  1607. qdev->lrg_buf_next_free = lrg_buf_q_ele;
  1608. writel(qdev->lrg_buf_q_producer_index,
  1609. &port_regs->CommonRegs.rxLargeQProducerIndex);
  1610. }
  1611. }
  1612. static void ql_process_mac_tx_intr(struct ql3_adapter *qdev,
  1613. struct ob_mac_iocb_rsp *mac_rsp)
  1614. {
  1615. struct ql_tx_buf_cb *tx_cb;
  1616. int i;
  1617. if (mac_rsp->flags & OB_MAC_IOCB_RSP_S) {
  1618. netdev_warn(qdev->ndev,
  1619. "Frame too short but it was padded and sent\n");
  1620. }
  1621. tx_cb = &qdev->tx_buf[mac_rsp->transaction_id];
  1622. /* Check the transmit response flags for any errors */
  1623. if (mac_rsp->flags & OB_MAC_IOCB_RSP_S) {
  1624. netdev_err(qdev->ndev,
  1625. "Frame too short to be legal, frame not sent\n");
  1626. qdev->ndev->stats.tx_errors++;
  1627. goto frame_not_sent;
  1628. }
  1629. if (tx_cb->seg_count == 0) {
  1630. netdev_err(qdev->ndev, "tx_cb->seg_count == 0: %d\n",
  1631. mac_rsp->transaction_id);
  1632. qdev->ndev->stats.tx_errors++;
  1633. goto invalid_seg_count;
  1634. }
  1635. dma_unmap_single(&qdev->pdev->dev,
  1636. dma_unmap_addr(&tx_cb->map[0], mapaddr),
  1637. dma_unmap_len(&tx_cb->map[0], maplen), DMA_TO_DEVICE);
  1638. tx_cb->seg_count--;
  1639. if (tx_cb->seg_count) {
  1640. for (i = 1; i < tx_cb->seg_count; i++) {
  1641. dma_unmap_page(&qdev->pdev->dev,
  1642. dma_unmap_addr(&tx_cb->map[i], mapaddr),
  1643. dma_unmap_len(&tx_cb->map[i], maplen),
  1644. DMA_TO_DEVICE);
  1645. }
  1646. }
  1647. qdev->ndev->stats.tx_packets++;
  1648. qdev->ndev->stats.tx_bytes += tx_cb->skb->len;
  1649. frame_not_sent:
  1650. dev_kfree_skb_irq(tx_cb->skb);
  1651. tx_cb->skb = NULL;
  1652. invalid_seg_count:
  1653. atomic_inc(&qdev->tx_count);
  1654. }
  1655. static void ql_get_sbuf(struct ql3_adapter *qdev)
  1656. {
  1657. if (++qdev->small_buf_index == NUM_SMALL_BUFFERS)
  1658. qdev->small_buf_index = 0;
  1659. qdev->small_buf_release_cnt++;
  1660. }
  1661. static struct ql_rcv_buf_cb *ql_get_lbuf(struct ql3_adapter *qdev)
  1662. {
  1663. struct ql_rcv_buf_cb *lrg_buf_cb = NULL;
  1664. lrg_buf_cb = &qdev->lrg_buf[qdev->lrg_buf_index];
  1665. qdev->lrg_buf_release_cnt++;
  1666. if (++qdev->lrg_buf_index == qdev->num_large_buffers)
  1667. qdev->lrg_buf_index = 0;
  1668. return lrg_buf_cb;
  1669. }
  1670. /*
  1671. * The difference between 3022 and 3032 for inbound completions:
  1672. * 3022 uses two buffers per completion. The first buffer contains
  1673. * (some) header info, the second the remainder of the headers plus
  1674. * the data. For this chip we reserve some space at the top of the
  1675. * receive buffer so that the header info in buffer one can be
  1676. * prepended to the buffer two. Buffer two is the sent up while
  1677. * buffer one is returned to the hardware to be reused.
  1678. * 3032 receives all of it's data and headers in one buffer for a
  1679. * simpler process. 3032 also supports checksum verification as
  1680. * can be seen in ql_process_macip_rx_intr().
  1681. */
  1682. static void ql_process_mac_rx_intr(struct ql3_adapter *qdev,
  1683. struct ib_mac_iocb_rsp *ib_mac_rsp_ptr)
  1684. {
  1685. struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL;
  1686. struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL;
  1687. struct sk_buff *skb;
  1688. u16 length = le16_to_cpu(ib_mac_rsp_ptr->length);
  1689. /*
  1690. * Get the inbound address list (small buffer).
  1691. */
  1692. ql_get_sbuf(qdev);
  1693. if (qdev->device_id == QL3022_DEVICE_ID)
  1694. lrg_buf_cb1 = ql_get_lbuf(qdev);
  1695. /* start of second buffer */
  1696. lrg_buf_cb2 = ql_get_lbuf(qdev);
  1697. skb = lrg_buf_cb2->skb;
  1698. qdev->ndev->stats.rx_packets++;
  1699. qdev->ndev->stats.rx_bytes += length;
  1700. skb_put(skb, length);
  1701. dma_unmap_single(&qdev->pdev->dev,
  1702. dma_unmap_addr(lrg_buf_cb2, mapaddr),
  1703. dma_unmap_len(lrg_buf_cb2, maplen), DMA_FROM_DEVICE);
  1704. prefetch(skb->data);
  1705. skb_checksum_none_assert(skb);
  1706. skb->protocol = eth_type_trans(skb, qdev->ndev);
  1707. napi_gro_receive(&qdev->napi, skb);
  1708. lrg_buf_cb2->skb = NULL;
  1709. if (qdev->device_id == QL3022_DEVICE_ID)
  1710. ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1);
  1711. ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2);
  1712. }
  1713. static void ql_process_macip_rx_intr(struct ql3_adapter *qdev,
  1714. struct ib_ip_iocb_rsp *ib_ip_rsp_ptr)
  1715. {
  1716. struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL;
  1717. struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL;
  1718. struct sk_buff *skb1 = NULL, *skb2;
  1719. struct net_device *ndev = qdev->ndev;
  1720. u16 length = le16_to_cpu(ib_ip_rsp_ptr->length);
  1721. u16 size = 0;
  1722. /*
  1723. * Get the inbound address list (small buffer).
  1724. */
  1725. ql_get_sbuf(qdev);
  1726. if (qdev->device_id == QL3022_DEVICE_ID) {
  1727. /* start of first buffer on 3022 */
  1728. lrg_buf_cb1 = ql_get_lbuf(qdev);
  1729. skb1 = lrg_buf_cb1->skb;
  1730. size = ETH_HLEN;
  1731. if (*((u16 *) skb1->data) != 0xFFFF)
  1732. size += VLAN_ETH_HLEN - ETH_HLEN;
  1733. }
  1734. /* start of second buffer */
  1735. lrg_buf_cb2 = ql_get_lbuf(qdev);
  1736. skb2 = lrg_buf_cb2->skb;
  1737. skb_put(skb2, length); /* Just the second buffer length here. */
  1738. dma_unmap_single(&qdev->pdev->dev,
  1739. dma_unmap_addr(lrg_buf_cb2, mapaddr),
  1740. dma_unmap_len(lrg_buf_cb2, maplen), DMA_FROM_DEVICE);
  1741. prefetch(skb2->data);
  1742. skb_checksum_none_assert(skb2);
  1743. if (qdev->device_id == QL3022_DEVICE_ID) {
  1744. /*
  1745. * Copy the ethhdr from first buffer to second. This
  1746. * is necessary for 3022 IP completions.
  1747. */
  1748. skb_copy_from_linear_data_offset(skb1, VLAN_ID_LEN,
  1749. skb_push(skb2, size), size);
  1750. } else {
  1751. u16 checksum = le16_to_cpu(ib_ip_rsp_ptr->checksum);
  1752. if (checksum &
  1753. (IB_IP_IOCB_RSP_3032_ICE |
  1754. IB_IP_IOCB_RSP_3032_CE)) {
  1755. netdev_err(ndev,
  1756. "%s: Bad checksum for this %s packet, checksum = %x\n",
  1757. __func__,
  1758. ((checksum & IB_IP_IOCB_RSP_3032_TCP) ?
  1759. "TCP" : "UDP"), checksum);
  1760. } else if ((checksum & IB_IP_IOCB_RSP_3032_TCP) ||
  1761. (checksum & IB_IP_IOCB_RSP_3032_UDP &&
  1762. !(checksum & IB_IP_IOCB_RSP_3032_NUC))) {
  1763. skb2->ip_summed = CHECKSUM_UNNECESSARY;
  1764. }
  1765. }
  1766. skb2->protocol = eth_type_trans(skb2, qdev->ndev);
  1767. napi_gro_receive(&qdev->napi, skb2);
  1768. ndev->stats.rx_packets++;
  1769. ndev->stats.rx_bytes += length;
  1770. lrg_buf_cb2->skb = NULL;
  1771. if (qdev->device_id == QL3022_DEVICE_ID)
  1772. ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1);
  1773. ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2);
  1774. }
  1775. static int ql_tx_rx_clean(struct ql3_adapter *qdev, int budget)
  1776. {
  1777. struct net_rsp_iocb *net_rsp;
  1778. struct net_device *ndev = qdev->ndev;
  1779. int work_done = 0;
  1780. /* While there are entries in the completion queue. */
  1781. while ((le32_to_cpu(*(qdev->prsp_producer_index)) !=
  1782. qdev->rsp_consumer_index) && (work_done < budget)) {
  1783. net_rsp = qdev->rsp_current;
  1784. rmb();
  1785. /*
  1786. * Fix 4032 chip's undocumented "feature" where bit-8 is set
  1787. * if the inbound completion is for a VLAN.
  1788. */
  1789. if (qdev->device_id == QL3032_DEVICE_ID)
  1790. net_rsp->opcode &= 0x7f;
  1791. switch (net_rsp->opcode) {
  1792. case OPCODE_OB_MAC_IOCB_FN0:
  1793. case OPCODE_OB_MAC_IOCB_FN2:
  1794. ql_process_mac_tx_intr(qdev, (struct ob_mac_iocb_rsp *)
  1795. net_rsp);
  1796. break;
  1797. case OPCODE_IB_MAC_IOCB:
  1798. case OPCODE_IB_3032_MAC_IOCB:
  1799. ql_process_mac_rx_intr(qdev, (struct ib_mac_iocb_rsp *)
  1800. net_rsp);
  1801. work_done++;
  1802. break;
  1803. case OPCODE_IB_IP_IOCB:
  1804. case OPCODE_IB_3032_IP_IOCB:
  1805. ql_process_macip_rx_intr(qdev, (struct ib_ip_iocb_rsp *)
  1806. net_rsp);
  1807. work_done++;
  1808. break;
  1809. default: {
  1810. u32 *tmp = (u32 *)net_rsp;
  1811. netdev_err(ndev,
  1812. "Hit default case, not handled!\n"
  1813. " dropping the packet, opcode = %x\n"
  1814. "0x%08lx 0x%08lx 0x%08lx 0x%08lx\n",
  1815. net_rsp->opcode,
  1816. (unsigned long int)tmp[0],
  1817. (unsigned long int)tmp[1],
  1818. (unsigned long int)tmp[2],
  1819. (unsigned long int)tmp[3]);
  1820. }
  1821. }
  1822. qdev->rsp_consumer_index++;
  1823. if (qdev->rsp_consumer_index == NUM_RSP_Q_ENTRIES) {
  1824. qdev->rsp_consumer_index = 0;
  1825. qdev->rsp_current = qdev->rsp_q_virt_addr;
  1826. } else {
  1827. qdev->rsp_current++;
  1828. }
  1829. }
  1830. return work_done;
  1831. }
  1832. static int ql_poll(struct napi_struct *napi, int budget)
  1833. {
  1834. struct ql3_adapter *qdev = container_of(napi, struct ql3_adapter, napi);
  1835. struct ql3xxx_port_registers __iomem *port_regs =
  1836. qdev->mem_map_registers;
  1837. int work_done;
  1838. work_done = ql_tx_rx_clean(qdev, budget);
  1839. if (work_done < budget && napi_complete_done(napi, work_done)) {
  1840. unsigned long flags;
  1841. spin_lock_irqsave(&qdev->hw_lock, flags);
  1842. ql_update_small_bufq_prod_index(qdev);
  1843. ql_update_lrg_bufq_prod_index(qdev);
  1844. writel(qdev->rsp_consumer_index,
  1845. &port_regs->CommonRegs.rspQConsumerIndex);
  1846. spin_unlock_irqrestore(&qdev->hw_lock, flags);
  1847. ql_enable_interrupts(qdev);
  1848. }
  1849. return work_done;
  1850. }
  1851. static irqreturn_t ql3xxx_isr(int irq, void *dev_id)
  1852. {
  1853. struct net_device *ndev = dev_id;
  1854. struct ql3_adapter *qdev = netdev_priv(ndev);
  1855. struct ql3xxx_port_registers __iomem *port_regs =
  1856. qdev->mem_map_registers;
  1857. u32 value;
  1858. int handled = 1;
  1859. u32 var;
  1860. value = ql_read_common_reg_l(qdev,
  1861. &port_regs->CommonRegs.ispControlStatus);
  1862. if (value & (ISP_CONTROL_FE | ISP_CONTROL_RI)) {
  1863. spin_lock(&qdev->adapter_lock);
  1864. netif_stop_queue(qdev->ndev);
  1865. netif_carrier_off(qdev->ndev);
  1866. ql_disable_interrupts(qdev);
  1867. qdev->port_link_state = LS_DOWN;
  1868. set_bit(QL_RESET_ACTIVE, &qdev->flags) ;
  1869. if (value & ISP_CONTROL_FE) {
  1870. /*
  1871. * Chip Fatal Error.
  1872. */
  1873. var =
  1874. ql_read_page0_reg_l(qdev,
  1875. &port_regs->PortFatalErrStatus);
  1876. netdev_warn(ndev,
  1877. "Resetting chip. PortFatalErrStatus register = 0x%x\n",
  1878. var);
  1879. set_bit(QL_RESET_START, &qdev->flags) ;
  1880. } else {
  1881. /*
  1882. * Soft Reset Requested.
  1883. */
  1884. set_bit(QL_RESET_PER_SCSI, &qdev->flags) ;
  1885. netdev_err(ndev,
  1886. "Another function issued a reset to the chip. ISR value = %x\n",
  1887. value);
  1888. }
  1889. queue_delayed_work(qdev->workqueue, &qdev->reset_work, 0);
  1890. spin_unlock(&qdev->adapter_lock);
  1891. } else if (value & ISP_IMR_DISABLE_CMPL_INT) {
  1892. ql_disable_interrupts(qdev);
  1893. if (likely(napi_schedule_prep(&qdev->napi)))
  1894. __napi_schedule(&qdev->napi);
  1895. } else
  1896. return IRQ_NONE;
  1897. return IRQ_RETVAL(handled);
  1898. }
  1899. /*
  1900. * Get the total number of segments needed for the given number of fragments.
  1901. * This is necessary because outbound address lists (OAL) will be used when
  1902. * more than two frags are given. Each address list has 5 addr/len pairs.
  1903. * The 5th pair in each OAL is used to point to the next OAL if more frags
  1904. * are coming. That is why the frags:segment count ratio is not linear.
  1905. */
  1906. static int ql_get_seg_count(struct ql3_adapter *qdev, unsigned short frags)
  1907. {
  1908. if (qdev->device_id == QL3022_DEVICE_ID)
  1909. return 1;
  1910. if (frags <= 2)
  1911. return frags + 1;
  1912. else if (frags <= 6)
  1913. return frags + 2;
  1914. else if (frags <= 10)
  1915. return frags + 3;
  1916. else if (frags <= 14)
  1917. return frags + 4;
  1918. else if (frags <= 18)
  1919. return frags + 5;
  1920. return -1;
  1921. }
  1922. static void ql_hw_csum_setup(const struct sk_buff *skb,
  1923. struct ob_mac_iocb_req *mac_iocb_ptr)
  1924. {
  1925. const struct iphdr *ip = ip_hdr(skb);
  1926. mac_iocb_ptr->ip_hdr_off = skb_network_offset(skb);
  1927. mac_iocb_ptr->ip_hdr_len = ip->ihl;
  1928. if (ip->protocol == IPPROTO_TCP) {
  1929. mac_iocb_ptr->flags1 |= OB_3032MAC_IOCB_REQ_TC |
  1930. OB_3032MAC_IOCB_REQ_IC;
  1931. } else {
  1932. mac_iocb_ptr->flags1 |= OB_3032MAC_IOCB_REQ_UC |
  1933. OB_3032MAC_IOCB_REQ_IC;
  1934. }
  1935. }
  1936. /*
  1937. * Map the buffers for this transmit.
  1938. * This will return NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
  1939. */
  1940. static int ql_send_map(struct ql3_adapter *qdev,
  1941. struct ob_mac_iocb_req *mac_iocb_ptr,
  1942. struct ql_tx_buf_cb *tx_cb,
  1943. struct sk_buff *skb)
  1944. {
  1945. struct oal *oal;
  1946. struct oal_entry *oal_entry;
  1947. int len = skb_headlen(skb);
  1948. dma_addr_t map;
  1949. int err;
  1950. int completed_segs, i;
  1951. int seg_cnt, seg = 0;
  1952. int frag_cnt = (int)skb_shinfo(skb)->nr_frags;
  1953. seg_cnt = tx_cb->seg_count;
  1954. /*
  1955. * Map the skb buffer first.
  1956. */
  1957. map = dma_map_single(&qdev->pdev->dev, skb->data, len, DMA_TO_DEVICE);
  1958. err = dma_mapping_error(&qdev->pdev->dev, map);
  1959. if (err) {
  1960. netdev_err(qdev->ndev, "PCI mapping failed with error: %d\n",
  1961. err);
  1962. return NETDEV_TX_BUSY;
  1963. }
  1964. oal_entry = (struct oal_entry *)&mac_iocb_ptr->buf_addr0_low;
  1965. oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
  1966. oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
  1967. oal_entry->len = cpu_to_le32(len);
  1968. dma_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
  1969. dma_unmap_len_set(&tx_cb->map[seg], maplen, len);
  1970. seg++;
  1971. if (seg_cnt == 1) {
  1972. /* Terminate the last segment. */
  1973. oal_entry->len |= cpu_to_le32(OAL_LAST_ENTRY);
  1974. return NETDEV_TX_OK;
  1975. }
  1976. oal = tx_cb->oal;
  1977. for (completed_segs = 0;
  1978. completed_segs < frag_cnt;
  1979. completed_segs++, seg++) {
  1980. skb_frag_t *frag = &skb_shinfo(skb)->frags[completed_segs];
  1981. oal_entry++;
  1982. /*
  1983. * Check for continuation requirements.
  1984. * It's strange but necessary.
  1985. * Continuation entry points to outbound address list.
  1986. */
  1987. if ((seg == 2 && seg_cnt > 3) ||
  1988. (seg == 7 && seg_cnt > 8) ||
  1989. (seg == 12 && seg_cnt > 13) ||
  1990. (seg == 17 && seg_cnt > 18)) {
  1991. map = dma_map_single(&qdev->pdev->dev, oal,
  1992. sizeof(struct oal),
  1993. DMA_TO_DEVICE);
  1994. err = dma_mapping_error(&qdev->pdev->dev, map);
  1995. if (err) {
  1996. netdev_err(qdev->ndev,
  1997. "PCI mapping outbound address list with error: %d\n",
  1998. err);
  1999. goto map_error;
  2000. }
  2001. oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
  2002. oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
  2003. oal_entry->len = cpu_to_le32(sizeof(struct oal) |
  2004. OAL_CONT_ENTRY);
  2005. dma_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
  2006. dma_unmap_len_set(&tx_cb->map[seg], maplen,
  2007. sizeof(struct oal));
  2008. oal_entry = (struct oal_entry *)oal;
  2009. oal++;
  2010. seg++;
  2011. }
  2012. map = skb_frag_dma_map(&qdev->pdev->dev, frag, 0, skb_frag_size(frag),
  2013. DMA_TO_DEVICE);
  2014. err = dma_mapping_error(&qdev->pdev->dev, map);
  2015. if (err) {
  2016. netdev_err(qdev->ndev,
  2017. "PCI mapping frags failed with error: %d\n",
  2018. err);
  2019. goto map_error;
  2020. }
  2021. oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
  2022. oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
  2023. oal_entry->len = cpu_to_le32(skb_frag_size(frag));
  2024. dma_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
  2025. dma_unmap_len_set(&tx_cb->map[seg], maplen, skb_frag_size(frag));
  2026. }
  2027. /* Terminate the last segment. */
  2028. oal_entry->len |= cpu_to_le32(OAL_LAST_ENTRY);
  2029. return NETDEV_TX_OK;
  2030. map_error:
  2031. /* A PCI mapping failed and now we will need to back out
  2032. * We need to traverse through the oal's and associated pages which
  2033. * have been mapped and now we must unmap them to clean up properly
  2034. */
  2035. seg = 1;
  2036. oal_entry = (struct oal_entry *)&mac_iocb_ptr->buf_addr0_low;
  2037. oal = tx_cb->oal;
  2038. for (i = 0; i < completed_segs; i++, seg++) {
  2039. oal_entry++;
  2040. /*
  2041. * Check for continuation requirements.
  2042. * It's strange but necessary.
  2043. */
  2044. if ((seg == 2 && seg_cnt > 3) ||
  2045. (seg == 7 && seg_cnt > 8) ||
  2046. (seg == 12 && seg_cnt > 13) ||
  2047. (seg == 17 && seg_cnt > 18)) {
  2048. dma_unmap_single(&qdev->pdev->dev,
  2049. dma_unmap_addr(&tx_cb->map[seg], mapaddr),
  2050. dma_unmap_len(&tx_cb->map[seg], maplen),
  2051. DMA_TO_DEVICE);
  2052. oal++;
  2053. seg++;
  2054. }
  2055. dma_unmap_page(&qdev->pdev->dev,
  2056. dma_unmap_addr(&tx_cb->map[seg], mapaddr),
  2057. dma_unmap_len(&tx_cb->map[seg], maplen),
  2058. DMA_TO_DEVICE);
  2059. }
  2060. dma_unmap_single(&qdev->pdev->dev,
  2061. dma_unmap_addr(&tx_cb->map[0], mapaddr),
  2062. dma_unmap_addr(&tx_cb->map[0], maplen),
  2063. DMA_TO_DEVICE);
  2064. return NETDEV_TX_BUSY;
  2065. }
  2066. /*
  2067. * The difference between 3022 and 3032 sends:
  2068. * 3022 only supports a simple single segment transmission.
  2069. * 3032 supports checksumming and scatter/gather lists (fragments).
  2070. * The 3032 supports sglists by using the 3 addr/len pairs (ALP)
  2071. * in the IOCB plus a chain of outbound address lists (OAL) that
  2072. * each contain 5 ALPs. The last ALP of the IOCB (3rd) or OAL (5th)
  2073. * will be used to point to an OAL when more ALP entries are required.
  2074. * The IOCB is always the top of the chain followed by one or more
  2075. * OALs (when necessary).
  2076. */
  2077. static netdev_tx_t ql3xxx_send(struct sk_buff *skb,
  2078. struct net_device *ndev)
  2079. {
  2080. struct ql3_adapter *qdev = netdev_priv(ndev);
  2081. struct ql3xxx_port_registers __iomem *port_regs =
  2082. qdev->mem_map_registers;
  2083. struct ql_tx_buf_cb *tx_cb;
  2084. u32 tot_len = skb->len;
  2085. struct ob_mac_iocb_req *mac_iocb_ptr;
  2086. if (unlikely(atomic_read(&qdev->tx_count) < 2))
  2087. return NETDEV_TX_BUSY;
  2088. tx_cb = &qdev->tx_buf[qdev->req_producer_index];
  2089. tx_cb->seg_count = ql_get_seg_count(qdev,
  2090. skb_shinfo(skb)->nr_frags);
  2091. if (tx_cb->seg_count == -1) {
  2092. netdev_err(ndev, "%s: invalid segment count!\n", __func__);
  2093. dev_kfree_skb_any(skb);
  2094. return NETDEV_TX_OK;
  2095. }
  2096. mac_iocb_ptr = tx_cb->queue_entry;
  2097. memset((void *)mac_iocb_ptr, 0, sizeof(struct ob_mac_iocb_req));
  2098. mac_iocb_ptr->opcode = qdev->mac_ob_opcode;
  2099. mac_iocb_ptr->flags = OB_MAC_IOCB_REQ_X;
  2100. mac_iocb_ptr->flags |= qdev->mb_bit_mask;
  2101. mac_iocb_ptr->transaction_id = qdev->req_producer_index;
  2102. mac_iocb_ptr->data_len = cpu_to_le16((u16) tot_len);
  2103. tx_cb->skb = skb;
  2104. if (qdev->device_id == QL3032_DEVICE_ID &&
  2105. skb->ip_summed == CHECKSUM_PARTIAL)
  2106. ql_hw_csum_setup(skb, mac_iocb_ptr);
  2107. if (ql_send_map(qdev, mac_iocb_ptr, tx_cb, skb) != NETDEV_TX_OK) {
  2108. netdev_err(ndev, "%s: Could not map the segments!\n", __func__);
  2109. return NETDEV_TX_BUSY;
  2110. }
  2111. wmb();
  2112. qdev->req_producer_index++;
  2113. if (qdev->req_producer_index == NUM_REQ_Q_ENTRIES)
  2114. qdev->req_producer_index = 0;
  2115. wmb();
  2116. ql_write_common_reg_l(qdev,
  2117. &port_regs->CommonRegs.reqQProducerIndex,
  2118. qdev->req_producer_index);
  2119. netif_printk(qdev, tx_queued, KERN_DEBUG, ndev,
  2120. "tx queued, slot %d, len %d\n",
  2121. qdev->req_producer_index, skb->len);
  2122. atomic_dec(&qdev->tx_count);
  2123. return NETDEV_TX_OK;
  2124. }
  2125. static int ql_alloc_net_req_rsp_queues(struct ql3_adapter *qdev)
  2126. {
  2127. qdev->req_q_size =
  2128. (u32) (NUM_REQ_Q_ENTRIES * sizeof(struct ob_mac_iocb_req));
  2129. qdev->rsp_q_size = NUM_RSP_Q_ENTRIES * sizeof(struct net_rsp_iocb);
  2130. /* The barrier is required to ensure request and response queue
  2131. * addr writes to the registers.
  2132. */
  2133. wmb();
  2134. qdev->req_q_virt_addr =
  2135. dma_alloc_coherent(&qdev->pdev->dev, (size_t)qdev->req_q_size,
  2136. &qdev->req_q_phy_addr, GFP_KERNEL);
  2137. if ((qdev->req_q_virt_addr == NULL) ||
  2138. LS_64BITS(qdev->req_q_phy_addr) & (qdev->req_q_size - 1)) {
  2139. netdev_err(qdev->ndev, "reqQ failed\n");
  2140. return -ENOMEM;
  2141. }
  2142. qdev->rsp_q_virt_addr =
  2143. dma_alloc_coherent(&qdev->pdev->dev, (size_t)qdev->rsp_q_size,
  2144. &qdev->rsp_q_phy_addr, GFP_KERNEL);
  2145. if ((qdev->rsp_q_virt_addr == NULL) ||
  2146. LS_64BITS(qdev->rsp_q_phy_addr) & (qdev->rsp_q_size - 1)) {
  2147. netdev_err(qdev->ndev, "rspQ allocation failed\n");
  2148. dma_free_coherent(&qdev->pdev->dev, (size_t)qdev->req_q_size,
  2149. qdev->req_q_virt_addr, qdev->req_q_phy_addr);
  2150. return -ENOMEM;
  2151. }
  2152. set_bit(QL_ALLOC_REQ_RSP_Q_DONE, &qdev->flags);
  2153. return 0;
  2154. }
  2155. static void ql_free_net_req_rsp_queues(struct ql3_adapter *qdev)
  2156. {
  2157. if (!test_bit(QL_ALLOC_REQ_RSP_Q_DONE, &qdev->flags)) {
  2158. netdev_info(qdev->ndev, "Already done\n");
  2159. return;
  2160. }
  2161. dma_free_coherent(&qdev->pdev->dev, qdev->req_q_size,
  2162. qdev->req_q_virt_addr, qdev->req_q_phy_addr);
  2163. qdev->req_q_virt_addr = NULL;
  2164. dma_free_coherent(&qdev->pdev->dev, qdev->rsp_q_size,
  2165. qdev->rsp_q_virt_addr, qdev->rsp_q_phy_addr);
  2166. qdev->rsp_q_virt_addr = NULL;
  2167. clear_bit(QL_ALLOC_REQ_RSP_Q_DONE, &qdev->flags);
  2168. }
  2169. static int ql_alloc_buffer_queues(struct ql3_adapter *qdev)
  2170. {
  2171. /* Create Large Buffer Queue */
  2172. qdev->lrg_buf_q_size =
  2173. qdev->num_lbufq_entries * sizeof(struct lrg_buf_q_entry);
  2174. if (qdev->lrg_buf_q_size < PAGE_SIZE)
  2175. qdev->lrg_buf_q_alloc_size = PAGE_SIZE;
  2176. else
  2177. qdev->lrg_buf_q_alloc_size = qdev->lrg_buf_q_size * 2;
  2178. qdev->lrg_buf = kmalloc_array(qdev->num_large_buffers,
  2179. sizeof(struct ql_rcv_buf_cb),
  2180. GFP_KERNEL);
  2181. if (qdev->lrg_buf == NULL)
  2182. return -ENOMEM;
  2183. qdev->lrg_buf_q_alloc_virt_addr =
  2184. dma_alloc_coherent(&qdev->pdev->dev,
  2185. qdev->lrg_buf_q_alloc_size,
  2186. &qdev->lrg_buf_q_alloc_phy_addr, GFP_KERNEL);
  2187. if (qdev->lrg_buf_q_alloc_virt_addr == NULL) {
  2188. netdev_err(qdev->ndev, "lBufQ failed\n");
  2189. return -ENOMEM;
  2190. }
  2191. qdev->lrg_buf_q_virt_addr = qdev->lrg_buf_q_alloc_virt_addr;
  2192. qdev->lrg_buf_q_phy_addr = qdev->lrg_buf_q_alloc_phy_addr;
  2193. /* Create Small Buffer Queue */
  2194. qdev->small_buf_q_size =
  2195. NUM_SBUFQ_ENTRIES * sizeof(struct lrg_buf_q_entry);
  2196. if (qdev->small_buf_q_size < PAGE_SIZE)
  2197. qdev->small_buf_q_alloc_size = PAGE_SIZE;
  2198. else
  2199. qdev->small_buf_q_alloc_size = qdev->small_buf_q_size * 2;
  2200. qdev->small_buf_q_alloc_virt_addr =
  2201. dma_alloc_coherent(&qdev->pdev->dev,
  2202. qdev->small_buf_q_alloc_size,
  2203. &qdev->small_buf_q_alloc_phy_addr, GFP_KERNEL);
  2204. if (qdev->small_buf_q_alloc_virt_addr == NULL) {
  2205. netdev_err(qdev->ndev, "Small Buffer Queue allocation failed\n");
  2206. dma_free_coherent(&qdev->pdev->dev,
  2207. qdev->lrg_buf_q_alloc_size,
  2208. qdev->lrg_buf_q_alloc_virt_addr,
  2209. qdev->lrg_buf_q_alloc_phy_addr);
  2210. return -ENOMEM;
  2211. }
  2212. qdev->small_buf_q_virt_addr = qdev->small_buf_q_alloc_virt_addr;
  2213. qdev->small_buf_q_phy_addr = qdev->small_buf_q_alloc_phy_addr;
  2214. set_bit(QL_ALLOC_BUFQS_DONE, &qdev->flags);
  2215. return 0;
  2216. }
  2217. static void ql_free_buffer_queues(struct ql3_adapter *qdev)
  2218. {
  2219. if (!test_bit(QL_ALLOC_BUFQS_DONE, &qdev->flags)) {
  2220. netdev_info(qdev->ndev, "Already done\n");
  2221. return;
  2222. }
  2223. kfree(qdev->lrg_buf);
  2224. dma_free_coherent(&qdev->pdev->dev, qdev->lrg_buf_q_alloc_size,
  2225. qdev->lrg_buf_q_alloc_virt_addr,
  2226. qdev->lrg_buf_q_alloc_phy_addr);
  2227. qdev->lrg_buf_q_virt_addr = NULL;
  2228. dma_free_coherent(&qdev->pdev->dev, qdev->small_buf_q_alloc_size,
  2229. qdev->small_buf_q_alloc_virt_addr,
  2230. qdev->small_buf_q_alloc_phy_addr);
  2231. qdev->small_buf_q_virt_addr = NULL;
  2232. clear_bit(QL_ALLOC_BUFQS_DONE, &qdev->flags);
  2233. }
  2234. static int ql_alloc_small_buffers(struct ql3_adapter *qdev)
  2235. {
  2236. int i;
  2237. struct bufq_addr_element *small_buf_q_entry;
  2238. /* Currently we allocate on one of memory and use it for smallbuffers */
  2239. qdev->small_buf_total_size =
  2240. (QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES *
  2241. QL_SMALL_BUFFER_SIZE);
  2242. qdev->small_buf_virt_addr =
  2243. dma_alloc_coherent(&qdev->pdev->dev,
  2244. qdev->small_buf_total_size,
  2245. &qdev->small_buf_phy_addr, GFP_KERNEL);
  2246. if (qdev->small_buf_virt_addr == NULL) {
  2247. netdev_err(qdev->ndev, "Failed to get small buffer memory\n");
  2248. return -ENOMEM;
  2249. }
  2250. qdev->small_buf_phy_addr_low = LS_64BITS(qdev->small_buf_phy_addr);
  2251. qdev->small_buf_phy_addr_high = MS_64BITS(qdev->small_buf_phy_addr);
  2252. small_buf_q_entry = qdev->small_buf_q_virt_addr;
  2253. /* Initialize the small buffer queue. */
  2254. for (i = 0; i < (QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES); i++) {
  2255. small_buf_q_entry->addr_high =
  2256. cpu_to_le32(qdev->small_buf_phy_addr_high);
  2257. small_buf_q_entry->addr_low =
  2258. cpu_to_le32(qdev->small_buf_phy_addr_low +
  2259. (i * QL_SMALL_BUFFER_SIZE));
  2260. small_buf_q_entry++;
  2261. }
  2262. qdev->small_buf_index = 0;
  2263. set_bit(QL_ALLOC_SMALL_BUF_DONE, &qdev->flags);
  2264. return 0;
  2265. }
  2266. static void ql_free_small_buffers(struct ql3_adapter *qdev)
  2267. {
  2268. if (!test_bit(QL_ALLOC_SMALL_BUF_DONE, &qdev->flags)) {
  2269. netdev_info(qdev->ndev, "Already done\n");
  2270. return;
  2271. }
  2272. if (qdev->small_buf_virt_addr != NULL) {
  2273. dma_free_coherent(&qdev->pdev->dev,
  2274. qdev->small_buf_total_size,
  2275. qdev->small_buf_virt_addr,
  2276. qdev->small_buf_phy_addr);
  2277. qdev->small_buf_virt_addr = NULL;
  2278. }
  2279. }
  2280. static void ql_free_large_buffers(struct ql3_adapter *qdev)
  2281. {
  2282. int i = 0;
  2283. struct ql_rcv_buf_cb *lrg_buf_cb;
  2284. for (i = 0; i < qdev->num_large_buffers; i++) {
  2285. lrg_buf_cb = &qdev->lrg_buf[i];
  2286. if (lrg_buf_cb->skb) {
  2287. dev_kfree_skb(lrg_buf_cb->skb);
  2288. dma_unmap_single(&qdev->pdev->dev,
  2289. dma_unmap_addr(lrg_buf_cb, mapaddr),
  2290. dma_unmap_len(lrg_buf_cb, maplen),
  2291. DMA_FROM_DEVICE);
  2292. memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb));
  2293. } else {
  2294. break;
  2295. }
  2296. }
  2297. }
  2298. static void ql_init_large_buffers(struct ql3_adapter *qdev)
  2299. {
  2300. int i;
  2301. struct ql_rcv_buf_cb *lrg_buf_cb;
  2302. struct bufq_addr_element *buf_addr_ele = qdev->lrg_buf_q_virt_addr;
  2303. for (i = 0; i < qdev->num_large_buffers; i++) {
  2304. lrg_buf_cb = &qdev->lrg_buf[i];
  2305. buf_addr_ele->addr_high = lrg_buf_cb->buf_phy_addr_high;
  2306. buf_addr_ele->addr_low = lrg_buf_cb->buf_phy_addr_low;
  2307. buf_addr_ele++;
  2308. }
  2309. qdev->lrg_buf_index = 0;
  2310. qdev->lrg_buf_skb_check = 0;
  2311. }
  2312. static int ql_alloc_large_buffers(struct ql3_adapter *qdev)
  2313. {
  2314. int i;
  2315. struct ql_rcv_buf_cb *lrg_buf_cb;
  2316. struct sk_buff *skb;
  2317. dma_addr_t map;
  2318. int err;
  2319. for (i = 0; i < qdev->num_large_buffers; i++) {
  2320. lrg_buf_cb = &qdev->lrg_buf[i];
  2321. memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb));
  2322. skb = netdev_alloc_skb(qdev->ndev,
  2323. qdev->lrg_buffer_len);
  2324. if (unlikely(!skb)) {
  2325. /* Better luck next round */
  2326. netdev_err(qdev->ndev,
  2327. "large buff alloc failed for %d bytes at index %d\n",
  2328. qdev->lrg_buffer_len * 2, i);
  2329. ql_free_large_buffers(qdev);
  2330. return -ENOMEM;
  2331. } else {
  2332. lrg_buf_cb->index = i;
  2333. /*
  2334. * We save some space to copy the ethhdr from first
  2335. * buffer
  2336. */
  2337. skb_reserve(skb, QL_HEADER_SPACE);
  2338. map = dma_map_single(&qdev->pdev->dev, skb->data,
  2339. qdev->lrg_buffer_len - QL_HEADER_SPACE,
  2340. DMA_FROM_DEVICE);
  2341. err = dma_mapping_error(&qdev->pdev->dev, map);
  2342. if (err) {
  2343. netdev_err(qdev->ndev,
  2344. "PCI mapping failed with error: %d\n",
  2345. err);
  2346. dev_kfree_skb_irq(skb);
  2347. ql_free_large_buffers(qdev);
  2348. return -ENOMEM;
  2349. }
  2350. lrg_buf_cb->skb = skb;
  2351. dma_unmap_addr_set(lrg_buf_cb, mapaddr, map);
  2352. dma_unmap_len_set(lrg_buf_cb, maplen,
  2353. qdev->lrg_buffer_len -
  2354. QL_HEADER_SPACE);
  2355. lrg_buf_cb->buf_phy_addr_low =
  2356. cpu_to_le32(LS_64BITS(map));
  2357. lrg_buf_cb->buf_phy_addr_high =
  2358. cpu_to_le32(MS_64BITS(map));
  2359. }
  2360. }
  2361. return 0;
  2362. }
  2363. static void ql_free_send_free_list(struct ql3_adapter *qdev)
  2364. {
  2365. struct ql_tx_buf_cb *tx_cb;
  2366. int i;
  2367. tx_cb = &qdev->tx_buf[0];
  2368. for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
  2369. kfree(tx_cb->oal);
  2370. tx_cb->oal = NULL;
  2371. tx_cb++;
  2372. }
  2373. }
  2374. static int ql_create_send_free_list(struct ql3_adapter *qdev)
  2375. {
  2376. struct ql_tx_buf_cb *tx_cb;
  2377. int i;
  2378. struct ob_mac_iocb_req *req_q_curr = qdev->req_q_virt_addr;
  2379. /* Create free list of transmit buffers */
  2380. for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
  2381. tx_cb = &qdev->tx_buf[i];
  2382. tx_cb->skb = NULL;
  2383. tx_cb->queue_entry = req_q_curr;
  2384. req_q_curr++;
  2385. tx_cb->oal = kmalloc(512, GFP_KERNEL);
  2386. if (tx_cb->oal == NULL)
  2387. return -ENOMEM;
  2388. }
  2389. return 0;
  2390. }
  2391. static int ql_alloc_mem_resources(struct ql3_adapter *qdev)
  2392. {
  2393. if (qdev->ndev->mtu == NORMAL_MTU_SIZE) {
  2394. qdev->num_lbufq_entries = NUM_LBUFQ_ENTRIES;
  2395. qdev->lrg_buffer_len = NORMAL_MTU_SIZE;
  2396. } else if (qdev->ndev->mtu == JUMBO_MTU_SIZE) {
  2397. /*
  2398. * Bigger buffers, so less of them.
  2399. */
  2400. qdev->num_lbufq_entries = JUMBO_NUM_LBUFQ_ENTRIES;
  2401. qdev->lrg_buffer_len = JUMBO_MTU_SIZE;
  2402. } else {
  2403. netdev_err(qdev->ndev, "Invalid mtu size: %d. Only %d and %d are accepted.\n",
  2404. qdev->ndev->mtu, NORMAL_MTU_SIZE, JUMBO_MTU_SIZE);
  2405. return -ENOMEM;
  2406. }
  2407. qdev->num_large_buffers =
  2408. qdev->num_lbufq_entries * QL_ADDR_ELE_PER_BUFQ_ENTRY;
  2409. qdev->lrg_buffer_len += VLAN_ETH_HLEN + VLAN_ID_LEN + QL_HEADER_SPACE;
  2410. qdev->max_frame_size =
  2411. (qdev->lrg_buffer_len - QL_HEADER_SPACE) + ETHERNET_CRC_SIZE;
  2412. /*
  2413. * First allocate a page of shared memory and use it for shadow
  2414. * locations of Network Request Queue Consumer Address Register and
  2415. * Network Completion Queue Producer Index Register
  2416. */
  2417. qdev->shadow_reg_virt_addr =
  2418. dma_alloc_coherent(&qdev->pdev->dev, PAGE_SIZE,
  2419. &qdev->shadow_reg_phy_addr, GFP_KERNEL);
  2420. if (qdev->shadow_reg_virt_addr != NULL) {
  2421. qdev->preq_consumer_index = qdev->shadow_reg_virt_addr;
  2422. qdev->req_consumer_index_phy_addr_high =
  2423. MS_64BITS(qdev->shadow_reg_phy_addr);
  2424. qdev->req_consumer_index_phy_addr_low =
  2425. LS_64BITS(qdev->shadow_reg_phy_addr);
  2426. qdev->prsp_producer_index =
  2427. (__le32 *) (((u8 *) qdev->preq_consumer_index) + 8);
  2428. qdev->rsp_producer_index_phy_addr_high =
  2429. qdev->req_consumer_index_phy_addr_high;
  2430. qdev->rsp_producer_index_phy_addr_low =
  2431. qdev->req_consumer_index_phy_addr_low + 8;
  2432. } else {
  2433. netdev_err(qdev->ndev, "shadowReg Alloc failed\n");
  2434. return -ENOMEM;
  2435. }
  2436. if (ql_alloc_net_req_rsp_queues(qdev) != 0) {
  2437. netdev_err(qdev->ndev, "ql_alloc_net_req_rsp_queues failed\n");
  2438. goto err_req_rsp;
  2439. }
  2440. if (ql_alloc_buffer_queues(qdev) != 0) {
  2441. netdev_err(qdev->ndev, "ql_alloc_buffer_queues failed\n");
  2442. goto err_buffer_queues;
  2443. }
  2444. if (ql_alloc_small_buffers(qdev) != 0) {
  2445. netdev_err(qdev->ndev, "ql_alloc_small_buffers failed\n");
  2446. goto err_small_buffers;
  2447. }
  2448. if (ql_alloc_large_buffers(qdev) != 0) {
  2449. netdev_err(qdev->ndev, "ql_alloc_large_buffers failed\n");
  2450. goto err_small_buffers;
  2451. }
  2452. /* Initialize the large buffer queue. */
  2453. ql_init_large_buffers(qdev);
  2454. if (ql_create_send_free_list(qdev))
  2455. goto err_free_list;
  2456. qdev->rsp_current = qdev->rsp_q_virt_addr;
  2457. return 0;
  2458. err_free_list:
  2459. ql_free_send_free_list(qdev);
  2460. err_small_buffers:
  2461. ql_free_buffer_queues(qdev);
  2462. err_buffer_queues:
  2463. ql_free_net_req_rsp_queues(qdev);
  2464. err_req_rsp:
  2465. dma_free_coherent(&qdev->pdev->dev, PAGE_SIZE,
  2466. qdev->shadow_reg_virt_addr,
  2467. qdev->shadow_reg_phy_addr);
  2468. return -ENOMEM;
  2469. }
  2470. static void ql_free_mem_resources(struct ql3_adapter *qdev)
  2471. {
  2472. ql_free_send_free_list(qdev);
  2473. ql_free_large_buffers(qdev);
  2474. ql_free_small_buffers(qdev);
  2475. ql_free_buffer_queues(qdev);
  2476. ql_free_net_req_rsp_queues(qdev);
  2477. if (qdev->shadow_reg_virt_addr != NULL) {
  2478. dma_free_coherent(&qdev->pdev->dev, PAGE_SIZE,
  2479. qdev->shadow_reg_virt_addr,
  2480. qdev->shadow_reg_phy_addr);
  2481. qdev->shadow_reg_virt_addr = NULL;
  2482. }
  2483. }
  2484. static int ql_init_misc_registers(struct ql3_adapter *qdev)
  2485. {
  2486. struct ql3xxx_local_ram_registers __iomem *local_ram =
  2487. (void __iomem *)qdev->mem_map_registers;
  2488. if (ql_sem_spinlock(qdev, QL_DDR_RAM_SEM_MASK,
  2489. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  2490. 2) << 4))
  2491. return -1;
  2492. ql_write_page2_reg(qdev,
  2493. &local_ram->bufletSize, qdev->nvram_data.bufletSize);
  2494. ql_write_page2_reg(qdev,
  2495. &local_ram->maxBufletCount,
  2496. qdev->nvram_data.bufletCount);
  2497. ql_write_page2_reg(qdev,
  2498. &local_ram->freeBufletThresholdLow,
  2499. (qdev->nvram_data.tcpWindowThreshold25 << 16) |
  2500. (qdev->nvram_data.tcpWindowThreshold0));
  2501. ql_write_page2_reg(qdev,
  2502. &local_ram->freeBufletThresholdHigh,
  2503. qdev->nvram_data.tcpWindowThreshold50);
  2504. ql_write_page2_reg(qdev,
  2505. &local_ram->ipHashTableBase,
  2506. (qdev->nvram_data.ipHashTableBaseHi << 16) |
  2507. qdev->nvram_data.ipHashTableBaseLo);
  2508. ql_write_page2_reg(qdev,
  2509. &local_ram->ipHashTableCount,
  2510. qdev->nvram_data.ipHashTableSize);
  2511. ql_write_page2_reg(qdev,
  2512. &local_ram->tcpHashTableBase,
  2513. (qdev->nvram_data.tcpHashTableBaseHi << 16) |
  2514. qdev->nvram_data.tcpHashTableBaseLo);
  2515. ql_write_page2_reg(qdev,
  2516. &local_ram->tcpHashTableCount,
  2517. qdev->nvram_data.tcpHashTableSize);
  2518. ql_write_page2_reg(qdev,
  2519. &local_ram->ncbBase,
  2520. (qdev->nvram_data.ncbTableBaseHi << 16) |
  2521. qdev->nvram_data.ncbTableBaseLo);
  2522. ql_write_page2_reg(qdev,
  2523. &local_ram->maxNcbCount,
  2524. qdev->nvram_data.ncbTableSize);
  2525. ql_write_page2_reg(qdev,
  2526. &local_ram->drbBase,
  2527. (qdev->nvram_data.drbTableBaseHi << 16) |
  2528. qdev->nvram_data.drbTableBaseLo);
  2529. ql_write_page2_reg(qdev,
  2530. &local_ram->maxDrbCount,
  2531. qdev->nvram_data.drbTableSize);
  2532. ql_sem_unlock(qdev, QL_DDR_RAM_SEM_MASK);
  2533. return 0;
  2534. }
  2535. static int ql_adapter_initialize(struct ql3_adapter *qdev)
  2536. {
  2537. u32 value;
  2538. struct ql3xxx_port_registers __iomem *port_regs =
  2539. qdev->mem_map_registers;
  2540. __iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
  2541. struct ql3xxx_host_memory_registers __iomem *hmem_regs =
  2542. (void __iomem *)port_regs;
  2543. u32 delay = 10;
  2544. int status = 0;
  2545. if (ql_mii_setup(qdev))
  2546. return -1;
  2547. /* Bring out PHY out of reset */
  2548. ql_write_common_reg(qdev, spir,
  2549. (ISP_SERIAL_PORT_IF_WE |
  2550. (ISP_SERIAL_PORT_IF_WE << 16)));
  2551. /* Give the PHY time to come out of reset. */
  2552. mdelay(100);
  2553. qdev->port_link_state = LS_DOWN;
  2554. netif_carrier_off(qdev->ndev);
  2555. /* V2 chip fix for ARS-39168. */
  2556. ql_write_common_reg(qdev, spir,
  2557. (ISP_SERIAL_PORT_IF_SDE |
  2558. (ISP_SERIAL_PORT_IF_SDE << 16)));
  2559. /* Request Queue Registers */
  2560. *((u32 *)(qdev->preq_consumer_index)) = 0;
  2561. atomic_set(&qdev->tx_count, NUM_REQ_Q_ENTRIES);
  2562. qdev->req_producer_index = 0;
  2563. ql_write_page1_reg(qdev,
  2564. &hmem_regs->reqConsumerIndexAddrHigh,
  2565. qdev->req_consumer_index_phy_addr_high);
  2566. ql_write_page1_reg(qdev,
  2567. &hmem_regs->reqConsumerIndexAddrLow,
  2568. qdev->req_consumer_index_phy_addr_low);
  2569. ql_write_page1_reg(qdev,
  2570. &hmem_regs->reqBaseAddrHigh,
  2571. MS_64BITS(qdev->req_q_phy_addr));
  2572. ql_write_page1_reg(qdev,
  2573. &hmem_regs->reqBaseAddrLow,
  2574. LS_64BITS(qdev->req_q_phy_addr));
  2575. ql_write_page1_reg(qdev, &hmem_regs->reqLength, NUM_REQ_Q_ENTRIES);
  2576. /* Response Queue Registers */
  2577. *((__le16 *) (qdev->prsp_producer_index)) = 0;
  2578. qdev->rsp_consumer_index = 0;
  2579. qdev->rsp_current = qdev->rsp_q_virt_addr;
  2580. ql_write_page1_reg(qdev,
  2581. &hmem_regs->rspProducerIndexAddrHigh,
  2582. qdev->rsp_producer_index_phy_addr_high);
  2583. ql_write_page1_reg(qdev,
  2584. &hmem_regs->rspProducerIndexAddrLow,
  2585. qdev->rsp_producer_index_phy_addr_low);
  2586. ql_write_page1_reg(qdev,
  2587. &hmem_regs->rspBaseAddrHigh,
  2588. MS_64BITS(qdev->rsp_q_phy_addr));
  2589. ql_write_page1_reg(qdev,
  2590. &hmem_regs->rspBaseAddrLow,
  2591. LS_64BITS(qdev->rsp_q_phy_addr));
  2592. ql_write_page1_reg(qdev, &hmem_regs->rspLength, NUM_RSP_Q_ENTRIES);
  2593. /* Large Buffer Queue */
  2594. ql_write_page1_reg(qdev,
  2595. &hmem_regs->rxLargeQBaseAddrHigh,
  2596. MS_64BITS(qdev->lrg_buf_q_phy_addr));
  2597. ql_write_page1_reg(qdev,
  2598. &hmem_regs->rxLargeQBaseAddrLow,
  2599. LS_64BITS(qdev->lrg_buf_q_phy_addr));
  2600. ql_write_page1_reg(qdev,
  2601. &hmem_regs->rxLargeQLength,
  2602. qdev->num_lbufq_entries);
  2603. ql_write_page1_reg(qdev,
  2604. &hmem_regs->rxLargeBufferLength,
  2605. qdev->lrg_buffer_len);
  2606. /* Small Buffer Queue */
  2607. ql_write_page1_reg(qdev,
  2608. &hmem_regs->rxSmallQBaseAddrHigh,
  2609. MS_64BITS(qdev->small_buf_q_phy_addr));
  2610. ql_write_page1_reg(qdev,
  2611. &hmem_regs->rxSmallQBaseAddrLow,
  2612. LS_64BITS(qdev->small_buf_q_phy_addr));
  2613. ql_write_page1_reg(qdev, &hmem_regs->rxSmallQLength, NUM_SBUFQ_ENTRIES);
  2614. ql_write_page1_reg(qdev,
  2615. &hmem_regs->rxSmallBufferLength,
  2616. QL_SMALL_BUFFER_SIZE);
  2617. qdev->small_buf_q_producer_index = NUM_SBUFQ_ENTRIES - 1;
  2618. qdev->small_buf_release_cnt = 8;
  2619. qdev->lrg_buf_q_producer_index = qdev->num_lbufq_entries - 1;
  2620. qdev->lrg_buf_release_cnt = 8;
  2621. qdev->lrg_buf_next_free = qdev->lrg_buf_q_virt_addr;
  2622. qdev->small_buf_index = 0;
  2623. qdev->lrg_buf_index = 0;
  2624. qdev->lrg_buf_free_count = 0;
  2625. qdev->lrg_buf_free_head = NULL;
  2626. qdev->lrg_buf_free_tail = NULL;
  2627. ql_write_common_reg(qdev,
  2628. &port_regs->CommonRegs.
  2629. rxSmallQProducerIndex,
  2630. qdev->small_buf_q_producer_index);
  2631. ql_write_common_reg(qdev,
  2632. &port_regs->CommonRegs.
  2633. rxLargeQProducerIndex,
  2634. qdev->lrg_buf_q_producer_index);
  2635. /*
  2636. * Find out if the chip has already been initialized. If it has, then
  2637. * we skip some of the initialization.
  2638. */
  2639. clear_bit(QL_LINK_MASTER, &qdev->flags);
  2640. value = ql_read_page0_reg(qdev, &port_regs->portStatus);
  2641. if ((value & PORT_STATUS_IC) == 0) {
  2642. /* Chip has not been configured yet, so let it rip. */
  2643. if (ql_init_misc_registers(qdev)) {
  2644. status = -1;
  2645. goto out;
  2646. }
  2647. value = qdev->nvram_data.tcpMaxWindowSize;
  2648. ql_write_page0_reg(qdev, &port_regs->tcpMaxWindow, value);
  2649. value = (0xFFFF << 16) | qdev->nvram_data.extHwConfig;
  2650. if (ql_sem_spinlock(qdev, QL_FLASH_SEM_MASK,
  2651. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index)
  2652. * 2) << 13)) {
  2653. status = -1;
  2654. goto out;
  2655. }
  2656. ql_write_page0_reg(qdev, &port_regs->ExternalHWConfig, value);
  2657. ql_write_page0_reg(qdev, &port_regs->InternalChipConfig,
  2658. (((INTERNAL_CHIP_SD | INTERNAL_CHIP_WE) <<
  2659. 16) | (INTERNAL_CHIP_SD |
  2660. INTERNAL_CHIP_WE)));
  2661. ql_sem_unlock(qdev, QL_FLASH_SEM_MASK);
  2662. }
  2663. if (qdev->mac_index)
  2664. ql_write_page0_reg(qdev,
  2665. &port_regs->mac1MaxFrameLengthReg,
  2666. qdev->max_frame_size);
  2667. else
  2668. ql_write_page0_reg(qdev,
  2669. &port_regs->mac0MaxFrameLengthReg,
  2670. qdev->max_frame_size);
  2671. if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  2672. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  2673. 2) << 7)) {
  2674. status = -1;
  2675. goto out;
  2676. }
  2677. PHY_Setup(qdev);
  2678. ql_init_scan_mode(qdev);
  2679. ql_get_phy_owner(qdev);
  2680. /* Load the MAC Configuration */
  2681. /* Program lower 32 bits of the MAC address */
  2682. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  2683. (MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16));
  2684. ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
  2685. ((qdev->ndev->dev_addr[2] << 24)
  2686. | (qdev->ndev->dev_addr[3] << 16)
  2687. | (qdev->ndev->dev_addr[4] << 8)
  2688. | qdev->ndev->dev_addr[5]));
  2689. /* Program top 16 bits of the MAC address */
  2690. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  2691. ((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1));
  2692. ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
  2693. ((qdev->ndev->dev_addr[0] << 8)
  2694. | qdev->ndev->dev_addr[1]));
  2695. /* Enable Primary MAC */
  2696. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  2697. ((MAC_ADDR_INDIRECT_PTR_REG_PE << 16) |
  2698. MAC_ADDR_INDIRECT_PTR_REG_PE));
  2699. /* Clear Primary and Secondary IP addresses */
  2700. ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg,
  2701. ((IP_ADDR_INDEX_REG_MASK << 16) |
  2702. (qdev->mac_index << 2)));
  2703. ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0);
  2704. ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg,
  2705. ((IP_ADDR_INDEX_REG_MASK << 16) |
  2706. ((qdev->mac_index << 2) + 1)));
  2707. ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0);
  2708. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  2709. /* Indicate Configuration Complete */
  2710. ql_write_page0_reg(qdev,
  2711. &port_regs->portControl,
  2712. ((PORT_CONTROL_CC << 16) | PORT_CONTROL_CC));
  2713. do {
  2714. value = ql_read_page0_reg(qdev, &port_regs->portStatus);
  2715. if (value & PORT_STATUS_IC)
  2716. break;
  2717. spin_unlock_irq(&qdev->hw_lock);
  2718. msleep(500);
  2719. spin_lock_irq(&qdev->hw_lock);
  2720. } while (--delay);
  2721. if (delay == 0) {
  2722. netdev_err(qdev->ndev, "Hw Initialization timeout\n");
  2723. status = -1;
  2724. goto out;
  2725. }
  2726. /* Enable Ethernet Function */
  2727. if (qdev->device_id == QL3032_DEVICE_ID) {
  2728. value =
  2729. (QL3032_PORT_CONTROL_EF | QL3032_PORT_CONTROL_KIE |
  2730. QL3032_PORT_CONTROL_EIv6 | QL3032_PORT_CONTROL_EIv4 |
  2731. QL3032_PORT_CONTROL_ET);
  2732. ql_write_page0_reg(qdev, &port_regs->functionControl,
  2733. ((value << 16) | value));
  2734. } else {
  2735. value =
  2736. (PORT_CONTROL_EF | PORT_CONTROL_ET | PORT_CONTROL_EI |
  2737. PORT_CONTROL_HH);
  2738. ql_write_page0_reg(qdev, &port_regs->portControl,
  2739. ((value << 16) | value));
  2740. }
  2741. out:
  2742. return status;
  2743. }
  2744. /*
  2745. * Caller holds hw_lock.
  2746. */
  2747. static int ql_adapter_reset(struct ql3_adapter *qdev)
  2748. {
  2749. struct ql3xxx_port_registers __iomem *port_regs =
  2750. qdev->mem_map_registers;
  2751. int status = 0;
  2752. u16 value;
  2753. int max_wait_time;
  2754. set_bit(QL_RESET_ACTIVE, &qdev->flags);
  2755. clear_bit(QL_RESET_DONE, &qdev->flags);
  2756. /*
  2757. * Issue soft reset to chip.
  2758. */
  2759. netdev_printk(KERN_DEBUG, qdev->ndev, "Issue soft reset to chip\n");
  2760. ql_write_common_reg(qdev,
  2761. &port_regs->CommonRegs.ispControlStatus,
  2762. ((ISP_CONTROL_SR << 16) | ISP_CONTROL_SR));
  2763. /* Wait 3 seconds for reset to complete. */
  2764. netdev_printk(KERN_DEBUG, qdev->ndev,
  2765. "Wait 10 milliseconds for reset to complete\n");
  2766. /* Wait until the firmware tells us the Soft Reset is done */
  2767. max_wait_time = 5;
  2768. do {
  2769. value =
  2770. ql_read_common_reg(qdev,
  2771. &port_regs->CommonRegs.ispControlStatus);
  2772. if ((value & ISP_CONTROL_SR) == 0)
  2773. break;
  2774. mdelay(1000);
  2775. } while ((--max_wait_time));
  2776. /*
  2777. * Also, make sure that the Network Reset Interrupt bit has been
  2778. * cleared after the soft reset has taken place.
  2779. */
  2780. value =
  2781. ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus);
  2782. if (value & ISP_CONTROL_RI) {
  2783. netdev_printk(KERN_DEBUG, qdev->ndev,
  2784. "clearing RI after reset\n");
  2785. ql_write_common_reg(qdev,
  2786. &port_regs->CommonRegs.
  2787. ispControlStatus,
  2788. ((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI));
  2789. }
  2790. if (max_wait_time == 0) {
  2791. /* Issue Force Soft Reset */
  2792. ql_write_common_reg(qdev,
  2793. &port_regs->CommonRegs.
  2794. ispControlStatus,
  2795. ((ISP_CONTROL_FSR << 16) |
  2796. ISP_CONTROL_FSR));
  2797. /*
  2798. * Wait until the firmware tells us the Force Soft Reset is
  2799. * done
  2800. */
  2801. max_wait_time = 5;
  2802. do {
  2803. value = ql_read_common_reg(qdev,
  2804. &port_regs->CommonRegs.
  2805. ispControlStatus);
  2806. if ((value & ISP_CONTROL_FSR) == 0)
  2807. break;
  2808. mdelay(1000);
  2809. } while ((--max_wait_time));
  2810. }
  2811. if (max_wait_time == 0)
  2812. status = 1;
  2813. clear_bit(QL_RESET_ACTIVE, &qdev->flags);
  2814. set_bit(QL_RESET_DONE, &qdev->flags);
  2815. return status;
  2816. }
  2817. static void ql_set_mac_info(struct ql3_adapter *qdev)
  2818. {
  2819. struct ql3xxx_port_registers __iomem *port_regs =
  2820. qdev->mem_map_registers;
  2821. u32 value, port_status;
  2822. u8 func_number;
  2823. /* Get the function number */
  2824. value =
  2825. ql_read_common_reg_l(qdev, &port_regs->CommonRegs.ispControlStatus);
  2826. func_number = (u8) ((value >> 4) & OPCODE_FUNC_ID_MASK);
  2827. port_status = ql_read_page0_reg(qdev, &port_regs->portStatus);
  2828. switch (value & ISP_CONTROL_FN_MASK) {
  2829. case ISP_CONTROL_FN0_NET:
  2830. qdev->mac_index = 0;
  2831. qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number;
  2832. qdev->mb_bit_mask = FN0_MA_BITS_MASK;
  2833. qdev->PHYAddr = PORT0_PHY_ADDRESS;
  2834. if (port_status & PORT_STATUS_SM0)
  2835. set_bit(QL_LINK_OPTICAL, &qdev->flags);
  2836. else
  2837. clear_bit(QL_LINK_OPTICAL, &qdev->flags);
  2838. break;
  2839. case ISP_CONTROL_FN1_NET:
  2840. qdev->mac_index = 1;
  2841. qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number;
  2842. qdev->mb_bit_mask = FN1_MA_BITS_MASK;
  2843. qdev->PHYAddr = PORT1_PHY_ADDRESS;
  2844. if (port_status & PORT_STATUS_SM1)
  2845. set_bit(QL_LINK_OPTICAL, &qdev->flags);
  2846. else
  2847. clear_bit(QL_LINK_OPTICAL, &qdev->flags);
  2848. break;
  2849. case ISP_CONTROL_FN0_SCSI:
  2850. case ISP_CONTROL_FN1_SCSI:
  2851. default:
  2852. netdev_printk(KERN_DEBUG, qdev->ndev,
  2853. "Invalid function number, ispControlStatus = 0x%x\n",
  2854. value);
  2855. break;
  2856. }
  2857. qdev->numPorts = qdev->nvram_data.version_and_numPorts >> 8;
  2858. }
  2859. static void ql_display_dev_info(struct net_device *ndev)
  2860. {
  2861. struct ql3_adapter *qdev = netdev_priv(ndev);
  2862. struct pci_dev *pdev = qdev->pdev;
  2863. netdev_info(ndev,
  2864. "%s Adapter %d RevisionID %d found %s on PCI slot %d\n",
  2865. DRV_NAME, qdev->index, qdev->chip_rev_id,
  2866. qdev->device_id == QL3032_DEVICE_ID ? "QLA3032" : "QLA3022",
  2867. qdev->pci_slot);
  2868. netdev_info(ndev, "%s Interface\n",
  2869. test_bit(QL_LINK_OPTICAL, &qdev->flags) ? "OPTICAL" : "COPPER");
  2870. /*
  2871. * Print PCI bus width/type.
  2872. */
  2873. netdev_info(ndev, "Bus interface is %s %s\n",
  2874. ((qdev->pci_width == 64) ? "64-bit" : "32-bit"),
  2875. ((qdev->pci_x) ? "PCI-X" : "PCI"));
  2876. netdev_info(ndev, "mem IO base address adjusted = 0x%p\n",
  2877. qdev->mem_map_registers);
  2878. netdev_info(ndev, "Interrupt number = %d\n", pdev->irq);
  2879. netif_info(qdev, probe, ndev, "MAC address %pM\n", ndev->dev_addr);
  2880. }
  2881. static int ql_adapter_down(struct ql3_adapter *qdev, int do_reset)
  2882. {
  2883. struct net_device *ndev = qdev->ndev;
  2884. int retval = 0;
  2885. netif_stop_queue(ndev);
  2886. netif_carrier_off(ndev);
  2887. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  2888. clear_bit(QL_LINK_MASTER, &qdev->flags);
  2889. ql_disable_interrupts(qdev);
  2890. free_irq(qdev->pdev->irq, ndev);
  2891. if (qdev->msi && test_bit(QL_MSI_ENABLED, &qdev->flags)) {
  2892. netdev_info(qdev->ndev, "calling pci_disable_msi()\n");
  2893. clear_bit(QL_MSI_ENABLED, &qdev->flags);
  2894. pci_disable_msi(qdev->pdev);
  2895. }
  2896. del_timer_sync(&qdev->adapter_timer);
  2897. napi_disable(&qdev->napi);
  2898. if (do_reset) {
  2899. int soft_reset;
  2900. unsigned long hw_flags;
  2901. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  2902. if (ql_wait_for_drvr_lock(qdev)) {
  2903. soft_reset = ql_adapter_reset(qdev);
  2904. if (soft_reset) {
  2905. netdev_err(ndev, "ql_adapter_reset(%d) FAILED!\n",
  2906. qdev->index);
  2907. }
  2908. netdev_err(ndev,
  2909. "Releasing driver lock via chip reset\n");
  2910. } else {
  2911. netdev_err(ndev,
  2912. "Could not acquire driver lock to do reset!\n");
  2913. retval = -1;
  2914. }
  2915. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  2916. }
  2917. ql_free_mem_resources(qdev);
  2918. return retval;
  2919. }
  2920. static int ql_adapter_up(struct ql3_adapter *qdev)
  2921. {
  2922. struct net_device *ndev = qdev->ndev;
  2923. int err;
  2924. unsigned long irq_flags = IRQF_SHARED;
  2925. unsigned long hw_flags;
  2926. if (ql_alloc_mem_resources(qdev)) {
  2927. netdev_err(ndev, "Unable to allocate buffers\n");
  2928. return -ENOMEM;
  2929. }
  2930. if (qdev->msi) {
  2931. if (pci_enable_msi(qdev->pdev)) {
  2932. netdev_err(ndev,
  2933. "User requested MSI, but MSI failed to initialize. Continuing without MSI.\n");
  2934. qdev->msi = 0;
  2935. } else {
  2936. netdev_info(ndev, "MSI Enabled...\n");
  2937. set_bit(QL_MSI_ENABLED, &qdev->flags);
  2938. irq_flags &= ~IRQF_SHARED;
  2939. }
  2940. }
  2941. err = request_irq(qdev->pdev->irq, ql3xxx_isr,
  2942. irq_flags, ndev->name, ndev);
  2943. if (err) {
  2944. netdev_err(ndev,
  2945. "Failed to reserve interrupt %d - already in use\n",
  2946. qdev->pdev->irq);
  2947. goto err_irq;
  2948. }
  2949. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  2950. if (!ql_wait_for_drvr_lock(qdev)) {
  2951. netdev_err(ndev, "Could not acquire driver lock\n");
  2952. err = -ENODEV;
  2953. goto err_lock;
  2954. }
  2955. err = ql_adapter_initialize(qdev);
  2956. if (err) {
  2957. netdev_err(ndev, "Unable to initialize adapter\n");
  2958. goto err_init;
  2959. }
  2960. ql_sem_unlock(qdev, QL_DRVR_SEM_MASK);
  2961. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  2962. set_bit(QL_ADAPTER_UP, &qdev->flags);
  2963. mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
  2964. napi_enable(&qdev->napi);
  2965. ql_enable_interrupts(qdev);
  2966. return 0;
  2967. err_init:
  2968. ql_sem_unlock(qdev, QL_DRVR_SEM_MASK);
  2969. err_lock:
  2970. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  2971. free_irq(qdev->pdev->irq, ndev);
  2972. err_irq:
  2973. if (qdev->msi && test_bit(QL_MSI_ENABLED, &qdev->flags)) {
  2974. netdev_info(ndev, "calling pci_disable_msi()\n");
  2975. clear_bit(QL_MSI_ENABLED, &qdev->flags);
  2976. pci_disable_msi(qdev->pdev);
  2977. }
  2978. return err;
  2979. }
  2980. static int ql_cycle_adapter(struct ql3_adapter *qdev, int reset)
  2981. {
  2982. if (ql_adapter_down(qdev, reset) || ql_adapter_up(qdev)) {
  2983. netdev_err(qdev->ndev,
  2984. "Driver up/down cycle failed, closing device\n");
  2985. rtnl_lock();
  2986. dev_close(qdev->ndev);
  2987. rtnl_unlock();
  2988. return -1;
  2989. }
  2990. return 0;
  2991. }
  2992. static int ql3xxx_close(struct net_device *ndev)
  2993. {
  2994. struct ql3_adapter *qdev = netdev_priv(ndev);
  2995. /*
  2996. * Wait for device to recover from a reset.
  2997. * (Rarely happens, but possible.)
  2998. */
  2999. while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
  3000. msleep(50);
  3001. ql_adapter_down(qdev, QL_DO_RESET);
  3002. return 0;
  3003. }
  3004. static int ql3xxx_open(struct net_device *ndev)
  3005. {
  3006. struct ql3_adapter *qdev = netdev_priv(ndev);
  3007. return ql_adapter_up(qdev);
  3008. }
  3009. static int ql3xxx_set_mac_address(struct net_device *ndev, void *p)
  3010. {
  3011. struct ql3_adapter *qdev = netdev_priv(ndev);
  3012. struct ql3xxx_port_registers __iomem *port_regs =
  3013. qdev->mem_map_registers;
  3014. struct sockaddr *addr = p;
  3015. unsigned long hw_flags;
  3016. if (netif_running(ndev))
  3017. return -EBUSY;
  3018. if (!is_valid_ether_addr(addr->sa_data))
  3019. return -EADDRNOTAVAIL;
  3020. eth_hw_addr_set(ndev, addr->sa_data);
  3021. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  3022. /* Program lower 32 bits of the MAC address */
  3023. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  3024. (MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16));
  3025. ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
  3026. ((ndev->dev_addr[2] << 24) | (ndev->
  3027. dev_addr[3] << 16) |
  3028. (ndev->dev_addr[4] << 8) | ndev->dev_addr[5]));
  3029. /* Program top 16 bits of the MAC address */
  3030. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  3031. ((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1));
  3032. ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
  3033. ((ndev->dev_addr[0] << 8) | ndev->dev_addr[1]));
  3034. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  3035. return 0;
  3036. }
  3037. static void ql3xxx_tx_timeout(struct net_device *ndev, unsigned int txqueue)
  3038. {
  3039. struct ql3_adapter *qdev = netdev_priv(ndev);
  3040. netdev_err(ndev, "Resetting...\n");
  3041. /*
  3042. * Stop the queues, we've got a problem.
  3043. */
  3044. netif_stop_queue(ndev);
  3045. /*
  3046. * Wake up the worker to process this event.
  3047. */
  3048. queue_delayed_work(qdev->workqueue, &qdev->tx_timeout_work, 0);
  3049. }
  3050. static void ql_reset_work(struct work_struct *work)
  3051. {
  3052. struct ql3_adapter *qdev =
  3053. container_of(work, struct ql3_adapter, reset_work.work);
  3054. struct net_device *ndev = qdev->ndev;
  3055. u32 value;
  3056. struct ql_tx_buf_cb *tx_cb;
  3057. int max_wait_time, i;
  3058. struct ql3xxx_port_registers __iomem *port_regs =
  3059. qdev->mem_map_registers;
  3060. unsigned long hw_flags;
  3061. if (test_bit(QL_RESET_PER_SCSI, &qdev->flags) ||
  3062. test_bit(QL_RESET_START, &qdev->flags)) {
  3063. clear_bit(QL_LINK_MASTER, &qdev->flags);
  3064. /*
  3065. * Loop through the active list and return the skb.
  3066. */
  3067. for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
  3068. int j;
  3069. tx_cb = &qdev->tx_buf[i];
  3070. if (tx_cb->skb) {
  3071. netdev_printk(KERN_DEBUG, ndev,
  3072. "Freeing lost SKB\n");
  3073. dma_unmap_single(&qdev->pdev->dev,
  3074. dma_unmap_addr(&tx_cb->map[0], mapaddr),
  3075. dma_unmap_len(&tx_cb->map[0], maplen),
  3076. DMA_TO_DEVICE);
  3077. for (j = 1; j < tx_cb->seg_count; j++) {
  3078. dma_unmap_page(&qdev->pdev->dev,
  3079. dma_unmap_addr(&tx_cb->map[j], mapaddr),
  3080. dma_unmap_len(&tx_cb->map[j], maplen),
  3081. DMA_TO_DEVICE);
  3082. }
  3083. dev_kfree_skb(tx_cb->skb);
  3084. tx_cb->skb = NULL;
  3085. }
  3086. }
  3087. netdev_err(ndev, "Clearing NRI after reset\n");
  3088. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  3089. ql_write_common_reg(qdev,
  3090. &port_regs->CommonRegs.
  3091. ispControlStatus,
  3092. ((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI));
  3093. /*
  3094. * Wait the for Soft Reset to Complete.
  3095. */
  3096. max_wait_time = 10;
  3097. do {
  3098. value = ql_read_common_reg(qdev,
  3099. &port_regs->CommonRegs.
  3100. ispControlStatus);
  3101. if ((value & ISP_CONTROL_SR) == 0) {
  3102. netdev_printk(KERN_DEBUG, ndev,
  3103. "reset completed\n");
  3104. break;
  3105. }
  3106. if (value & ISP_CONTROL_RI) {
  3107. netdev_printk(KERN_DEBUG, ndev,
  3108. "clearing NRI after reset\n");
  3109. ql_write_common_reg(qdev,
  3110. &port_regs->
  3111. CommonRegs.
  3112. ispControlStatus,
  3113. ((ISP_CONTROL_RI <<
  3114. 16) | ISP_CONTROL_RI));
  3115. }
  3116. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  3117. ssleep(1);
  3118. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  3119. } while (--max_wait_time);
  3120. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  3121. if (value & ISP_CONTROL_SR) {
  3122. /*
  3123. * Set the reset flags and clear the board again.
  3124. * Nothing else to do...
  3125. */
  3126. netdev_err(ndev,
  3127. "Timed out waiting for reset to complete\n");
  3128. netdev_err(ndev, "Do a reset\n");
  3129. clear_bit(QL_RESET_PER_SCSI, &qdev->flags);
  3130. clear_bit(QL_RESET_START, &qdev->flags);
  3131. ql_cycle_adapter(qdev, QL_DO_RESET);
  3132. return;
  3133. }
  3134. clear_bit(QL_RESET_ACTIVE, &qdev->flags);
  3135. clear_bit(QL_RESET_PER_SCSI, &qdev->flags);
  3136. clear_bit(QL_RESET_START, &qdev->flags);
  3137. ql_cycle_adapter(qdev, QL_NO_RESET);
  3138. }
  3139. }
  3140. static void ql_tx_timeout_work(struct work_struct *work)
  3141. {
  3142. struct ql3_adapter *qdev =
  3143. container_of(work, struct ql3_adapter, tx_timeout_work.work);
  3144. ql_cycle_adapter(qdev, QL_DO_RESET);
  3145. }
  3146. static void ql_get_board_info(struct ql3_adapter *qdev)
  3147. {
  3148. struct ql3xxx_port_registers __iomem *port_regs =
  3149. qdev->mem_map_registers;
  3150. u32 value;
  3151. value = ql_read_page0_reg_l(qdev, &port_regs->portStatus);
  3152. qdev->chip_rev_id = ((value & PORT_STATUS_REV_ID_MASK) >> 12);
  3153. if (value & PORT_STATUS_64)
  3154. qdev->pci_width = 64;
  3155. else
  3156. qdev->pci_width = 32;
  3157. if (value & PORT_STATUS_X)
  3158. qdev->pci_x = 1;
  3159. else
  3160. qdev->pci_x = 0;
  3161. qdev->pci_slot = (u8) PCI_SLOT(qdev->pdev->devfn);
  3162. }
  3163. static void ql3xxx_timer(struct timer_list *t)
  3164. {
  3165. struct ql3_adapter *qdev = from_timer(qdev, t, adapter_timer);
  3166. queue_delayed_work(qdev->workqueue, &qdev->link_state_work, 0);
  3167. }
  3168. static const struct net_device_ops ql3xxx_netdev_ops = {
  3169. .ndo_open = ql3xxx_open,
  3170. .ndo_start_xmit = ql3xxx_send,
  3171. .ndo_stop = ql3xxx_close,
  3172. .ndo_validate_addr = eth_validate_addr,
  3173. .ndo_set_mac_address = ql3xxx_set_mac_address,
  3174. .ndo_tx_timeout = ql3xxx_tx_timeout,
  3175. };
  3176. static int ql3xxx_probe(struct pci_dev *pdev,
  3177. const struct pci_device_id *pci_entry)
  3178. {
  3179. struct net_device *ndev = NULL;
  3180. struct ql3_adapter *qdev = NULL;
  3181. static int cards_found;
  3182. int err;
  3183. err = pci_enable_device(pdev);
  3184. if (err) {
  3185. pr_err("%s cannot enable PCI device\n", pci_name(pdev));
  3186. goto err_out;
  3187. }
  3188. err = pci_request_regions(pdev, DRV_NAME);
  3189. if (err) {
  3190. pr_err("%s cannot obtain PCI resources\n", pci_name(pdev));
  3191. goto err_out_disable_pdev;
  3192. }
  3193. pci_set_master(pdev);
  3194. err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
  3195. if (err) {
  3196. pr_err("%s no usable DMA configuration\n", pci_name(pdev));
  3197. goto err_out_free_regions;
  3198. }
  3199. ndev = alloc_etherdev(sizeof(struct ql3_adapter));
  3200. if (!ndev) {
  3201. err = -ENOMEM;
  3202. goto err_out_free_regions;
  3203. }
  3204. SET_NETDEV_DEV(ndev, &pdev->dev);
  3205. pci_set_drvdata(pdev, ndev);
  3206. qdev = netdev_priv(ndev);
  3207. qdev->index = cards_found;
  3208. qdev->ndev = ndev;
  3209. qdev->pdev = pdev;
  3210. qdev->device_id = pci_entry->device;
  3211. qdev->port_link_state = LS_DOWN;
  3212. if (msi)
  3213. qdev->msi = 1;
  3214. qdev->msg_enable = netif_msg_init(debug, default_msg);
  3215. ndev->features |= NETIF_F_HIGHDMA;
  3216. if (qdev->device_id == QL3032_DEVICE_ID)
  3217. ndev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  3218. qdev->mem_map_registers = pci_ioremap_bar(pdev, 1);
  3219. if (!qdev->mem_map_registers) {
  3220. pr_err("%s: cannot map device registers\n", pci_name(pdev));
  3221. err = -EIO;
  3222. goto err_out_free_ndev;
  3223. }
  3224. spin_lock_init(&qdev->adapter_lock);
  3225. spin_lock_init(&qdev->hw_lock);
  3226. /* Set driver entry points */
  3227. ndev->netdev_ops = &ql3xxx_netdev_ops;
  3228. ndev->ethtool_ops = &ql3xxx_ethtool_ops;
  3229. ndev->watchdog_timeo = 5 * HZ;
  3230. netif_napi_add(ndev, &qdev->napi, ql_poll);
  3231. ndev->irq = pdev->irq;
  3232. /* make sure the EEPROM is good */
  3233. if (ql_get_nvram_params(qdev)) {
  3234. pr_alert("%s: Adapter #%d, Invalid NVRAM parameters\n",
  3235. __func__, qdev->index);
  3236. err = -EIO;
  3237. goto err_out_iounmap;
  3238. }
  3239. ql_set_mac_info(qdev);
  3240. /* Validate and set parameters */
  3241. if (qdev->mac_index) {
  3242. ndev->mtu = qdev->nvram_data.macCfg_port1.etherMtu_mac ;
  3243. ql_set_mac_addr(ndev, qdev->nvram_data.funcCfg_fn2.macAddress);
  3244. } else {
  3245. ndev->mtu = qdev->nvram_data.macCfg_port0.etherMtu_mac ;
  3246. ql_set_mac_addr(ndev, qdev->nvram_data.funcCfg_fn0.macAddress);
  3247. }
  3248. ndev->tx_queue_len = NUM_REQ_Q_ENTRIES;
  3249. /* Record PCI bus information. */
  3250. ql_get_board_info(qdev);
  3251. /*
  3252. * Set the Maximum Memory Read Byte Count value. We do this to handle
  3253. * jumbo frames.
  3254. */
  3255. if (qdev->pci_x)
  3256. pci_write_config_word(pdev, (int)0x4e, (u16) 0x0036);
  3257. err = register_netdev(ndev);
  3258. if (err) {
  3259. pr_err("%s: cannot register net device\n", pci_name(pdev));
  3260. goto err_out_iounmap;
  3261. }
  3262. /* we're going to reset, so assume we have no link for now */
  3263. netif_carrier_off(ndev);
  3264. netif_stop_queue(ndev);
  3265. qdev->workqueue = create_singlethread_workqueue(ndev->name);
  3266. if (!qdev->workqueue) {
  3267. unregister_netdev(ndev);
  3268. err = -ENOMEM;
  3269. goto err_out_iounmap;
  3270. }
  3271. INIT_DELAYED_WORK(&qdev->reset_work, ql_reset_work);
  3272. INIT_DELAYED_WORK(&qdev->tx_timeout_work, ql_tx_timeout_work);
  3273. INIT_DELAYED_WORK(&qdev->link_state_work, ql_link_state_machine_work);
  3274. timer_setup(&qdev->adapter_timer, ql3xxx_timer, 0);
  3275. qdev->adapter_timer.expires = jiffies + HZ * 2; /* two second delay */
  3276. if (!cards_found) {
  3277. pr_alert("%s\n", DRV_STRING);
  3278. pr_alert("Driver name: %s, Version: %s\n",
  3279. DRV_NAME, DRV_VERSION);
  3280. }
  3281. ql_display_dev_info(ndev);
  3282. cards_found++;
  3283. return 0;
  3284. err_out_iounmap:
  3285. iounmap(qdev->mem_map_registers);
  3286. err_out_free_ndev:
  3287. free_netdev(ndev);
  3288. err_out_free_regions:
  3289. pci_release_regions(pdev);
  3290. err_out_disable_pdev:
  3291. pci_disable_device(pdev);
  3292. err_out:
  3293. return err;
  3294. }
  3295. static void ql3xxx_remove(struct pci_dev *pdev)
  3296. {
  3297. struct net_device *ndev = pci_get_drvdata(pdev);
  3298. struct ql3_adapter *qdev = netdev_priv(ndev);
  3299. unregister_netdev(ndev);
  3300. ql_disable_interrupts(qdev);
  3301. if (qdev->workqueue) {
  3302. cancel_delayed_work(&qdev->reset_work);
  3303. cancel_delayed_work(&qdev->tx_timeout_work);
  3304. destroy_workqueue(qdev->workqueue);
  3305. qdev->workqueue = NULL;
  3306. }
  3307. iounmap(qdev->mem_map_registers);
  3308. pci_release_regions(pdev);
  3309. free_netdev(ndev);
  3310. }
  3311. static struct pci_driver ql3xxx_driver = {
  3312. .name = DRV_NAME,
  3313. .id_table = ql3xxx_pci_tbl,
  3314. .probe = ql3xxx_probe,
  3315. .remove = ql3xxx_remove,
  3316. };
  3317. module_pci_driver(ql3xxx_driver);