forcedeth.c 191 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503
  1. // SPDX-License-Identifier: GPL-2.0-or-later
  2. /*
  3. * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
  4. *
  5. * Note: This driver is a cleanroom reimplementation based on reverse
  6. * engineered documentation written by Carl-Daniel Hailfinger
  7. * and Andrew de Quincey.
  8. *
  9. * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
  10. * trademarks of NVIDIA Corporation in the United States and other
  11. * countries.
  12. *
  13. * Copyright (C) 2003,4,5 Manfred Spraul
  14. * Copyright (C) 2004 Andrew de Quincey (wol support)
  15. * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
  16. * IRQ rate fixes, bigendian fixes, cleanups, verification)
  17. * Copyright (c) 2004,2005,2006,2007,2008,2009 NVIDIA Corporation
  18. *
  19. * Known bugs:
  20. * We suspect that on some hardware no TX done interrupts are generated.
  21. * This means recovery from netif_stop_queue only happens if the hw timer
  22. * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
  23. * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
  24. * If your hardware reliably generates tx done interrupts, then you can remove
  25. * DEV_NEED_TIMERIRQ from the driver_data flags.
  26. * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
  27. * superfluous timer interrupts from the nic.
  28. */
  29. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  30. #define FORCEDETH_VERSION "0.64"
  31. #define DRV_NAME "forcedeth"
  32. #include <linux/module.h>
  33. #include <linux/types.h>
  34. #include <linux/pci.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/netdevice.h>
  37. #include <linux/etherdevice.h>
  38. #include <linux/delay.h>
  39. #include <linux/sched.h>
  40. #include <linux/spinlock.h>
  41. #include <linux/ethtool.h>
  42. #include <linux/timer.h>
  43. #include <linux/skbuff.h>
  44. #include <linux/mii.h>
  45. #include <linux/random.h>
  46. #include <linux/if_vlan.h>
  47. #include <linux/dma-mapping.h>
  48. #include <linux/slab.h>
  49. #include <linux/uaccess.h>
  50. #include <linux/prefetch.h>
  51. #include <linux/u64_stats_sync.h>
  52. #include <linux/io.h>
  53. #include <asm/irq.h>
  54. #define TX_WORK_PER_LOOP NAPI_POLL_WEIGHT
  55. #define RX_WORK_PER_LOOP NAPI_POLL_WEIGHT
  56. /*
  57. * Hardware access:
  58. */
  59. #define DEV_NEED_TIMERIRQ 0x0000001 /* set the timer irq flag in the irq mask */
  60. #define DEV_NEED_LINKTIMER 0x0000002 /* poll link settings. Relies on the timer irq */
  61. #define DEV_HAS_LARGEDESC 0x0000004 /* device supports jumbo frames and needs packet format 2 */
  62. #define DEV_HAS_HIGH_DMA 0x0000008 /* device supports 64bit dma */
  63. #define DEV_HAS_CHECKSUM 0x0000010 /* device supports tx and rx checksum offloads */
  64. #define DEV_HAS_VLAN 0x0000020 /* device supports vlan tagging and striping */
  65. #define DEV_HAS_MSI 0x0000040 /* device supports MSI */
  66. #define DEV_HAS_MSI_X 0x0000080 /* device supports MSI-X */
  67. #define DEV_HAS_POWER_CNTRL 0x0000100 /* device supports power savings */
  68. #define DEV_HAS_STATISTICS_V1 0x0000200 /* device supports hw statistics version 1 */
  69. #define DEV_HAS_STATISTICS_V2 0x0000400 /* device supports hw statistics version 2 */
  70. #define DEV_HAS_STATISTICS_V3 0x0000800 /* device supports hw statistics version 3 */
  71. #define DEV_HAS_STATISTICS_V12 0x0000600 /* device supports hw statistics version 1 and 2 */
  72. #define DEV_HAS_STATISTICS_V123 0x0000e00 /* device supports hw statistics version 1, 2, and 3 */
  73. #define DEV_HAS_TEST_EXTENDED 0x0001000 /* device supports extended diagnostic test */
  74. #define DEV_HAS_MGMT_UNIT 0x0002000 /* device supports management unit */
  75. #define DEV_HAS_CORRECT_MACADDR 0x0004000 /* device supports correct mac address order */
  76. #define DEV_HAS_COLLISION_FIX 0x0008000 /* device supports tx collision fix */
  77. #define DEV_HAS_PAUSEFRAME_TX_V1 0x0010000 /* device supports tx pause frames version 1 */
  78. #define DEV_HAS_PAUSEFRAME_TX_V2 0x0020000 /* device supports tx pause frames version 2 */
  79. #define DEV_HAS_PAUSEFRAME_TX_V3 0x0040000 /* device supports tx pause frames version 3 */
  80. #define DEV_NEED_TX_LIMIT 0x0080000 /* device needs to limit tx */
  81. #define DEV_NEED_TX_LIMIT2 0x0180000 /* device needs to limit tx, expect for some revs */
  82. #define DEV_HAS_GEAR_MODE 0x0200000 /* device supports gear mode */
  83. #define DEV_NEED_PHY_INIT_FIX 0x0400000 /* device needs specific phy workaround */
  84. #define DEV_NEED_LOW_POWER_FIX 0x0800000 /* device needs special power up workaround */
  85. #define DEV_NEED_MSI_FIX 0x1000000 /* device needs msi workaround */
  86. enum {
  87. NvRegIrqStatus = 0x000,
  88. #define NVREG_IRQSTAT_MIIEVENT 0x040
  89. #define NVREG_IRQSTAT_MASK 0x83ff
  90. NvRegIrqMask = 0x004,
  91. #define NVREG_IRQ_RX_ERROR 0x0001
  92. #define NVREG_IRQ_RX 0x0002
  93. #define NVREG_IRQ_RX_NOBUF 0x0004
  94. #define NVREG_IRQ_TX_ERR 0x0008
  95. #define NVREG_IRQ_TX_OK 0x0010
  96. #define NVREG_IRQ_TIMER 0x0020
  97. #define NVREG_IRQ_LINK 0x0040
  98. #define NVREG_IRQ_RX_FORCED 0x0080
  99. #define NVREG_IRQ_TX_FORCED 0x0100
  100. #define NVREG_IRQ_RECOVER_ERROR 0x8200
  101. #define NVREG_IRQMASK_THROUGHPUT 0x00df
  102. #define NVREG_IRQMASK_CPU 0x0060
  103. #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
  104. #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
  105. #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RECOVER_ERROR)
  106. NvRegUnknownSetupReg6 = 0x008,
  107. #define NVREG_UNKSETUP6_VAL 3
  108. /*
  109. * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
  110. * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
  111. */
  112. NvRegPollingInterval = 0x00c,
  113. #define NVREG_POLL_DEFAULT_THROUGHPUT 65535 /* backup tx cleanup if loop max reached */
  114. #define NVREG_POLL_DEFAULT_CPU 13
  115. NvRegMSIMap0 = 0x020,
  116. NvRegMSIMap1 = 0x024,
  117. NvRegMSIIrqMask = 0x030,
  118. #define NVREG_MSI_VECTOR_0_ENABLED 0x01
  119. NvRegMisc1 = 0x080,
  120. #define NVREG_MISC1_PAUSE_TX 0x01
  121. #define NVREG_MISC1_HD 0x02
  122. #define NVREG_MISC1_FORCE 0x3b0f3c
  123. NvRegMacReset = 0x34,
  124. #define NVREG_MAC_RESET_ASSERT 0x0F3
  125. NvRegTransmitterControl = 0x084,
  126. #define NVREG_XMITCTL_START 0x01
  127. #define NVREG_XMITCTL_MGMT_ST 0x40000000
  128. #define NVREG_XMITCTL_SYNC_MASK 0x000f0000
  129. #define NVREG_XMITCTL_SYNC_NOT_READY 0x0
  130. #define NVREG_XMITCTL_SYNC_PHY_INIT 0x00040000
  131. #define NVREG_XMITCTL_MGMT_SEMA_MASK 0x00000f00
  132. #define NVREG_XMITCTL_MGMT_SEMA_FREE 0x0
  133. #define NVREG_XMITCTL_HOST_SEMA_MASK 0x0000f000
  134. #define NVREG_XMITCTL_HOST_SEMA_ACQ 0x0000f000
  135. #define NVREG_XMITCTL_HOST_LOADED 0x00004000
  136. #define NVREG_XMITCTL_TX_PATH_EN 0x01000000
  137. #define NVREG_XMITCTL_DATA_START 0x00100000
  138. #define NVREG_XMITCTL_DATA_READY 0x00010000
  139. #define NVREG_XMITCTL_DATA_ERROR 0x00020000
  140. NvRegTransmitterStatus = 0x088,
  141. #define NVREG_XMITSTAT_BUSY 0x01
  142. NvRegPacketFilterFlags = 0x8c,
  143. #define NVREG_PFF_PAUSE_RX 0x08
  144. #define NVREG_PFF_ALWAYS 0x7F0000
  145. #define NVREG_PFF_PROMISC 0x80
  146. #define NVREG_PFF_MYADDR 0x20
  147. #define NVREG_PFF_LOOPBACK 0x10
  148. NvRegOffloadConfig = 0x90,
  149. #define NVREG_OFFLOAD_HOMEPHY 0x601
  150. #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
  151. NvRegReceiverControl = 0x094,
  152. #define NVREG_RCVCTL_START 0x01
  153. #define NVREG_RCVCTL_RX_PATH_EN 0x01000000
  154. NvRegReceiverStatus = 0x98,
  155. #define NVREG_RCVSTAT_BUSY 0x01
  156. NvRegSlotTime = 0x9c,
  157. #define NVREG_SLOTTIME_LEGBF_ENABLED 0x80000000
  158. #define NVREG_SLOTTIME_10_100_FULL 0x00007f00
  159. #define NVREG_SLOTTIME_1000_FULL 0x0003ff00
  160. #define NVREG_SLOTTIME_HALF 0x0000ff00
  161. #define NVREG_SLOTTIME_DEFAULT 0x00007f00
  162. #define NVREG_SLOTTIME_MASK 0x000000ff
  163. NvRegTxDeferral = 0xA0,
  164. #define NVREG_TX_DEFERRAL_DEFAULT 0x15050f
  165. #define NVREG_TX_DEFERRAL_RGMII_10_100 0x16070f
  166. #define NVREG_TX_DEFERRAL_RGMII_1000 0x14050f
  167. #define NVREG_TX_DEFERRAL_RGMII_STRETCH_10 0x16190f
  168. #define NVREG_TX_DEFERRAL_RGMII_STRETCH_100 0x16300f
  169. #define NVREG_TX_DEFERRAL_MII_STRETCH 0x152000
  170. NvRegRxDeferral = 0xA4,
  171. #define NVREG_RX_DEFERRAL_DEFAULT 0x16
  172. NvRegMacAddrA = 0xA8,
  173. NvRegMacAddrB = 0xAC,
  174. NvRegMulticastAddrA = 0xB0,
  175. #define NVREG_MCASTADDRA_FORCE 0x01
  176. NvRegMulticastAddrB = 0xB4,
  177. NvRegMulticastMaskA = 0xB8,
  178. #define NVREG_MCASTMASKA_NONE 0xffffffff
  179. NvRegMulticastMaskB = 0xBC,
  180. #define NVREG_MCASTMASKB_NONE 0xffff
  181. NvRegPhyInterface = 0xC0,
  182. #define PHY_RGMII 0x10000000
  183. NvRegBackOffControl = 0xC4,
  184. #define NVREG_BKOFFCTRL_DEFAULT 0x70000000
  185. #define NVREG_BKOFFCTRL_SEED_MASK 0x000003ff
  186. #define NVREG_BKOFFCTRL_SELECT 24
  187. #define NVREG_BKOFFCTRL_GEAR 12
  188. NvRegTxRingPhysAddr = 0x100,
  189. NvRegRxRingPhysAddr = 0x104,
  190. NvRegRingSizes = 0x108,
  191. #define NVREG_RINGSZ_TXSHIFT 0
  192. #define NVREG_RINGSZ_RXSHIFT 16
  193. NvRegTransmitPoll = 0x10c,
  194. #define NVREG_TRANSMITPOLL_MAC_ADDR_REV 0x00008000
  195. NvRegLinkSpeed = 0x110,
  196. #define NVREG_LINKSPEED_FORCE 0x10000
  197. #define NVREG_LINKSPEED_10 1000
  198. #define NVREG_LINKSPEED_100 100
  199. #define NVREG_LINKSPEED_1000 50
  200. #define NVREG_LINKSPEED_MASK (0xFFF)
  201. NvRegUnknownSetupReg5 = 0x130,
  202. #define NVREG_UNKSETUP5_BIT31 (1<<31)
  203. NvRegTxWatermark = 0x13c,
  204. #define NVREG_TX_WM_DESC1_DEFAULT 0x0200010
  205. #define NVREG_TX_WM_DESC2_3_DEFAULT 0x1e08000
  206. #define NVREG_TX_WM_DESC2_3_1000 0xfe08000
  207. NvRegTxRxControl = 0x144,
  208. #define NVREG_TXRXCTL_KICK 0x0001
  209. #define NVREG_TXRXCTL_BIT1 0x0002
  210. #define NVREG_TXRXCTL_BIT2 0x0004
  211. #define NVREG_TXRXCTL_IDLE 0x0008
  212. #define NVREG_TXRXCTL_RESET 0x0010
  213. #define NVREG_TXRXCTL_RXCHECK 0x0400
  214. #define NVREG_TXRXCTL_DESC_1 0
  215. #define NVREG_TXRXCTL_DESC_2 0x002100
  216. #define NVREG_TXRXCTL_DESC_3 0xc02200
  217. #define NVREG_TXRXCTL_VLANSTRIP 0x00040
  218. #define NVREG_TXRXCTL_VLANINS 0x00080
  219. NvRegTxRingPhysAddrHigh = 0x148,
  220. NvRegRxRingPhysAddrHigh = 0x14C,
  221. NvRegTxPauseFrame = 0x170,
  222. #define NVREG_TX_PAUSEFRAME_DISABLE 0x0fff0080
  223. #define NVREG_TX_PAUSEFRAME_ENABLE_V1 0x01800010
  224. #define NVREG_TX_PAUSEFRAME_ENABLE_V2 0x056003f0
  225. #define NVREG_TX_PAUSEFRAME_ENABLE_V3 0x09f00880
  226. NvRegTxPauseFrameLimit = 0x174,
  227. #define NVREG_TX_PAUSEFRAMELIMIT_ENABLE 0x00010000
  228. NvRegMIIStatus = 0x180,
  229. #define NVREG_MIISTAT_ERROR 0x0001
  230. #define NVREG_MIISTAT_LINKCHANGE 0x0008
  231. #define NVREG_MIISTAT_MASK_RW 0x0007
  232. #define NVREG_MIISTAT_MASK_ALL 0x000f
  233. NvRegMIIMask = 0x184,
  234. #define NVREG_MII_LINKCHANGE 0x0008
  235. NvRegAdapterControl = 0x188,
  236. #define NVREG_ADAPTCTL_START 0x02
  237. #define NVREG_ADAPTCTL_LINKUP 0x04
  238. #define NVREG_ADAPTCTL_PHYVALID 0x40000
  239. #define NVREG_ADAPTCTL_RUNNING 0x100000
  240. #define NVREG_ADAPTCTL_PHYSHIFT 24
  241. NvRegMIISpeed = 0x18c,
  242. #define NVREG_MIISPEED_BIT8 (1<<8)
  243. #define NVREG_MIIDELAY 5
  244. NvRegMIIControl = 0x190,
  245. #define NVREG_MIICTL_INUSE 0x08000
  246. #define NVREG_MIICTL_WRITE 0x00400
  247. #define NVREG_MIICTL_ADDRSHIFT 5
  248. NvRegMIIData = 0x194,
  249. NvRegTxUnicast = 0x1a0,
  250. NvRegTxMulticast = 0x1a4,
  251. NvRegTxBroadcast = 0x1a8,
  252. NvRegWakeUpFlags = 0x200,
  253. #define NVREG_WAKEUPFLAGS_VAL 0x7770
  254. #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
  255. #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
  256. #define NVREG_WAKEUPFLAGS_D3SHIFT 12
  257. #define NVREG_WAKEUPFLAGS_D2SHIFT 8
  258. #define NVREG_WAKEUPFLAGS_D1SHIFT 4
  259. #define NVREG_WAKEUPFLAGS_D0SHIFT 0
  260. #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
  261. #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
  262. #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
  263. #define NVREG_WAKEUPFLAGS_ENABLE 0x1111
  264. NvRegMgmtUnitGetVersion = 0x204,
  265. #define NVREG_MGMTUNITGETVERSION 0x01
  266. NvRegMgmtUnitVersion = 0x208,
  267. #define NVREG_MGMTUNITVERSION 0x08
  268. NvRegPowerCap = 0x268,
  269. #define NVREG_POWERCAP_D3SUPP (1<<30)
  270. #define NVREG_POWERCAP_D2SUPP (1<<26)
  271. #define NVREG_POWERCAP_D1SUPP (1<<25)
  272. NvRegPowerState = 0x26c,
  273. #define NVREG_POWERSTATE_POWEREDUP 0x8000
  274. #define NVREG_POWERSTATE_VALID 0x0100
  275. #define NVREG_POWERSTATE_MASK 0x0003
  276. #define NVREG_POWERSTATE_D0 0x0000
  277. #define NVREG_POWERSTATE_D1 0x0001
  278. #define NVREG_POWERSTATE_D2 0x0002
  279. #define NVREG_POWERSTATE_D3 0x0003
  280. NvRegMgmtUnitControl = 0x278,
  281. #define NVREG_MGMTUNITCONTROL_INUSE 0x20000
  282. NvRegTxCnt = 0x280,
  283. NvRegTxZeroReXmt = 0x284,
  284. NvRegTxOneReXmt = 0x288,
  285. NvRegTxManyReXmt = 0x28c,
  286. NvRegTxLateCol = 0x290,
  287. NvRegTxUnderflow = 0x294,
  288. NvRegTxLossCarrier = 0x298,
  289. NvRegTxExcessDef = 0x29c,
  290. NvRegTxRetryErr = 0x2a0,
  291. NvRegRxFrameErr = 0x2a4,
  292. NvRegRxExtraByte = 0x2a8,
  293. NvRegRxLateCol = 0x2ac,
  294. NvRegRxRunt = 0x2b0,
  295. NvRegRxFrameTooLong = 0x2b4,
  296. NvRegRxOverflow = 0x2b8,
  297. NvRegRxFCSErr = 0x2bc,
  298. NvRegRxFrameAlignErr = 0x2c0,
  299. NvRegRxLenErr = 0x2c4,
  300. NvRegRxUnicast = 0x2c8,
  301. NvRegRxMulticast = 0x2cc,
  302. NvRegRxBroadcast = 0x2d0,
  303. NvRegTxDef = 0x2d4,
  304. NvRegTxFrame = 0x2d8,
  305. NvRegRxCnt = 0x2dc,
  306. NvRegTxPause = 0x2e0,
  307. NvRegRxPause = 0x2e4,
  308. NvRegRxDropFrame = 0x2e8,
  309. NvRegVlanControl = 0x300,
  310. #define NVREG_VLANCONTROL_ENABLE 0x2000
  311. NvRegMSIXMap0 = 0x3e0,
  312. NvRegMSIXMap1 = 0x3e4,
  313. NvRegMSIXIrqStatus = 0x3f0,
  314. NvRegPowerState2 = 0x600,
  315. #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F15
  316. #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001
  317. #define NVREG_POWERSTATE2_PHY_RESET 0x0004
  318. #define NVREG_POWERSTATE2_GATE_CLOCKS 0x0F00
  319. };
  320. /* Big endian: should work, but is untested */
  321. struct ring_desc {
  322. __le32 buf;
  323. __le32 flaglen;
  324. };
  325. struct ring_desc_ex {
  326. __le32 bufhigh;
  327. __le32 buflow;
  328. __le32 txvlan;
  329. __le32 flaglen;
  330. };
  331. union ring_type {
  332. struct ring_desc *orig;
  333. struct ring_desc_ex *ex;
  334. };
  335. #define FLAG_MASK_V1 0xffff0000
  336. #define FLAG_MASK_V2 0xffffc000
  337. #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
  338. #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
  339. #define NV_TX_LASTPACKET (1<<16)
  340. #define NV_TX_RETRYERROR (1<<19)
  341. #define NV_TX_RETRYCOUNT_MASK (0xF<<20)
  342. #define NV_TX_FORCED_INTERRUPT (1<<24)
  343. #define NV_TX_DEFERRED (1<<26)
  344. #define NV_TX_CARRIERLOST (1<<27)
  345. #define NV_TX_LATECOLLISION (1<<28)
  346. #define NV_TX_UNDERFLOW (1<<29)
  347. #define NV_TX_ERROR (1<<30)
  348. #define NV_TX_VALID (1<<31)
  349. #define NV_TX2_LASTPACKET (1<<29)
  350. #define NV_TX2_RETRYERROR (1<<18)
  351. #define NV_TX2_RETRYCOUNT_MASK (0xF<<19)
  352. #define NV_TX2_FORCED_INTERRUPT (1<<30)
  353. #define NV_TX2_DEFERRED (1<<25)
  354. #define NV_TX2_CARRIERLOST (1<<26)
  355. #define NV_TX2_LATECOLLISION (1<<27)
  356. #define NV_TX2_UNDERFLOW (1<<28)
  357. /* error and valid are the same for both */
  358. #define NV_TX2_ERROR (1<<30)
  359. #define NV_TX2_VALID (1<<31)
  360. #define NV_TX2_TSO (1<<28)
  361. #define NV_TX2_TSO_SHIFT 14
  362. #define NV_TX2_TSO_MAX_SHIFT 14
  363. #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT)
  364. #define NV_TX2_CHECKSUM_L3 (1<<27)
  365. #define NV_TX2_CHECKSUM_L4 (1<<26)
  366. #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
  367. #define NV_RX_DESCRIPTORVALID (1<<16)
  368. #define NV_RX_MISSEDFRAME (1<<17)
  369. #define NV_RX_SUBTRACT1 (1<<18)
  370. #define NV_RX_ERROR1 (1<<23)
  371. #define NV_RX_ERROR2 (1<<24)
  372. #define NV_RX_ERROR3 (1<<25)
  373. #define NV_RX_ERROR4 (1<<26)
  374. #define NV_RX_CRCERR (1<<27)
  375. #define NV_RX_OVERFLOW (1<<28)
  376. #define NV_RX_FRAMINGERR (1<<29)
  377. #define NV_RX_ERROR (1<<30)
  378. #define NV_RX_AVAIL (1<<31)
  379. #define NV_RX_ERROR_MASK (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3|NV_RX_ERROR4|NV_RX_CRCERR|NV_RX_OVERFLOW|NV_RX_FRAMINGERR)
  380. #define NV_RX2_CHECKSUMMASK (0x1C000000)
  381. #define NV_RX2_CHECKSUM_IP (0x10000000)
  382. #define NV_RX2_CHECKSUM_IP_TCP (0x14000000)
  383. #define NV_RX2_CHECKSUM_IP_UDP (0x18000000)
  384. #define NV_RX2_DESCRIPTORVALID (1<<29)
  385. #define NV_RX2_SUBTRACT1 (1<<25)
  386. #define NV_RX2_ERROR1 (1<<18)
  387. #define NV_RX2_ERROR2 (1<<19)
  388. #define NV_RX2_ERROR3 (1<<20)
  389. #define NV_RX2_ERROR4 (1<<21)
  390. #define NV_RX2_CRCERR (1<<22)
  391. #define NV_RX2_OVERFLOW (1<<23)
  392. #define NV_RX2_FRAMINGERR (1<<24)
  393. /* error and avail are the same for both */
  394. #define NV_RX2_ERROR (1<<30)
  395. #define NV_RX2_AVAIL (1<<31)
  396. #define NV_RX2_ERROR_MASK (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3|NV_RX2_ERROR4|NV_RX2_CRCERR|NV_RX2_OVERFLOW|NV_RX2_FRAMINGERR)
  397. #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
  398. #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF)
  399. /* Miscellaneous hardware related defines: */
  400. #define NV_PCI_REGSZ_VER1 0x270
  401. #define NV_PCI_REGSZ_VER2 0x2d4
  402. #define NV_PCI_REGSZ_VER3 0x604
  403. #define NV_PCI_REGSZ_MAX 0x604
  404. /* various timeout delays: all in usec */
  405. #define NV_TXRX_RESET_DELAY 4
  406. #define NV_TXSTOP_DELAY1 10
  407. #define NV_TXSTOP_DELAY1MAX 500000
  408. #define NV_TXSTOP_DELAY2 100
  409. #define NV_RXSTOP_DELAY1 10
  410. #define NV_RXSTOP_DELAY1MAX 500000
  411. #define NV_RXSTOP_DELAY2 100
  412. #define NV_SETUP5_DELAY 5
  413. #define NV_SETUP5_DELAYMAX 50000
  414. #define NV_POWERUP_DELAY 5
  415. #define NV_POWERUP_DELAYMAX 5000
  416. #define NV_MIIBUSY_DELAY 50
  417. #define NV_MIIPHY_DELAY 10
  418. #define NV_MIIPHY_DELAYMAX 10000
  419. #define NV_MAC_RESET_DELAY 64
  420. #define NV_WAKEUPPATTERNS 5
  421. #define NV_WAKEUPMASKENTRIES 4
  422. /* General driver defaults */
  423. #define NV_WATCHDOG_TIMEO (5*HZ)
  424. #define RX_RING_DEFAULT 512
  425. #define TX_RING_DEFAULT 256
  426. #define RX_RING_MIN 128
  427. #define TX_RING_MIN 64
  428. #define RING_MAX_DESC_VER_1 1024
  429. #define RING_MAX_DESC_VER_2_3 16384
  430. /* rx/tx mac addr + type + vlan + align + slack*/
  431. #define NV_RX_HEADERS (64)
  432. /* even more slack. */
  433. #define NV_RX_ALLOC_PAD (64)
  434. /* maximum mtu size */
  435. #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
  436. #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
  437. #define OOM_REFILL (1+HZ/20)
  438. #define POLL_WAIT (1+HZ/100)
  439. #define LINK_TIMEOUT (3*HZ)
  440. #define STATS_INTERVAL (10*HZ)
  441. /*
  442. * desc_ver values:
  443. * The nic supports three different descriptor types:
  444. * - DESC_VER_1: Original
  445. * - DESC_VER_2: support for jumbo frames.
  446. * - DESC_VER_3: 64-bit format.
  447. */
  448. #define DESC_VER_1 1
  449. #define DESC_VER_2 2
  450. #define DESC_VER_3 3
  451. /* PHY defines */
  452. #define PHY_OUI_MARVELL 0x5043
  453. #define PHY_OUI_CICADA 0x03f1
  454. #define PHY_OUI_VITESSE 0x01c1
  455. #define PHY_OUI_REALTEK 0x0732
  456. #define PHY_OUI_REALTEK2 0x0020
  457. #define PHYID1_OUI_MASK 0x03ff
  458. #define PHYID1_OUI_SHFT 6
  459. #define PHYID2_OUI_MASK 0xfc00
  460. #define PHYID2_OUI_SHFT 10
  461. #define PHYID2_MODEL_MASK 0x03f0
  462. #define PHY_MODEL_REALTEK_8211 0x0110
  463. #define PHY_REV_MASK 0x0001
  464. #define PHY_REV_REALTEK_8211B 0x0000
  465. #define PHY_REV_REALTEK_8211C 0x0001
  466. #define PHY_MODEL_REALTEK_8201 0x0200
  467. #define PHY_MODEL_MARVELL_E3016 0x0220
  468. #define PHY_MARVELL_E3016_INITMASK 0x0300
  469. #define PHY_CICADA_INIT1 0x0f000
  470. #define PHY_CICADA_INIT2 0x0e00
  471. #define PHY_CICADA_INIT3 0x01000
  472. #define PHY_CICADA_INIT4 0x0200
  473. #define PHY_CICADA_INIT5 0x0004
  474. #define PHY_CICADA_INIT6 0x02000
  475. #define PHY_VITESSE_INIT_REG1 0x1f
  476. #define PHY_VITESSE_INIT_REG2 0x10
  477. #define PHY_VITESSE_INIT_REG3 0x11
  478. #define PHY_VITESSE_INIT_REG4 0x12
  479. #define PHY_VITESSE_INIT_MSK1 0xc
  480. #define PHY_VITESSE_INIT_MSK2 0x0180
  481. #define PHY_VITESSE_INIT1 0x52b5
  482. #define PHY_VITESSE_INIT2 0xaf8a
  483. #define PHY_VITESSE_INIT3 0x8
  484. #define PHY_VITESSE_INIT4 0x8f8a
  485. #define PHY_VITESSE_INIT5 0xaf86
  486. #define PHY_VITESSE_INIT6 0x8f86
  487. #define PHY_VITESSE_INIT7 0xaf82
  488. #define PHY_VITESSE_INIT8 0x0100
  489. #define PHY_VITESSE_INIT9 0x8f82
  490. #define PHY_VITESSE_INIT10 0x0
  491. #define PHY_REALTEK_INIT_REG1 0x1f
  492. #define PHY_REALTEK_INIT_REG2 0x19
  493. #define PHY_REALTEK_INIT_REG3 0x13
  494. #define PHY_REALTEK_INIT_REG4 0x14
  495. #define PHY_REALTEK_INIT_REG5 0x18
  496. #define PHY_REALTEK_INIT_REG6 0x11
  497. #define PHY_REALTEK_INIT_REG7 0x01
  498. #define PHY_REALTEK_INIT1 0x0000
  499. #define PHY_REALTEK_INIT2 0x8e00
  500. #define PHY_REALTEK_INIT3 0x0001
  501. #define PHY_REALTEK_INIT4 0xad17
  502. #define PHY_REALTEK_INIT5 0xfb54
  503. #define PHY_REALTEK_INIT6 0xf5c7
  504. #define PHY_REALTEK_INIT7 0x1000
  505. #define PHY_REALTEK_INIT8 0x0003
  506. #define PHY_REALTEK_INIT9 0x0008
  507. #define PHY_REALTEK_INIT10 0x0005
  508. #define PHY_REALTEK_INIT11 0x0200
  509. #define PHY_REALTEK_INIT_MSK1 0x0003
  510. #define PHY_GIGABIT 0x0100
  511. #define PHY_TIMEOUT 0x1
  512. #define PHY_ERROR 0x2
  513. #define PHY_100 0x1
  514. #define PHY_1000 0x2
  515. #define PHY_HALF 0x100
  516. #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
  517. #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
  518. #define NV_PAUSEFRAME_RX_ENABLE 0x0004
  519. #define NV_PAUSEFRAME_TX_ENABLE 0x0008
  520. #define NV_PAUSEFRAME_RX_REQ 0x0010
  521. #define NV_PAUSEFRAME_TX_REQ 0x0020
  522. #define NV_PAUSEFRAME_AUTONEG 0x0040
  523. /* MSI/MSI-X defines */
  524. #define NV_MSI_X_MAX_VECTORS 8
  525. #define NV_MSI_X_VECTORS_MASK 0x000f
  526. #define NV_MSI_CAPABLE 0x0010
  527. #define NV_MSI_X_CAPABLE 0x0020
  528. #define NV_MSI_ENABLED 0x0040
  529. #define NV_MSI_X_ENABLED 0x0080
  530. #define NV_MSI_X_VECTOR_ALL 0x0
  531. #define NV_MSI_X_VECTOR_RX 0x0
  532. #define NV_MSI_X_VECTOR_TX 0x1
  533. #define NV_MSI_X_VECTOR_OTHER 0x2
  534. #define NV_MSI_PRIV_OFFSET 0x68
  535. #define NV_MSI_PRIV_VALUE 0xffffffff
  536. #define NV_RESTART_TX 0x1
  537. #define NV_RESTART_RX 0x2
  538. #define NV_TX_LIMIT_COUNT 16
  539. #define NV_DYNAMIC_THRESHOLD 4
  540. #define NV_DYNAMIC_MAX_QUIET_COUNT 2048
  541. /* statistics */
  542. struct nv_ethtool_str {
  543. char name[ETH_GSTRING_LEN];
  544. };
  545. static const struct nv_ethtool_str nv_estats_str[] = {
  546. { "tx_bytes" }, /* includes Ethernet FCS CRC */
  547. { "tx_zero_rexmt" },
  548. { "tx_one_rexmt" },
  549. { "tx_many_rexmt" },
  550. { "tx_late_collision" },
  551. { "tx_fifo_errors" },
  552. { "tx_carrier_errors" },
  553. { "tx_excess_deferral" },
  554. { "tx_retry_error" },
  555. { "rx_frame_error" },
  556. { "rx_extra_byte" },
  557. { "rx_late_collision" },
  558. { "rx_runt" },
  559. { "rx_frame_too_long" },
  560. { "rx_over_errors" },
  561. { "rx_crc_errors" },
  562. { "rx_frame_align_error" },
  563. { "rx_length_error" },
  564. { "rx_unicast" },
  565. { "rx_multicast" },
  566. { "rx_broadcast" },
  567. { "rx_packets" },
  568. { "rx_errors_total" },
  569. { "tx_errors_total" },
  570. /* version 2 stats */
  571. { "tx_deferral" },
  572. { "tx_packets" },
  573. { "rx_bytes" }, /* includes Ethernet FCS CRC */
  574. { "tx_pause" },
  575. { "rx_pause" },
  576. { "rx_drop_frame" },
  577. /* version 3 stats */
  578. { "tx_unicast" },
  579. { "tx_multicast" },
  580. { "tx_broadcast" }
  581. };
  582. struct nv_ethtool_stats {
  583. u64 tx_bytes; /* should be ifconfig->tx_bytes + 4*tx_packets */
  584. u64 tx_zero_rexmt;
  585. u64 tx_one_rexmt;
  586. u64 tx_many_rexmt;
  587. u64 tx_late_collision;
  588. u64 tx_fifo_errors;
  589. u64 tx_carrier_errors;
  590. u64 tx_excess_deferral;
  591. u64 tx_retry_error;
  592. u64 rx_frame_error;
  593. u64 rx_extra_byte;
  594. u64 rx_late_collision;
  595. u64 rx_runt;
  596. u64 rx_frame_too_long;
  597. u64 rx_over_errors;
  598. u64 rx_crc_errors;
  599. u64 rx_frame_align_error;
  600. u64 rx_length_error;
  601. u64 rx_unicast;
  602. u64 rx_multicast;
  603. u64 rx_broadcast;
  604. u64 rx_packets; /* should be ifconfig->rx_packets */
  605. u64 rx_errors_total;
  606. u64 tx_errors_total;
  607. /* version 2 stats */
  608. u64 tx_deferral;
  609. u64 tx_packets; /* should be ifconfig->tx_packets */
  610. u64 rx_bytes; /* should be ifconfig->rx_bytes + 4*rx_packets */
  611. u64 tx_pause;
  612. u64 rx_pause;
  613. u64 rx_drop_frame;
  614. /* version 3 stats */
  615. u64 tx_unicast;
  616. u64 tx_multicast;
  617. u64 tx_broadcast;
  618. };
  619. #define NV_DEV_STATISTICS_V3_COUNT (sizeof(struct nv_ethtool_stats)/sizeof(u64))
  620. #define NV_DEV_STATISTICS_V2_COUNT (NV_DEV_STATISTICS_V3_COUNT - 3)
  621. #define NV_DEV_STATISTICS_V1_COUNT (NV_DEV_STATISTICS_V2_COUNT - 6)
  622. /* diagnostics */
  623. #define NV_TEST_COUNT_BASE 3
  624. #define NV_TEST_COUNT_EXTENDED 4
  625. static const struct nv_ethtool_str nv_etests_str[] = {
  626. { "link (online/offline)" },
  627. { "register (offline) " },
  628. { "interrupt (offline) " },
  629. { "loopback (offline) " }
  630. };
  631. struct register_test {
  632. __u32 reg;
  633. __u32 mask;
  634. };
  635. static const struct register_test nv_registers_test[] = {
  636. { NvRegUnknownSetupReg6, 0x01 },
  637. { NvRegMisc1, 0x03c },
  638. { NvRegOffloadConfig, 0x03ff },
  639. { NvRegMulticastAddrA, 0xffffffff },
  640. { NvRegTxWatermark, 0x0ff },
  641. { NvRegWakeUpFlags, 0x07777 },
  642. { 0, 0 }
  643. };
  644. struct nv_skb_map {
  645. struct sk_buff *skb;
  646. dma_addr_t dma;
  647. unsigned int dma_len:31;
  648. unsigned int dma_single:1;
  649. struct ring_desc_ex *first_tx_desc;
  650. struct nv_skb_map *next_tx_ctx;
  651. };
  652. struct nv_txrx_stats {
  653. u64 stat_rx_packets;
  654. u64 stat_rx_bytes; /* not always available in HW */
  655. u64 stat_rx_missed_errors;
  656. u64 stat_rx_dropped;
  657. u64 stat_tx_packets; /* not always available in HW */
  658. u64 stat_tx_bytes;
  659. u64 stat_tx_dropped;
  660. };
  661. #define nv_txrx_stats_inc(member) \
  662. __this_cpu_inc(np->txrx_stats->member)
  663. #define nv_txrx_stats_add(member, count) \
  664. __this_cpu_add(np->txrx_stats->member, (count))
  665. /*
  666. * SMP locking:
  667. * All hardware access under netdev_priv(dev)->lock, except the performance
  668. * critical parts:
  669. * - rx is (pseudo-) lockless: it relies on the single-threading provided
  670. * by the arch code for interrupts.
  671. * - tx setup is lockless: it relies on netif_tx_lock. Actual submission
  672. * needs netdev_priv(dev)->lock :-(
  673. * - set_multicast_list: preparation lockless, relies on netif_tx_lock.
  674. *
  675. * Hardware stats updates are protected by hwstats_lock:
  676. * - updated by nv_do_stats_poll (timer). This is meant to avoid
  677. * integer wraparound in the NIC stats registers, at low frequency
  678. * (0.1 Hz)
  679. * - updated by nv_get_ethtool_stats + nv_get_stats64
  680. *
  681. * Software stats are accessed only through 64b synchronization points
  682. * and are not subject to other synchronization techniques (single
  683. * update thread on the TX or RX paths).
  684. */
  685. /* in dev: base, irq */
  686. struct fe_priv {
  687. spinlock_t lock;
  688. struct net_device *dev;
  689. struct napi_struct napi;
  690. /* hardware stats are updated in syscall and timer */
  691. spinlock_t hwstats_lock;
  692. struct nv_ethtool_stats estats;
  693. int in_shutdown;
  694. u32 linkspeed;
  695. int duplex;
  696. int autoneg;
  697. int fixed_mode;
  698. int phyaddr;
  699. int wolenabled;
  700. unsigned int phy_oui;
  701. unsigned int phy_model;
  702. unsigned int phy_rev;
  703. u16 gigabit;
  704. int intr_test;
  705. int recover_error;
  706. int quiet_count;
  707. /* General data: RO fields */
  708. dma_addr_t ring_addr;
  709. struct pci_dev *pci_dev;
  710. u32 orig_mac[2];
  711. u32 events;
  712. u32 irqmask;
  713. u32 desc_ver;
  714. u32 txrxctl_bits;
  715. u32 vlanctl_bits;
  716. u32 driver_data;
  717. u32 device_id;
  718. u32 register_size;
  719. u32 mac_in_use;
  720. int mgmt_version;
  721. int mgmt_sema;
  722. void __iomem *base;
  723. /* rx specific fields.
  724. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  725. */
  726. union ring_type get_rx, put_rx, last_rx;
  727. struct nv_skb_map *get_rx_ctx, *put_rx_ctx;
  728. struct nv_skb_map *last_rx_ctx;
  729. struct nv_skb_map *rx_skb;
  730. union ring_type rx_ring;
  731. unsigned int rx_buf_sz;
  732. unsigned int pkt_limit;
  733. struct timer_list oom_kick;
  734. struct timer_list nic_poll;
  735. struct timer_list stats_poll;
  736. u32 nic_poll_irq;
  737. int rx_ring_size;
  738. /* RX software stats */
  739. struct u64_stats_sync swstats_rx_syncp;
  740. struct nv_txrx_stats __percpu *txrx_stats;
  741. /* media detection workaround.
  742. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  743. */
  744. int need_linktimer;
  745. unsigned long link_timeout;
  746. /*
  747. * tx specific fields.
  748. */
  749. union ring_type get_tx, put_tx, last_tx;
  750. struct nv_skb_map *get_tx_ctx, *put_tx_ctx;
  751. struct nv_skb_map *last_tx_ctx;
  752. struct nv_skb_map *tx_skb;
  753. union ring_type tx_ring;
  754. u32 tx_flags;
  755. int tx_ring_size;
  756. int tx_limit;
  757. u32 tx_pkts_in_progress;
  758. struct nv_skb_map *tx_change_owner;
  759. struct nv_skb_map *tx_end_flip;
  760. int tx_stop;
  761. /* TX software stats */
  762. struct u64_stats_sync swstats_tx_syncp;
  763. /* msi/msi-x fields */
  764. u32 msi_flags;
  765. struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
  766. /* flow control */
  767. u32 pause_flags;
  768. /* power saved state */
  769. u32 saved_config_space[NV_PCI_REGSZ_MAX/4];
  770. /* for different msi-x irq type */
  771. char name_rx[IFNAMSIZ + 3]; /* -rx */
  772. char name_tx[IFNAMSIZ + 3]; /* -tx */
  773. char name_other[IFNAMSIZ + 6]; /* -other */
  774. };
  775. /*
  776. * Maximum number of loops until we assume that a bit in the irq mask
  777. * is stuck. Overridable with module param.
  778. */
  779. static int max_interrupt_work = 4;
  780. /*
  781. * Optimization can be either throuput mode or cpu mode
  782. *
  783. * Throughput Mode: Every tx and rx packet will generate an interrupt.
  784. * CPU Mode: Interrupts are controlled by a timer.
  785. */
  786. enum {
  787. NV_OPTIMIZATION_MODE_THROUGHPUT,
  788. NV_OPTIMIZATION_MODE_CPU,
  789. NV_OPTIMIZATION_MODE_DYNAMIC
  790. };
  791. static int optimization_mode = NV_OPTIMIZATION_MODE_DYNAMIC;
  792. /*
  793. * Poll interval for timer irq
  794. *
  795. * This interval determines how frequent an interrupt is generated.
  796. * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
  797. * Min = 0, and Max = 65535
  798. */
  799. static int poll_interval = -1;
  800. /*
  801. * MSI interrupts
  802. */
  803. enum {
  804. NV_MSI_INT_DISABLED,
  805. NV_MSI_INT_ENABLED
  806. };
  807. static int msi = NV_MSI_INT_ENABLED;
  808. /*
  809. * MSIX interrupts
  810. */
  811. enum {
  812. NV_MSIX_INT_DISABLED,
  813. NV_MSIX_INT_ENABLED
  814. };
  815. static int msix = NV_MSIX_INT_ENABLED;
  816. /*
  817. * DMA 64bit
  818. */
  819. enum {
  820. NV_DMA_64BIT_DISABLED,
  821. NV_DMA_64BIT_ENABLED
  822. };
  823. static int dma_64bit = NV_DMA_64BIT_ENABLED;
  824. /*
  825. * Debug output control for tx_timeout
  826. */
  827. static bool debug_tx_timeout = false;
  828. /*
  829. * Crossover Detection
  830. * Realtek 8201 phy + some OEM boards do not work properly.
  831. */
  832. enum {
  833. NV_CROSSOVER_DETECTION_DISABLED,
  834. NV_CROSSOVER_DETECTION_ENABLED
  835. };
  836. static int phy_cross = NV_CROSSOVER_DETECTION_DISABLED;
  837. /*
  838. * Power down phy when interface is down (persists through reboot;
  839. * older Linux and other OSes may not power it up again)
  840. */
  841. static int phy_power_down;
  842. static inline struct fe_priv *get_nvpriv(struct net_device *dev)
  843. {
  844. return netdev_priv(dev);
  845. }
  846. static inline u8 __iomem *get_hwbase(struct net_device *dev)
  847. {
  848. return ((struct fe_priv *)netdev_priv(dev))->base;
  849. }
  850. static inline void pci_push(u8 __iomem *base)
  851. {
  852. /* force out pending posted writes */
  853. readl(base);
  854. }
  855. static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
  856. {
  857. return le32_to_cpu(prd->flaglen)
  858. & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
  859. }
  860. static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
  861. {
  862. return le32_to_cpu(prd->flaglen) & LEN_MASK_V2;
  863. }
  864. static bool nv_optimized(struct fe_priv *np)
  865. {
  866. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  867. return false;
  868. return true;
  869. }
  870. static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
  871. int delay, int delaymax)
  872. {
  873. u8 __iomem *base = get_hwbase(dev);
  874. pci_push(base);
  875. do {
  876. udelay(delay);
  877. delaymax -= delay;
  878. if (delaymax < 0)
  879. return 1;
  880. } while ((readl(base + offset) & mask) != target);
  881. return 0;
  882. }
  883. #define NV_SETUP_RX_RING 0x01
  884. #define NV_SETUP_TX_RING 0x02
  885. static inline u32 dma_low(dma_addr_t addr)
  886. {
  887. return addr;
  888. }
  889. static inline u32 dma_high(dma_addr_t addr)
  890. {
  891. return addr>>31>>1; /* 0 if 32bit, shift down by 32 if 64bit */
  892. }
  893. static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
  894. {
  895. struct fe_priv *np = get_nvpriv(dev);
  896. u8 __iomem *base = get_hwbase(dev);
  897. if (!nv_optimized(np)) {
  898. if (rxtx_flags & NV_SETUP_RX_RING)
  899. writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
  900. if (rxtx_flags & NV_SETUP_TX_RING)
  901. writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
  902. } else {
  903. if (rxtx_flags & NV_SETUP_RX_RING) {
  904. writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
  905. writel(dma_high(np->ring_addr), base + NvRegRxRingPhysAddrHigh);
  906. }
  907. if (rxtx_flags & NV_SETUP_TX_RING) {
  908. writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
  909. writel(dma_high(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddrHigh);
  910. }
  911. }
  912. }
  913. static void free_rings(struct net_device *dev)
  914. {
  915. struct fe_priv *np = get_nvpriv(dev);
  916. if (!nv_optimized(np)) {
  917. if (np->rx_ring.orig)
  918. dma_free_coherent(&np->pci_dev->dev,
  919. sizeof(struct ring_desc) *
  920. (np->rx_ring_size +
  921. np->tx_ring_size),
  922. np->rx_ring.orig, np->ring_addr);
  923. } else {
  924. if (np->rx_ring.ex)
  925. dma_free_coherent(&np->pci_dev->dev,
  926. sizeof(struct ring_desc_ex) *
  927. (np->rx_ring_size +
  928. np->tx_ring_size),
  929. np->rx_ring.ex, np->ring_addr);
  930. }
  931. kfree(np->rx_skb);
  932. kfree(np->tx_skb);
  933. }
  934. static int using_multi_irqs(struct net_device *dev)
  935. {
  936. struct fe_priv *np = get_nvpriv(dev);
  937. if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
  938. ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1))
  939. return 0;
  940. else
  941. return 1;
  942. }
  943. static void nv_txrx_gate(struct net_device *dev, bool gate)
  944. {
  945. struct fe_priv *np = get_nvpriv(dev);
  946. u8 __iomem *base = get_hwbase(dev);
  947. u32 powerstate;
  948. if (!np->mac_in_use &&
  949. (np->driver_data & DEV_HAS_POWER_CNTRL)) {
  950. powerstate = readl(base + NvRegPowerState2);
  951. if (gate)
  952. powerstate |= NVREG_POWERSTATE2_GATE_CLOCKS;
  953. else
  954. powerstate &= ~NVREG_POWERSTATE2_GATE_CLOCKS;
  955. writel(powerstate, base + NvRegPowerState2);
  956. }
  957. }
  958. static void nv_enable_irq(struct net_device *dev)
  959. {
  960. struct fe_priv *np = get_nvpriv(dev);
  961. if (!using_multi_irqs(dev)) {
  962. if (np->msi_flags & NV_MSI_X_ENABLED)
  963. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  964. else
  965. enable_irq(np->pci_dev->irq);
  966. } else {
  967. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  968. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  969. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  970. }
  971. }
  972. static void nv_disable_irq(struct net_device *dev)
  973. {
  974. struct fe_priv *np = get_nvpriv(dev);
  975. if (!using_multi_irqs(dev)) {
  976. if (np->msi_flags & NV_MSI_X_ENABLED)
  977. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  978. else
  979. disable_irq(np->pci_dev->irq);
  980. } else {
  981. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  982. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  983. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  984. }
  985. }
  986. /* In MSIX mode, a write to irqmask behaves as XOR */
  987. static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
  988. {
  989. u8 __iomem *base = get_hwbase(dev);
  990. writel(mask, base + NvRegIrqMask);
  991. }
  992. static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
  993. {
  994. struct fe_priv *np = get_nvpriv(dev);
  995. u8 __iomem *base = get_hwbase(dev);
  996. if (np->msi_flags & NV_MSI_X_ENABLED) {
  997. writel(mask, base + NvRegIrqMask);
  998. } else {
  999. if (np->msi_flags & NV_MSI_ENABLED)
  1000. writel(0, base + NvRegMSIIrqMask);
  1001. writel(0, base + NvRegIrqMask);
  1002. }
  1003. }
  1004. static void nv_napi_enable(struct net_device *dev)
  1005. {
  1006. struct fe_priv *np = get_nvpriv(dev);
  1007. napi_enable(&np->napi);
  1008. }
  1009. static void nv_napi_disable(struct net_device *dev)
  1010. {
  1011. struct fe_priv *np = get_nvpriv(dev);
  1012. napi_disable(&np->napi);
  1013. }
  1014. #define MII_READ (-1)
  1015. /* mii_rw: read/write a register on the PHY.
  1016. *
  1017. * Caller must guarantee serialization
  1018. */
  1019. static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
  1020. {
  1021. u8 __iomem *base = get_hwbase(dev);
  1022. u32 reg;
  1023. int retval;
  1024. writel(NVREG_MIISTAT_MASK_RW, base + NvRegMIIStatus);
  1025. reg = readl(base + NvRegMIIControl);
  1026. if (reg & NVREG_MIICTL_INUSE) {
  1027. writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
  1028. udelay(NV_MIIBUSY_DELAY);
  1029. }
  1030. reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
  1031. if (value != MII_READ) {
  1032. writel(value, base + NvRegMIIData);
  1033. reg |= NVREG_MIICTL_WRITE;
  1034. }
  1035. writel(reg, base + NvRegMIIControl);
  1036. if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
  1037. NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX)) {
  1038. retval = -1;
  1039. } else if (value != MII_READ) {
  1040. /* it was a write operation - fewer failures are detectable */
  1041. retval = 0;
  1042. } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
  1043. retval = -1;
  1044. } else {
  1045. retval = readl(base + NvRegMIIData);
  1046. }
  1047. return retval;
  1048. }
  1049. static int phy_reset(struct net_device *dev, u32 bmcr_setup)
  1050. {
  1051. struct fe_priv *np = netdev_priv(dev);
  1052. u32 miicontrol;
  1053. unsigned int tries = 0;
  1054. miicontrol = BMCR_RESET | bmcr_setup;
  1055. if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol))
  1056. return -1;
  1057. /* wait for 500ms */
  1058. msleep(500);
  1059. /* must wait till reset is deasserted */
  1060. while (miicontrol & BMCR_RESET) {
  1061. usleep_range(10000, 20000);
  1062. miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1063. /* FIXME: 100 tries seem excessive */
  1064. if (tries++ > 100)
  1065. return -1;
  1066. }
  1067. return 0;
  1068. }
  1069. static int init_realtek_8211b(struct net_device *dev, struct fe_priv *np)
  1070. {
  1071. static const struct {
  1072. int reg;
  1073. int init;
  1074. } ri[] = {
  1075. { PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1 },
  1076. { PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2 },
  1077. { PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3 },
  1078. { PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4 },
  1079. { PHY_REALTEK_INIT_REG4, PHY_REALTEK_INIT5 },
  1080. { PHY_REALTEK_INIT_REG5, PHY_REALTEK_INIT6 },
  1081. { PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1 },
  1082. };
  1083. int i;
  1084. for (i = 0; i < ARRAY_SIZE(ri); i++) {
  1085. if (mii_rw(dev, np->phyaddr, ri[i].reg, ri[i].init))
  1086. return PHY_ERROR;
  1087. }
  1088. return 0;
  1089. }
  1090. static int init_realtek_8211c(struct net_device *dev, struct fe_priv *np)
  1091. {
  1092. u32 reg;
  1093. u8 __iomem *base = get_hwbase(dev);
  1094. u32 powerstate = readl(base + NvRegPowerState2);
  1095. /* need to perform hw phy reset */
  1096. powerstate |= NVREG_POWERSTATE2_PHY_RESET;
  1097. writel(powerstate, base + NvRegPowerState2);
  1098. msleep(25);
  1099. powerstate &= ~NVREG_POWERSTATE2_PHY_RESET;
  1100. writel(powerstate, base + NvRegPowerState2);
  1101. msleep(25);
  1102. reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
  1103. reg |= PHY_REALTEK_INIT9;
  1104. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, reg))
  1105. return PHY_ERROR;
  1106. if (mii_rw(dev, np->phyaddr,
  1107. PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT10))
  1108. return PHY_ERROR;
  1109. reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, MII_READ);
  1110. if (!(reg & PHY_REALTEK_INIT11)) {
  1111. reg |= PHY_REALTEK_INIT11;
  1112. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, reg))
  1113. return PHY_ERROR;
  1114. }
  1115. if (mii_rw(dev, np->phyaddr,
  1116. PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1))
  1117. return PHY_ERROR;
  1118. return 0;
  1119. }
  1120. static int init_realtek_8201(struct net_device *dev, struct fe_priv *np)
  1121. {
  1122. u32 phy_reserved;
  1123. if (np->driver_data & DEV_NEED_PHY_INIT_FIX) {
  1124. phy_reserved = mii_rw(dev, np->phyaddr,
  1125. PHY_REALTEK_INIT_REG6, MII_READ);
  1126. phy_reserved |= PHY_REALTEK_INIT7;
  1127. if (mii_rw(dev, np->phyaddr,
  1128. PHY_REALTEK_INIT_REG6, phy_reserved))
  1129. return PHY_ERROR;
  1130. }
  1131. return 0;
  1132. }
  1133. static int init_realtek_8201_cross(struct net_device *dev, struct fe_priv *np)
  1134. {
  1135. u32 phy_reserved;
  1136. if (phy_cross == NV_CROSSOVER_DETECTION_DISABLED) {
  1137. if (mii_rw(dev, np->phyaddr,
  1138. PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3))
  1139. return PHY_ERROR;
  1140. phy_reserved = mii_rw(dev, np->phyaddr,
  1141. PHY_REALTEK_INIT_REG2, MII_READ);
  1142. phy_reserved &= ~PHY_REALTEK_INIT_MSK1;
  1143. phy_reserved |= PHY_REALTEK_INIT3;
  1144. if (mii_rw(dev, np->phyaddr,
  1145. PHY_REALTEK_INIT_REG2, phy_reserved))
  1146. return PHY_ERROR;
  1147. if (mii_rw(dev, np->phyaddr,
  1148. PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1))
  1149. return PHY_ERROR;
  1150. }
  1151. return 0;
  1152. }
  1153. static int init_cicada(struct net_device *dev, struct fe_priv *np,
  1154. u32 phyinterface)
  1155. {
  1156. u32 phy_reserved;
  1157. if (phyinterface & PHY_RGMII) {
  1158. phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
  1159. phy_reserved &= ~(PHY_CICADA_INIT1 | PHY_CICADA_INIT2);
  1160. phy_reserved |= (PHY_CICADA_INIT3 | PHY_CICADA_INIT4);
  1161. if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved))
  1162. return PHY_ERROR;
  1163. phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  1164. phy_reserved |= PHY_CICADA_INIT5;
  1165. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved))
  1166. return PHY_ERROR;
  1167. }
  1168. phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
  1169. phy_reserved |= PHY_CICADA_INIT6;
  1170. if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved))
  1171. return PHY_ERROR;
  1172. return 0;
  1173. }
  1174. static int init_vitesse(struct net_device *dev, struct fe_priv *np)
  1175. {
  1176. u32 phy_reserved;
  1177. if (mii_rw(dev, np->phyaddr,
  1178. PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT1))
  1179. return PHY_ERROR;
  1180. if (mii_rw(dev, np->phyaddr,
  1181. PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT2))
  1182. return PHY_ERROR;
  1183. phy_reserved = mii_rw(dev, np->phyaddr,
  1184. PHY_VITESSE_INIT_REG4, MII_READ);
  1185. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved))
  1186. return PHY_ERROR;
  1187. phy_reserved = mii_rw(dev, np->phyaddr,
  1188. PHY_VITESSE_INIT_REG3, MII_READ);
  1189. phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
  1190. phy_reserved |= PHY_VITESSE_INIT3;
  1191. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved))
  1192. return PHY_ERROR;
  1193. if (mii_rw(dev, np->phyaddr,
  1194. PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT4))
  1195. return PHY_ERROR;
  1196. if (mii_rw(dev, np->phyaddr,
  1197. PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT5))
  1198. return PHY_ERROR;
  1199. phy_reserved = mii_rw(dev, np->phyaddr,
  1200. PHY_VITESSE_INIT_REG4, MII_READ);
  1201. phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
  1202. phy_reserved |= PHY_VITESSE_INIT3;
  1203. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved))
  1204. return PHY_ERROR;
  1205. phy_reserved = mii_rw(dev, np->phyaddr,
  1206. PHY_VITESSE_INIT_REG3, MII_READ);
  1207. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved))
  1208. return PHY_ERROR;
  1209. if (mii_rw(dev, np->phyaddr,
  1210. PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT6))
  1211. return PHY_ERROR;
  1212. if (mii_rw(dev, np->phyaddr,
  1213. PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT7))
  1214. return PHY_ERROR;
  1215. phy_reserved = mii_rw(dev, np->phyaddr,
  1216. PHY_VITESSE_INIT_REG4, MII_READ);
  1217. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved))
  1218. return PHY_ERROR;
  1219. phy_reserved = mii_rw(dev, np->phyaddr,
  1220. PHY_VITESSE_INIT_REG3, MII_READ);
  1221. phy_reserved &= ~PHY_VITESSE_INIT_MSK2;
  1222. phy_reserved |= PHY_VITESSE_INIT8;
  1223. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved))
  1224. return PHY_ERROR;
  1225. if (mii_rw(dev, np->phyaddr,
  1226. PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT9))
  1227. return PHY_ERROR;
  1228. if (mii_rw(dev, np->phyaddr,
  1229. PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT10))
  1230. return PHY_ERROR;
  1231. return 0;
  1232. }
  1233. static int phy_init(struct net_device *dev)
  1234. {
  1235. struct fe_priv *np = get_nvpriv(dev);
  1236. u8 __iomem *base = get_hwbase(dev);
  1237. u32 phyinterface;
  1238. u32 mii_status, mii_control, mii_control_1000, reg;
  1239. /* phy errata for E3016 phy */
  1240. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  1241. reg = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  1242. reg &= ~PHY_MARVELL_E3016_INITMASK;
  1243. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, reg)) {
  1244. netdev_info(dev, "%s: phy write to errata reg failed\n",
  1245. pci_name(np->pci_dev));
  1246. return PHY_ERROR;
  1247. }
  1248. }
  1249. if (np->phy_oui == PHY_OUI_REALTEK) {
  1250. if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1251. np->phy_rev == PHY_REV_REALTEK_8211B) {
  1252. if (init_realtek_8211b(dev, np)) {
  1253. netdev_info(dev, "%s: phy init failed\n",
  1254. pci_name(np->pci_dev));
  1255. return PHY_ERROR;
  1256. }
  1257. } else if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1258. np->phy_rev == PHY_REV_REALTEK_8211C) {
  1259. if (init_realtek_8211c(dev, np)) {
  1260. netdev_info(dev, "%s: phy init failed\n",
  1261. pci_name(np->pci_dev));
  1262. return PHY_ERROR;
  1263. }
  1264. } else if (np->phy_model == PHY_MODEL_REALTEK_8201) {
  1265. if (init_realtek_8201(dev, np)) {
  1266. netdev_info(dev, "%s: phy init failed\n",
  1267. pci_name(np->pci_dev));
  1268. return PHY_ERROR;
  1269. }
  1270. }
  1271. }
  1272. /* set advertise register */
  1273. reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  1274. reg |= (ADVERTISE_10HALF | ADVERTISE_10FULL |
  1275. ADVERTISE_100HALF | ADVERTISE_100FULL |
  1276. ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
  1277. if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
  1278. netdev_info(dev, "%s: phy write to advertise failed\n",
  1279. pci_name(np->pci_dev));
  1280. return PHY_ERROR;
  1281. }
  1282. /* get phy interface type */
  1283. phyinterface = readl(base + NvRegPhyInterface);
  1284. /* see if gigabit phy */
  1285. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  1286. if (mii_status & PHY_GIGABIT) {
  1287. np->gigabit = PHY_GIGABIT;
  1288. mii_control_1000 = mii_rw(dev, np->phyaddr,
  1289. MII_CTRL1000, MII_READ);
  1290. mii_control_1000 &= ~ADVERTISE_1000HALF;
  1291. if (phyinterface & PHY_RGMII)
  1292. mii_control_1000 |= ADVERTISE_1000FULL;
  1293. else
  1294. mii_control_1000 &= ~ADVERTISE_1000FULL;
  1295. if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
  1296. netdev_info(dev, "%s: phy init failed\n",
  1297. pci_name(np->pci_dev));
  1298. return PHY_ERROR;
  1299. }
  1300. } else
  1301. np->gigabit = 0;
  1302. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1303. mii_control |= BMCR_ANENABLE;
  1304. if (np->phy_oui == PHY_OUI_REALTEK &&
  1305. np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1306. np->phy_rev == PHY_REV_REALTEK_8211C) {
  1307. /* start autoneg since we already performed hw reset above */
  1308. mii_control |= BMCR_ANRESTART;
  1309. if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
  1310. netdev_info(dev, "%s: phy init failed\n",
  1311. pci_name(np->pci_dev));
  1312. return PHY_ERROR;
  1313. }
  1314. } else {
  1315. /* reset the phy
  1316. * (certain phys need bmcr to be setup with reset)
  1317. */
  1318. if (phy_reset(dev, mii_control)) {
  1319. netdev_info(dev, "%s: phy reset failed\n",
  1320. pci_name(np->pci_dev));
  1321. return PHY_ERROR;
  1322. }
  1323. }
  1324. /* phy vendor specific configuration */
  1325. if (np->phy_oui == PHY_OUI_CICADA) {
  1326. if (init_cicada(dev, np, phyinterface)) {
  1327. netdev_info(dev, "%s: phy init failed\n",
  1328. pci_name(np->pci_dev));
  1329. return PHY_ERROR;
  1330. }
  1331. } else if (np->phy_oui == PHY_OUI_VITESSE) {
  1332. if (init_vitesse(dev, np)) {
  1333. netdev_info(dev, "%s: phy init failed\n",
  1334. pci_name(np->pci_dev));
  1335. return PHY_ERROR;
  1336. }
  1337. } else if (np->phy_oui == PHY_OUI_REALTEK) {
  1338. if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1339. np->phy_rev == PHY_REV_REALTEK_8211B) {
  1340. /* reset could have cleared these out, set them back */
  1341. if (init_realtek_8211b(dev, np)) {
  1342. netdev_info(dev, "%s: phy init failed\n",
  1343. pci_name(np->pci_dev));
  1344. return PHY_ERROR;
  1345. }
  1346. } else if (np->phy_model == PHY_MODEL_REALTEK_8201) {
  1347. if (init_realtek_8201(dev, np) ||
  1348. init_realtek_8201_cross(dev, np)) {
  1349. netdev_info(dev, "%s: phy init failed\n",
  1350. pci_name(np->pci_dev));
  1351. return PHY_ERROR;
  1352. }
  1353. }
  1354. }
  1355. /* some phys clear out pause advertisement on reset, set it back */
  1356. mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
  1357. /* restart auto negotiation, power down phy */
  1358. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1359. mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
  1360. if (phy_power_down)
  1361. mii_control |= BMCR_PDOWN;
  1362. if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control))
  1363. return PHY_ERROR;
  1364. return 0;
  1365. }
  1366. static void nv_start_rx(struct net_device *dev)
  1367. {
  1368. struct fe_priv *np = netdev_priv(dev);
  1369. u8 __iomem *base = get_hwbase(dev);
  1370. u32 rx_ctrl = readl(base + NvRegReceiverControl);
  1371. /* Already running? Stop it. */
  1372. if ((readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) && !np->mac_in_use) {
  1373. rx_ctrl &= ~NVREG_RCVCTL_START;
  1374. writel(rx_ctrl, base + NvRegReceiverControl);
  1375. pci_push(base);
  1376. }
  1377. writel(np->linkspeed, base + NvRegLinkSpeed);
  1378. pci_push(base);
  1379. rx_ctrl |= NVREG_RCVCTL_START;
  1380. if (np->mac_in_use)
  1381. rx_ctrl &= ~NVREG_RCVCTL_RX_PATH_EN;
  1382. writel(rx_ctrl, base + NvRegReceiverControl);
  1383. pci_push(base);
  1384. }
  1385. static void nv_stop_rx(struct net_device *dev)
  1386. {
  1387. struct fe_priv *np = netdev_priv(dev);
  1388. u8 __iomem *base = get_hwbase(dev);
  1389. u32 rx_ctrl = readl(base + NvRegReceiverControl);
  1390. if (!np->mac_in_use)
  1391. rx_ctrl &= ~NVREG_RCVCTL_START;
  1392. else
  1393. rx_ctrl |= NVREG_RCVCTL_RX_PATH_EN;
  1394. writel(rx_ctrl, base + NvRegReceiverControl);
  1395. if (reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
  1396. NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX))
  1397. netdev_info(dev, "%s: ReceiverStatus remained busy\n",
  1398. __func__);
  1399. udelay(NV_RXSTOP_DELAY2);
  1400. if (!np->mac_in_use)
  1401. writel(0, base + NvRegLinkSpeed);
  1402. }
  1403. static void nv_start_tx(struct net_device *dev)
  1404. {
  1405. struct fe_priv *np = netdev_priv(dev);
  1406. u8 __iomem *base = get_hwbase(dev);
  1407. u32 tx_ctrl = readl(base + NvRegTransmitterControl);
  1408. tx_ctrl |= NVREG_XMITCTL_START;
  1409. if (np->mac_in_use)
  1410. tx_ctrl &= ~NVREG_XMITCTL_TX_PATH_EN;
  1411. writel(tx_ctrl, base + NvRegTransmitterControl);
  1412. pci_push(base);
  1413. }
  1414. static void nv_stop_tx(struct net_device *dev)
  1415. {
  1416. struct fe_priv *np = netdev_priv(dev);
  1417. u8 __iomem *base = get_hwbase(dev);
  1418. u32 tx_ctrl = readl(base + NvRegTransmitterControl);
  1419. if (!np->mac_in_use)
  1420. tx_ctrl &= ~NVREG_XMITCTL_START;
  1421. else
  1422. tx_ctrl |= NVREG_XMITCTL_TX_PATH_EN;
  1423. writel(tx_ctrl, base + NvRegTransmitterControl);
  1424. if (reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
  1425. NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX))
  1426. netdev_info(dev, "%s: TransmitterStatus remained busy\n",
  1427. __func__);
  1428. udelay(NV_TXSTOP_DELAY2);
  1429. if (!np->mac_in_use)
  1430. writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV,
  1431. base + NvRegTransmitPoll);
  1432. }
  1433. static void nv_start_rxtx(struct net_device *dev)
  1434. {
  1435. nv_start_rx(dev);
  1436. nv_start_tx(dev);
  1437. }
  1438. static void nv_stop_rxtx(struct net_device *dev)
  1439. {
  1440. nv_stop_rx(dev);
  1441. nv_stop_tx(dev);
  1442. }
  1443. static void nv_txrx_reset(struct net_device *dev)
  1444. {
  1445. struct fe_priv *np = netdev_priv(dev);
  1446. u8 __iomem *base = get_hwbase(dev);
  1447. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1448. pci_push(base);
  1449. udelay(NV_TXRX_RESET_DELAY);
  1450. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1451. pci_push(base);
  1452. }
  1453. static void nv_mac_reset(struct net_device *dev)
  1454. {
  1455. struct fe_priv *np = netdev_priv(dev);
  1456. u8 __iomem *base = get_hwbase(dev);
  1457. u32 temp1, temp2, temp3;
  1458. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1459. pci_push(base);
  1460. /* save registers since they will be cleared on reset */
  1461. temp1 = readl(base + NvRegMacAddrA);
  1462. temp2 = readl(base + NvRegMacAddrB);
  1463. temp3 = readl(base + NvRegTransmitPoll);
  1464. writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
  1465. pci_push(base);
  1466. udelay(NV_MAC_RESET_DELAY);
  1467. writel(0, base + NvRegMacReset);
  1468. pci_push(base);
  1469. udelay(NV_MAC_RESET_DELAY);
  1470. /* restore saved registers */
  1471. writel(temp1, base + NvRegMacAddrA);
  1472. writel(temp2, base + NvRegMacAddrB);
  1473. writel(temp3, base + NvRegTransmitPoll);
  1474. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1475. pci_push(base);
  1476. }
  1477. /* Caller must appropriately lock netdev_priv(dev)->hwstats_lock */
  1478. static void nv_update_stats(struct net_device *dev)
  1479. {
  1480. struct fe_priv *np = netdev_priv(dev);
  1481. u8 __iomem *base = get_hwbase(dev);
  1482. lockdep_assert_held(&np->hwstats_lock);
  1483. /* query hardware */
  1484. np->estats.tx_bytes += readl(base + NvRegTxCnt);
  1485. np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt);
  1486. np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt);
  1487. np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt);
  1488. np->estats.tx_late_collision += readl(base + NvRegTxLateCol);
  1489. np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow);
  1490. np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier);
  1491. np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef);
  1492. np->estats.tx_retry_error += readl(base + NvRegTxRetryErr);
  1493. np->estats.rx_frame_error += readl(base + NvRegRxFrameErr);
  1494. np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte);
  1495. np->estats.rx_late_collision += readl(base + NvRegRxLateCol);
  1496. np->estats.rx_runt += readl(base + NvRegRxRunt);
  1497. np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong);
  1498. np->estats.rx_over_errors += readl(base + NvRegRxOverflow);
  1499. np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr);
  1500. np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr);
  1501. np->estats.rx_length_error += readl(base + NvRegRxLenErr);
  1502. np->estats.rx_unicast += readl(base + NvRegRxUnicast);
  1503. np->estats.rx_multicast += readl(base + NvRegRxMulticast);
  1504. np->estats.rx_broadcast += readl(base + NvRegRxBroadcast);
  1505. np->estats.rx_packets =
  1506. np->estats.rx_unicast +
  1507. np->estats.rx_multicast +
  1508. np->estats.rx_broadcast;
  1509. np->estats.rx_errors_total =
  1510. np->estats.rx_crc_errors +
  1511. np->estats.rx_over_errors +
  1512. np->estats.rx_frame_error +
  1513. (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) +
  1514. np->estats.rx_late_collision +
  1515. np->estats.rx_runt +
  1516. np->estats.rx_frame_too_long;
  1517. np->estats.tx_errors_total =
  1518. np->estats.tx_late_collision +
  1519. np->estats.tx_fifo_errors +
  1520. np->estats.tx_carrier_errors +
  1521. np->estats.tx_excess_deferral +
  1522. np->estats.tx_retry_error;
  1523. if (np->driver_data & DEV_HAS_STATISTICS_V2) {
  1524. np->estats.tx_deferral += readl(base + NvRegTxDef);
  1525. np->estats.tx_packets += readl(base + NvRegTxFrame);
  1526. np->estats.rx_bytes += readl(base + NvRegRxCnt);
  1527. np->estats.tx_pause += readl(base + NvRegTxPause);
  1528. np->estats.rx_pause += readl(base + NvRegRxPause);
  1529. np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame);
  1530. np->estats.rx_errors_total += np->estats.rx_drop_frame;
  1531. }
  1532. if (np->driver_data & DEV_HAS_STATISTICS_V3) {
  1533. np->estats.tx_unicast += readl(base + NvRegTxUnicast);
  1534. np->estats.tx_multicast += readl(base + NvRegTxMulticast);
  1535. np->estats.tx_broadcast += readl(base + NvRegTxBroadcast);
  1536. }
  1537. }
  1538. static void nv_get_stats(int cpu, struct fe_priv *np,
  1539. struct rtnl_link_stats64 *storage)
  1540. {
  1541. struct nv_txrx_stats *src = per_cpu_ptr(np->txrx_stats, cpu);
  1542. unsigned int syncp_start;
  1543. u64 rx_packets, rx_bytes, rx_dropped, rx_missed_errors;
  1544. u64 tx_packets, tx_bytes, tx_dropped;
  1545. do {
  1546. syncp_start = u64_stats_fetch_begin_irq(&np->swstats_rx_syncp);
  1547. rx_packets = src->stat_rx_packets;
  1548. rx_bytes = src->stat_rx_bytes;
  1549. rx_dropped = src->stat_rx_dropped;
  1550. rx_missed_errors = src->stat_rx_missed_errors;
  1551. } while (u64_stats_fetch_retry_irq(&np->swstats_rx_syncp, syncp_start));
  1552. storage->rx_packets += rx_packets;
  1553. storage->rx_bytes += rx_bytes;
  1554. storage->rx_dropped += rx_dropped;
  1555. storage->rx_missed_errors += rx_missed_errors;
  1556. do {
  1557. syncp_start = u64_stats_fetch_begin_irq(&np->swstats_tx_syncp);
  1558. tx_packets = src->stat_tx_packets;
  1559. tx_bytes = src->stat_tx_bytes;
  1560. tx_dropped = src->stat_tx_dropped;
  1561. } while (u64_stats_fetch_retry_irq(&np->swstats_tx_syncp, syncp_start));
  1562. storage->tx_packets += tx_packets;
  1563. storage->tx_bytes += tx_bytes;
  1564. storage->tx_dropped += tx_dropped;
  1565. }
  1566. /*
  1567. * nv_get_stats64: dev->ndo_get_stats64 function
  1568. * Get latest stats value from the nic.
  1569. * Called with read_lock(&dev_base_lock) held for read -
  1570. * only synchronized against unregister_netdevice.
  1571. */
  1572. static void
  1573. nv_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *storage)
  1574. __acquires(&netdev_priv(dev)->hwstats_lock)
  1575. __releases(&netdev_priv(dev)->hwstats_lock)
  1576. {
  1577. struct fe_priv *np = netdev_priv(dev);
  1578. int cpu;
  1579. /*
  1580. * Note: because HW stats are not always available and for
  1581. * consistency reasons, the following ifconfig stats are
  1582. * managed by software: rx_bytes, tx_bytes, rx_packets and
  1583. * tx_packets. The related hardware stats reported by ethtool
  1584. * should be equivalent to these ifconfig stats, with 4
  1585. * additional bytes per packet (Ethernet FCS CRC), except for
  1586. * tx_packets when TSO kicks in.
  1587. */
  1588. /* software stats */
  1589. for_each_online_cpu(cpu)
  1590. nv_get_stats(cpu, np, storage);
  1591. /* If the nic supports hw counters then retrieve latest values */
  1592. if (np->driver_data & DEV_HAS_STATISTICS_V123) {
  1593. spin_lock_bh(&np->hwstats_lock);
  1594. nv_update_stats(dev);
  1595. /* generic stats */
  1596. storage->rx_errors = np->estats.rx_errors_total;
  1597. storage->tx_errors = np->estats.tx_errors_total;
  1598. /* meaningful only when NIC supports stats v3 */
  1599. storage->multicast = np->estats.rx_multicast;
  1600. /* detailed rx_errors */
  1601. storage->rx_length_errors = np->estats.rx_length_error;
  1602. storage->rx_over_errors = np->estats.rx_over_errors;
  1603. storage->rx_crc_errors = np->estats.rx_crc_errors;
  1604. storage->rx_frame_errors = np->estats.rx_frame_align_error;
  1605. storage->rx_fifo_errors = np->estats.rx_drop_frame;
  1606. /* detailed tx_errors */
  1607. storage->tx_carrier_errors = np->estats.tx_carrier_errors;
  1608. storage->tx_fifo_errors = np->estats.tx_fifo_errors;
  1609. spin_unlock_bh(&np->hwstats_lock);
  1610. }
  1611. }
  1612. /*
  1613. * nv_alloc_rx: fill rx ring entries.
  1614. * Return 1 if the allocations for the skbs failed and the
  1615. * rx engine is without Available descriptors
  1616. */
  1617. static int nv_alloc_rx(struct net_device *dev)
  1618. {
  1619. struct fe_priv *np = netdev_priv(dev);
  1620. struct ring_desc *less_rx;
  1621. less_rx = np->get_rx.orig;
  1622. if (less_rx-- == np->rx_ring.orig)
  1623. less_rx = np->last_rx.orig;
  1624. while (np->put_rx.orig != less_rx) {
  1625. struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz + NV_RX_ALLOC_PAD);
  1626. if (likely(skb)) {
  1627. np->put_rx_ctx->skb = skb;
  1628. np->put_rx_ctx->dma = dma_map_single(&np->pci_dev->dev,
  1629. skb->data,
  1630. skb_tailroom(skb),
  1631. DMA_FROM_DEVICE);
  1632. if (unlikely(dma_mapping_error(&np->pci_dev->dev,
  1633. np->put_rx_ctx->dma))) {
  1634. kfree_skb(skb);
  1635. goto packet_dropped;
  1636. }
  1637. np->put_rx_ctx->dma_len = skb_tailroom(skb);
  1638. np->put_rx.orig->buf = cpu_to_le32(np->put_rx_ctx->dma);
  1639. wmb();
  1640. np->put_rx.orig->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
  1641. if (unlikely(np->put_rx.orig++ == np->last_rx.orig))
  1642. np->put_rx.orig = np->rx_ring.orig;
  1643. if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
  1644. np->put_rx_ctx = np->rx_skb;
  1645. } else {
  1646. packet_dropped:
  1647. u64_stats_update_begin(&np->swstats_rx_syncp);
  1648. nv_txrx_stats_inc(stat_rx_dropped);
  1649. u64_stats_update_end(&np->swstats_rx_syncp);
  1650. return 1;
  1651. }
  1652. }
  1653. return 0;
  1654. }
  1655. static int nv_alloc_rx_optimized(struct net_device *dev)
  1656. {
  1657. struct fe_priv *np = netdev_priv(dev);
  1658. struct ring_desc_ex *less_rx;
  1659. less_rx = np->get_rx.ex;
  1660. if (less_rx-- == np->rx_ring.ex)
  1661. less_rx = np->last_rx.ex;
  1662. while (np->put_rx.ex != less_rx) {
  1663. struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz + NV_RX_ALLOC_PAD);
  1664. if (likely(skb)) {
  1665. np->put_rx_ctx->skb = skb;
  1666. np->put_rx_ctx->dma = dma_map_single(&np->pci_dev->dev,
  1667. skb->data,
  1668. skb_tailroom(skb),
  1669. DMA_FROM_DEVICE);
  1670. if (unlikely(dma_mapping_error(&np->pci_dev->dev,
  1671. np->put_rx_ctx->dma))) {
  1672. kfree_skb(skb);
  1673. goto packet_dropped;
  1674. }
  1675. np->put_rx_ctx->dma_len = skb_tailroom(skb);
  1676. np->put_rx.ex->bufhigh = cpu_to_le32(dma_high(np->put_rx_ctx->dma));
  1677. np->put_rx.ex->buflow = cpu_to_le32(dma_low(np->put_rx_ctx->dma));
  1678. wmb();
  1679. np->put_rx.ex->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
  1680. if (unlikely(np->put_rx.ex++ == np->last_rx.ex))
  1681. np->put_rx.ex = np->rx_ring.ex;
  1682. if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
  1683. np->put_rx_ctx = np->rx_skb;
  1684. } else {
  1685. packet_dropped:
  1686. u64_stats_update_begin(&np->swstats_rx_syncp);
  1687. nv_txrx_stats_inc(stat_rx_dropped);
  1688. u64_stats_update_end(&np->swstats_rx_syncp);
  1689. return 1;
  1690. }
  1691. }
  1692. return 0;
  1693. }
  1694. /* If rx bufs are exhausted called after 50ms to attempt to refresh */
  1695. static void nv_do_rx_refill(struct timer_list *t)
  1696. {
  1697. struct fe_priv *np = from_timer(np, t, oom_kick);
  1698. /* Just reschedule NAPI rx processing */
  1699. napi_schedule(&np->napi);
  1700. }
  1701. static void nv_init_rx(struct net_device *dev)
  1702. {
  1703. struct fe_priv *np = netdev_priv(dev);
  1704. int i;
  1705. np->get_rx = np->rx_ring;
  1706. np->put_rx = np->rx_ring;
  1707. if (!nv_optimized(np))
  1708. np->last_rx.orig = &np->rx_ring.orig[np->rx_ring_size-1];
  1709. else
  1710. np->last_rx.ex = &np->rx_ring.ex[np->rx_ring_size-1];
  1711. np->get_rx_ctx = np->rx_skb;
  1712. np->put_rx_ctx = np->rx_skb;
  1713. np->last_rx_ctx = &np->rx_skb[np->rx_ring_size-1];
  1714. for (i = 0; i < np->rx_ring_size; i++) {
  1715. if (!nv_optimized(np)) {
  1716. np->rx_ring.orig[i].flaglen = 0;
  1717. np->rx_ring.orig[i].buf = 0;
  1718. } else {
  1719. np->rx_ring.ex[i].flaglen = 0;
  1720. np->rx_ring.ex[i].txvlan = 0;
  1721. np->rx_ring.ex[i].bufhigh = 0;
  1722. np->rx_ring.ex[i].buflow = 0;
  1723. }
  1724. np->rx_skb[i].skb = NULL;
  1725. np->rx_skb[i].dma = 0;
  1726. }
  1727. }
  1728. static void nv_init_tx(struct net_device *dev)
  1729. {
  1730. struct fe_priv *np = netdev_priv(dev);
  1731. int i;
  1732. np->get_tx = np->tx_ring;
  1733. np->put_tx = np->tx_ring;
  1734. if (!nv_optimized(np))
  1735. np->last_tx.orig = &np->tx_ring.orig[np->tx_ring_size-1];
  1736. else
  1737. np->last_tx.ex = &np->tx_ring.ex[np->tx_ring_size-1];
  1738. np->get_tx_ctx = np->tx_skb;
  1739. np->put_tx_ctx = np->tx_skb;
  1740. np->last_tx_ctx = &np->tx_skb[np->tx_ring_size-1];
  1741. netdev_reset_queue(np->dev);
  1742. np->tx_pkts_in_progress = 0;
  1743. np->tx_change_owner = NULL;
  1744. np->tx_end_flip = NULL;
  1745. np->tx_stop = 0;
  1746. for (i = 0; i < np->tx_ring_size; i++) {
  1747. if (!nv_optimized(np)) {
  1748. np->tx_ring.orig[i].flaglen = 0;
  1749. np->tx_ring.orig[i].buf = 0;
  1750. } else {
  1751. np->tx_ring.ex[i].flaglen = 0;
  1752. np->tx_ring.ex[i].txvlan = 0;
  1753. np->tx_ring.ex[i].bufhigh = 0;
  1754. np->tx_ring.ex[i].buflow = 0;
  1755. }
  1756. np->tx_skb[i].skb = NULL;
  1757. np->tx_skb[i].dma = 0;
  1758. np->tx_skb[i].dma_len = 0;
  1759. np->tx_skb[i].dma_single = 0;
  1760. np->tx_skb[i].first_tx_desc = NULL;
  1761. np->tx_skb[i].next_tx_ctx = NULL;
  1762. }
  1763. }
  1764. static int nv_init_ring(struct net_device *dev)
  1765. {
  1766. struct fe_priv *np = netdev_priv(dev);
  1767. nv_init_tx(dev);
  1768. nv_init_rx(dev);
  1769. if (!nv_optimized(np))
  1770. return nv_alloc_rx(dev);
  1771. else
  1772. return nv_alloc_rx_optimized(dev);
  1773. }
  1774. static void nv_unmap_txskb(struct fe_priv *np, struct nv_skb_map *tx_skb)
  1775. {
  1776. if (tx_skb->dma) {
  1777. if (tx_skb->dma_single)
  1778. dma_unmap_single(&np->pci_dev->dev, tx_skb->dma,
  1779. tx_skb->dma_len,
  1780. DMA_TO_DEVICE);
  1781. else
  1782. dma_unmap_page(&np->pci_dev->dev, tx_skb->dma,
  1783. tx_skb->dma_len,
  1784. DMA_TO_DEVICE);
  1785. tx_skb->dma = 0;
  1786. }
  1787. }
  1788. static int nv_release_txskb(struct fe_priv *np, struct nv_skb_map *tx_skb)
  1789. {
  1790. nv_unmap_txskb(np, tx_skb);
  1791. if (tx_skb->skb) {
  1792. dev_kfree_skb_any(tx_skb->skb);
  1793. tx_skb->skb = NULL;
  1794. return 1;
  1795. }
  1796. return 0;
  1797. }
  1798. static void nv_drain_tx(struct net_device *dev)
  1799. {
  1800. struct fe_priv *np = netdev_priv(dev);
  1801. unsigned int i;
  1802. for (i = 0; i < np->tx_ring_size; i++) {
  1803. if (!nv_optimized(np)) {
  1804. np->tx_ring.orig[i].flaglen = 0;
  1805. np->tx_ring.orig[i].buf = 0;
  1806. } else {
  1807. np->tx_ring.ex[i].flaglen = 0;
  1808. np->tx_ring.ex[i].txvlan = 0;
  1809. np->tx_ring.ex[i].bufhigh = 0;
  1810. np->tx_ring.ex[i].buflow = 0;
  1811. }
  1812. if (nv_release_txskb(np, &np->tx_skb[i])) {
  1813. u64_stats_update_begin(&np->swstats_tx_syncp);
  1814. nv_txrx_stats_inc(stat_tx_dropped);
  1815. u64_stats_update_end(&np->swstats_tx_syncp);
  1816. }
  1817. np->tx_skb[i].dma = 0;
  1818. np->tx_skb[i].dma_len = 0;
  1819. np->tx_skb[i].dma_single = 0;
  1820. np->tx_skb[i].first_tx_desc = NULL;
  1821. np->tx_skb[i].next_tx_ctx = NULL;
  1822. }
  1823. np->tx_pkts_in_progress = 0;
  1824. np->tx_change_owner = NULL;
  1825. np->tx_end_flip = NULL;
  1826. }
  1827. static void nv_drain_rx(struct net_device *dev)
  1828. {
  1829. struct fe_priv *np = netdev_priv(dev);
  1830. int i;
  1831. for (i = 0; i < np->rx_ring_size; i++) {
  1832. if (!nv_optimized(np)) {
  1833. np->rx_ring.orig[i].flaglen = 0;
  1834. np->rx_ring.orig[i].buf = 0;
  1835. } else {
  1836. np->rx_ring.ex[i].flaglen = 0;
  1837. np->rx_ring.ex[i].txvlan = 0;
  1838. np->rx_ring.ex[i].bufhigh = 0;
  1839. np->rx_ring.ex[i].buflow = 0;
  1840. }
  1841. wmb();
  1842. if (np->rx_skb[i].skb) {
  1843. dma_unmap_single(&np->pci_dev->dev, np->rx_skb[i].dma,
  1844. (skb_end_pointer(np->rx_skb[i].skb) -
  1845. np->rx_skb[i].skb->data),
  1846. DMA_FROM_DEVICE);
  1847. dev_kfree_skb(np->rx_skb[i].skb);
  1848. np->rx_skb[i].skb = NULL;
  1849. }
  1850. }
  1851. }
  1852. static void nv_drain_rxtx(struct net_device *dev)
  1853. {
  1854. nv_drain_tx(dev);
  1855. nv_drain_rx(dev);
  1856. }
  1857. static inline u32 nv_get_empty_tx_slots(struct fe_priv *np)
  1858. {
  1859. return (u32)(np->tx_ring_size - ((np->tx_ring_size + (np->put_tx_ctx - np->get_tx_ctx)) % np->tx_ring_size));
  1860. }
  1861. static void nv_legacybackoff_reseed(struct net_device *dev)
  1862. {
  1863. u8 __iomem *base = get_hwbase(dev);
  1864. u32 reg;
  1865. u32 low;
  1866. int tx_status = 0;
  1867. reg = readl(base + NvRegSlotTime) & ~NVREG_SLOTTIME_MASK;
  1868. get_random_bytes(&low, sizeof(low));
  1869. reg |= low & NVREG_SLOTTIME_MASK;
  1870. /* Need to stop tx before change takes effect.
  1871. * Caller has already gained np->lock.
  1872. */
  1873. tx_status = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START;
  1874. if (tx_status)
  1875. nv_stop_tx(dev);
  1876. nv_stop_rx(dev);
  1877. writel(reg, base + NvRegSlotTime);
  1878. if (tx_status)
  1879. nv_start_tx(dev);
  1880. nv_start_rx(dev);
  1881. }
  1882. /* Gear Backoff Seeds */
  1883. #define BACKOFF_SEEDSET_ROWS 8
  1884. #define BACKOFF_SEEDSET_LFSRS 15
  1885. /* Known Good seed sets */
  1886. static const u32 main_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = {
  1887. {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874},
  1888. {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 385, 761, 790, 974},
  1889. {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874},
  1890. {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 386, 761, 790, 974},
  1891. {266, 265, 276, 585, 397, 208, 345, 355, 365, 376, 385, 396, 771, 700, 984},
  1892. {266, 265, 276, 586, 397, 208, 346, 355, 365, 376, 285, 396, 771, 700, 984},
  1893. {366, 365, 376, 686, 497, 308, 447, 455, 466, 476, 485, 496, 871, 800, 84},
  1894. {466, 465, 476, 786, 597, 408, 547, 555, 566, 576, 585, 597, 971, 900, 184} };
  1895. static const u32 gear_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = {
  1896. {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
  1897. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
  1898. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 397},
  1899. {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
  1900. {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
  1901. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
  1902. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
  1903. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395} };
  1904. static void nv_gear_backoff_reseed(struct net_device *dev)
  1905. {
  1906. u8 __iomem *base = get_hwbase(dev);
  1907. u32 miniseed1, miniseed2, miniseed2_reversed, miniseed3, miniseed3_reversed;
  1908. u32 temp, seedset, combinedSeed;
  1909. int i;
  1910. /* Setup seed for free running LFSR */
  1911. /* We are going to read the time stamp counter 3 times
  1912. and swizzle bits around to increase randomness */
  1913. get_random_bytes(&miniseed1, sizeof(miniseed1));
  1914. miniseed1 &= 0x0fff;
  1915. if (miniseed1 == 0)
  1916. miniseed1 = 0xabc;
  1917. get_random_bytes(&miniseed2, sizeof(miniseed2));
  1918. miniseed2 &= 0x0fff;
  1919. if (miniseed2 == 0)
  1920. miniseed2 = 0xabc;
  1921. miniseed2_reversed =
  1922. ((miniseed2 & 0xF00) >> 8) |
  1923. (miniseed2 & 0x0F0) |
  1924. ((miniseed2 & 0x00F) << 8);
  1925. get_random_bytes(&miniseed3, sizeof(miniseed3));
  1926. miniseed3 &= 0x0fff;
  1927. if (miniseed3 == 0)
  1928. miniseed3 = 0xabc;
  1929. miniseed3_reversed =
  1930. ((miniseed3 & 0xF00) >> 8) |
  1931. (miniseed3 & 0x0F0) |
  1932. ((miniseed3 & 0x00F) << 8);
  1933. combinedSeed = ((miniseed1 ^ miniseed2_reversed) << 12) |
  1934. (miniseed2 ^ miniseed3_reversed);
  1935. /* Seeds can not be zero */
  1936. if ((combinedSeed & NVREG_BKOFFCTRL_SEED_MASK) == 0)
  1937. combinedSeed |= 0x08;
  1938. if ((combinedSeed & (NVREG_BKOFFCTRL_SEED_MASK << NVREG_BKOFFCTRL_GEAR)) == 0)
  1939. combinedSeed |= 0x8000;
  1940. /* No need to disable tx here */
  1941. temp = NVREG_BKOFFCTRL_DEFAULT | (0 << NVREG_BKOFFCTRL_SELECT);
  1942. temp |= combinedSeed & NVREG_BKOFFCTRL_SEED_MASK;
  1943. temp |= combinedSeed >> NVREG_BKOFFCTRL_GEAR;
  1944. writel(temp, base + NvRegBackOffControl);
  1945. /* Setup seeds for all gear LFSRs. */
  1946. get_random_bytes(&seedset, sizeof(seedset));
  1947. seedset = seedset % BACKOFF_SEEDSET_ROWS;
  1948. for (i = 1; i <= BACKOFF_SEEDSET_LFSRS; i++) {
  1949. temp = NVREG_BKOFFCTRL_DEFAULT | (i << NVREG_BKOFFCTRL_SELECT);
  1950. temp |= main_seedset[seedset][i-1] & 0x3ff;
  1951. temp |= ((gear_seedset[seedset][i-1] & 0x3ff) << NVREG_BKOFFCTRL_GEAR);
  1952. writel(temp, base + NvRegBackOffControl);
  1953. }
  1954. }
  1955. /*
  1956. * nv_start_xmit: dev->hard_start_xmit function
  1957. * Called with netif_tx_lock held.
  1958. */
  1959. static netdev_tx_t nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
  1960. {
  1961. struct fe_priv *np = netdev_priv(dev);
  1962. u32 tx_flags = 0;
  1963. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  1964. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  1965. unsigned int i;
  1966. u32 offset = 0;
  1967. u32 bcnt;
  1968. u32 size = skb_headlen(skb);
  1969. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1970. u32 empty_slots;
  1971. struct ring_desc *put_tx;
  1972. struct ring_desc *start_tx;
  1973. struct ring_desc *prev_tx;
  1974. struct nv_skb_map *prev_tx_ctx;
  1975. struct nv_skb_map *tmp_tx_ctx = NULL, *start_tx_ctx = NULL;
  1976. unsigned long flags;
  1977. netdev_tx_t ret = NETDEV_TX_OK;
  1978. /* add fragments to entries count */
  1979. for (i = 0; i < fragments; i++) {
  1980. u32 frag_size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
  1981. entries += (frag_size >> NV_TX2_TSO_MAX_SHIFT) +
  1982. ((frag_size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1983. }
  1984. spin_lock_irqsave(&np->lock, flags);
  1985. empty_slots = nv_get_empty_tx_slots(np);
  1986. if (unlikely(empty_slots <= entries)) {
  1987. netif_stop_queue(dev);
  1988. np->tx_stop = 1;
  1989. spin_unlock_irqrestore(&np->lock, flags);
  1990. /* When normal packets and/or xmit_more packets fill up
  1991. * tx_desc, it is necessary to trigger NIC tx reg.
  1992. */
  1993. ret = NETDEV_TX_BUSY;
  1994. goto txkick;
  1995. }
  1996. spin_unlock_irqrestore(&np->lock, flags);
  1997. start_tx = put_tx = np->put_tx.orig;
  1998. /* setup the header buffer */
  1999. do {
  2000. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  2001. np->put_tx_ctx->dma = dma_map_single(&np->pci_dev->dev,
  2002. skb->data + offset, bcnt,
  2003. DMA_TO_DEVICE);
  2004. if (unlikely(dma_mapping_error(&np->pci_dev->dev,
  2005. np->put_tx_ctx->dma))) {
  2006. /* on DMA mapping error - drop the packet */
  2007. dev_kfree_skb_any(skb);
  2008. u64_stats_update_begin(&np->swstats_tx_syncp);
  2009. nv_txrx_stats_inc(stat_tx_dropped);
  2010. u64_stats_update_end(&np->swstats_tx_syncp);
  2011. ret = NETDEV_TX_OK;
  2012. goto dma_error;
  2013. }
  2014. np->put_tx_ctx->dma_len = bcnt;
  2015. np->put_tx_ctx->dma_single = 1;
  2016. put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
  2017. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  2018. tx_flags = np->tx_flags;
  2019. offset += bcnt;
  2020. size -= bcnt;
  2021. if (unlikely(put_tx++ == np->last_tx.orig))
  2022. put_tx = np->tx_ring.orig;
  2023. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  2024. np->put_tx_ctx = np->tx_skb;
  2025. } while (size);
  2026. /* setup the fragments */
  2027. for (i = 0; i < fragments; i++) {
  2028. const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  2029. u32 frag_size = skb_frag_size(frag);
  2030. offset = 0;
  2031. do {
  2032. if (!start_tx_ctx)
  2033. start_tx_ctx = tmp_tx_ctx = np->put_tx_ctx;
  2034. bcnt = (frag_size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : frag_size;
  2035. np->put_tx_ctx->dma = skb_frag_dma_map(
  2036. &np->pci_dev->dev,
  2037. frag, offset,
  2038. bcnt,
  2039. DMA_TO_DEVICE);
  2040. if (unlikely(dma_mapping_error(&np->pci_dev->dev,
  2041. np->put_tx_ctx->dma))) {
  2042. /* Unwind the mapped fragments */
  2043. do {
  2044. nv_unmap_txskb(np, start_tx_ctx);
  2045. if (unlikely(tmp_tx_ctx++ == np->last_tx_ctx))
  2046. tmp_tx_ctx = np->tx_skb;
  2047. } while (tmp_tx_ctx != np->put_tx_ctx);
  2048. dev_kfree_skb_any(skb);
  2049. np->put_tx_ctx = start_tx_ctx;
  2050. u64_stats_update_begin(&np->swstats_tx_syncp);
  2051. nv_txrx_stats_inc(stat_tx_dropped);
  2052. u64_stats_update_end(&np->swstats_tx_syncp);
  2053. ret = NETDEV_TX_OK;
  2054. goto dma_error;
  2055. }
  2056. np->put_tx_ctx->dma_len = bcnt;
  2057. np->put_tx_ctx->dma_single = 0;
  2058. put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
  2059. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  2060. offset += bcnt;
  2061. frag_size -= bcnt;
  2062. if (unlikely(put_tx++ == np->last_tx.orig))
  2063. put_tx = np->tx_ring.orig;
  2064. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  2065. np->put_tx_ctx = np->tx_skb;
  2066. } while (frag_size);
  2067. }
  2068. if (unlikely(put_tx == np->tx_ring.orig))
  2069. prev_tx = np->last_tx.orig;
  2070. else
  2071. prev_tx = put_tx - 1;
  2072. if (unlikely(np->put_tx_ctx == np->tx_skb))
  2073. prev_tx_ctx = np->last_tx_ctx;
  2074. else
  2075. prev_tx_ctx = np->put_tx_ctx - 1;
  2076. /* set last fragment flag */
  2077. prev_tx->flaglen |= cpu_to_le32(tx_flags_extra);
  2078. /* save skb in this slot's context area */
  2079. prev_tx_ctx->skb = skb;
  2080. if (skb_is_gso(skb))
  2081. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
  2082. else
  2083. tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
  2084. NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
  2085. spin_lock_irqsave(&np->lock, flags);
  2086. /* set tx flags */
  2087. start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
  2088. netdev_sent_queue(np->dev, skb->len);
  2089. skb_tx_timestamp(skb);
  2090. np->put_tx.orig = put_tx;
  2091. spin_unlock_irqrestore(&np->lock, flags);
  2092. txkick:
  2093. if (netif_queue_stopped(dev) || !netdev_xmit_more()) {
  2094. u32 txrxctl_kick;
  2095. dma_error:
  2096. txrxctl_kick = NVREG_TXRXCTL_KICK | np->txrxctl_bits;
  2097. writel(txrxctl_kick, get_hwbase(dev) + NvRegTxRxControl);
  2098. }
  2099. return ret;
  2100. }
  2101. static netdev_tx_t nv_start_xmit_optimized(struct sk_buff *skb,
  2102. struct net_device *dev)
  2103. {
  2104. struct fe_priv *np = netdev_priv(dev);
  2105. u32 tx_flags = 0;
  2106. u32 tx_flags_extra;
  2107. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  2108. unsigned int i;
  2109. u32 offset = 0;
  2110. u32 bcnt;
  2111. u32 size = skb_headlen(skb);
  2112. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  2113. u32 empty_slots;
  2114. struct ring_desc_ex *put_tx;
  2115. struct ring_desc_ex *start_tx;
  2116. struct ring_desc_ex *prev_tx;
  2117. struct nv_skb_map *prev_tx_ctx;
  2118. struct nv_skb_map *start_tx_ctx = NULL;
  2119. struct nv_skb_map *tmp_tx_ctx = NULL;
  2120. unsigned long flags;
  2121. netdev_tx_t ret = NETDEV_TX_OK;
  2122. /* add fragments to entries count */
  2123. for (i = 0; i < fragments; i++) {
  2124. u32 frag_size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
  2125. entries += (frag_size >> NV_TX2_TSO_MAX_SHIFT) +
  2126. ((frag_size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  2127. }
  2128. spin_lock_irqsave(&np->lock, flags);
  2129. empty_slots = nv_get_empty_tx_slots(np);
  2130. if (unlikely(empty_slots <= entries)) {
  2131. netif_stop_queue(dev);
  2132. np->tx_stop = 1;
  2133. spin_unlock_irqrestore(&np->lock, flags);
  2134. /* When normal packets and/or xmit_more packets fill up
  2135. * tx_desc, it is necessary to trigger NIC tx reg.
  2136. */
  2137. ret = NETDEV_TX_BUSY;
  2138. goto txkick;
  2139. }
  2140. spin_unlock_irqrestore(&np->lock, flags);
  2141. start_tx = put_tx = np->put_tx.ex;
  2142. start_tx_ctx = np->put_tx_ctx;
  2143. /* setup the header buffer */
  2144. do {
  2145. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  2146. np->put_tx_ctx->dma = dma_map_single(&np->pci_dev->dev,
  2147. skb->data + offset, bcnt,
  2148. DMA_TO_DEVICE);
  2149. if (unlikely(dma_mapping_error(&np->pci_dev->dev,
  2150. np->put_tx_ctx->dma))) {
  2151. /* on DMA mapping error - drop the packet */
  2152. dev_kfree_skb_any(skb);
  2153. u64_stats_update_begin(&np->swstats_tx_syncp);
  2154. nv_txrx_stats_inc(stat_tx_dropped);
  2155. u64_stats_update_end(&np->swstats_tx_syncp);
  2156. ret = NETDEV_TX_OK;
  2157. goto dma_error;
  2158. }
  2159. np->put_tx_ctx->dma_len = bcnt;
  2160. np->put_tx_ctx->dma_single = 1;
  2161. put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
  2162. put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
  2163. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  2164. tx_flags = NV_TX2_VALID;
  2165. offset += bcnt;
  2166. size -= bcnt;
  2167. if (unlikely(put_tx++ == np->last_tx.ex))
  2168. put_tx = np->tx_ring.ex;
  2169. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  2170. np->put_tx_ctx = np->tx_skb;
  2171. } while (size);
  2172. /* setup the fragments */
  2173. for (i = 0; i < fragments; i++) {
  2174. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  2175. u32 frag_size = skb_frag_size(frag);
  2176. offset = 0;
  2177. do {
  2178. bcnt = (frag_size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : frag_size;
  2179. if (!start_tx_ctx)
  2180. start_tx_ctx = tmp_tx_ctx = np->put_tx_ctx;
  2181. np->put_tx_ctx->dma = skb_frag_dma_map(
  2182. &np->pci_dev->dev,
  2183. frag, offset,
  2184. bcnt,
  2185. DMA_TO_DEVICE);
  2186. if (unlikely(dma_mapping_error(&np->pci_dev->dev,
  2187. np->put_tx_ctx->dma))) {
  2188. /* Unwind the mapped fragments */
  2189. do {
  2190. nv_unmap_txskb(np, start_tx_ctx);
  2191. if (unlikely(tmp_tx_ctx++ == np->last_tx_ctx))
  2192. tmp_tx_ctx = np->tx_skb;
  2193. } while (tmp_tx_ctx != np->put_tx_ctx);
  2194. dev_kfree_skb_any(skb);
  2195. np->put_tx_ctx = start_tx_ctx;
  2196. u64_stats_update_begin(&np->swstats_tx_syncp);
  2197. nv_txrx_stats_inc(stat_tx_dropped);
  2198. u64_stats_update_end(&np->swstats_tx_syncp);
  2199. ret = NETDEV_TX_OK;
  2200. goto dma_error;
  2201. }
  2202. np->put_tx_ctx->dma_len = bcnt;
  2203. np->put_tx_ctx->dma_single = 0;
  2204. put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
  2205. put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
  2206. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  2207. offset += bcnt;
  2208. frag_size -= bcnt;
  2209. if (unlikely(put_tx++ == np->last_tx.ex))
  2210. put_tx = np->tx_ring.ex;
  2211. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  2212. np->put_tx_ctx = np->tx_skb;
  2213. } while (frag_size);
  2214. }
  2215. if (unlikely(put_tx == np->tx_ring.ex))
  2216. prev_tx = np->last_tx.ex;
  2217. else
  2218. prev_tx = put_tx - 1;
  2219. if (unlikely(np->put_tx_ctx == np->tx_skb))
  2220. prev_tx_ctx = np->last_tx_ctx;
  2221. else
  2222. prev_tx_ctx = np->put_tx_ctx - 1;
  2223. /* set last fragment flag */
  2224. prev_tx->flaglen |= cpu_to_le32(NV_TX2_LASTPACKET);
  2225. /* save skb in this slot's context area */
  2226. prev_tx_ctx->skb = skb;
  2227. if (skb_is_gso(skb))
  2228. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
  2229. else
  2230. tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
  2231. NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
  2232. /* vlan tag */
  2233. if (skb_vlan_tag_present(skb))
  2234. start_tx->txvlan = cpu_to_le32(NV_TX3_VLAN_TAG_PRESENT |
  2235. skb_vlan_tag_get(skb));
  2236. else
  2237. start_tx->txvlan = 0;
  2238. spin_lock_irqsave(&np->lock, flags);
  2239. if (np->tx_limit) {
  2240. /* Limit the number of outstanding tx. Setup all fragments, but
  2241. * do not set the VALID bit on the first descriptor. Save a pointer
  2242. * to that descriptor and also for next skb_map element.
  2243. */
  2244. if (np->tx_pkts_in_progress == NV_TX_LIMIT_COUNT) {
  2245. if (!np->tx_change_owner)
  2246. np->tx_change_owner = start_tx_ctx;
  2247. /* remove VALID bit */
  2248. tx_flags &= ~NV_TX2_VALID;
  2249. start_tx_ctx->first_tx_desc = start_tx;
  2250. start_tx_ctx->next_tx_ctx = np->put_tx_ctx;
  2251. np->tx_end_flip = np->put_tx_ctx;
  2252. } else {
  2253. np->tx_pkts_in_progress++;
  2254. }
  2255. }
  2256. /* set tx flags */
  2257. start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
  2258. netdev_sent_queue(np->dev, skb->len);
  2259. skb_tx_timestamp(skb);
  2260. np->put_tx.ex = put_tx;
  2261. spin_unlock_irqrestore(&np->lock, flags);
  2262. txkick:
  2263. if (netif_queue_stopped(dev) || !netdev_xmit_more()) {
  2264. u32 txrxctl_kick;
  2265. dma_error:
  2266. txrxctl_kick = NVREG_TXRXCTL_KICK | np->txrxctl_bits;
  2267. writel(txrxctl_kick, get_hwbase(dev) + NvRegTxRxControl);
  2268. }
  2269. return ret;
  2270. }
  2271. static inline void nv_tx_flip_ownership(struct net_device *dev)
  2272. {
  2273. struct fe_priv *np = netdev_priv(dev);
  2274. np->tx_pkts_in_progress--;
  2275. if (np->tx_change_owner) {
  2276. np->tx_change_owner->first_tx_desc->flaglen |=
  2277. cpu_to_le32(NV_TX2_VALID);
  2278. np->tx_pkts_in_progress++;
  2279. np->tx_change_owner = np->tx_change_owner->next_tx_ctx;
  2280. if (np->tx_change_owner == np->tx_end_flip)
  2281. np->tx_change_owner = NULL;
  2282. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2283. }
  2284. }
  2285. /*
  2286. * nv_tx_done: check for completed packets, release the skbs.
  2287. *
  2288. * Caller must own np->lock.
  2289. */
  2290. static int nv_tx_done(struct net_device *dev, int limit)
  2291. {
  2292. struct fe_priv *np = netdev_priv(dev);
  2293. u32 flags;
  2294. int tx_work = 0;
  2295. struct ring_desc *orig_get_tx = np->get_tx.orig;
  2296. unsigned int bytes_compl = 0;
  2297. while ((np->get_tx.orig != np->put_tx.orig) &&
  2298. !((flags = le32_to_cpu(np->get_tx.orig->flaglen)) & NV_TX_VALID) &&
  2299. (tx_work < limit)) {
  2300. nv_unmap_txskb(np, np->get_tx_ctx);
  2301. if (np->desc_ver == DESC_VER_1) {
  2302. if (flags & NV_TX_LASTPACKET) {
  2303. if (unlikely(flags & NV_TX_ERROR)) {
  2304. if ((flags & NV_TX_RETRYERROR)
  2305. && !(flags & NV_TX_RETRYCOUNT_MASK))
  2306. nv_legacybackoff_reseed(dev);
  2307. } else {
  2308. unsigned int len;
  2309. u64_stats_update_begin(&np->swstats_tx_syncp);
  2310. nv_txrx_stats_inc(stat_tx_packets);
  2311. len = np->get_tx_ctx->skb->len;
  2312. nv_txrx_stats_add(stat_tx_bytes, len);
  2313. u64_stats_update_end(&np->swstats_tx_syncp);
  2314. }
  2315. bytes_compl += np->get_tx_ctx->skb->len;
  2316. dev_kfree_skb_any(np->get_tx_ctx->skb);
  2317. np->get_tx_ctx->skb = NULL;
  2318. tx_work++;
  2319. }
  2320. } else {
  2321. if (flags & NV_TX2_LASTPACKET) {
  2322. if (unlikely(flags & NV_TX2_ERROR)) {
  2323. if ((flags & NV_TX2_RETRYERROR)
  2324. && !(flags & NV_TX2_RETRYCOUNT_MASK))
  2325. nv_legacybackoff_reseed(dev);
  2326. } else {
  2327. unsigned int len;
  2328. u64_stats_update_begin(&np->swstats_tx_syncp);
  2329. nv_txrx_stats_inc(stat_tx_packets);
  2330. len = np->get_tx_ctx->skb->len;
  2331. nv_txrx_stats_add(stat_tx_bytes, len);
  2332. u64_stats_update_end(&np->swstats_tx_syncp);
  2333. }
  2334. bytes_compl += np->get_tx_ctx->skb->len;
  2335. dev_kfree_skb_any(np->get_tx_ctx->skb);
  2336. np->get_tx_ctx->skb = NULL;
  2337. tx_work++;
  2338. }
  2339. }
  2340. if (unlikely(np->get_tx.orig++ == np->last_tx.orig))
  2341. np->get_tx.orig = np->tx_ring.orig;
  2342. if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
  2343. np->get_tx_ctx = np->tx_skb;
  2344. }
  2345. netdev_completed_queue(np->dev, tx_work, bytes_compl);
  2346. if (unlikely((np->tx_stop == 1) && (np->get_tx.orig != orig_get_tx))) {
  2347. np->tx_stop = 0;
  2348. netif_wake_queue(dev);
  2349. }
  2350. return tx_work;
  2351. }
  2352. static int nv_tx_done_optimized(struct net_device *dev, int limit)
  2353. {
  2354. struct fe_priv *np = netdev_priv(dev);
  2355. u32 flags;
  2356. int tx_work = 0;
  2357. struct ring_desc_ex *orig_get_tx = np->get_tx.ex;
  2358. unsigned long bytes_cleaned = 0;
  2359. while ((np->get_tx.ex != np->put_tx.ex) &&
  2360. !((flags = le32_to_cpu(np->get_tx.ex->flaglen)) & NV_TX2_VALID) &&
  2361. (tx_work < limit)) {
  2362. nv_unmap_txskb(np, np->get_tx_ctx);
  2363. if (flags & NV_TX2_LASTPACKET) {
  2364. if (unlikely(flags & NV_TX2_ERROR)) {
  2365. if ((flags & NV_TX2_RETRYERROR)
  2366. && !(flags & NV_TX2_RETRYCOUNT_MASK)) {
  2367. if (np->driver_data & DEV_HAS_GEAR_MODE)
  2368. nv_gear_backoff_reseed(dev);
  2369. else
  2370. nv_legacybackoff_reseed(dev);
  2371. }
  2372. } else {
  2373. unsigned int len;
  2374. u64_stats_update_begin(&np->swstats_tx_syncp);
  2375. nv_txrx_stats_inc(stat_tx_packets);
  2376. len = np->get_tx_ctx->skb->len;
  2377. nv_txrx_stats_add(stat_tx_bytes, len);
  2378. u64_stats_update_end(&np->swstats_tx_syncp);
  2379. }
  2380. bytes_cleaned += np->get_tx_ctx->skb->len;
  2381. dev_kfree_skb_any(np->get_tx_ctx->skb);
  2382. np->get_tx_ctx->skb = NULL;
  2383. tx_work++;
  2384. if (np->tx_limit)
  2385. nv_tx_flip_ownership(dev);
  2386. }
  2387. if (unlikely(np->get_tx.ex++ == np->last_tx.ex))
  2388. np->get_tx.ex = np->tx_ring.ex;
  2389. if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
  2390. np->get_tx_ctx = np->tx_skb;
  2391. }
  2392. netdev_completed_queue(np->dev, tx_work, bytes_cleaned);
  2393. if (unlikely((np->tx_stop == 1) && (np->get_tx.ex != orig_get_tx))) {
  2394. np->tx_stop = 0;
  2395. netif_wake_queue(dev);
  2396. }
  2397. return tx_work;
  2398. }
  2399. /*
  2400. * nv_tx_timeout: dev->tx_timeout function
  2401. * Called with netif_tx_lock held.
  2402. */
  2403. static void nv_tx_timeout(struct net_device *dev, unsigned int txqueue)
  2404. {
  2405. struct fe_priv *np = netdev_priv(dev);
  2406. u8 __iomem *base = get_hwbase(dev);
  2407. u32 status;
  2408. union ring_type put_tx;
  2409. int saved_tx_limit;
  2410. if (np->msi_flags & NV_MSI_X_ENABLED)
  2411. status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  2412. else
  2413. status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  2414. netdev_warn(dev, "Got tx_timeout. irq status: %08x\n", status);
  2415. if (unlikely(debug_tx_timeout)) {
  2416. int i;
  2417. netdev_info(dev, "Ring at %lx\n", (unsigned long)np->ring_addr);
  2418. netdev_info(dev, "Dumping tx registers\n");
  2419. for (i = 0; i <= np->register_size; i += 32) {
  2420. netdev_info(dev,
  2421. "%3x: %08x %08x %08x %08x "
  2422. "%08x %08x %08x %08x\n",
  2423. i,
  2424. readl(base + i + 0), readl(base + i + 4),
  2425. readl(base + i + 8), readl(base + i + 12),
  2426. readl(base + i + 16), readl(base + i + 20),
  2427. readl(base + i + 24), readl(base + i + 28));
  2428. }
  2429. netdev_info(dev, "Dumping tx ring\n");
  2430. for (i = 0; i < np->tx_ring_size; i += 4) {
  2431. if (!nv_optimized(np)) {
  2432. netdev_info(dev,
  2433. "%03x: %08x %08x // %08x %08x "
  2434. "// %08x %08x // %08x %08x\n",
  2435. i,
  2436. le32_to_cpu(np->tx_ring.orig[i].buf),
  2437. le32_to_cpu(np->tx_ring.orig[i].flaglen),
  2438. le32_to_cpu(np->tx_ring.orig[i+1].buf),
  2439. le32_to_cpu(np->tx_ring.orig[i+1].flaglen),
  2440. le32_to_cpu(np->tx_ring.orig[i+2].buf),
  2441. le32_to_cpu(np->tx_ring.orig[i+2].flaglen),
  2442. le32_to_cpu(np->tx_ring.orig[i+3].buf),
  2443. le32_to_cpu(np->tx_ring.orig[i+3].flaglen));
  2444. } else {
  2445. netdev_info(dev,
  2446. "%03x: %08x %08x %08x "
  2447. "// %08x %08x %08x "
  2448. "// %08x %08x %08x "
  2449. "// %08x %08x %08x\n",
  2450. i,
  2451. le32_to_cpu(np->tx_ring.ex[i].bufhigh),
  2452. le32_to_cpu(np->tx_ring.ex[i].buflow),
  2453. le32_to_cpu(np->tx_ring.ex[i].flaglen),
  2454. le32_to_cpu(np->tx_ring.ex[i+1].bufhigh),
  2455. le32_to_cpu(np->tx_ring.ex[i+1].buflow),
  2456. le32_to_cpu(np->tx_ring.ex[i+1].flaglen),
  2457. le32_to_cpu(np->tx_ring.ex[i+2].bufhigh),
  2458. le32_to_cpu(np->tx_ring.ex[i+2].buflow),
  2459. le32_to_cpu(np->tx_ring.ex[i+2].flaglen),
  2460. le32_to_cpu(np->tx_ring.ex[i+3].bufhigh),
  2461. le32_to_cpu(np->tx_ring.ex[i+3].buflow),
  2462. le32_to_cpu(np->tx_ring.ex[i+3].flaglen));
  2463. }
  2464. }
  2465. }
  2466. spin_lock_irq(&np->lock);
  2467. /* 1) stop tx engine */
  2468. nv_stop_tx(dev);
  2469. /* 2) complete any outstanding tx and do not give HW any limited tx pkts */
  2470. saved_tx_limit = np->tx_limit;
  2471. np->tx_limit = 0; /* prevent giving HW any limited pkts */
  2472. np->tx_stop = 0; /* prevent waking tx queue */
  2473. if (!nv_optimized(np))
  2474. nv_tx_done(dev, np->tx_ring_size);
  2475. else
  2476. nv_tx_done_optimized(dev, np->tx_ring_size);
  2477. /* save current HW position */
  2478. if (np->tx_change_owner)
  2479. put_tx.ex = np->tx_change_owner->first_tx_desc;
  2480. else
  2481. put_tx = np->put_tx;
  2482. /* 3) clear all tx state */
  2483. nv_drain_tx(dev);
  2484. nv_init_tx(dev);
  2485. /* 4) restore state to current HW position */
  2486. np->get_tx = np->put_tx = put_tx;
  2487. np->tx_limit = saved_tx_limit;
  2488. /* 5) restart tx engine */
  2489. nv_start_tx(dev);
  2490. netif_wake_queue(dev);
  2491. spin_unlock_irq(&np->lock);
  2492. }
  2493. /*
  2494. * Called when the nic notices a mismatch between the actual data len on the
  2495. * wire and the len indicated in the 802 header
  2496. */
  2497. static int nv_getlen(struct net_device *dev, void *packet, int datalen)
  2498. {
  2499. int hdrlen; /* length of the 802 header */
  2500. int protolen; /* length as stored in the proto field */
  2501. /* 1) calculate len according to header */
  2502. if (((struct vlan_ethhdr *)packet)->h_vlan_proto == htons(ETH_P_8021Q)) {
  2503. protolen = ntohs(((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto);
  2504. hdrlen = VLAN_HLEN;
  2505. } else {
  2506. protolen = ntohs(((struct ethhdr *)packet)->h_proto);
  2507. hdrlen = ETH_HLEN;
  2508. }
  2509. if (protolen > ETH_DATA_LEN)
  2510. return datalen; /* Value in proto field not a len, no checks possible */
  2511. protolen += hdrlen;
  2512. /* consistency checks: */
  2513. if (datalen > ETH_ZLEN) {
  2514. if (datalen >= protolen) {
  2515. /* more data on wire than in 802 header, trim of
  2516. * additional data.
  2517. */
  2518. return protolen;
  2519. } else {
  2520. /* less data on wire than mentioned in header.
  2521. * Discard the packet.
  2522. */
  2523. return -1;
  2524. }
  2525. } else {
  2526. /* short packet. Accept only if 802 values are also short */
  2527. if (protolen > ETH_ZLEN) {
  2528. return -1;
  2529. }
  2530. return datalen;
  2531. }
  2532. }
  2533. static void rx_missing_handler(u32 flags, struct fe_priv *np)
  2534. {
  2535. if (flags & NV_RX_MISSEDFRAME) {
  2536. u64_stats_update_begin(&np->swstats_rx_syncp);
  2537. nv_txrx_stats_inc(stat_rx_missed_errors);
  2538. u64_stats_update_end(&np->swstats_rx_syncp);
  2539. }
  2540. }
  2541. static int nv_rx_process(struct net_device *dev, int limit)
  2542. {
  2543. struct fe_priv *np = netdev_priv(dev);
  2544. u32 flags;
  2545. int rx_work = 0;
  2546. struct sk_buff *skb;
  2547. int len;
  2548. while ((np->get_rx.orig != np->put_rx.orig) &&
  2549. !((flags = le32_to_cpu(np->get_rx.orig->flaglen)) & NV_RX_AVAIL) &&
  2550. (rx_work < limit)) {
  2551. /*
  2552. * the packet is for us - immediately tear down the pci mapping.
  2553. * TODO: check if a prefetch of the first cacheline improves
  2554. * the performance.
  2555. */
  2556. dma_unmap_single(&np->pci_dev->dev, np->get_rx_ctx->dma,
  2557. np->get_rx_ctx->dma_len,
  2558. DMA_FROM_DEVICE);
  2559. skb = np->get_rx_ctx->skb;
  2560. np->get_rx_ctx->skb = NULL;
  2561. /* look at what we actually got: */
  2562. if (np->desc_ver == DESC_VER_1) {
  2563. if (likely(flags & NV_RX_DESCRIPTORVALID)) {
  2564. len = flags & LEN_MASK_V1;
  2565. if (unlikely(flags & NV_RX_ERROR)) {
  2566. if ((flags & NV_RX_ERROR_MASK) == NV_RX_ERROR4) {
  2567. len = nv_getlen(dev, skb->data, len);
  2568. if (len < 0) {
  2569. dev_kfree_skb(skb);
  2570. goto next_pkt;
  2571. }
  2572. }
  2573. /* framing errors are soft errors */
  2574. else if ((flags & NV_RX_ERROR_MASK) == NV_RX_FRAMINGERR) {
  2575. if (flags & NV_RX_SUBTRACT1)
  2576. len--;
  2577. }
  2578. /* the rest are hard errors */
  2579. else {
  2580. rx_missing_handler(flags, np);
  2581. dev_kfree_skb(skb);
  2582. goto next_pkt;
  2583. }
  2584. }
  2585. } else {
  2586. dev_kfree_skb(skb);
  2587. goto next_pkt;
  2588. }
  2589. } else {
  2590. if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
  2591. len = flags & LEN_MASK_V2;
  2592. if (unlikely(flags & NV_RX2_ERROR)) {
  2593. if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) {
  2594. len = nv_getlen(dev, skb->data, len);
  2595. if (len < 0) {
  2596. dev_kfree_skb(skb);
  2597. goto next_pkt;
  2598. }
  2599. }
  2600. /* framing errors are soft errors */
  2601. else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) {
  2602. if (flags & NV_RX2_SUBTRACT1)
  2603. len--;
  2604. }
  2605. /* the rest are hard errors */
  2606. else {
  2607. dev_kfree_skb(skb);
  2608. goto next_pkt;
  2609. }
  2610. }
  2611. if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
  2612. ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
  2613. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2614. } else {
  2615. dev_kfree_skb(skb);
  2616. goto next_pkt;
  2617. }
  2618. }
  2619. /* got a valid packet - forward it to the network core */
  2620. skb_put(skb, len);
  2621. skb->protocol = eth_type_trans(skb, dev);
  2622. napi_gro_receive(&np->napi, skb);
  2623. u64_stats_update_begin(&np->swstats_rx_syncp);
  2624. nv_txrx_stats_inc(stat_rx_packets);
  2625. nv_txrx_stats_add(stat_rx_bytes, len);
  2626. u64_stats_update_end(&np->swstats_rx_syncp);
  2627. next_pkt:
  2628. if (unlikely(np->get_rx.orig++ == np->last_rx.orig))
  2629. np->get_rx.orig = np->rx_ring.orig;
  2630. if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
  2631. np->get_rx_ctx = np->rx_skb;
  2632. rx_work++;
  2633. }
  2634. return rx_work;
  2635. }
  2636. static int nv_rx_process_optimized(struct net_device *dev, int limit)
  2637. {
  2638. struct fe_priv *np = netdev_priv(dev);
  2639. u32 flags;
  2640. u32 vlanflags = 0;
  2641. int rx_work = 0;
  2642. struct sk_buff *skb;
  2643. int len;
  2644. while ((np->get_rx.ex != np->put_rx.ex) &&
  2645. !((flags = le32_to_cpu(np->get_rx.ex->flaglen)) & NV_RX2_AVAIL) &&
  2646. (rx_work < limit)) {
  2647. /*
  2648. * the packet is for us - immediately tear down the pci mapping.
  2649. * TODO: check if a prefetch of the first cacheline improves
  2650. * the performance.
  2651. */
  2652. dma_unmap_single(&np->pci_dev->dev, np->get_rx_ctx->dma,
  2653. np->get_rx_ctx->dma_len,
  2654. DMA_FROM_DEVICE);
  2655. skb = np->get_rx_ctx->skb;
  2656. np->get_rx_ctx->skb = NULL;
  2657. /* look at what we actually got: */
  2658. if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
  2659. len = flags & LEN_MASK_V2;
  2660. if (unlikely(flags & NV_RX2_ERROR)) {
  2661. if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) {
  2662. len = nv_getlen(dev, skb->data, len);
  2663. if (len < 0) {
  2664. dev_kfree_skb(skb);
  2665. goto next_pkt;
  2666. }
  2667. }
  2668. /* framing errors are soft errors */
  2669. else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) {
  2670. if (flags & NV_RX2_SUBTRACT1)
  2671. len--;
  2672. }
  2673. /* the rest are hard errors */
  2674. else {
  2675. dev_kfree_skb(skb);
  2676. goto next_pkt;
  2677. }
  2678. }
  2679. if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
  2680. ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
  2681. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2682. /* got a valid packet - forward it to the network core */
  2683. skb_put(skb, len);
  2684. skb->protocol = eth_type_trans(skb, dev);
  2685. prefetch(skb->data);
  2686. vlanflags = le32_to_cpu(np->get_rx.ex->buflow);
  2687. /*
  2688. * There's need to check for NETIF_F_HW_VLAN_CTAG_RX
  2689. * here. Even if vlan rx accel is disabled,
  2690. * NV_RX3_VLAN_TAG_PRESENT is pseudo randomly set.
  2691. */
  2692. if (dev->features & NETIF_F_HW_VLAN_CTAG_RX &&
  2693. vlanflags & NV_RX3_VLAN_TAG_PRESENT) {
  2694. u16 vid = vlanflags & NV_RX3_VLAN_TAG_MASK;
  2695. __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
  2696. }
  2697. napi_gro_receive(&np->napi, skb);
  2698. u64_stats_update_begin(&np->swstats_rx_syncp);
  2699. nv_txrx_stats_inc(stat_rx_packets);
  2700. nv_txrx_stats_add(stat_rx_bytes, len);
  2701. u64_stats_update_end(&np->swstats_rx_syncp);
  2702. } else {
  2703. dev_kfree_skb(skb);
  2704. }
  2705. next_pkt:
  2706. if (unlikely(np->get_rx.ex++ == np->last_rx.ex))
  2707. np->get_rx.ex = np->rx_ring.ex;
  2708. if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
  2709. np->get_rx_ctx = np->rx_skb;
  2710. rx_work++;
  2711. }
  2712. return rx_work;
  2713. }
  2714. static void set_bufsize(struct net_device *dev)
  2715. {
  2716. struct fe_priv *np = netdev_priv(dev);
  2717. if (dev->mtu <= ETH_DATA_LEN)
  2718. np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
  2719. else
  2720. np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
  2721. }
  2722. /*
  2723. * nv_change_mtu: dev->change_mtu function
  2724. * Called with dev_base_lock held for read.
  2725. */
  2726. static int nv_change_mtu(struct net_device *dev, int new_mtu)
  2727. {
  2728. struct fe_priv *np = netdev_priv(dev);
  2729. int old_mtu;
  2730. old_mtu = dev->mtu;
  2731. dev->mtu = new_mtu;
  2732. /* return early if the buffer sizes will not change */
  2733. if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
  2734. return 0;
  2735. /* synchronized against open : rtnl_lock() held by caller */
  2736. if (netif_running(dev)) {
  2737. u8 __iomem *base = get_hwbase(dev);
  2738. /*
  2739. * It seems that the nic preloads valid ring entries into an
  2740. * internal buffer. The procedure for flushing everything is
  2741. * guessed, there is probably a simpler approach.
  2742. * Changing the MTU is a rare event, it shouldn't matter.
  2743. */
  2744. nv_disable_irq(dev);
  2745. nv_napi_disable(dev);
  2746. netif_tx_lock_bh(dev);
  2747. netif_addr_lock(dev);
  2748. spin_lock(&np->lock);
  2749. /* stop engines */
  2750. nv_stop_rxtx(dev);
  2751. nv_txrx_reset(dev);
  2752. /* drain rx queue */
  2753. nv_drain_rxtx(dev);
  2754. /* reinit driver view of the rx queue */
  2755. set_bufsize(dev);
  2756. if (nv_init_ring(dev)) {
  2757. if (!np->in_shutdown)
  2758. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2759. }
  2760. /* reinit nic view of the rx queue */
  2761. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  2762. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  2763. writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  2764. base + NvRegRingSizes);
  2765. pci_push(base);
  2766. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2767. pci_push(base);
  2768. /* restart rx engine */
  2769. nv_start_rxtx(dev);
  2770. spin_unlock(&np->lock);
  2771. netif_addr_unlock(dev);
  2772. netif_tx_unlock_bh(dev);
  2773. nv_napi_enable(dev);
  2774. nv_enable_irq(dev);
  2775. }
  2776. return 0;
  2777. }
  2778. static void nv_copy_mac_to_hw(struct net_device *dev)
  2779. {
  2780. u8 __iomem *base = get_hwbase(dev);
  2781. u32 mac[2];
  2782. mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
  2783. (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
  2784. mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
  2785. writel(mac[0], base + NvRegMacAddrA);
  2786. writel(mac[1], base + NvRegMacAddrB);
  2787. }
  2788. /*
  2789. * nv_set_mac_address: dev->set_mac_address function
  2790. * Called with rtnl_lock() held.
  2791. */
  2792. static int nv_set_mac_address(struct net_device *dev, void *addr)
  2793. {
  2794. struct fe_priv *np = netdev_priv(dev);
  2795. struct sockaddr *macaddr = (struct sockaddr *)addr;
  2796. if (!is_valid_ether_addr(macaddr->sa_data))
  2797. return -EADDRNOTAVAIL;
  2798. /* synchronized against open : rtnl_lock() held by caller */
  2799. eth_hw_addr_set(dev, macaddr->sa_data);
  2800. if (netif_running(dev)) {
  2801. netif_tx_lock_bh(dev);
  2802. netif_addr_lock(dev);
  2803. spin_lock_irq(&np->lock);
  2804. /* stop rx engine */
  2805. nv_stop_rx(dev);
  2806. /* set mac address */
  2807. nv_copy_mac_to_hw(dev);
  2808. /* restart rx engine */
  2809. nv_start_rx(dev);
  2810. spin_unlock_irq(&np->lock);
  2811. netif_addr_unlock(dev);
  2812. netif_tx_unlock_bh(dev);
  2813. } else {
  2814. nv_copy_mac_to_hw(dev);
  2815. }
  2816. return 0;
  2817. }
  2818. /*
  2819. * nv_set_multicast: dev->set_multicast function
  2820. * Called with netif_tx_lock held.
  2821. */
  2822. static void nv_set_multicast(struct net_device *dev)
  2823. {
  2824. struct fe_priv *np = netdev_priv(dev);
  2825. u8 __iomem *base = get_hwbase(dev);
  2826. u32 addr[2];
  2827. u32 mask[2];
  2828. u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;
  2829. memset(addr, 0, sizeof(addr));
  2830. memset(mask, 0, sizeof(mask));
  2831. if (dev->flags & IFF_PROMISC) {
  2832. pff |= NVREG_PFF_PROMISC;
  2833. } else {
  2834. pff |= NVREG_PFF_MYADDR;
  2835. if (dev->flags & IFF_ALLMULTI || !netdev_mc_empty(dev)) {
  2836. u32 alwaysOff[2];
  2837. u32 alwaysOn[2];
  2838. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
  2839. if (dev->flags & IFF_ALLMULTI) {
  2840. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
  2841. } else {
  2842. struct netdev_hw_addr *ha;
  2843. netdev_for_each_mc_addr(ha, dev) {
  2844. unsigned char *hw_addr = ha->addr;
  2845. u32 a, b;
  2846. a = le32_to_cpu(*(__le32 *) hw_addr);
  2847. b = le16_to_cpu(*(__le16 *) (&hw_addr[4]));
  2848. alwaysOn[0] &= a;
  2849. alwaysOff[0] &= ~a;
  2850. alwaysOn[1] &= b;
  2851. alwaysOff[1] &= ~b;
  2852. }
  2853. }
  2854. addr[0] = alwaysOn[0];
  2855. addr[1] = alwaysOn[1];
  2856. mask[0] = alwaysOn[0] | alwaysOff[0];
  2857. mask[1] = alwaysOn[1] | alwaysOff[1];
  2858. } else {
  2859. mask[0] = NVREG_MCASTMASKA_NONE;
  2860. mask[1] = NVREG_MCASTMASKB_NONE;
  2861. }
  2862. }
  2863. addr[0] |= NVREG_MCASTADDRA_FORCE;
  2864. pff |= NVREG_PFF_ALWAYS;
  2865. spin_lock_irq(&np->lock);
  2866. nv_stop_rx(dev);
  2867. writel(addr[0], base + NvRegMulticastAddrA);
  2868. writel(addr[1], base + NvRegMulticastAddrB);
  2869. writel(mask[0], base + NvRegMulticastMaskA);
  2870. writel(mask[1], base + NvRegMulticastMaskB);
  2871. writel(pff, base + NvRegPacketFilterFlags);
  2872. nv_start_rx(dev);
  2873. spin_unlock_irq(&np->lock);
  2874. }
  2875. static void nv_update_pause(struct net_device *dev, u32 pause_flags)
  2876. {
  2877. struct fe_priv *np = netdev_priv(dev);
  2878. u8 __iomem *base = get_hwbase(dev);
  2879. np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
  2880. if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
  2881. u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
  2882. if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
  2883. writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
  2884. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2885. } else {
  2886. writel(pff, base + NvRegPacketFilterFlags);
  2887. }
  2888. }
  2889. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
  2890. u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
  2891. if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
  2892. u32 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V1;
  2893. if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V2)
  2894. pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V2;
  2895. if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V3) {
  2896. pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V3;
  2897. /* limit the number of tx pause frames to a default of 8 */
  2898. writel(readl(base + NvRegTxPauseFrameLimit)|NVREG_TX_PAUSEFRAMELIMIT_ENABLE, base + NvRegTxPauseFrameLimit);
  2899. }
  2900. writel(pause_enable, base + NvRegTxPauseFrame);
  2901. writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
  2902. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2903. } else {
  2904. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  2905. writel(regmisc, base + NvRegMisc1);
  2906. }
  2907. }
  2908. }
  2909. static void nv_force_linkspeed(struct net_device *dev, int speed, int duplex)
  2910. {
  2911. struct fe_priv *np = netdev_priv(dev);
  2912. u8 __iomem *base = get_hwbase(dev);
  2913. u32 phyreg, txreg;
  2914. int mii_status;
  2915. np->linkspeed = NVREG_LINKSPEED_FORCE|speed;
  2916. np->duplex = duplex;
  2917. /* see if gigabit phy */
  2918. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  2919. if (mii_status & PHY_GIGABIT) {
  2920. np->gigabit = PHY_GIGABIT;
  2921. phyreg = readl(base + NvRegSlotTime);
  2922. phyreg &= ~(0x3FF00);
  2923. if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10)
  2924. phyreg |= NVREG_SLOTTIME_10_100_FULL;
  2925. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)
  2926. phyreg |= NVREG_SLOTTIME_10_100_FULL;
  2927. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
  2928. phyreg |= NVREG_SLOTTIME_1000_FULL;
  2929. writel(phyreg, base + NvRegSlotTime);
  2930. }
  2931. phyreg = readl(base + NvRegPhyInterface);
  2932. phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
  2933. if (np->duplex == 0)
  2934. phyreg |= PHY_HALF;
  2935. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
  2936. phyreg |= PHY_100;
  2937. else if ((np->linkspeed & NVREG_LINKSPEED_MASK) ==
  2938. NVREG_LINKSPEED_1000)
  2939. phyreg |= PHY_1000;
  2940. writel(phyreg, base + NvRegPhyInterface);
  2941. if (phyreg & PHY_RGMII) {
  2942. if ((np->linkspeed & NVREG_LINKSPEED_MASK) ==
  2943. NVREG_LINKSPEED_1000)
  2944. txreg = NVREG_TX_DEFERRAL_RGMII_1000;
  2945. else
  2946. txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
  2947. } else {
  2948. txreg = NVREG_TX_DEFERRAL_DEFAULT;
  2949. }
  2950. writel(txreg, base + NvRegTxDeferral);
  2951. if (np->desc_ver == DESC_VER_1) {
  2952. txreg = NVREG_TX_WM_DESC1_DEFAULT;
  2953. } else {
  2954. if ((np->linkspeed & NVREG_LINKSPEED_MASK) ==
  2955. NVREG_LINKSPEED_1000)
  2956. txreg = NVREG_TX_WM_DESC2_3_1000;
  2957. else
  2958. txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
  2959. }
  2960. writel(txreg, base + NvRegTxWatermark);
  2961. writel(NVREG_MISC1_FORCE | (np->duplex ? 0 : NVREG_MISC1_HD),
  2962. base + NvRegMisc1);
  2963. pci_push(base);
  2964. writel(np->linkspeed, base + NvRegLinkSpeed);
  2965. pci_push(base);
  2966. }
  2967. /**
  2968. * nv_update_linkspeed - Setup the MAC according to the link partner
  2969. * @dev: Network device to be configured
  2970. *
  2971. * The function queries the PHY and checks if there is a link partner.
  2972. * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
  2973. * set to 10 MBit HD.
  2974. *
  2975. * The function returns 0 if there is no link partner and 1 if there is
  2976. * a good link partner.
  2977. */
  2978. static int nv_update_linkspeed(struct net_device *dev)
  2979. {
  2980. struct fe_priv *np = netdev_priv(dev);
  2981. u8 __iomem *base = get_hwbase(dev);
  2982. int adv = 0;
  2983. int lpa = 0;
  2984. int adv_lpa, adv_pause, lpa_pause;
  2985. int newls = np->linkspeed;
  2986. int newdup = np->duplex;
  2987. int mii_status;
  2988. u32 bmcr;
  2989. int retval = 0;
  2990. u32 control_1000, status_1000, phyreg, pause_flags, txreg;
  2991. u32 txrxFlags = 0;
  2992. u32 phy_exp;
  2993. /* If device loopback is enabled, set carrier on and enable max link
  2994. * speed.
  2995. */
  2996. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  2997. if (bmcr & BMCR_LOOPBACK) {
  2998. if (netif_running(dev)) {
  2999. nv_force_linkspeed(dev, NVREG_LINKSPEED_1000, 1);
  3000. if (!netif_carrier_ok(dev))
  3001. netif_carrier_on(dev);
  3002. }
  3003. return 1;
  3004. }
  3005. /* BMSR_LSTATUS is latched, read it twice:
  3006. * we want the current value.
  3007. */
  3008. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  3009. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  3010. if (!(mii_status & BMSR_LSTATUS)) {
  3011. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  3012. newdup = 0;
  3013. retval = 0;
  3014. goto set_speed;
  3015. }
  3016. if (np->autoneg == 0) {
  3017. if (np->fixed_mode & LPA_100FULL) {
  3018. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  3019. newdup = 1;
  3020. } else if (np->fixed_mode & LPA_100HALF) {
  3021. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  3022. newdup = 0;
  3023. } else if (np->fixed_mode & LPA_10FULL) {
  3024. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  3025. newdup = 1;
  3026. } else {
  3027. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  3028. newdup = 0;
  3029. }
  3030. retval = 1;
  3031. goto set_speed;
  3032. }
  3033. /* check auto negotiation is complete */
  3034. if (!(mii_status & BMSR_ANEGCOMPLETE)) {
  3035. /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
  3036. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  3037. newdup = 0;
  3038. retval = 0;
  3039. goto set_speed;
  3040. }
  3041. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3042. lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
  3043. retval = 1;
  3044. if (np->gigabit == PHY_GIGABIT) {
  3045. control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3046. status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
  3047. if ((control_1000 & ADVERTISE_1000FULL) &&
  3048. (status_1000 & LPA_1000FULL)) {
  3049. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
  3050. newdup = 1;
  3051. goto set_speed;
  3052. }
  3053. }
  3054. /* FIXME: handle parallel detection properly */
  3055. adv_lpa = lpa & adv;
  3056. if (adv_lpa & LPA_100FULL) {
  3057. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  3058. newdup = 1;
  3059. } else if (adv_lpa & LPA_100HALF) {
  3060. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  3061. newdup = 0;
  3062. } else if (adv_lpa & LPA_10FULL) {
  3063. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  3064. newdup = 1;
  3065. } else if (adv_lpa & LPA_10HALF) {
  3066. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  3067. newdup = 0;
  3068. } else {
  3069. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  3070. newdup = 0;
  3071. }
  3072. set_speed:
  3073. if (np->duplex == newdup && np->linkspeed == newls)
  3074. return retval;
  3075. np->duplex = newdup;
  3076. np->linkspeed = newls;
  3077. /* The transmitter and receiver must be restarted for safe update */
  3078. if (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START) {
  3079. txrxFlags |= NV_RESTART_TX;
  3080. nv_stop_tx(dev);
  3081. }
  3082. if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
  3083. txrxFlags |= NV_RESTART_RX;
  3084. nv_stop_rx(dev);
  3085. }
  3086. if (np->gigabit == PHY_GIGABIT) {
  3087. phyreg = readl(base + NvRegSlotTime);
  3088. phyreg &= ~(0x3FF00);
  3089. if (((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10) ||
  3090. ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100))
  3091. phyreg |= NVREG_SLOTTIME_10_100_FULL;
  3092. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
  3093. phyreg |= NVREG_SLOTTIME_1000_FULL;
  3094. writel(phyreg, base + NvRegSlotTime);
  3095. }
  3096. phyreg = readl(base + NvRegPhyInterface);
  3097. phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
  3098. if (np->duplex == 0)
  3099. phyreg |= PHY_HALF;
  3100. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
  3101. phyreg |= PHY_100;
  3102. else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  3103. phyreg |= PHY_1000;
  3104. writel(phyreg, base + NvRegPhyInterface);
  3105. phy_exp = mii_rw(dev, np->phyaddr, MII_EXPANSION, MII_READ) & EXPANSION_NWAY; /* autoneg capable */
  3106. if (phyreg & PHY_RGMII) {
  3107. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000) {
  3108. txreg = NVREG_TX_DEFERRAL_RGMII_1000;
  3109. } else {
  3110. if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX)) {
  3111. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_10)
  3112. txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_10;
  3113. else
  3114. txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_100;
  3115. } else {
  3116. txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
  3117. }
  3118. }
  3119. } else {
  3120. if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX))
  3121. txreg = NVREG_TX_DEFERRAL_MII_STRETCH;
  3122. else
  3123. txreg = NVREG_TX_DEFERRAL_DEFAULT;
  3124. }
  3125. writel(txreg, base + NvRegTxDeferral);
  3126. if (np->desc_ver == DESC_VER_1) {
  3127. txreg = NVREG_TX_WM_DESC1_DEFAULT;
  3128. } else {
  3129. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  3130. txreg = NVREG_TX_WM_DESC2_3_1000;
  3131. else
  3132. txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
  3133. }
  3134. writel(txreg, base + NvRegTxWatermark);
  3135. writel(NVREG_MISC1_FORCE | (np->duplex ? 0 : NVREG_MISC1_HD),
  3136. base + NvRegMisc1);
  3137. pci_push(base);
  3138. writel(np->linkspeed, base + NvRegLinkSpeed);
  3139. pci_push(base);
  3140. pause_flags = 0;
  3141. /* setup pause frame */
  3142. if (netif_running(dev) && (np->duplex != 0)) {
  3143. if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
  3144. adv_pause = adv & (ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3145. lpa_pause = lpa & (LPA_PAUSE_CAP | LPA_PAUSE_ASYM);
  3146. switch (adv_pause) {
  3147. case ADVERTISE_PAUSE_CAP:
  3148. if (lpa_pause & LPA_PAUSE_CAP) {
  3149. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3150. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  3151. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3152. }
  3153. break;
  3154. case ADVERTISE_PAUSE_ASYM:
  3155. if (lpa_pause == (LPA_PAUSE_CAP | LPA_PAUSE_ASYM))
  3156. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3157. break;
  3158. case ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM:
  3159. if (lpa_pause & LPA_PAUSE_CAP) {
  3160. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3161. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  3162. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3163. }
  3164. if (lpa_pause == LPA_PAUSE_ASYM)
  3165. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3166. break;
  3167. }
  3168. } else {
  3169. pause_flags = np->pause_flags;
  3170. }
  3171. }
  3172. nv_update_pause(dev, pause_flags);
  3173. if (txrxFlags & NV_RESTART_TX)
  3174. nv_start_tx(dev);
  3175. if (txrxFlags & NV_RESTART_RX)
  3176. nv_start_rx(dev);
  3177. return retval;
  3178. }
  3179. static void nv_linkchange(struct net_device *dev)
  3180. {
  3181. if (nv_update_linkspeed(dev)) {
  3182. if (!netif_carrier_ok(dev)) {
  3183. netif_carrier_on(dev);
  3184. netdev_info(dev, "link up\n");
  3185. nv_txrx_gate(dev, false);
  3186. nv_start_rx(dev);
  3187. }
  3188. } else {
  3189. if (netif_carrier_ok(dev)) {
  3190. netif_carrier_off(dev);
  3191. netdev_info(dev, "link down\n");
  3192. nv_txrx_gate(dev, true);
  3193. nv_stop_rx(dev);
  3194. }
  3195. }
  3196. }
  3197. static void nv_link_irq(struct net_device *dev)
  3198. {
  3199. u8 __iomem *base = get_hwbase(dev);
  3200. u32 miistat;
  3201. miistat = readl(base + NvRegMIIStatus);
  3202. writel(NVREG_MIISTAT_LINKCHANGE, base + NvRegMIIStatus);
  3203. if (miistat & (NVREG_MIISTAT_LINKCHANGE))
  3204. nv_linkchange(dev);
  3205. }
  3206. static void nv_msi_workaround(struct fe_priv *np)
  3207. {
  3208. /* Need to toggle the msi irq mask within the ethernet device,
  3209. * otherwise, future interrupts will not be detected.
  3210. */
  3211. if (np->msi_flags & NV_MSI_ENABLED) {
  3212. u8 __iomem *base = np->base;
  3213. writel(0, base + NvRegMSIIrqMask);
  3214. writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
  3215. }
  3216. }
  3217. static inline int nv_change_interrupt_mode(struct net_device *dev, int total_work)
  3218. {
  3219. struct fe_priv *np = netdev_priv(dev);
  3220. if (optimization_mode == NV_OPTIMIZATION_MODE_DYNAMIC) {
  3221. if (total_work > NV_DYNAMIC_THRESHOLD) {
  3222. /* transition to poll based interrupts */
  3223. np->quiet_count = 0;
  3224. if (np->irqmask != NVREG_IRQMASK_CPU) {
  3225. np->irqmask = NVREG_IRQMASK_CPU;
  3226. return 1;
  3227. }
  3228. } else {
  3229. if (np->quiet_count < NV_DYNAMIC_MAX_QUIET_COUNT) {
  3230. np->quiet_count++;
  3231. } else {
  3232. /* reached a period of low activity, switch
  3233. to per tx/rx packet interrupts */
  3234. if (np->irqmask != NVREG_IRQMASK_THROUGHPUT) {
  3235. np->irqmask = NVREG_IRQMASK_THROUGHPUT;
  3236. return 1;
  3237. }
  3238. }
  3239. }
  3240. }
  3241. return 0;
  3242. }
  3243. static irqreturn_t nv_nic_irq(int foo, void *data)
  3244. {
  3245. struct net_device *dev = (struct net_device *) data;
  3246. struct fe_priv *np = netdev_priv(dev);
  3247. u8 __iomem *base = get_hwbase(dev);
  3248. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3249. np->events = readl(base + NvRegIrqStatus);
  3250. writel(np->events, base + NvRegIrqStatus);
  3251. } else {
  3252. np->events = readl(base + NvRegMSIXIrqStatus);
  3253. writel(np->events, base + NvRegMSIXIrqStatus);
  3254. }
  3255. if (!(np->events & np->irqmask))
  3256. return IRQ_NONE;
  3257. nv_msi_workaround(np);
  3258. if (napi_schedule_prep(&np->napi)) {
  3259. /*
  3260. * Disable further irq's (msix not enabled with napi)
  3261. */
  3262. writel(0, base + NvRegIrqMask);
  3263. __napi_schedule(&np->napi);
  3264. }
  3265. return IRQ_HANDLED;
  3266. }
  3267. /* All _optimized functions are used to help increase performance
  3268. * (reduce CPU and increase throughput). They use descripter version 3,
  3269. * compiler directives, and reduce memory accesses.
  3270. */
  3271. static irqreturn_t nv_nic_irq_optimized(int foo, void *data)
  3272. {
  3273. struct net_device *dev = (struct net_device *) data;
  3274. struct fe_priv *np = netdev_priv(dev);
  3275. u8 __iomem *base = get_hwbase(dev);
  3276. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3277. np->events = readl(base + NvRegIrqStatus);
  3278. writel(np->events, base + NvRegIrqStatus);
  3279. } else {
  3280. np->events = readl(base + NvRegMSIXIrqStatus);
  3281. writel(np->events, base + NvRegMSIXIrqStatus);
  3282. }
  3283. if (!(np->events & np->irqmask))
  3284. return IRQ_NONE;
  3285. nv_msi_workaround(np);
  3286. if (napi_schedule_prep(&np->napi)) {
  3287. /*
  3288. * Disable further irq's (msix not enabled with napi)
  3289. */
  3290. writel(0, base + NvRegIrqMask);
  3291. __napi_schedule(&np->napi);
  3292. }
  3293. return IRQ_HANDLED;
  3294. }
  3295. static irqreturn_t nv_nic_irq_tx(int foo, void *data)
  3296. {
  3297. struct net_device *dev = (struct net_device *) data;
  3298. struct fe_priv *np = netdev_priv(dev);
  3299. u8 __iomem *base = get_hwbase(dev);
  3300. u32 events;
  3301. int i;
  3302. unsigned long flags;
  3303. for (i = 0;; i++) {
  3304. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
  3305. writel(events, base + NvRegMSIXIrqStatus);
  3306. netdev_dbg(dev, "tx irq events: %08x\n", events);
  3307. if (!(events & np->irqmask))
  3308. break;
  3309. spin_lock_irqsave(&np->lock, flags);
  3310. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  3311. spin_unlock_irqrestore(&np->lock, flags);
  3312. if (unlikely(i > max_interrupt_work)) {
  3313. spin_lock_irqsave(&np->lock, flags);
  3314. /* disable interrupts on the nic */
  3315. writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
  3316. pci_push(base);
  3317. if (!np->in_shutdown) {
  3318. np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
  3319. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3320. }
  3321. spin_unlock_irqrestore(&np->lock, flags);
  3322. netdev_dbg(dev, "%s: too many iterations (%d)\n",
  3323. __func__, i);
  3324. break;
  3325. }
  3326. }
  3327. return IRQ_RETVAL(i);
  3328. }
  3329. static int nv_napi_poll(struct napi_struct *napi, int budget)
  3330. {
  3331. struct fe_priv *np = container_of(napi, struct fe_priv, napi);
  3332. struct net_device *dev = np->dev;
  3333. u8 __iomem *base = get_hwbase(dev);
  3334. unsigned long flags;
  3335. int retcode;
  3336. int rx_count, tx_work = 0, rx_work = 0;
  3337. do {
  3338. if (!nv_optimized(np)) {
  3339. spin_lock_irqsave(&np->lock, flags);
  3340. tx_work += nv_tx_done(dev, np->tx_ring_size);
  3341. spin_unlock_irqrestore(&np->lock, flags);
  3342. rx_count = nv_rx_process(dev, budget - rx_work);
  3343. retcode = nv_alloc_rx(dev);
  3344. } else {
  3345. spin_lock_irqsave(&np->lock, flags);
  3346. tx_work += nv_tx_done_optimized(dev, np->tx_ring_size);
  3347. spin_unlock_irqrestore(&np->lock, flags);
  3348. rx_count = nv_rx_process_optimized(dev,
  3349. budget - rx_work);
  3350. retcode = nv_alloc_rx_optimized(dev);
  3351. }
  3352. } while (retcode == 0 &&
  3353. rx_count > 0 && (rx_work += rx_count) < budget);
  3354. if (retcode) {
  3355. spin_lock_irqsave(&np->lock, flags);
  3356. if (!np->in_shutdown)
  3357. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3358. spin_unlock_irqrestore(&np->lock, flags);
  3359. }
  3360. nv_change_interrupt_mode(dev, tx_work + rx_work);
  3361. if (unlikely(np->events & NVREG_IRQ_LINK)) {
  3362. spin_lock_irqsave(&np->lock, flags);
  3363. nv_link_irq(dev);
  3364. spin_unlock_irqrestore(&np->lock, flags);
  3365. }
  3366. if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
  3367. spin_lock_irqsave(&np->lock, flags);
  3368. nv_linkchange(dev);
  3369. spin_unlock_irqrestore(&np->lock, flags);
  3370. np->link_timeout = jiffies + LINK_TIMEOUT;
  3371. }
  3372. if (unlikely(np->events & NVREG_IRQ_RECOVER_ERROR)) {
  3373. spin_lock_irqsave(&np->lock, flags);
  3374. if (!np->in_shutdown) {
  3375. np->nic_poll_irq = np->irqmask;
  3376. np->recover_error = 1;
  3377. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3378. }
  3379. spin_unlock_irqrestore(&np->lock, flags);
  3380. napi_complete(napi);
  3381. return rx_work;
  3382. }
  3383. if (rx_work < budget) {
  3384. /* re-enable interrupts
  3385. (msix not enabled in napi) */
  3386. napi_complete_done(napi, rx_work);
  3387. writel(np->irqmask, base + NvRegIrqMask);
  3388. }
  3389. return rx_work;
  3390. }
  3391. static irqreturn_t nv_nic_irq_rx(int foo, void *data)
  3392. {
  3393. struct net_device *dev = (struct net_device *) data;
  3394. struct fe_priv *np = netdev_priv(dev);
  3395. u8 __iomem *base = get_hwbase(dev);
  3396. u32 events;
  3397. int i;
  3398. unsigned long flags;
  3399. for (i = 0;; i++) {
  3400. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
  3401. writel(events, base + NvRegMSIXIrqStatus);
  3402. netdev_dbg(dev, "rx irq events: %08x\n", events);
  3403. if (!(events & np->irqmask))
  3404. break;
  3405. if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) {
  3406. if (unlikely(nv_alloc_rx_optimized(dev))) {
  3407. spin_lock_irqsave(&np->lock, flags);
  3408. if (!np->in_shutdown)
  3409. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3410. spin_unlock_irqrestore(&np->lock, flags);
  3411. }
  3412. }
  3413. if (unlikely(i > max_interrupt_work)) {
  3414. spin_lock_irqsave(&np->lock, flags);
  3415. /* disable interrupts on the nic */
  3416. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  3417. pci_push(base);
  3418. if (!np->in_shutdown) {
  3419. np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
  3420. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3421. }
  3422. spin_unlock_irqrestore(&np->lock, flags);
  3423. netdev_dbg(dev, "%s: too many iterations (%d)\n",
  3424. __func__, i);
  3425. break;
  3426. }
  3427. }
  3428. return IRQ_RETVAL(i);
  3429. }
  3430. static irqreturn_t nv_nic_irq_other(int foo, void *data)
  3431. {
  3432. struct net_device *dev = (struct net_device *) data;
  3433. struct fe_priv *np = netdev_priv(dev);
  3434. u8 __iomem *base = get_hwbase(dev);
  3435. u32 events;
  3436. int i;
  3437. unsigned long flags;
  3438. for (i = 0;; i++) {
  3439. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
  3440. writel(events, base + NvRegMSIXIrqStatus);
  3441. netdev_dbg(dev, "irq events: %08x\n", events);
  3442. if (!(events & np->irqmask))
  3443. break;
  3444. /* check tx in case we reached max loop limit in tx isr */
  3445. spin_lock_irqsave(&np->lock, flags);
  3446. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  3447. spin_unlock_irqrestore(&np->lock, flags);
  3448. if (events & NVREG_IRQ_LINK) {
  3449. spin_lock_irqsave(&np->lock, flags);
  3450. nv_link_irq(dev);
  3451. spin_unlock_irqrestore(&np->lock, flags);
  3452. }
  3453. if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
  3454. spin_lock_irqsave(&np->lock, flags);
  3455. nv_linkchange(dev);
  3456. spin_unlock_irqrestore(&np->lock, flags);
  3457. np->link_timeout = jiffies + LINK_TIMEOUT;
  3458. }
  3459. if (events & NVREG_IRQ_RECOVER_ERROR) {
  3460. spin_lock_irqsave(&np->lock, flags);
  3461. /* disable interrupts on the nic */
  3462. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  3463. pci_push(base);
  3464. if (!np->in_shutdown) {
  3465. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  3466. np->recover_error = 1;
  3467. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3468. }
  3469. spin_unlock_irqrestore(&np->lock, flags);
  3470. break;
  3471. }
  3472. if (unlikely(i > max_interrupt_work)) {
  3473. spin_lock_irqsave(&np->lock, flags);
  3474. /* disable interrupts on the nic */
  3475. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  3476. pci_push(base);
  3477. if (!np->in_shutdown) {
  3478. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  3479. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3480. }
  3481. spin_unlock_irqrestore(&np->lock, flags);
  3482. netdev_dbg(dev, "%s: too many iterations (%d)\n",
  3483. __func__, i);
  3484. break;
  3485. }
  3486. }
  3487. return IRQ_RETVAL(i);
  3488. }
  3489. static irqreturn_t nv_nic_irq_test(int foo, void *data)
  3490. {
  3491. struct net_device *dev = (struct net_device *) data;
  3492. struct fe_priv *np = netdev_priv(dev);
  3493. u8 __iomem *base = get_hwbase(dev);
  3494. u32 events;
  3495. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3496. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  3497. writel(events & NVREG_IRQ_TIMER, base + NvRegIrqStatus);
  3498. } else {
  3499. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  3500. writel(events & NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus);
  3501. }
  3502. pci_push(base);
  3503. if (!(events & NVREG_IRQ_TIMER))
  3504. return IRQ_RETVAL(0);
  3505. nv_msi_workaround(np);
  3506. spin_lock(&np->lock);
  3507. np->intr_test = 1;
  3508. spin_unlock(&np->lock);
  3509. return IRQ_RETVAL(1);
  3510. }
  3511. static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
  3512. {
  3513. u8 __iomem *base = get_hwbase(dev);
  3514. int i;
  3515. u32 msixmap = 0;
  3516. /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
  3517. * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
  3518. * the remaining 8 interrupts.
  3519. */
  3520. for (i = 0; i < 8; i++) {
  3521. if ((irqmask >> i) & 0x1)
  3522. msixmap |= vector << (i << 2);
  3523. }
  3524. writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
  3525. msixmap = 0;
  3526. for (i = 0; i < 8; i++) {
  3527. if ((irqmask >> (i + 8)) & 0x1)
  3528. msixmap |= vector << (i << 2);
  3529. }
  3530. writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
  3531. }
  3532. static int nv_request_irq(struct net_device *dev, int intr_test)
  3533. {
  3534. struct fe_priv *np = get_nvpriv(dev);
  3535. u8 __iomem *base = get_hwbase(dev);
  3536. int ret;
  3537. int i;
  3538. irqreturn_t (*handler)(int foo, void *data);
  3539. if (intr_test) {
  3540. handler = nv_nic_irq_test;
  3541. } else {
  3542. if (nv_optimized(np))
  3543. handler = nv_nic_irq_optimized;
  3544. else
  3545. handler = nv_nic_irq;
  3546. }
  3547. if (np->msi_flags & NV_MSI_X_CAPABLE) {
  3548. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++)
  3549. np->msi_x_entry[i].entry = i;
  3550. ret = pci_enable_msix_range(np->pci_dev,
  3551. np->msi_x_entry,
  3552. np->msi_flags & NV_MSI_X_VECTORS_MASK,
  3553. np->msi_flags & NV_MSI_X_VECTORS_MASK);
  3554. if (ret > 0) {
  3555. np->msi_flags |= NV_MSI_X_ENABLED;
  3556. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) {
  3557. /* Request irq for rx handling */
  3558. sprintf(np->name_rx, "%s-rx", dev->name);
  3559. ret = request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector,
  3560. nv_nic_irq_rx, IRQF_SHARED, np->name_rx, dev);
  3561. if (ret) {
  3562. netdev_info(dev,
  3563. "request_irq failed for rx %d\n",
  3564. ret);
  3565. pci_disable_msix(np->pci_dev);
  3566. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3567. goto out_err;
  3568. }
  3569. /* Request irq for tx handling */
  3570. sprintf(np->name_tx, "%s-tx", dev->name);
  3571. ret = request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector,
  3572. nv_nic_irq_tx, IRQF_SHARED, np->name_tx, dev);
  3573. if (ret) {
  3574. netdev_info(dev,
  3575. "request_irq failed for tx %d\n",
  3576. ret);
  3577. pci_disable_msix(np->pci_dev);
  3578. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3579. goto out_free_rx;
  3580. }
  3581. /* Request irq for link and timer handling */
  3582. sprintf(np->name_other, "%s-other", dev->name);
  3583. ret = request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector,
  3584. nv_nic_irq_other, IRQF_SHARED, np->name_other, dev);
  3585. if (ret) {
  3586. netdev_info(dev,
  3587. "request_irq failed for link %d\n",
  3588. ret);
  3589. pci_disable_msix(np->pci_dev);
  3590. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3591. goto out_free_tx;
  3592. }
  3593. /* map interrupts to their respective vector */
  3594. writel(0, base + NvRegMSIXMap0);
  3595. writel(0, base + NvRegMSIXMap1);
  3596. set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
  3597. set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
  3598. set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
  3599. } else {
  3600. /* Request irq for all interrupts */
  3601. ret = request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector,
  3602. handler, IRQF_SHARED, dev->name, dev);
  3603. if (ret) {
  3604. netdev_info(dev,
  3605. "request_irq failed %d\n",
  3606. ret);
  3607. pci_disable_msix(np->pci_dev);
  3608. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3609. goto out_err;
  3610. }
  3611. /* map interrupts to vector 0 */
  3612. writel(0, base + NvRegMSIXMap0);
  3613. writel(0, base + NvRegMSIXMap1);
  3614. }
  3615. netdev_info(dev, "MSI-X enabled\n");
  3616. return 0;
  3617. }
  3618. }
  3619. if (np->msi_flags & NV_MSI_CAPABLE) {
  3620. ret = pci_enable_msi(np->pci_dev);
  3621. if (ret == 0) {
  3622. np->msi_flags |= NV_MSI_ENABLED;
  3623. ret = request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev);
  3624. if (ret) {
  3625. netdev_info(dev, "request_irq failed %d\n",
  3626. ret);
  3627. pci_disable_msi(np->pci_dev);
  3628. np->msi_flags &= ~NV_MSI_ENABLED;
  3629. goto out_err;
  3630. }
  3631. /* map interrupts to vector 0 */
  3632. writel(0, base + NvRegMSIMap0);
  3633. writel(0, base + NvRegMSIMap1);
  3634. /* enable msi vector 0 */
  3635. writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
  3636. netdev_info(dev, "MSI enabled\n");
  3637. return 0;
  3638. }
  3639. }
  3640. if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0)
  3641. goto out_err;
  3642. return 0;
  3643. out_free_tx:
  3644. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
  3645. out_free_rx:
  3646. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
  3647. out_err:
  3648. return 1;
  3649. }
  3650. static void nv_free_irq(struct net_device *dev)
  3651. {
  3652. struct fe_priv *np = get_nvpriv(dev);
  3653. int i;
  3654. if (np->msi_flags & NV_MSI_X_ENABLED) {
  3655. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++)
  3656. free_irq(np->msi_x_entry[i].vector, dev);
  3657. pci_disable_msix(np->pci_dev);
  3658. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3659. } else {
  3660. free_irq(np->pci_dev->irq, dev);
  3661. if (np->msi_flags & NV_MSI_ENABLED) {
  3662. pci_disable_msi(np->pci_dev);
  3663. np->msi_flags &= ~NV_MSI_ENABLED;
  3664. }
  3665. }
  3666. }
  3667. static void nv_do_nic_poll(struct timer_list *t)
  3668. {
  3669. struct fe_priv *np = from_timer(np, t, nic_poll);
  3670. struct net_device *dev = np->dev;
  3671. u8 __iomem *base = get_hwbase(dev);
  3672. u32 mask = 0;
  3673. unsigned long flags;
  3674. unsigned int irq = 0;
  3675. /*
  3676. * First disable irq(s) and then
  3677. * reenable interrupts on the nic, we have to do this before calling
  3678. * nv_nic_irq because that may decide to do otherwise
  3679. */
  3680. if (!using_multi_irqs(dev)) {
  3681. if (np->msi_flags & NV_MSI_X_ENABLED)
  3682. irq = np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector;
  3683. else
  3684. irq = np->pci_dev->irq;
  3685. mask = np->irqmask;
  3686. } else {
  3687. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  3688. irq = np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector;
  3689. mask |= NVREG_IRQ_RX_ALL;
  3690. }
  3691. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  3692. irq = np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector;
  3693. mask |= NVREG_IRQ_TX_ALL;
  3694. }
  3695. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  3696. irq = np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector;
  3697. mask |= NVREG_IRQ_OTHER;
  3698. }
  3699. }
  3700. disable_irq_nosync_lockdep_irqsave(irq, &flags);
  3701. synchronize_irq(irq);
  3702. if (np->recover_error) {
  3703. np->recover_error = 0;
  3704. netdev_info(dev, "MAC in recoverable error state\n");
  3705. if (netif_running(dev)) {
  3706. netif_tx_lock_bh(dev);
  3707. netif_addr_lock(dev);
  3708. spin_lock(&np->lock);
  3709. /* stop engines */
  3710. nv_stop_rxtx(dev);
  3711. if (np->driver_data & DEV_HAS_POWER_CNTRL)
  3712. nv_mac_reset(dev);
  3713. nv_txrx_reset(dev);
  3714. /* drain rx queue */
  3715. nv_drain_rxtx(dev);
  3716. /* reinit driver view of the rx queue */
  3717. set_bufsize(dev);
  3718. if (nv_init_ring(dev)) {
  3719. if (!np->in_shutdown)
  3720. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3721. }
  3722. /* reinit nic view of the rx queue */
  3723. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  3724. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  3725. writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  3726. base + NvRegRingSizes);
  3727. pci_push(base);
  3728. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  3729. pci_push(base);
  3730. /* clear interrupts */
  3731. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3732. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  3733. else
  3734. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  3735. /* restart rx engine */
  3736. nv_start_rxtx(dev);
  3737. spin_unlock(&np->lock);
  3738. netif_addr_unlock(dev);
  3739. netif_tx_unlock_bh(dev);
  3740. }
  3741. }
  3742. writel(mask, base + NvRegIrqMask);
  3743. pci_push(base);
  3744. if (!using_multi_irqs(dev)) {
  3745. np->nic_poll_irq = 0;
  3746. if (nv_optimized(np))
  3747. nv_nic_irq_optimized(0, dev);
  3748. else
  3749. nv_nic_irq(0, dev);
  3750. } else {
  3751. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  3752. np->nic_poll_irq &= ~NVREG_IRQ_RX_ALL;
  3753. nv_nic_irq_rx(0, dev);
  3754. }
  3755. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  3756. np->nic_poll_irq &= ~NVREG_IRQ_TX_ALL;
  3757. nv_nic_irq_tx(0, dev);
  3758. }
  3759. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  3760. np->nic_poll_irq &= ~NVREG_IRQ_OTHER;
  3761. nv_nic_irq_other(0, dev);
  3762. }
  3763. }
  3764. enable_irq_lockdep_irqrestore(irq, &flags);
  3765. }
  3766. #ifdef CONFIG_NET_POLL_CONTROLLER
  3767. static void nv_poll_controller(struct net_device *dev)
  3768. {
  3769. struct fe_priv *np = netdev_priv(dev);
  3770. nv_do_nic_poll(&np->nic_poll);
  3771. }
  3772. #endif
  3773. static void nv_do_stats_poll(struct timer_list *t)
  3774. __acquires(&netdev_priv(dev)->hwstats_lock)
  3775. __releases(&netdev_priv(dev)->hwstats_lock)
  3776. {
  3777. struct fe_priv *np = from_timer(np, t, stats_poll);
  3778. struct net_device *dev = np->dev;
  3779. /* If lock is currently taken, the stats are being refreshed
  3780. * and hence fresh enough */
  3781. if (spin_trylock(&np->hwstats_lock)) {
  3782. nv_update_stats(dev);
  3783. spin_unlock(&np->hwstats_lock);
  3784. }
  3785. if (!np->in_shutdown)
  3786. mod_timer(&np->stats_poll,
  3787. round_jiffies(jiffies + STATS_INTERVAL));
  3788. }
  3789. static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  3790. {
  3791. struct fe_priv *np = netdev_priv(dev);
  3792. strscpy(info->driver, DRV_NAME, sizeof(info->driver));
  3793. strscpy(info->version, FORCEDETH_VERSION, sizeof(info->version));
  3794. strscpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
  3795. }
  3796. static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  3797. {
  3798. struct fe_priv *np = netdev_priv(dev);
  3799. wolinfo->supported = WAKE_MAGIC;
  3800. spin_lock_irq(&np->lock);
  3801. if (np->wolenabled)
  3802. wolinfo->wolopts = WAKE_MAGIC;
  3803. spin_unlock_irq(&np->lock);
  3804. }
  3805. static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  3806. {
  3807. struct fe_priv *np = netdev_priv(dev);
  3808. u8 __iomem *base = get_hwbase(dev);
  3809. u32 flags = 0;
  3810. if (wolinfo->wolopts == 0) {
  3811. np->wolenabled = 0;
  3812. } else if (wolinfo->wolopts & WAKE_MAGIC) {
  3813. np->wolenabled = 1;
  3814. flags = NVREG_WAKEUPFLAGS_ENABLE;
  3815. }
  3816. if (netif_running(dev)) {
  3817. spin_lock_irq(&np->lock);
  3818. writel(flags, base + NvRegWakeUpFlags);
  3819. spin_unlock_irq(&np->lock);
  3820. }
  3821. device_set_wakeup_enable(&np->pci_dev->dev, np->wolenabled);
  3822. return 0;
  3823. }
  3824. static int nv_get_link_ksettings(struct net_device *dev,
  3825. struct ethtool_link_ksettings *cmd)
  3826. {
  3827. struct fe_priv *np = netdev_priv(dev);
  3828. u32 speed, supported, advertising;
  3829. int adv;
  3830. spin_lock_irq(&np->lock);
  3831. cmd->base.port = PORT_MII;
  3832. if (!netif_running(dev)) {
  3833. /* We do not track link speed / duplex setting if the
  3834. * interface is disabled. Force a link check */
  3835. if (nv_update_linkspeed(dev)) {
  3836. netif_carrier_on(dev);
  3837. } else {
  3838. netif_carrier_off(dev);
  3839. }
  3840. }
  3841. if (netif_carrier_ok(dev)) {
  3842. switch (np->linkspeed & (NVREG_LINKSPEED_MASK)) {
  3843. case NVREG_LINKSPEED_10:
  3844. speed = SPEED_10;
  3845. break;
  3846. case NVREG_LINKSPEED_100:
  3847. speed = SPEED_100;
  3848. break;
  3849. case NVREG_LINKSPEED_1000:
  3850. speed = SPEED_1000;
  3851. break;
  3852. default:
  3853. speed = -1;
  3854. break;
  3855. }
  3856. cmd->base.duplex = DUPLEX_HALF;
  3857. if (np->duplex)
  3858. cmd->base.duplex = DUPLEX_FULL;
  3859. } else {
  3860. speed = SPEED_UNKNOWN;
  3861. cmd->base.duplex = DUPLEX_UNKNOWN;
  3862. }
  3863. cmd->base.speed = speed;
  3864. cmd->base.autoneg = np->autoneg;
  3865. advertising = ADVERTISED_MII;
  3866. if (np->autoneg) {
  3867. advertising |= ADVERTISED_Autoneg;
  3868. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3869. if (adv & ADVERTISE_10HALF)
  3870. advertising |= ADVERTISED_10baseT_Half;
  3871. if (adv & ADVERTISE_10FULL)
  3872. advertising |= ADVERTISED_10baseT_Full;
  3873. if (adv & ADVERTISE_100HALF)
  3874. advertising |= ADVERTISED_100baseT_Half;
  3875. if (adv & ADVERTISE_100FULL)
  3876. advertising |= ADVERTISED_100baseT_Full;
  3877. if (np->gigabit == PHY_GIGABIT) {
  3878. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3879. if (adv & ADVERTISE_1000FULL)
  3880. advertising |= ADVERTISED_1000baseT_Full;
  3881. }
  3882. }
  3883. supported = (SUPPORTED_Autoneg |
  3884. SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
  3885. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
  3886. SUPPORTED_MII);
  3887. if (np->gigabit == PHY_GIGABIT)
  3888. supported |= SUPPORTED_1000baseT_Full;
  3889. cmd->base.phy_address = np->phyaddr;
  3890. ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
  3891. supported);
  3892. ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
  3893. advertising);
  3894. /* ignore maxtxpkt, maxrxpkt for now */
  3895. spin_unlock_irq(&np->lock);
  3896. return 0;
  3897. }
  3898. static int nv_set_link_ksettings(struct net_device *dev,
  3899. const struct ethtool_link_ksettings *cmd)
  3900. {
  3901. struct fe_priv *np = netdev_priv(dev);
  3902. u32 speed = cmd->base.speed;
  3903. u32 advertising;
  3904. ethtool_convert_link_mode_to_legacy_u32(&advertising,
  3905. cmd->link_modes.advertising);
  3906. if (cmd->base.port != PORT_MII)
  3907. return -EINVAL;
  3908. if (cmd->base.phy_address != np->phyaddr) {
  3909. /* TODO: support switching between multiple phys. Should be
  3910. * trivial, but not enabled due to lack of test hardware. */
  3911. return -EINVAL;
  3912. }
  3913. if (cmd->base.autoneg == AUTONEG_ENABLE) {
  3914. u32 mask;
  3915. mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
  3916. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
  3917. if (np->gigabit == PHY_GIGABIT)
  3918. mask |= ADVERTISED_1000baseT_Full;
  3919. if ((advertising & mask) == 0)
  3920. return -EINVAL;
  3921. } else if (cmd->base.autoneg == AUTONEG_DISABLE) {
  3922. /* Note: autonegotiation disable, speed 1000 intentionally
  3923. * forbidden - no one should need that. */
  3924. if (speed != SPEED_10 && speed != SPEED_100)
  3925. return -EINVAL;
  3926. if (cmd->base.duplex != DUPLEX_HALF &&
  3927. cmd->base.duplex != DUPLEX_FULL)
  3928. return -EINVAL;
  3929. } else {
  3930. return -EINVAL;
  3931. }
  3932. netif_carrier_off(dev);
  3933. if (netif_running(dev)) {
  3934. unsigned long flags;
  3935. nv_disable_irq(dev);
  3936. netif_tx_lock_bh(dev);
  3937. netif_addr_lock(dev);
  3938. /* with plain spinlock lockdep complains */
  3939. spin_lock_irqsave(&np->lock, flags);
  3940. /* stop engines */
  3941. /* FIXME:
  3942. * this can take some time, and interrupts are disabled
  3943. * due to spin_lock_irqsave, but let's hope no daemon
  3944. * is going to change the settings very often...
  3945. * Worst case:
  3946. * NV_RXSTOP_DELAY1MAX + NV_TXSTOP_DELAY1MAX
  3947. * + some minor delays, which is up to a second approximately
  3948. */
  3949. nv_stop_rxtx(dev);
  3950. spin_unlock_irqrestore(&np->lock, flags);
  3951. netif_addr_unlock(dev);
  3952. netif_tx_unlock_bh(dev);
  3953. }
  3954. if (cmd->base.autoneg == AUTONEG_ENABLE) {
  3955. int adv, bmcr;
  3956. np->autoneg = 1;
  3957. /* advertise only what has been requested */
  3958. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3959. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3960. if (advertising & ADVERTISED_10baseT_Half)
  3961. adv |= ADVERTISE_10HALF;
  3962. if (advertising & ADVERTISED_10baseT_Full)
  3963. adv |= ADVERTISE_10FULL;
  3964. if (advertising & ADVERTISED_100baseT_Half)
  3965. adv |= ADVERTISE_100HALF;
  3966. if (advertising & ADVERTISED_100baseT_Full)
  3967. adv |= ADVERTISE_100FULL;
  3968. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisements but disable tx pause */
  3969. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3970. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  3971. adv |= ADVERTISE_PAUSE_ASYM;
  3972. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3973. if (np->gigabit == PHY_GIGABIT) {
  3974. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3975. adv &= ~ADVERTISE_1000FULL;
  3976. if (advertising & ADVERTISED_1000baseT_Full)
  3977. adv |= ADVERTISE_1000FULL;
  3978. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  3979. }
  3980. if (netif_running(dev))
  3981. netdev_info(dev, "link down\n");
  3982. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3983. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  3984. bmcr |= BMCR_ANENABLE;
  3985. /* reset the phy in order for settings to stick,
  3986. * and cause autoneg to start */
  3987. if (phy_reset(dev, bmcr)) {
  3988. netdev_info(dev, "phy reset failed\n");
  3989. return -EINVAL;
  3990. }
  3991. } else {
  3992. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  3993. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3994. }
  3995. } else {
  3996. int adv, bmcr;
  3997. np->autoneg = 0;
  3998. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3999. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  4000. if (speed == SPEED_10 && cmd->base.duplex == DUPLEX_HALF)
  4001. adv |= ADVERTISE_10HALF;
  4002. if (speed == SPEED_10 && cmd->base.duplex == DUPLEX_FULL)
  4003. adv |= ADVERTISE_10FULL;
  4004. if (speed == SPEED_100 && cmd->base.duplex == DUPLEX_HALF)
  4005. adv |= ADVERTISE_100HALF;
  4006. if (speed == SPEED_100 && cmd->base.duplex == DUPLEX_FULL)
  4007. adv |= ADVERTISE_100FULL;
  4008. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  4009. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisements but disable tx pause */
  4010. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  4011. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  4012. }
  4013. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
  4014. adv |= ADVERTISE_PAUSE_ASYM;
  4015. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  4016. }
  4017. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  4018. np->fixed_mode = adv;
  4019. if (np->gigabit == PHY_GIGABIT) {
  4020. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  4021. adv &= ~ADVERTISE_1000FULL;
  4022. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  4023. }
  4024. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  4025. bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX);
  4026. if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL))
  4027. bmcr |= BMCR_FULLDPLX;
  4028. if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL))
  4029. bmcr |= BMCR_SPEED100;
  4030. if (np->phy_oui == PHY_OUI_MARVELL) {
  4031. /* reset the phy in order for forced mode settings to stick */
  4032. if (phy_reset(dev, bmcr)) {
  4033. netdev_info(dev, "phy reset failed\n");
  4034. return -EINVAL;
  4035. }
  4036. } else {
  4037. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  4038. if (netif_running(dev)) {
  4039. /* Wait a bit and then reconfigure the nic. */
  4040. udelay(10);
  4041. nv_linkchange(dev);
  4042. }
  4043. }
  4044. }
  4045. if (netif_running(dev)) {
  4046. nv_start_rxtx(dev);
  4047. nv_enable_irq(dev);
  4048. }
  4049. return 0;
  4050. }
  4051. #define FORCEDETH_REGS_VER 1
  4052. static int nv_get_regs_len(struct net_device *dev)
  4053. {
  4054. struct fe_priv *np = netdev_priv(dev);
  4055. return np->register_size;
  4056. }
  4057. static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
  4058. {
  4059. struct fe_priv *np = netdev_priv(dev);
  4060. u8 __iomem *base = get_hwbase(dev);
  4061. u32 *rbuf = buf;
  4062. int i;
  4063. regs->version = FORCEDETH_REGS_VER;
  4064. spin_lock_irq(&np->lock);
  4065. for (i = 0; i < np->register_size/sizeof(u32); i++)
  4066. rbuf[i] = readl(base + i*sizeof(u32));
  4067. spin_unlock_irq(&np->lock);
  4068. }
  4069. static int nv_nway_reset(struct net_device *dev)
  4070. {
  4071. struct fe_priv *np = netdev_priv(dev);
  4072. int ret;
  4073. if (np->autoneg) {
  4074. int bmcr;
  4075. netif_carrier_off(dev);
  4076. if (netif_running(dev)) {
  4077. nv_disable_irq(dev);
  4078. netif_tx_lock_bh(dev);
  4079. netif_addr_lock(dev);
  4080. spin_lock(&np->lock);
  4081. /* stop engines */
  4082. nv_stop_rxtx(dev);
  4083. spin_unlock(&np->lock);
  4084. netif_addr_unlock(dev);
  4085. netif_tx_unlock_bh(dev);
  4086. netdev_info(dev, "link down\n");
  4087. }
  4088. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  4089. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  4090. bmcr |= BMCR_ANENABLE;
  4091. /* reset the phy in order for settings to stick*/
  4092. if (phy_reset(dev, bmcr)) {
  4093. netdev_info(dev, "phy reset failed\n");
  4094. return -EINVAL;
  4095. }
  4096. } else {
  4097. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  4098. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  4099. }
  4100. if (netif_running(dev)) {
  4101. nv_start_rxtx(dev);
  4102. nv_enable_irq(dev);
  4103. }
  4104. ret = 0;
  4105. } else {
  4106. ret = -EINVAL;
  4107. }
  4108. return ret;
  4109. }
  4110. static void nv_get_ringparam(struct net_device *dev,
  4111. struct ethtool_ringparam *ring,
  4112. struct kernel_ethtool_ringparam *kernel_ring,
  4113. struct netlink_ext_ack *extack)
  4114. {
  4115. struct fe_priv *np = netdev_priv(dev);
  4116. ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  4117. ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  4118. ring->rx_pending = np->rx_ring_size;
  4119. ring->tx_pending = np->tx_ring_size;
  4120. }
  4121. static int nv_set_ringparam(struct net_device *dev,
  4122. struct ethtool_ringparam *ring,
  4123. struct kernel_ethtool_ringparam *kernel_ring,
  4124. struct netlink_ext_ack *extack)
  4125. {
  4126. struct fe_priv *np = netdev_priv(dev);
  4127. u8 __iomem *base = get_hwbase(dev);
  4128. u8 *rxtx_ring, *rx_skbuff, *tx_skbuff;
  4129. dma_addr_t ring_addr;
  4130. if (ring->rx_pending < RX_RING_MIN ||
  4131. ring->tx_pending < TX_RING_MIN ||
  4132. ring->rx_mini_pending != 0 ||
  4133. ring->rx_jumbo_pending != 0 ||
  4134. (np->desc_ver == DESC_VER_1 &&
  4135. (ring->rx_pending > RING_MAX_DESC_VER_1 ||
  4136. ring->tx_pending > RING_MAX_DESC_VER_1)) ||
  4137. (np->desc_ver != DESC_VER_1 &&
  4138. (ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
  4139. ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
  4140. return -EINVAL;
  4141. }
  4142. /* allocate new rings */
  4143. if (!nv_optimized(np)) {
  4144. rxtx_ring = dma_alloc_coherent(&np->pci_dev->dev,
  4145. sizeof(struct ring_desc) *
  4146. (ring->rx_pending +
  4147. ring->tx_pending),
  4148. &ring_addr, GFP_ATOMIC);
  4149. } else {
  4150. rxtx_ring = dma_alloc_coherent(&np->pci_dev->dev,
  4151. sizeof(struct ring_desc_ex) *
  4152. (ring->rx_pending +
  4153. ring->tx_pending),
  4154. &ring_addr, GFP_ATOMIC);
  4155. }
  4156. rx_skbuff = kmalloc_array(ring->rx_pending, sizeof(struct nv_skb_map),
  4157. GFP_KERNEL);
  4158. tx_skbuff = kmalloc_array(ring->tx_pending, sizeof(struct nv_skb_map),
  4159. GFP_KERNEL);
  4160. if (!rxtx_ring || !rx_skbuff || !tx_skbuff) {
  4161. /* fall back to old rings */
  4162. if (!nv_optimized(np)) {
  4163. if (rxtx_ring)
  4164. dma_free_coherent(&np->pci_dev->dev,
  4165. sizeof(struct ring_desc) *
  4166. (ring->rx_pending +
  4167. ring->tx_pending),
  4168. rxtx_ring, ring_addr);
  4169. } else {
  4170. if (rxtx_ring)
  4171. dma_free_coherent(&np->pci_dev->dev,
  4172. sizeof(struct ring_desc_ex) *
  4173. (ring->rx_pending +
  4174. ring->tx_pending),
  4175. rxtx_ring, ring_addr);
  4176. }
  4177. kfree(rx_skbuff);
  4178. kfree(tx_skbuff);
  4179. goto exit;
  4180. }
  4181. if (netif_running(dev)) {
  4182. nv_disable_irq(dev);
  4183. nv_napi_disable(dev);
  4184. netif_tx_lock_bh(dev);
  4185. netif_addr_lock(dev);
  4186. spin_lock(&np->lock);
  4187. /* stop engines */
  4188. nv_stop_rxtx(dev);
  4189. nv_txrx_reset(dev);
  4190. /* drain queues */
  4191. nv_drain_rxtx(dev);
  4192. /* delete queues */
  4193. free_rings(dev);
  4194. }
  4195. /* set new values */
  4196. np->rx_ring_size = ring->rx_pending;
  4197. np->tx_ring_size = ring->tx_pending;
  4198. if (!nv_optimized(np)) {
  4199. np->rx_ring.orig = (struct ring_desc *)rxtx_ring;
  4200. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  4201. } else {
  4202. np->rx_ring.ex = (struct ring_desc_ex *)rxtx_ring;
  4203. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  4204. }
  4205. np->rx_skb = (struct nv_skb_map *)rx_skbuff;
  4206. np->tx_skb = (struct nv_skb_map *)tx_skbuff;
  4207. np->ring_addr = ring_addr;
  4208. memset(np->rx_skb, 0, sizeof(struct nv_skb_map) * np->rx_ring_size);
  4209. memset(np->tx_skb, 0, sizeof(struct nv_skb_map) * np->tx_ring_size);
  4210. if (netif_running(dev)) {
  4211. /* reinit driver view of the queues */
  4212. set_bufsize(dev);
  4213. if (nv_init_ring(dev)) {
  4214. if (!np->in_shutdown)
  4215. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4216. }
  4217. /* reinit nic view of the queues */
  4218. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4219. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4220. writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4221. base + NvRegRingSizes);
  4222. pci_push(base);
  4223. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4224. pci_push(base);
  4225. /* restart engines */
  4226. nv_start_rxtx(dev);
  4227. spin_unlock(&np->lock);
  4228. netif_addr_unlock(dev);
  4229. netif_tx_unlock_bh(dev);
  4230. nv_napi_enable(dev);
  4231. nv_enable_irq(dev);
  4232. }
  4233. return 0;
  4234. exit:
  4235. return -ENOMEM;
  4236. }
  4237. static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  4238. {
  4239. struct fe_priv *np = netdev_priv(dev);
  4240. pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0;
  4241. pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0;
  4242. pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0;
  4243. }
  4244. static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  4245. {
  4246. struct fe_priv *np = netdev_priv(dev);
  4247. int adv, bmcr;
  4248. if ((!np->autoneg && np->duplex == 0) ||
  4249. (np->autoneg && !pause->autoneg && np->duplex == 0)) {
  4250. netdev_info(dev, "can not set pause settings when forced link is in half duplex\n");
  4251. return -EINVAL;
  4252. }
  4253. if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) {
  4254. netdev_info(dev, "hardware does not support tx pause frames\n");
  4255. return -EINVAL;
  4256. }
  4257. netif_carrier_off(dev);
  4258. if (netif_running(dev)) {
  4259. nv_disable_irq(dev);
  4260. netif_tx_lock_bh(dev);
  4261. netif_addr_lock(dev);
  4262. spin_lock(&np->lock);
  4263. /* stop engines */
  4264. nv_stop_rxtx(dev);
  4265. spin_unlock(&np->lock);
  4266. netif_addr_unlock(dev);
  4267. netif_tx_unlock_bh(dev);
  4268. }
  4269. np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ);
  4270. if (pause->rx_pause)
  4271. np->pause_flags |= NV_PAUSEFRAME_RX_REQ;
  4272. if (pause->tx_pause)
  4273. np->pause_flags |= NV_PAUSEFRAME_TX_REQ;
  4274. if (np->autoneg && pause->autoneg) {
  4275. np->pause_flags |= NV_PAUSEFRAME_AUTONEG;
  4276. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  4277. adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  4278. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisements but disable tx pause */
  4279. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  4280. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  4281. adv |= ADVERTISE_PAUSE_ASYM;
  4282. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  4283. if (netif_running(dev))
  4284. netdev_info(dev, "link down\n");
  4285. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  4286. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  4287. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  4288. } else {
  4289. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  4290. if (pause->rx_pause)
  4291. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  4292. if (pause->tx_pause)
  4293. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  4294. if (!netif_running(dev))
  4295. nv_update_linkspeed(dev);
  4296. else
  4297. nv_update_pause(dev, np->pause_flags);
  4298. }
  4299. if (netif_running(dev)) {
  4300. nv_start_rxtx(dev);
  4301. nv_enable_irq(dev);
  4302. }
  4303. return 0;
  4304. }
  4305. static int nv_set_loopback(struct net_device *dev, netdev_features_t features)
  4306. {
  4307. struct fe_priv *np = netdev_priv(dev);
  4308. unsigned long flags;
  4309. u32 miicontrol;
  4310. int err, retval = 0;
  4311. spin_lock_irqsave(&np->lock, flags);
  4312. miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  4313. if (features & NETIF_F_LOOPBACK) {
  4314. if (miicontrol & BMCR_LOOPBACK) {
  4315. spin_unlock_irqrestore(&np->lock, flags);
  4316. netdev_info(dev, "Loopback already enabled\n");
  4317. return 0;
  4318. }
  4319. nv_disable_irq(dev);
  4320. /* Turn on loopback mode */
  4321. miicontrol |= BMCR_LOOPBACK | BMCR_FULLDPLX | BMCR_SPEED1000;
  4322. err = mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol);
  4323. if (err) {
  4324. retval = PHY_ERROR;
  4325. spin_unlock_irqrestore(&np->lock, flags);
  4326. phy_init(dev);
  4327. } else {
  4328. if (netif_running(dev)) {
  4329. /* Force 1000 Mbps full-duplex */
  4330. nv_force_linkspeed(dev, NVREG_LINKSPEED_1000,
  4331. 1);
  4332. /* Force link up */
  4333. netif_carrier_on(dev);
  4334. }
  4335. spin_unlock_irqrestore(&np->lock, flags);
  4336. netdev_info(dev,
  4337. "Internal PHY loopback mode enabled.\n");
  4338. }
  4339. } else {
  4340. if (!(miicontrol & BMCR_LOOPBACK)) {
  4341. spin_unlock_irqrestore(&np->lock, flags);
  4342. netdev_info(dev, "Loopback already disabled\n");
  4343. return 0;
  4344. }
  4345. nv_disable_irq(dev);
  4346. /* Turn off loopback */
  4347. spin_unlock_irqrestore(&np->lock, flags);
  4348. netdev_info(dev, "Internal PHY loopback mode disabled.\n");
  4349. phy_init(dev);
  4350. }
  4351. msleep(500);
  4352. spin_lock_irqsave(&np->lock, flags);
  4353. nv_enable_irq(dev);
  4354. spin_unlock_irqrestore(&np->lock, flags);
  4355. return retval;
  4356. }
  4357. static netdev_features_t nv_fix_features(struct net_device *dev,
  4358. netdev_features_t features)
  4359. {
  4360. /* vlan is dependent on rx checksum offload */
  4361. if (features & (NETIF_F_HW_VLAN_CTAG_TX|NETIF_F_HW_VLAN_CTAG_RX))
  4362. features |= NETIF_F_RXCSUM;
  4363. return features;
  4364. }
  4365. static void nv_vlan_mode(struct net_device *dev, netdev_features_t features)
  4366. {
  4367. struct fe_priv *np = get_nvpriv(dev);
  4368. spin_lock_irq(&np->lock);
  4369. if (features & NETIF_F_HW_VLAN_CTAG_RX)
  4370. np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP;
  4371. else
  4372. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
  4373. if (features & NETIF_F_HW_VLAN_CTAG_TX)
  4374. np->txrxctl_bits |= NVREG_TXRXCTL_VLANINS;
  4375. else
  4376. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
  4377. writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4378. spin_unlock_irq(&np->lock);
  4379. }
  4380. static int nv_set_features(struct net_device *dev, netdev_features_t features)
  4381. {
  4382. struct fe_priv *np = netdev_priv(dev);
  4383. u8 __iomem *base = get_hwbase(dev);
  4384. netdev_features_t changed = dev->features ^ features;
  4385. int retval;
  4386. if ((changed & NETIF_F_LOOPBACK) && netif_running(dev)) {
  4387. retval = nv_set_loopback(dev, features);
  4388. if (retval != 0)
  4389. return retval;
  4390. }
  4391. if (changed & NETIF_F_RXCSUM) {
  4392. spin_lock_irq(&np->lock);
  4393. if (features & NETIF_F_RXCSUM)
  4394. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  4395. else
  4396. np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK;
  4397. if (netif_running(dev))
  4398. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  4399. spin_unlock_irq(&np->lock);
  4400. }
  4401. if (changed & (NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX))
  4402. nv_vlan_mode(dev, features);
  4403. return 0;
  4404. }
  4405. static int nv_get_sset_count(struct net_device *dev, int sset)
  4406. {
  4407. struct fe_priv *np = netdev_priv(dev);
  4408. switch (sset) {
  4409. case ETH_SS_TEST:
  4410. if (np->driver_data & DEV_HAS_TEST_EXTENDED)
  4411. return NV_TEST_COUNT_EXTENDED;
  4412. else
  4413. return NV_TEST_COUNT_BASE;
  4414. case ETH_SS_STATS:
  4415. if (np->driver_data & DEV_HAS_STATISTICS_V3)
  4416. return NV_DEV_STATISTICS_V3_COUNT;
  4417. else if (np->driver_data & DEV_HAS_STATISTICS_V2)
  4418. return NV_DEV_STATISTICS_V2_COUNT;
  4419. else if (np->driver_data & DEV_HAS_STATISTICS_V1)
  4420. return NV_DEV_STATISTICS_V1_COUNT;
  4421. else
  4422. return 0;
  4423. default:
  4424. return -EOPNOTSUPP;
  4425. }
  4426. }
  4427. static void nv_get_ethtool_stats(struct net_device *dev,
  4428. struct ethtool_stats *estats, u64 *buffer)
  4429. __acquires(&netdev_priv(dev)->hwstats_lock)
  4430. __releases(&netdev_priv(dev)->hwstats_lock)
  4431. {
  4432. struct fe_priv *np = netdev_priv(dev);
  4433. spin_lock_bh(&np->hwstats_lock);
  4434. nv_update_stats(dev);
  4435. memcpy(buffer, &np->estats,
  4436. nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(u64));
  4437. spin_unlock_bh(&np->hwstats_lock);
  4438. }
  4439. static int nv_link_test(struct net_device *dev)
  4440. {
  4441. struct fe_priv *np = netdev_priv(dev);
  4442. int mii_status;
  4443. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  4444. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  4445. /* check phy link status */
  4446. if (!(mii_status & BMSR_LSTATUS))
  4447. return 0;
  4448. else
  4449. return 1;
  4450. }
  4451. static int nv_register_test(struct net_device *dev)
  4452. {
  4453. u8 __iomem *base = get_hwbase(dev);
  4454. int i = 0;
  4455. u32 orig_read, new_read;
  4456. do {
  4457. orig_read = readl(base + nv_registers_test[i].reg);
  4458. /* xor with mask to toggle bits */
  4459. orig_read ^= nv_registers_test[i].mask;
  4460. writel(orig_read, base + nv_registers_test[i].reg);
  4461. new_read = readl(base + nv_registers_test[i].reg);
  4462. if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask))
  4463. return 0;
  4464. /* restore original value */
  4465. orig_read ^= nv_registers_test[i].mask;
  4466. writel(orig_read, base + nv_registers_test[i].reg);
  4467. } while (nv_registers_test[++i].reg != 0);
  4468. return 1;
  4469. }
  4470. static int nv_interrupt_test(struct net_device *dev)
  4471. {
  4472. struct fe_priv *np = netdev_priv(dev);
  4473. u8 __iomem *base = get_hwbase(dev);
  4474. int ret = 1;
  4475. int testcnt;
  4476. u32 save_msi_flags, save_poll_interval = 0;
  4477. if (netif_running(dev)) {
  4478. /* free current irq */
  4479. nv_free_irq(dev);
  4480. save_poll_interval = readl(base+NvRegPollingInterval);
  4481. }
  4482. /* flag to test interrupt handler */
  4483. np->intr_test = 0;
  4484. /* setup test irq */
  4485. save_msi_flags = np->msi_flags;
  4486. np->msi_flags &= ~NV_MSI_X_VECTORS_MASK;
  4487. np->msi_flags |= 0x001; /* setup 1 vector */
  4488. if (nv_request_irq(dev, 1))
  4489. return 0;
  4490. /* setup timer interrupt */
  4491. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  4492. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4493. nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  4494. /* wait for at least one interrupt */
  4495. msleep(100);
  4496. spin_lock_irq(&np->lock);
  4497. /* flag should be set within ISR */
  4498. testcnt = np->intr_test;
  4499. if (!testcnt)
  4500. ret = 2;
  4501. nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  4502. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  4503. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4504. else
  4505. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  4506. spin_unlock_irq(&np->lock);
  4507. nv_free_irq(dev);
  4508. np->msi_flags = save_msi_flags;
  4509. if (netif_running(dev)) {
  4510. writel(save_poll_interval, base + NvRegPollingInterval);
  4511. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4512. /* restore original irq */
  4513. if (nv_request_irq(dev, 0))
  4514. return 0;
  4515. }
  4516. return ret;
  4517. }
  4518. static int nv_loopback_test(struct net_device *dev)
  4519. {
  4520. struct fe_priv *np = netdev_priv(dev);
  4521. u8 __iomem *base = get_hwbase(dev);
  4522. struct sk_buff *tx_skb, *rx_skb;
  4523. dma_addr_t test_dma_addr;
  4524. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  4525. u32 flags;
  4526. int len, i, pkt_len;
  4527. u8 *pkt_data;
  4528. u32 filter_flags = 0;
  4529. u32 misc1_flags = 0;
  4530. int ret = 1;
  4531. if (netif_running(dev)) {
  4532. nv_disable_irq(dev);
  4533. filter_flags = readl(base + NvRegPacketFilterFlags);
  4534. misc1_flags = readl(base + NvRegMisc1);
  4535. } else {
  4536. nv_txrx_reset(dev);
  4537. }
  4538. /* reinit driver view of the rx queue */
  4539. set_bufsize(dev);
  4540. nv_init_ring(dev);
  4541. /* setup hardware for loopback */
  4542. writel(NVREG_MISC1_FORCE, base + NvRegMisc1);
  4543. writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags);
  4544. /* reinit nic view of the rx queue */
  4545. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4546. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4547. writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4548. base + NvRegRingSizes);
  4549. pci_push(base);
  4550. /* restart rx engine */
  4551. nv_start_rxtx(dev);
  4552. /* setup packet for tx */
  4553. pkt_len = ETH_DATA_LEN;
  4554. tx_skb = netdev_alloc_skb(dev, pkt_len);
  4555. if (!tx_skb) {
  4556. ret = 0;
  4557. goto out;
  4558. }
  4559. test_dma_addr = dma_map_single(&np->pci_dev->dev, tx_skb->data,
  4560. skb_tailroom(tx_skb),
  4561. DMA_FROM_DEVICE);
  4562. if (unlikely(dma_mapping_error(&np->pci_dev->dev,
  4563. test_dma_addr))) {
  4564. dev_kfree_skb_any(tx_skb);
  4565. goto out;
  4566. }
  4567. pkt_data = skb_put(tx_skb, pkt_len);
  4568. for (i = 0; i < pkt_len; i++)
  4569. pkt_data[i] = (u8)(i & 0xff);
  4570. if (!nv_optimized(np)) {
  4571. np->tx_ring.orig[0].buf = cpu_to_le32(test_dma_addr);
  4572. np->tx_ring.orig[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  4573. } else {
  4574. np->tx_ring.ex[0].bufhigh = cpu_to_le32(dma_high(test_dma_addr));
  4575. np->tx_ring.ex[0].buflow = cpu_to_le32(dma_low(test_dma_addr));
  4576. np->tx_ring.ex[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  4577. }
  4578. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4579. pci_push(get_hwbase(dev));
  4580. msleep(500);
  4581. /* check for rx of the packet */
  4582. if (!nv_optimized(np)) {
  4583. flags = le32_to_cpu(np->rx_ring.orig[0].flaglen);
  4584. len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver);
  4585. } else {
  4586. flags = le32_to_cpu(np->rx_ring.ex[0].flaglen);
  4587. len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver);
  4588. }
  4589. if (flags & NV_RX_AVAIL) {
  4590. ret = 0;
  4591. } else if (np->desc_ver == DESC_VER_1) {
  4592. if (flags & NV_RX_ERROR)
  4593. ret = 0;
  4594. } else {
  4595. if (flags & NV_RX2_ERROR)
  4596. ret = 0;
  4597. }
  4598. if (ret) {
  4599. if (len != pkt_len) {
  4600. ret = 0;
  4601. } else {
  4602. rx_skb = np->rx_skb[0].skb;
  4603. for (i = 0; i < pkt_len; i++) {
  4604. if (rx_skb->data[i] != (u8)(i & 0xff)) {
  4605. ret = 0;
  4606. break;
  4607. }
  4608. }
  4609. }
  4610. }
  4611. dma_unmap_single(&np->pci_dev->dev, test_dma_addr,
  4612. (skb_end_pointer(tx_skb) - tx_skb->data),
  4613. DMA_TO_DEVICE);
  4614. dev_kfree_skb_any(tx_skb);
  4615. out:
  4616. /* stop engines */
  4617. nv_stop_rxtx(dev);
  4618. nv_txrx_reset(dev);
  4619. /* drain rx queue */
  4620. nv_drain_rxtx(dev);
  4621. if (netif_running(dev)) {
  4622. writel(misc1_flags, base + NvRegMisc1);
  4623. writel(filter_flags, base + NvRegPacketFilterFlags);
  4624. nv_enable_irq(dev);
  4625. }
  4626. return ret;
  4627. }
  4628. static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer)
  4629. {
  4630. struct fe_priv *np = netdev_priv(dev);
  4631. u8 __iomem *base = get_hwbase(dev);
  4632. int result, count;
  4633. count = nv_get_sset_count(dev, ETH_SS_TEST);
  4634. memset(buffer, 0, count * sizeof(u64));
  4635. if (!nv_link_test(dev)) {
  4636. test->flags |= ETH_TEST_FL_FAILED;
  4637. buffer[0] = 1;
  4638. }
  4639. if (test->flags & ETH_TEST_FL_OFFLINE) {
  4640. if (netif_running(dev)) {
  4641. netif_stop_queue(dev);
  4642. nv_napi_disable(dev);
  4643. netif_tx_lock_bh(dev);
  4644. netif_addr_lock(dev);
  4645. spin_lock_irq(&np->lock);
  4646. nv_disable_hw_interrupts(dev, np->irqmask);
  4647. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  4648. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4649. else
  4650. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  4651. /* stop engines */
  4652. nv_stop_rxtx(dev);
  4653. nv_txrx_reset(dev);
  4654. /* drain rx queue */
  4655. nv_drain_rxtx(dev);
  4656. spin_unlock_irq(&np->lock);
  4657. netif_addr_unlock(dev);
  4658. netif_tx_unlock_bh(dev);
  4659. }
  4660. if (!nv_register_test(dev)) {
  4661. test->flags |= ETH_TEST_FL_FAILED;
  4662. buffer[1] = 1;
  4663. }
  4664. result = nv_interrupt_test(dev);
  4665. if (result != 1) {
  4666. test->flags |= ETH_TEST_FL_FAILED;
  4667. buffer[2] = 1;
  4668. }
  4669. if (result == 0) {
  4670. /* bail out */
  4671. return;
  4672. }
  4673. if (count > NV_TEST_COUNT_BASE && !nv_loopback_test(dev)) {
  4674. test->flags |= ETH_TEST_FL_FAILED;
  4675. buffer[3] = 1;
  4676. }
  4677. if (netif_running(dev)) {
  4678. /* reinit driver view of the rx queue */
  4679. set_bufsize(dev);
  4680. if (nv_init_ring(dev)) {
  4681. if (!np->in_shutdown)
  4682. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4683. }
  4684. /* reinit nic view of the rx queue */
  4685. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4686. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4687. writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4688. base + NvRegRingSizes);
  4689. pci_push(base);
  4690. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4691. pci_push(base);
  4692. /* restart rx engine */
  4693. nv_start_rxtx(dev);
  4694. netif_start_queue(dev);
  4695. nv_napi_enable(dev);
  4696. nv_enable_hw_interrupts(dev, np->irqmask);
  4697. }
  4698. }
  4699. }
  4700. static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer)
  4701. {
  4702. switch (stringset) {
  4703. case ETH_SS_STATS:
  4704. memcpy(buffer, &nv_estats_str, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(struct nv_ethtool_str));
  4705. break;
  4706. case ETH_SS_TEST:
  4707. memcpy(buffer, &nv_etests_str, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(struct nv_ethtool_str));
  4708. break;
  4709. }
  4710. }
  4711. static const struct ethtool_ops ops = {
  4712. .get_drvinfo = nv_get_drvinfo,
  4713. .get_link = ethtool_op_get_link,
  4714. .get_wol = nv_get_wol,
  4715. .set_wol = nv_set_wol,
  4716. .get_regs_len = nv_get_regs_len,
  4717. .get_regs = nv_get_regs,
  4718. .nway_reset = nv_nway_reset,
  4719. .get_ringparam = nv_get_ringparam,
  4720. .set_ringparam = nv_set_ringparam,
  4721. .get_pauseparam = nv_get_pauseparam,
  4722. .set_pauseparam = nv_set_pauseparam,
  4723. .get_strings = nv_get_strings,
  4724. .get_ethtool_stats = nv_get_ethtool_stats,
  4725. .get_sset_count = nv_get_sset_count,
  4726. .self_test = nv_self_test,
  4727. .get_ts_info = ethtool_op_get_ts_info,
  4728. .get_link_ksettings = nv_get_link_ksettings,
  4729. .set_link_ksettings = nv_set_link_ksettings,
  4730. };
  4731. /* The mgmt unit and driver use a semaphore to access the phy during init */
  4732. static int nv_mgmt_acquire_sema(struct net_device *dev)
  4733. {
  4734. struct fe_priv *np = netdev_priv(dev);
  4735. u8 __iomem *base = get_hwbase(dev);
  4736. int i;
  4737. u32 tx_ctrl, mgmt_sema;
  4738. for (i = 0; i < 10; i++) {
  4739. mgmt_sema = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_SEMA_MASK;
  4740. if (mgmt_sema == NVREG_XMITCTL_MGMT_SEMA_FREE)
  4741. break;
  4742. msleep(500);
  4743. }
  4744. if (mgmt_sema != NVREG_XMITCTL_MGMT_SEMA_FREE)
  4745. return 0;
  4746. for (i = 0; i < 2; i++) {
  4747. tx_ctrl = readl(base + NvRegTransmitterControl);
  4748. tx_ctrl |= NVREG_XMITCTL_HOST_SEMA_ACQ;
  4749. writel(tx_ctrl, base + NvRegTransmitterControl);
  4750. /* verify that semaphore was acquired */
  4751. tx_ctrl = readl(base + NvRegTransmitterControl);
  4752. if (((tx_ctrl & NVREG_XMITCTL_HOST_SEMA_MASK) == NVREG_XMITCTL_HOST_SEMA_ACQ) &&
  4753. ((tx_ctrl & NVREG_XMITCTL_MGMT_SEMA_MASK) == NVREG_XMITCTL_MGMT_SEMA_FREE)) {
  4754. np->mgmt_sema = 1;
  4755. return 1;
  4756. } else
  4757. udelay(50);
  4758. }
  4759. return 0;
  4760. }
  4761. static void nv_mgmt_release_sema(struct net_device *dev)
  4762. {
  4763. struct fe_priv *np = netdev_priv(dev);
  4764. u8 __iomem *base = get_hwbase(dev);
  4765. u32 tx_ctrl;
  4766. if (np->driver_data & DEV_HAS_MGMT_UNIT) {
  4767. if (np->mgmt_sema) {
  4768. tx_ctrl = readl(base + NvRegTransmitterControl);
  4769. tx_ctrl &= ~NVREG_XMITCTL_HOST_SEMA_ACQ;
  4770. writel(tx_ctrl, base + NvRegTransmitterControl);
  4771. }
  4772. }
  4773. }
  4774. static int nv_mgmt_get_version(struct net_device *dev)
  4775. {
  4776. struct fe_priv *np = netdev_priv(dev);
  4777. u8 __iomem *base = get_hwbase(dev);
  4778. u32 data_ready = readl(base + NvRegTransmitterControl);
  4779. u32 data_ready2 = 0;
  4780. unsigned long start;
  4781. int ready = 0;
  4782. writel(NVREG_MGMTUNITGETVERSION, base + NvRegMgmtUnitGetVersion);
  4783. writel(data_ready ^ NVREG_XMITCTL_DATA_START, base + NvRegTransmitterControl);
  4784. start = jiffies;
  4785. while (time_before(jiffies, start + 5*HZ)) {
  4786. data_ready2 = readl(base + NvRegTransmitterControl);
  4787. if ((data_ready & NVREG_XMITCTL_DATA_READY) != (data_ready2 & NVREG_XMITCTL_DATA_READY)) {
  4788. ready = 1;
  4789. break;
  4790. }
  4791. schedule_timeout_uninterruptible(1);
  4792. }
  4793. if (!ready || (data_ready2 & NVREG_XMITCTL_DATA_ERROR))
  4794. return 0;
  4795. np->mgmt_version = readl(base + NvRegMgmtUnitVersion) & NVREG_MGMTUNITVERSION;
  4796. return 1;
  4797. }
  4798. static int nv_open(struct net_device *dev)
  4799. {
  4800. struct fe_priv *np = netdev_priv(dev);
  4801. u8 __iomem *base = get_hwbase(dev);
  4802. int ret = 1;
  4803. int oom, i;
  4804. u32 low;
  4805. /* power up phy */
  4806. mii_rw(dev, np->phyaddr, MII_BMCR,
  4807. mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ) & ~BMCR_PDOWN);
  4808. nv_txrx_gate(dev, false);
  4809. /* erase previous misconfiguration */
  4810. if (np->driver_data & DEV_HAS_POWER_CNTRL)
  4811. nv_mac_reset(dev);
  4812. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  4813. writel(0, base + NvRegMulticastAddrB);
  4814. writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
  4815. writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
  4816. writel(0, base + NvRegPacketFilterFlags);
  4817. writel(0, base + NvRegTransmitterControl);
  4818. writel(0, base + NvRegReceiverControl);
  4819. writel(0, base + NvRegAdapterControl);
  4820. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
  4821. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  4822. /* initialize descriptor rings */
  4823. set_bufsize(dev);
  4824. oom = nv_init_ring(dev);
  4825. writel(0, base + NvRegLinkSpeed);
  4826. writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  4827. nv_txrx_reset(dev);
  4828. writel(0, base + NvRegUnknownSetupReg6);
  4829. np->in_shutdown = 0;
  4830. /* give hw rings */
  4831. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4832. writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4833. base + NvRegRingSizes);
  4834. writel(np->linkspeed, base + NvRegLinkSpeed);
  4835. if (np->desc_ver == DESC_VER_1)
  4836. writel(NVREG_TX_WM_DESC1_DEFAULT, base + NvRegTxWatermark);
  4837. else
  4838. writel(NVREG_TX_WM_DESC2_3_DEFAULT, base + NvRegTxWatermark);
  4839. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  4840. writel(np->vlanctl_bits, base + NvRegVlanControl);
  4841. pci_push(base);
  4842. writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
  4843. if (reg_delay(dev, NvRegUnknownSetupReg5,
  4844. NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
  4845. NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX))
  4846. netdev_info(dev,
  4847. "%s: SetupReg5, Bit 31 remained off\n", __func__);
  4848. writel(0, base + NvRegMIIMask);
  4849. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4850. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4851. writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
  4852. writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
  4853. writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
  4854. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4855. writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
  4856. get_random_bytes(&low, sizeof(low));
  4857. low &= NVREG_SLOTTIME_MASK;
  4858. if (np->desc_ver == DESC_VER_1) {
  4859. writel(low|NVREG_SLOTTIME_DEFAULT, base + NvRegSlotTime);
  4860. } else {
  4861. if (!(np->driver_data & DEV_HAS_GEAR_MODE)) {
  4862. /* setup legacy backoff */
  4863. writel(NVREG_SLOTTIME_LEGBF_ENABLED|NVREG_SLOTTIME_10_100_FULL|low, base + NvRegSlotTime);
  4864. } else {
  4865. writel(NVREG_SLOTTIME_10_100_FULL, base + NvRegSlotTime);
  4866. nv_gear_backoff_reseed(dev);
  4867. }
  4868. }
  4869. writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral);
  4870. writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral);
  4871. if (poll_interval == -1) {
  4872. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
  4873. writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
  4874. else
  4875. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  4876. } else
  4877. writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
  4878. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4879. writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
  4880. base + NvRegAdapterControl);
  4881. writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
  4882. writel(NVREG_MII_LINKCHANGE, base + NvRegMIIMask);
  4883. if (np->wolenabled)
  4884. writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags);
  4885. i = readl(base + NvRegPowerState);
  4886. if ((i & NVREG_POWERSTATE_POWEREDUP) == 0)
  4887. writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
  4888. pci_push(base);
  4889. udelay(10);
  4890. writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
  4891. nv_disable_hw_interrupts(dev, np->irqmask);
  4892. pci_push(base);
  4893. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4894. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4895. pci_push(base);
  4896. if (nv_request_irq(dev, 0))
  4897. goto out_drain;
  4898. /* ask for interrupts */
  4899. nv_enable_hw_interrupts(dev, np->irqmask);
  4900. spin_lock_irq(&np->lock);
  4901. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  4902. writel(0, base + NvRegMulticastAddrB);
  4903. writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
  4904. writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
  4905. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  4906. /* One manual link speed update: Interrupts are enabled, future link
  4907. * speed changes cause interrupts and are handled by nv_link_irq().
  4908. */
  4909. readl(base + NvRegMIIStatus);
  4910. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4911. /* set linkspeed to invalid value, thus force nv_update_linkspeed
  4912. * to init hw */
  4913. np->linkspeed = 0;
  4914. ret = nv_update_linkspeed(dev);
  4915. nv_start_rxtx(dev);
  4916. netif_start_queue(dev);
  4917. nv_napi_enable(dev);
  4918. if (ret) {
  4919. netif_carrier_on(dev);
  4920. } else {
  4921. netdev_info(dev, "no link during initialization\n");
  4922. netif_carrier_off(dev);
  4923. }
  4924. if (oom)
  4925. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4926. /* start statistics timer */
  4927. if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3))
  4928. mod_timer(&np->stats_poll,
  4929. round_jiffies(jiffies + STATS_INTERVAL));
  4930. spin_unlock_irq(&np->lock);
  4931. /* If the loopback feature was set while the device was down, make sure
  4932. * that it's set correctly now.
  4933. */
  4934. if (dev->features & NETIF_F_LOOPBACK)
  4935. nv_set_loopback(dev, dev->features);
  4936. return 0;
  4937. out_drain:
  4938. nv_drain_rxtx(dev);
  4939. return ret;
  4940. }
  4941. static int nv_close(struct net_device *dev)
  4942. {
  4943. struct fe_priv *np = netdev_priv(dev);
  4944. u8 __iomem *base;
  4945. spin_lock_irq(&np->lock);
  4946. np->in_shutdown = 1;
  4947. spin_unlock_irq(&np->lock);
  4948. nv_napi_disable(dev);
  4949. synchronize_irq(np->pci_dev->irq);
  4950. del_timer_sync(&np->oom_kick);
  4951. del_timer_sync(&np->nic_poll);
  4952. del_timer_sync(&np->stats_poll);
  4953. netif_stop_queue(dev);
  4954. spin_lock_irq(&np->lock);
  4955. nv_update_pause(dev, 0); /* otherwise stop_tx bricks NIC */
  4956. nv_stop_rxtx(dev);
  4957. nv_txrx_reset(dev);
  4958. /* disable interrupts on the nic or we will lock up */
  4959. base = get_hwbase(dev);
  4960. nv_disable_hw_interrupts(dev, np->irqmask);
  4961. pci_push(base);
  4962. spin_unlock_irq(&np->lock);
  4963. nv_free_irq(dev);
  4964. nv_drain_rxtx(dev);
  4965. if (np->wolenabled || !phy_power_down) {
  4966. nv_txrx_gate(dev, false);
  4967. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  4968. nv_start_rx(dev);
  4969. } else {
  4970. /* power down phy */
  4971. mii_rw(dev, np->phyaddr, MII_BMCR,
  4972. mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ)|BMCR_PDOWN);
  4973. nv_txrx_gate(dev, true);
  4974. }
  4975. /* FIXME: power down nic */
  4976. return 0;
  4977. }
  4978. static const struct net_device_ops nv_netdev_ops = {
  4979. .ndo_open = nv_open,
  4980. .ndo_stop = nv_close,
  4981. .ndo_get_stats64 = nv_get_stats64,
  4982. .ndo_start_xmit = nv_start_xmit,
  4983. .ndo_tx_timeout = nv_tx_timeout,
  4984. .ndo_change_mtu = nv_change_mtu,
  4985. .ndo_fix_features = nv_fix_features,
  4986. .ndo_set_features = nv_set_features,
  4987. .ndo_validate_addr = eth_validate_addr,
  4988. .ndo_set_mac_address = nv_set_mac_address,
  4989. .ndo_set_rx_mode = nv_set_multicast,
  4990. #ifdef CONFIG_NET_POLL_CONTROLLER
  4991. .ndo_poll_controller = nv_poll_controller,
  4992. #endif
  4993. };
  4994. static const struct net_device_ops nv_netdev_ops_optimized = {
  4995. .ndo_open = nv_open,
  4996. .ndo_stop = nv_close,
  4997. .ndo_get_stats64 = nv_get_stats64,
  4998. .ndo_start_xmit = nv_start_xmit_optimized,
  4999. .ndo_tx_timeout = nv_tx_timeout,
  5000. .ndo_change_mtu = nv_change_mtu,
  5001. .ndo_fix_features = nv_fix_features,
  5002. .ndo_set_features = nv_set_features,
  5003. .ndo_validate_addr = eth_validate_addr,
  5004. .ndo_set_mac_address = nv_set_mac_address,
  5005. .ndo_set_rx_mode = nv_set_multicast,
  5006. #ifdef CONFIG_NET_POLL_CONTROLLER
  5007. .ndo_poll_controller = nv_poll_controller,
  5008. #endif
  5009. };
  5010. static int nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
  5011. {
  5012. struct net_device *dev;
  5013. struct fe_priv *np;
  5014. unsigned long addr;
  5015. u8 __iomem *base;
  5016. int err, i;
  5017. u32 powerstate, txreg;
  5018. u32 phystate_orig = 0, phystate;
  5019. int phyinitialized = 0;
  5020. static int printed_version;
  5021. u8 mac[ETH_ALEN];
  5022. if (!printed_version++)
  5023. pr_info("Reverse Engineered nForce ethernet driver. Version %s.\n",
  5024. FORCEDETH_VERSION);
  5025. dev = alloc_etherdev(sizeof(struct fe_priv));
  5026. err = -ENOMEM;
  5027. if (!dev)
  5028. goto out;
  5029. np = netdev_priv(dev);
  5030. np->dev = dev;
  5031. np->pci_dev = pci_dev;
  5032. spin_lock_init(&np->lock);
  5033. spin_lock_init(&np->hwstats_lock);
  5034. SET_NETDEV_DEV(dev, &pci_dev->dev);
  5035. u64_stats_init(&np->swstats_rx_syncp);
  5036. u64_stats_init(&np->swstats_tx_syncp);
  5037. np->txrx_stats = alloc_percpu(struct nv_txrx_stats);
  5038. if (!np->txrx_stats) {
  5039. pr_err("np->txrx_stats, alloc memory error.\n");
  5040. err = -ENOMEM;
  5041. goto out_alloc_percpu;
  5042. }
  5043. timer_setup(&np->oom_kick, nv_do_rx_refill, 0);
  5044. timer_setup(&np->nic_poll, nv_do_nic_poll, 0);
  5045. timer_setup(&np->stats_poll, nv_do_stats_poll, TIMER_DEFERRABLE);
  5046. err = pci_enable_device(pci_dev);
  5047. if (err)
  5048. goto out_free;
  5049. pci_set_master(pci_dev);
  5050. err = pci_request_regions(pci_dev, DRV_NAME);
  5051. if (err < 0)
  5052. goto out_disable;
  5053. if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3))
  5054. np->register_size = NV_PCI_REGSZ_VER3;
  5055. else if (id->driver_data & DEV_HAS_STATISTICS_V1)
  5056. np->register_size = NV_PCI_REGSZ_VER2;
  5057. else
  5058. np->register_size = NV_PCI_REGSZ_VER1;
  5059. err = -EINVAL;
  5060. addr = 0;
  5061. for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
  5062. if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
  5063. pci_resource_len(pci_dev, i) >= np->register_size) {
  5064. addr = pci_resource_start(pci_dev, i);
  5065. break;
  5066. }
  5067. }
  5068. if (i == DEVICE_COUNT_RESOURCE) {
  5069. dev_info(&pci_dev->dev, "Couldn't find register window\n");
  5070. goto out_relreg;
  5071. }
  5072. /* copy of driver data */
  5073. np->driver_data = id->driver_data;
  5074. /* copy of device id */
  5075. np->device_id = id->device;
  5076. /* handle different descriptor versions */
  5077. if (id->driver_data & DEV_HAS_HIGH_DMA) {
  5078. /* packet format 3: supports 40-bit addressing */
  5079. np->desc_ver = DESC_VER_3;
  5080. np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
  5081. if (dma_64bit) {
  5082. if (dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(39)))
  5083. dev_info(&pci_dev->dev,
  5084. "64-bit DMA failed, using 32-bit addressing\n");
  5085. else
  5086. dev->features |= NETIF_F_HIGHDMA;
  5087. }
  5088. } else if (id->driver_data & DEV_HAS_LARGEDESC) {
  5089. /* packet format 2: supports jumbo frames */
  5090. np->desc_ver = DESC_VER_2;
  5091. np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
  5092. } else {
  5093. /* original packet format */
  5094. np->desc_ver = DESC_VER_1;
  5095. np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
  5096. }
  5097. np->pkt_limit = NV_PKTLIMIT_1;
  5098. if (id->driver_data & DEV_HAS_LARGEDESC)
  5099. np->pkt_limit = NV_PKTLIMIT_2;
  5100. if (id->driver_data & DEV_HAS_CHECKSUM) {
  5101. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  5102. dev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_SG |
  5103. NETIF_F_TSO | NETIF_F_RXCSUM;
  5104. }
  5105. np->vlanctl_bits = 0;
  5106. if (id->driver_data & DEV_HAS_VLAN) {
  5107. np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
  5108. dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX |
  5109. NETIF_F_HW_VLAN_CTAG_TX;
  5110. }
  5111. dev->features |= dev->hw_features;
  5112. /* Add loopback capability to the device. */
  5113. dev->hw_features |= NETIF_F_LOOPBACK;
  5114. /* MTU range: 64 - 1500 or 9100 */
  5115. dev->min_mtu = ETH_ZLEN + ETH_FCS_LEN;
  5116. dev->max_mtu = np->pkt_limit;
  5117. np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG;
  5118. if ((id->driver_data & DEV_HAS_PAUSEFRAME_TX_V1) ||
  5119. (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V2) ||
  5120. (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V3)) {
  5121. np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ;
  5122. }
  5123. err = -ENOMEM;
  5124. np->base = ioremap(addr, np->register_size);
  5125. if (!np->base)
  5126. goto out_relreg;
  5127. np->rx_ring_size = RX_RING_DEFAULT;
  5128. np->tx_ring_size = TX_RING_DEFAULT;
  5129. if (!nv_optimized(np)) {
  5130. np->rx_ring.orig = dma_alloc_coherent(&pci_dev->dev,
  5131. sizeof(struct ring_desc) *
  5132. (np->rx_ring_size +
  5133. np->tx_ring_size),
  5134. &np->ring_addr,
  5135. GFP_KERNEL);
  5136. if (!np->rx_ring.orig)
  5137. goto out_unmap;
  5138. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  5139. } else {
  5140. np->rx_ring.ex = dma_alloc_coherent(&pci_dev->dev,
  5141. sizeof(struct ring_desc_ex) *
  5142. (np->rx_ring_size +
  5143. np->tx_ring_size),
  5144. &np->ring_addr, GFP_KERNEL);
  5145. if (!np->rx_ring.ex)
  5146. goto out_unmap;
  5147. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  5148. }
  5149. np->rx_skb = kcalloc(np->rx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
  5150. np->tx_skb = kcalloc(np->tx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
  5151. if (!np->rx_skb || !np->tx_skb)
  5152. goto out_freering;
  5153. if (!nv_optimized(np))
  5154. dev->netdev_ops = &nv_netdev_ops;
  5155. else
  5156. dev->netdev_ops = &nv_netdev_ops_optimized;
  5157. netif_napi_add(dev, &np->napi, nv_napi_poll);
  5158. dev->ethtool_ops = &ops;
  5159. dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
  5160. pci_set_drvdata(pci_dev, dev);
  5161. /* read the mac address */
  5162. base = get_hwbase(dev);
  5163. np->orig_mac[0] = readl(base + NvRegMacAddrA);
  5164. np->orig_mac[1] = readl(base + NvRegMacAddrB);
  5165. /* check the workaround bit for correct mac address order */
  5166. txreg = readl(base + NvRegTransmitPoll);
  5167. if (id->driver_data & DEV_HAS_CORRECT_MACADDR) {
  5168. /* mac address is already in correct order */
  5169. mac[0] = (np->orig_mac[0] >> 0) & 0xff;
  5170. mac[1] = (np->orig_mac[0] >> 8) & 0xff;
  5171. mac[2] = (np->orig_mac[0] >> 16) & 0xff;
  5172. mac[3] = (np->orig_mac[0] >> 24) & 0xff;
  5173. mac[4] = (np->orig_mac[1] >> 0) & 0xff;
  5174. mac[5] = (np->orig_mac[1] >> 8) & 0xff;
  5175. } else if (txreg & NVREG_TRANSMITPOLL_MAC_ADDR_REV) {
  5176. /* mac address is already in correct order */
  5177. mac[0] = (np->orig_mac[0] >> 0) & 0xff;
  5178. mac[1] = (np->orig_mac[0] >> 8) & 0xff;
  5179. mac[2] = (np->orig_mac[0] >> 16) & 0xff;
  5180. mac[3] = (np->orig_mac[0] >> 24) & 0xff;
  5181. mac[4] = (np->orig_mac[1] >> 0) & 0xff;
  5182. mac[5] = (np->orig_mac[1] >> 8) & 0xff;
  5183. /*
  5184. * Set orig mac address back to the reversed version.
  5185. * This flag will be cleared during low power transition.
  5186. * Therefore, we should always put back the reversed address.
  5187. */
  5188. np->orig_mac[0] = (mac[5] << 0) + (mac[4] << 8) +
  5189. (mac[3] << 16) + (mac[2] << 24);
  5190. np->orig_mac[1] = (mac[1] << 0) + (mac[0] << 8);
  5191. } else {
  5192. /* need to reverse mac address to correct order */
  5193. mac[0] = (np->orig_mac[1] >> 8) & 0xff;
  5194. mac[1] = (np->orig_mac[1] >> 0) & 0xff;
  5195. mac[2] = (np->orig_mac[0] >> 24) & 0xff;
  5196. mac[3] = (np->orig_mac[0] >> 16) & 0xff;
  5197. mac[4] = (np->orig_mac[0] >> 8) & 0xff;
  5198. mac[5] = (np->orig_mac[0] >> 0) & 0xff;
  5199. writel(txreg|NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  5200. dev_dbg(&pci_dev->dev,
  5201. "%s: set workaround bit for reversed mac addr\n",
  5202. __func__);
  5203. }
  5204. if (is_valid_ether_addr(mac)) {
  5205. eth_hw_addr_set(dev, mac);
  5206. } else {
  5207. /*
  5208. * Bad mac address. At least one bios sets the mac address
  5209. * to 01:23:45:67:89:ab
  5210. */
  5211. dev_err(&pci_dev->dev,
  5212. "Invalid MAC address detected: %pM - Please complain to your hardware vendor.\n",
  5213. mac);
  5214. eth_hw_addr_random(dev);
  5215. dev_err(&pci_dev->dev,
  5216. "Using random MAC address: %pM\n", dev->dev_addr);
  5217. }
  5218. /* set mac address */
  5219. nv_copy_mac_to_hw(dev);
  5220. /* disable WOL */
  5221. writel(0, base + NvRegWakeUpFlags);
  5222. np->wolenabled = 0;
  5223. device_set_wakeup_enable(&pci_dev->dev, false);
  5224. if (id->driver_data & DEV_HAS_POWER_CNTRL) {
  5225. /* take phy and nic out of low power mode */
  5226. powerstate = readl(base + NvRegPowerState2);
  5227. powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
  5228. if ((id->driver_data & DEV_NEED_LOW_POWER_FIX) &&
  5229. pci_dev->revision >= 0xA3)
  5230. powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
  5231. writel(powerstate, base + NvRegPowerState2);
  5232. }
  5233. if (np->desc_ver == DESC_VER_1)
  5234. np->tx_flags = NV_TX_VALID;
  5235. else
  5236. np->tx_flags = NV_TX2_VALID;
  5237. np->msi_flags = 0;
  5238. if ((id->driver_data & DEV_HAS_MSI) && msi)
  5239. np->msi_flags |= NV_MSI_CAPABLE;
  5240. if ((id->driver_data & DEV_HAS_MSI_X) && msix) {
  5241. /* msix has had reported issues when modifying irqmask
  5242. as in the case of napi, therefore, disable for now
  5243. */
  5244. #if 0
  5245. np->msi_flags |= NV_MSI_X_CAPABLE;
  5246. #endif
  5247. }
  5248. if (optimization_mode == NV_OPTIMIZATION_MODE_CPU) {
  5249. np->irqmask = NVREG_IRQMASK_CPU;
  5250. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  5251. np->msi_flags |= 0x0001;
  5252. } else if (optimization_mode == NV_OPTIMIZATION_MODE_DYNAMIC &&
  5253. !(id->driver_data & DEV_NEED_TIMERIRQ)) {
  5254. /* start off in throughput mode */
  5255. np->irqmask = NVREG_IRQMASK_THROUGHPUT;
  5256. /* remove support for msix mode */
  5257. np->msi_flags &= ~NV_MSI_X_CAPABLE;
  5258. } else {
  5259. optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
  5260. np->irqmask = NVREG_IRQMASK_THROUGHPUT;
  5261. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  5262. np->msi_flags |= 0x0003;
  5263. }
  5264. if (id->driver_data & DEV_NEED_TIMERIRQ)
  5265. np->irqmask |= NVREG_IRQ_TIMER;
  5266. if (id->driver_data & DEV_NEED_LINKTIMER) {
  5267. np->need_linktimer = 1;
  5268. np->link_timeout = jiffies + LINK_TIMEOUT;
  5269. } else {
  5270. np->need_linktimer = 0;
  5271. }
  5272. /* Limit the number of tx's outstanding for hw bug */
  5273. if (id->driver_data & DEV_NEED_TX_LIMIT) {
  5274. np->tx_limit = 1;
  5275. if (((id->driver_data & DEV_NEED_TX_LIMIT2) == DEV_NEED_TX_LIMIT2) &&
  5276. pci_dev->revision >= 0xA2)
  5277. np->tx_limit = 0;
  5278. }
  5279. /* clear phy state and temporarily halt phy interrupts */
  5280. writel(0, base + NvRegMIIMask);
  5281. phystate = readl(base + NvRegAdapterControl);
  5282. if (phystate & NVREG_ADAPTCTL_RUNNING) {
  5283. phystate_orig = 1;
  5284. phystate &= ~NVREG_ADAPTCTL_RUNNING;
  5285. writel(phystate, base + NvRegAdapterControl);
  5286. }
  5287. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  5288. if (id->driver_data & DEV_HAS_MGMT_UNIT) {
  5289. /* management unit running on the mac? */
  5290. if ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_ST) &&
  5291. (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_PHY_INIT) &&
  5292. nv_mgmt_acquire_sema(dev) &&
  5293. nv_mgmt_get_version(dev)) {
  5294. np->mac_in_use = 1;
  5295. if (np->mgmt_version > 0)
  5296. np->mac_in_use = readl(base + NvRegMgmtUnitControl) & NVREG_MGMTUNITCONTROL_INUSE;
  5297. /* management unit setup the phy already? */
  5298. if (np->mac_in_use &&
  5299. ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_MASK) ==
  5300. NVREG_XMITCTL_SYNC_PHY_INIT)) {
  5301. /* phy is inited by mgmt unit */
  5302. phyinitialized = 1;
  5303. } else {
  5304. /* we need to init the phy */
  5305. }
  5306. }
  5307. }
  5308. /* find a suitable phy */
  5309. for (i = 1; i <= 32; i++) {
  5310. int id1, id2;
  5311. int phyaddr = i & 0x1F;
  5312. spin_lock_irq(&np->lock);
  5313. id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
  5314. spin_unlock_irq(&np->lock);
  5315. if (id1 < 0 || id1 == 0xffff)
  5316. continue;
  5317. spin_lock_irq(&np->lock);
  5318. id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
  5319. spin_unlock_irq(&np->lock);
  5320. if (id2 < 0 || id2 == 0xffff)
  5321. continue;
  5322. np->phy_model = id2 & PHYID2_MODEL_MASK;
  5323. id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
  5324. id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
  5325. np->phyaddr = phyaddr;
  5326. np->phy_oui = id1 | id2;
  5327. /* Realtek hardcoded phy id1 to all zero's on certain phys */
  5328. if (np->phy_oui == PHY_OUI_REALTEK2)
  5329. np->phy_oui = PHY_OUI_REALTEK;
  5330. /* Setup phy revision for Realtek */
  5331. if (np->phy_oui == PHY_OUI_REALTEK && np->phy_model == PHY_MODEL_REALTEK_8211)
  5332. np->phy_rev = mii_rw(dev, phyaddr, MII_RESV1, MII_READ) & PHY_REV_MASK;
  5333. break;
  5334. }
  5335. if (i == 33) {
  5336. dev_info(&pci_dev->dev, "open: Could not find a valid PHY\n");
  5337. goto out_error;
  5338. }
  5339. if (!phyinitialized) {
  5340. /* reset it */
  5341. phy_init(dev);
  5342. } else {
  5343. /* see if it is a gigabit phy */
  5344. u32 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  5345. if (mii_status & PHY_GIGABIT)
  5346. np->gigabit = PHY_GIGABIT;
  5347. }
  5348. /* set default link speed settings */
  5349. np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  5350. np->duplex = 0;
  5351. np->autoneg = 1;
  5352. err = register_netdev(dev);
  5353. if (err) {
  5354. dev_info(&pci_dev->dev, "unable to register netdev: %d\n", err);
  5355. goto out_error;
  5356. }
  5357. netif_carrier_off(dev);
  5358. /* Some NICs freeze when TX pause is enabled while NIC is
  5359. * down, and this stays across warm reboots. The sequence
  5360. * below should be enough to recover from that state.
  5361. */
  5362. nv_update_pause(dev, 0);
  5363. nv_start_tx(dev);
  5364. nv_stop_tx(dev);
  5365. if (id->driver_data & DEV_HAS_VLAN)
  5366. nv_vlan_mode(dev, dev->features);
  5367. dev_info(&pci_dev->dev, "ifname %s, PHY OUI 0x%x @ %d, addr %pM\n",
  5368. dev->name, np->phy_oui, np->phyaddr, dev->dev_addr);
  5369. dev_info(&pci_dev->dev, "%s%s%s%s%s%s%s%s%s%s%sdesc-v%u\n",
  5370. dev->features & NETIF_F_HIGHDMA ? "highdma " : "",
  5371. dev->features & (NETIF_F_IP_CSUM | NETIF_F_SG) ?
  5372. "csum " : "",
  5373. dev->features & (NETIF_F_HW_VLAN_CTAG_RX |
  5374. NETIF_F_HW_VLAN_CTAG_TX) ?
  5375. "vlan " : "",
  5376. dev->features & (NETIF_F_LOOPBACK) ?
  5377. "loopback " : "",
  5378. id->driver_data & DEV_HAS_POWER_CNTRL ? "pwrctl " : "",
  5379. id->driver_data & DEV_HAS_MGMT_UNIT ? "mgmt " : "",
  5380. id->driver_data & DEV_NEED_TIMERIRQ ? "timirq " : "",
  5381. np->gigabit == PHY_GIGABIT ? "gbit " : "",
  5382. np->need_linktimer ? "lnktim " : "",
  5383. np->msi_flags & NV_MSI_CAPABLE ? "msi " : "",
  5384. np->msi_flags & NV_MSI_X_CAPABLE ? "msi-x " : "",
  5385. np->desc_ver);
  5386. return 0;
  5387. out_error:
  5388. nv_mgmt_release_sema(dev);
  5389. if (phystate_orig)
  5390. writel(phystate|NVREG_ADAPTCTL_RUNNING, base + NvRegAdapterControl);
  5391. out_freering:
  5392. free_rings(dev);
  5393. out_unmap:
  5394. iounmap(get_hwbase(dev));
  5395. out_relreg:
  5396. pci_release_regions(pci_dev);
  5397. out_disable:
  5398. pci_disable_device(pci_dev);
  5399. out_free:
  5400. free_percpu(np->txrx_stats);
  5401. out_alloc_percpu:
  5402. free_netdev(dev);
  5403. out:
  5404. return err;
  5405. }
  5406. static void nv_restore_phy(struct net_device *dev)
  5407. {
  5408. struct fe_priv *np = netdev_priv(dev);
  5409. u16 phy_reserved, mii_control;
  5410. if (np->phy_oui == PHY_OUI_REALTEK &&
  5411. np->phy_model == PHY_MODEL_REALTEK_8201 &&
  5412. phy_cross == NV_CROSSOVER_DETECTION_DISABLED) {
  5413. mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3);
  5414. phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, MII_READ);
  5415. phy_reserved &= ~PHY_REALTEK_INIT_MSK1;
  5416. phy_reserved |= PHY_REALTEK_INIT8;
  5417. mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, phy_reserved);
  5418. mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1);
  5419. /* restart auto negotiation */
  5420. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  5421. mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
  5422. mii_rw(dev, np->phyaddr, MII_BMCR, mii_control);
  5423. }
  5424. }
  5425. static void nv_restore_mac_addr(struct pci_dev *pci_dev)
  5426. {
  5427. struct net_device *dev = pci_get_drvdata(pci_dev);
  5428. struct fe_priv *np = netdev_priv(dev);
  5429. u8 __iomem *base = get_hwbase(dev);
  5430. /* special op: write back the misordered MAC address - otherwise
  5431. * the next nv_probe would see a wrong address.
  5432. */
  5433. writel(np->orig_mac[0], base + NvRegMacAddrA);
  5434. writel(np->orig_mac[1], base + NvRegMacAddrB);
  5435. writel(readl(base + NvRegTransmitPoll) & ~NVREG_TRANSMITPOLL_MAC_ADDR_REV,
  5436. base + NvRegTransmitPoll);
  5437. }
  5438. static void nv_remove(struct pci_dev *pci_dev)
  5439. {
  5440. struct net_device *dev = pci_get_drvdata(pci_dev);
  5441. struct fe_priv *np = netdev_priv(dev);
  5442. free_percpu(np->txrx_stats);
  5443. unregister_netdev(dev);
  5444. nv_restore_mac_addr(pci_dev);
  5445. /* restore any phy related changes */
  5446. nv_restore_phy(dev);
  5447. nv_mgmt_release_sema(dev);
  5448. /* free all structures */
  5449. free_rings(dev);
  5450. iounmap(get_hwbase(dev));
  5451. pci_release_regions(pci_dev);
  5452. pci_disable_device(pci_dev);
  5453. free_netdev(dev);
  5454. }
  5455. #ifdef CONFIG_PM_SLEEP
  5456. static int nv_suspend(struct device *device)
  5457. {
  5458. struct net_device *dev = dev_get_drvdata(device);
  5459. struct fe_priv *np = netdev_priv(dev);
  5460. u8 __iomem *base = get_hwbase(dev);
  5461. int i;
  5462. if (netif_running(dev)) {
  5463. /* Gross. */
  5464. nv_close(dev);
  5465. }
  5466. netif_device_detach(dev);
  5467. /* save non-pci configuration space */
  5468. for (i = 0; i <= np->register_size/sizeof(u32); i++)
  5469. np->saved_config_space[i] = readl(base + i*sizeof(u32));
  5470. return 0;
  5471. }
  5472. static int nv_resume(struct device *device)
  5473. {
  5474. struct pci_dev *pdev = to_pci_dev(device);
  5475. struct net_device *dev = pci_get_drvdata(pdev);
  5476. struct fe_priv *np = netdev_priv(dev);
  5477. u8 __iomem *base = get_hwbase(dev);
  5478. int i, rc = 0;
  5479. /* restore non-pci configuration space */
  5480. for (i = 0; i <= np->register_size/sizeof(u32); i++)
  5481. writel(np->saved_config_space[i], base+i*sizeof(u32));
  5482. if (np->driver_data & DEV_NEED_MSI_FIX)
  5483. pci_write_config_dword(pdev, NV_MSI_PRIV_OFFSET, NV_MSI_PRIV_VALUE);
  5484. /* restore phy state, including autoneg */
  5485. phy_init(dev);
  5486. netif_device_attach(dev);
  5487. if (netif_running(dev)) {
  5488. rc = nv_open(dev);
  5489. nv_set_multicast(dev);
  5490. }
  5491. return rc;
  5492. }
  5493. static SIMPLE_DEV_PM_OPS(nv_pm_ops, nv_suspend, nv_resume);
  5494. #define NV_PM_OPS (&nv_pm_ops)
  5495. #else
  5496. #define NV_PM_OPS NULL
  5497. #endif /* CONFIG_PM_SLEEP */
  5498. #ifdef CONFIG_PM
  5499. static void nv_shutdown(struct pci_dev *pdev)
  5500. {
  5501. struct net_device *dev = pci_get_drvdata(pdev);
  5502. struct fe_priv *np = netdev_priv(dev);
  5503. if (netif_running(dev))
  5504. nv_close(dev);
  5505. /*
  5506. * Restore the MAC so a kernel started by kexec won't get confused.
  5507. * If we really go for poweroff, we must not restore the MAC,
  5508. * otherwise the MAC for WOL will be reversed at least on some boards.
  5509. */
  5510. if (system_state != SYSTEM_POWER_OFF)
  5511. nv_restore_mac_addr(pdev);
  5512. pci_disable_device(pdev);
  5513. /*
  5514. * Apparently it is not possible to reinitialise from D3 hot,
  5515. * only put the device into D3 if we really go for poweroff.
  5516. */
  5517. if (system_state == SYSTEM_POWER_OFF) {
  5518. pci_wake_from_d3(pdev, np->wolenabled);
  5519. pci_set_power_state(pdev, PCI_D3hot);
  5520. }
  5521. }
  5522. #else
  5523. #define nv_shutdown NULL
  5524. #endif /* CONFIG_PM */
  5525. static const struct pci_device_id pci_tbl[] = {
  5526. { /* nForce Ethernet Controller */
  5527. PCI_DEVICE(0x10DE, 0x01C3),
  5528. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  5529. },
  5530. { /* nForce2 Ethernet Controller */
  5531. PCI_DEVICE(0x10DE, 0x0066),
  5532. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  5533. },
  5534. { /* nForce3 Ethernet Controller */
  5535. PCI_DEVICE(0x10DE, 0x00D6),
  5536. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  5537. },
  5538. { /* nForce3 Ethernet Controller */
  5539. PCI_DEVICE(0x10DE, 0x0086),
  5540. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5541. },
  5542. { /* nForce3 Ethernet Controller */
  5543. PCI_DEVICE(0x10DE, 0x008C),
  5544. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5545. },
  5546. { /* nForce3 Ethernet Controller */
  5547. PCI_DEVICE(0x10DE, 0x00E6),
  5548. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5549. },
  5550. { /* nForce3 Ethernet Controller */
  5551. PCI_DEVICE(0x10DE, 0x00DF),
  5552. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5553. },
  5554. { /* CK804 Ethernet Controller */
  5555. PCI_DEVICE(0x10DE, 0x0056),
  5556. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5557. },
  5558. { /* CK804 Ethernet Controller */
  5559. PCI_DEVICE(0x10DE, 0x0057),
  5560. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5561. },
  5562. { /* MCP04 Ethernet Controller */
  5563. PCI_DEVICE(0x10DE, 0x0037),
  5564. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5565. },
  5566. { /* MCP04 Ethernet Controller */
  5567. PCI_DEVICE(0x10DE, 0x0038),
  5568. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5569. },
  5570. { /* MCP51 Ethernet Controller */
  5571. PCI_DEVICE(0x10DE, 0x0268),
  5572. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1|DEV_NEED_LOW_POWER_FIX,
  5573. },
  5574. { /* MCP51 Ethernet Controller */
  5575. PCI_DEVICE(0x10DE, 0x0269),
  5576. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1|DEV_NEED_LOW_POWER_FIX,
  5577. },
  5578. { /* MCP55 Ethernet Controller */
  5579. PCI_DEVICE(0x10DE, 0x0372),
  5580. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT|DEV_NEED_MSI_FIX,
  5581. },
  5582. { /* MCP55 Ethernet Controller */
  5583. PCI_DEVICE(0x10DE, 0x0373),
  5584. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT|DEV_NEED_MSI_FIX,
  5585. },
  5586. { /* MCP61 Ethernet Controller */
  5587. PCI_DEVICE(0x10DE, 0x03E5),
  5588. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
  5589. },
  5590. { /* MCP61 Ethernet Controller */
  5591. PCI_DEVICE(0x10DE, 0x03E6),
  5592. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
  5593. },
  5594. { /* MCP61 Ethernet Controller */
  5595. PCI_DEVICE(0x10DE, 0x03EE),
  5596. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
  5597. },
  5598. { /* MCP61 Ethernet Controller */
  5599. PCI_DEVICE(0x10DE, 0x03EF),
  5600. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
  5601. },
  5602. { /* MCP65 Ethernet Controller */
  5603. PCI_DEVICE(0x10DE, 0x0450),
  5604. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5605. },
  5606. { /* MCP65 Ethernet Controller */
  5607. PCI_DEVICE(0x10DE, 0x0451),
  5608. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5609. },
  5610. { /* MCP65 Ethernet Controller */
  5611. PCI_DEVICE(0x10DE, 0x0452),
  5612. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5613. },
  5614. { /* MCP65 Ethernet Controller */
  5615. PCI_DEVICE(0x10DE, 0x0453),
  5616. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5617. },
  5618. { /* MCP67 Ethernet Controller */
  5619. PCI_DEVICE(0x10DE, 0x054C),
  5620. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5621. },
  5622. { /* MCP67 Ethernet Controller */
  5623. PCI_DEVICE(0x10DE, 0x054D),
  5624. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5625. },
  5626. { /* MCP67 Ethernet Controller */
  5627. PCI_DEVICE(0x10DE, 0x054E),
  5628. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5629. },
  5630. { /* MCP67 Ethernet Controller */
  5631. PCI_DEVICE(0x10DE, 0x054F),
  5632. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5633. },
  5634. { /* MCP73 Ethernet Controller */
  5635. PCI_DEVICE(0x10DE, 0x07DC),
  5636. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5637. },
  5638. { /* MCP73 Ethernet Controller */
  5639. PCI_DEVICE(0x10DE, 0x07DD),
  5640. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5641. },
  5642. { /* MCP73 Ethernet Controller */
  5643. PCI_DEVICE(0x10DE, 0x07DE),
  5644. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5645. },
  5646. { /* MCP73 Ethernet Controller */
  5647. PCI_DEVICE(0x10DE, 0x07DF),
  5648. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5649. },
  5650. { /* MCP77 Ethernet Controller */
  5651. PCI_DEVICE(0x10DE, 0x0760),
  5652. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
  5653. },
  5654. { /* MCP77 Ethernet Controller */
  5655. PCI_DEVICE(0x10DE, 0x0761),
  5656. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
  5657. },
  5658. { /* MCP77 Ethernet Controller */
  5659. PCI_DEVICE(0x10DE, 0x0762),
  5660. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
  5661. },
  5662. { /* MCP77 Ethernet Controller */
  5663. PCI_DEVICE(0x10DE, 0x0763),
  5664. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
  5665. },
  5666. { /* MCP79 Ethernet Controller */
  5667. PCI_DEVICE(0x10DE, 0x0AB0),
  5668. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
  5669. },
  5670. { /* MCP79 Ethernet Controller */
  5671. PCI_DEVICE(0x10DE, 0x0AB1),
  5672. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
  5673. },
  5674. { /* MCP79 Ethernet Controller */
  5675. PCI_DEVICE(0x10DE, 0x0AB2),
  5676. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
  5677. },
  5678. { /* MCP79 Ethernet Controller */
  5679. PCI_DEVICE(0x10DE, 0x0AB3),
  5680. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
  5681. },
  5682. { /* MCP89 Ethernet Controller */
  5683. PCI_DEVICE(0x10DE, 0x0D7D),
  5684. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX,
  5685. },
  5686. {0,},
  5687. };
  5688. static struct pci_driver forcedeth_pci_driver = {
  5689. .name = DRV_NAME,
  5690. .id_table = pci_tbl,
  5691. .probe = nv_probe,
  5692. .remove = nv_remove,
  5693. .shutdown = nv_shutdown,
  5694. .driver.pm = NV_PM_OPS,
  5695. };
  5696. module_param(max_interrupt_work, int, 0);
  5697. MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
  5698. module_param(optimization_mode, int, 0);
  5699. MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer. In dynamic mode (2), the mode toggles between throughput and CPU mode based on network load.");
  5700. module_param(poll_interval, int, 0);
  5701. MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
  5702. module_param(msi, int, 0);
  5703. MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0.");
  5704. module_param(msix, int, 0);
  5705. MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0.");
  5706. module_param(dma_64bit, int, 0);
  5707. MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0.");
  5708. module_param(phy_cross, int, 0);
  5709. MODULE_PARM_DESC(phy_cross, "Phy crossover detection for Realtek 8201 phy is enabled by setting to 1 and disabled by setting to 0.");
  5710. module_param(phy_power_down, int, 0);
  5711. MODULE_PARM_DESC(phy_power_down, "Power down phy and disable link when interface is down (1), or leave phy powered up (0).");
  5712. module_param(debug_tx_timeout, bool, 0);
  5713. MODULE_PARM_DESC(debug_tx_timeout,
  5714. "Dump tx related registers and ring when tx_timeout happens");
  5715. module_pci_driver(forcedeth_pci_driver);
  5716. MODULE_AUTHOR("Manfred Spraul <[email protected]>");
  5717. MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
  5718. MODULE_LICENSE("GPL");
  5719. MODULE_DEVICE_TABLE(pci, pci_tbl);