ethtool.c 64 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400
  1. // SPDX-License-Identifier: GPL-2.0
  2. /* Copyright(c) 1999 - 2018 Intel Corporation. */
  3. /* ethtool support for e1000 */
  4. #include <linux/netdevice.h>
  5. #include <linux/interrupt.h>
  6. #include <linux/ethtool.h>
  7. #include <linux/pci.h>
  8. #include <linux/slab.h>
  9. #include <linux/delay.h>
  10. #include <linux/vmalloc.h>
  11. #include <linux/pm_runtime.h>
  12. #include "e1000.h"
  13. enum { NETDEV_STATS, E1000_STATS };
  14. struct e1000_stats {
  15. char stat_string[ETH_GSTRING_LEN];
  16. int type;
  17. int sizeof_stat;
  18. int stat_offset;
  19. };
  20. static const char e1000e_priv_flags_strings[][ETH_GSTRING_LEN] = {
  21. #define E1000E_PRIV_FLAGS_S0IX_ENABLED BIT(0)
  22. "s0ix-enabled",
  23. };
  24. #define E1000E_PRIV_FLAGS_STR_LEN ARRAY_SIZE(e1000e_priv_flags_strings)
  25. #define E1000_STAT(str, m) { \
  26. .stat_string = str, \
  27. .type = E1000_STATS, \
  28. .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
  29. .stat_offset = offsetof(struct e1000_adapter, m) }
  30. #define E1000_NETDEV_STAT(str, m) { \
  31. .stat_string = str, \
  32. .type = NETDEV_STATS, \
  33. .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
  34. .stat_offset = offsetof(struct rtnl_link_stats64, m) }
  35. static const struct e1000_stats e1000_gstrings_stats[] = {
  36. E1000_STAT("rx_packets", stats.gprc),
  37. E1000_STAT("tx_packets", stats.gptc),
  38. E1000_STAT("rx_bytes", stats.gorc),
  39. E1000_STAT("tx_bytes", stats.gotc),
  40. E1000_STAT("rx_broadcast", stats.bprc),
  41. E1000_STAT("tx_broadcast", stats.bptc),
  42. E1000_STAT("rx_multicast", stats.mprc),
  43. E1000_STAT("tx_multicast", stats.mptc),
  44. E1000_NETDEV_STAT("rx_errors", rx_errors),
  45. E1000_NETDEV_STAT("tx_errors", tx_errors),
  46. E1000_NETDEV_STAT("tx_dropped", tx_dropped),
  47. E1000_STAT("multicast", stats.mprc),
  48. E1000_STAT("collisions", stats.colc),
  49. E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
  50. E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
  51. E1000_STAT("rx_crc_errors", stats.crcerrs),
  52. E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
  53. E1000_STAT("rx_no_buffer_count", stats.rnbc),
  54. E1000_STAT("rx_missed_errors", stats.mpc),
  55. E1000_STAT("tx_aborted_errors", stats.ecol),
  56. E1000_STAT("tx_carrier_errors", stats.tncrs),
  57. E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
  58. E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
  59. E1000_STAT("tx_window_errors", stats.latecol),
  60. E1000_STAT("tx_abort_late_coll", stats.latecol),
  61. E1000_STAT("tx_deferred_ok", stats.dc),
  62. E1000_STAT("tx_single_coll_ok", stats.scc),
  63. E1000_STAT("tx_multi_coll_ok", stats.mcc),
  64. E1000_STAT("tx_timeout_count", tx_timeout_count),
  65. E1000_STAT("tx_restart_queue", restart_queue),
  66. E1000_STAT("rx_long_length_errors", stats.roc),
  67. E1000_STAT("rx_short_length_errors", stats.ruc),
  68. E1000_STAT("rx_align_errors", stats.algnerrc),
  69. E1000_STAT("tx_tcp_seg_good", stats.tsctc),
  70. E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
  71. E1000_STAT("rx_flow_control_xon", stats.xonrxc),
  72. E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
  73. E1000_STAT("tx_flow_control_xon", stats.xontxc),
  74. E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
  75. E1000_STAT("rx_csum_offload_good", hw_csum_good),
  76. E1000_STAT("rx_csum_offload_errors", hw_csum_err),
  77. E1000_STAT("rx_header_split", rx_hdr_split),
  78. E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
  79. E1000_STAT("tx_smbus", stats.mgptc),
  80. E1000_STAT("rx_smbus", stats.mgprc),
  81. E1000_STAT("dropped_smbus", stats.mgpdc),
  82. E1000_STAT("rx_dma_failed", rx_dma_failed),
  83. E1000_STAT("tx_dma_failed", tx_dma_failed),
  84. E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
  85. E1000_STAT("uncorr_ecc_errors", uncorr_errors),
  86. E1000_STAT("corr_ecc_errors", corr_errors),
  87. E1000_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
  88. E1000_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped),
  89. };
  90. #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
  91. #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
  92. static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
  93. "Register test (offline)", "Eeprom test (offline)",
  94. "Interrupt test (offline)", "Loopback test (offline)",
  95. "Link test (on/offline)"
  96. };
  97. #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
  98. static int e1000_get_link_ksettings(struct net_device *netdev,
  99. struct ethtool_link_ksettings *cmd)
  100. {
  101. struct e1000_adapter *adapter = netdev_priv(netdev);
  102. struct e1000_hw *hw = &adapter->hw;
  103. u32 speed, supported, advertising;
  104. if (hw->phy.media_type == e1000_media_type_copper) {
  105. supported = (SUPPORTED_10baseT_Half |
  106. SUPPORTED_10baseT_Full |
  107. SUPPORTED_100baseT_Half |
  108. SUPPORTED_100baseT_Full |
  109. SUPPORTED_1000baseT_Full |
  110. SUPPORTED_Autoneg |
  111. SUPPORTED_TP);
  112. if (hw->phy.type == e1000_phy_ife)
  113. supported &= ~SUPPORTED_1000baseT_Full;
  114. advertising = ADVERTISED_TP;
  115. if (hw->mac.autoneg == 1) {
  116. advertising |= ADVERTISED_Autoneg;
  117. /* the e1000 autoneg seems to match ethtool nicely */
  118. advertising |= hw->phy.autoneg_advertised;
  119. }
  120. cmd->base.port = PORT_TP;
  121. cmd->base.phy_address = hw->phy.addr;
  122. } else {
  123. supported = (SUPPORTED_1000baseT_Full |
  124. SUPPORTED_FIBRE |
  125. SUPPORTED_Autoneg);
  126. advertising = (ADVERTISED_1000baseT_Full |
  127. ADVERTISED_FIBRE |
  128. ADVERTISED_Autoneg);
  129. cmd->base.port = PORT_FIBRE;
  130. }
  131. speed = SPEED_UNKNOWN;
  132. cmd->base.duplex = DUPLEX_UNKNOWN;
  133. if (netif_running(netdev)) {
  134. if (netif_carrier_ok(netdev)) {
  135. speed = adapter->link_speed;
  136. cmd->base.duplex = adapter->link_duplex - 1;
  137. }
  138. } else if (!pm_runtime_suspended(netdev->dev.parent)) {
  139. u32 status = er32(STATUS);
  140. if (status & E1000_STATUS_LU) {
  141. if (status & E1000_STATUS_SPEED_1000)
  142. speed = SPEED_1000;
  143. else if (status & E1000_STATUS_SPEED_100)
  144. speed = SPEED_100;
  145. else
  146. speed = SPEED_10;
  147. if (status & E1000_STATUS_FD)
  148. cmd->base.duplex = DUPLEX_FULL;
  149. else
  150. cmd->base.duplex = DUPLEX_HALF;
  151. }
  152. }
  153. cmd->base.speed = speed;
  154. cmd->base.autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
  155. hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
  156. /* MDI-X => 2; MDI =>1; Invalid =>0 */
  157. if ((hw->phy.media_type == e1000_media_type_copper) &&
  158. netif_carrier_ok(netdev))
  159. cmd->base.eth_tp_mdix = hw->phy.is_mdix ?
  160. ETH_TP_MDI_X : ETH_TP_MDI;
  161. else
  162. cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
  163. if (hw->phy.mdix == AUTO_ALL_MODES)
  164. cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
  165. else
  166. cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix;
  167. if (hw->phy.media_type != e1000_media_type_copper)
  168. cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_INVALID;
  169. ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
  170. supported);
  171. ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
  172. advertising);
  173. return 0;
  174. }
  175. static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
  176. {
  177. struct e1000_mac_info *mac = &adapter->hw.mac;
  178. mac->autoneg = 0;
  179. /* Make sure dplx is at most 1 bit and lsb of speed is not set
  180. * for the switch() below to work
  181. */
  182. if ((spd & 1) || (dplx & ~1))
  183. goto err_inval;
  184. /* Fiber NICs only allow 1000 gbps Full duplex */
  185. if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
  186. (spd != SPEED_1000) && (dplx != DUPLEX_FULL)) {
  187. goto err_inval;
  188. }
  189. switch (spd + dplx) {
  190. case SPEED_10 + DUPLEX_HALF:
  191. mac->forced_speed_duplex = ADVERTISE_10_HALF;
  192. break;
  193. case SPEED_10 + DUPLEX_FULL:
  194. mac->forced_speed_duplex = ADVERTISE_10_FULL;
  195. break;
  196. case SPEED_100 + DUPLEX_HALF:
  197. mac->forced_speed_duplex = ADVERTISE_100_HALF;
  198. break;
  199. case SPEED_100 + DUPLEX_FULL:
  200. mac->forced_speed_duplex = ADVERTISE_100_FULL;
  201. break;
  202. case SPEED_1000 + DUPLEX_FULL:
  203. if (adapter->hw.phy.media_type == e1000_media_type_copper) {
  204. mac->autoneg = 1;
  205. adapter->hw.phy.autoneg_advertised =
  206. ADVERTISE_1000_FULL;
  207. } else {
  208. mac->forced_speed_duplex = ADVERTISE_1000_FULL;
  209. }
  210. break;
  211. case SPEED_1000 + DUPLEX_HALF: /* not supported */
  212. default:
  213. goto err_inval;
  214. }
  215. /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
  216. adapter->hw.phy.mdix = AUTO_ALL_MODES;
  217. return 0;
  218. err_inval:
  219. e_err("Unsupported Speed/Duplex configuration\n");
  220. return -EINVAL;
  221. }
  222. static int e1000_set_link_ksettings(struct net_device *netdev,
  223. const struct ethtool_link_ksettings *cmd)
  224. {
  225. struct e1000_adapter *adapter = netdev_priv(netdev);
  226. struct e1000_hw *hw = &adapter->hw;
  227. int ret_val = 0;
  228. u32 advertising;
  229. ethtool_convert_link_mode_to_legacy_u32(&advertising,
  230. cmd->link_modes.advertising);
  231. pm_runtime_get_sync(netdev->dev.parent);
  232. /* When SoL/IDER sessions are active, autoneg/speed/duplex
  233. * cannot be changed
  234. */
  235. if (hw->phy.ops.check_reset_block &&
  236. hw->phy.ops.check_reset_block(hw)) {
  237. e_err("Cannot change link characteristics when SoL/IDER is active.\n");
  238. ret_val = -EINVAL;
  239. goto out;
  240. }
  241. /* MDI setting is only allowed when autoneg enabled because
  242. * some hardware doesn't allow MDI setting when speed or
  243. * duplex is forced.
  244. */
  245. if (cmd->base.eth_tp_mdix_ctrl) {
  246. if (hw->phy.media_type != e1000_media_type_copper) {
  247. ret_val = -EOPNOTSUPP;
  248. goto out;
  249. }
  250. if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
  251. (cmd->base.autoneg != AUTONEG_ENABLE)) {
  252. e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
  253. ret_val = -EINVAL;
  254. goto out;
  255. }
  256. }
  257. while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
  258. usleep_range(1000, 2000);
  259. if (cmd->base.autoneg == AUTONEG_ENABLE) {
  260. hw->mac.autoneg = 1;
  261. if (hw->phy.media_type == e1000_media_type_fiber)
  262. hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
  263. ADVERTISED_FIBRE | ADVERTISED_Autoneg;
  264. else
  265. hw->phy.autoneg_advertised = advertising |
  266. ADVERTISED_TP | ADVERTISED_Autoneg;
  267. advertising = hw->phy.autoneg_advertised;
  268. if (adapter->fc_autoneg)
  269. hw->fc.requested_mode = e1000_fc_default;
  270. } else {
  271. u32 speed = cmd->base.speed;
  272. /* calling this overrides forced MDI setting */
  273. if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
  274. ret_val = -EINVAL;
  275. goto out;
  276. }
  277. }
  278. /* MDI-X => 2; MDI => 1; Auto => 3 */
  279. if (cmd->base.eth_tp_mdix_ctrl) {
  280. /* fix up the value for auto (3 => 0) as zero is mapped
  281. * internally to auto
  282. */
  283. if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
  284. hw->phy.mdix = AUTO_ALL_MODES;
  285. else
  286. hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl;
  287. }
  288. /* reset the link */
  289. if (netif_running(adapter->netdev)) {
  290. e1000e_down(adapter, true);
  291. e1000e_up(adapter);
  292. } else {
  293. e1000e_reset(adapter);
  294. }
  295. out:
  296. pm_runtime_put_sync(netdev->dev.parent);
  297. clear_bit(__E1000_RESETTING, &adapter->state);
  298. return ret_val;
  299. }
  300. static void e1000_get_pauseparam(struct net_device *netdev,
  301. struct ethtool_pauseparam *pause)
  302. {
  303. struct e1000_adapter *adapter = netdev_priv(netdev);
  304. struct e1000_hw *hw = &adapter->hw;
  305. pause->autoneg =
  306. (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
  307. if (hw->fc.current_mode == e1000_fc_rx_pause) {
  308. pause->rx_pause = 1;
  309. } else if (hw->fc.current_mode == e1000_fc_tx_pause) {
  310. pause->tx_pause = 1;
  311. } else if (hw->fc.current_mode == e1000_fc_full) {
  312. pause->rx_pause = 1;
  313. pause->tx_pause = 1;
  314. }
  315. }
  316. static int e1000_set_pauseparam(struct net_device *netdev,
  317. struct ethtool_pauseparam *pause)
  318. {
  319. struct e1000_adapter *adapter = netdev_priv(netdev);
  320. struct e1000_hw *hw = &adapter->hw;
  321. int retval = 0;
  322. adapter->fc_autoneg = pause->autoneg;
  323. while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
  324. usleep_range(1000, 2000);
  325. pm_runtime_get_sync(netdev->dev.parent);
  326. if (adapter->fc_autoneg == AUTONEG_ENABLE) {
  327. hw->fc.requested_mode = e1000_fc_default;
  328. if (netif_running(adapter->netdev)) {
  329. e1000e_down(adapter, true);
  330. e1000e_up(adapter);
  331. } else {
  332. e1000e_reset(adapter);
  333. }
  334. } else {
  335. if (pause->rx_pause && pause->tx_pause)
  336. hw->fc.requested_mode = e1000_fc_full;
  337. else if (pause->rx_pause && !pause->tx_pause)
  338. hw->fc.requested_mode = e1000_fc_rx_pause;
  339. else if (!pause->rx_pause && pause->tx_pause)
  340. hw->fc.requested_mode = e1000_fc_tx_pause;
  341. else if (!pause->rx_pause && !pause->tx_pause)
  342. hw->fc.requested_mode = e1000_fc_none;
  343. hw->fc.current_mode = hw->fc.requested_mode;
  344. if (hw->phy.media_type == e1000_media_type_fiber) {
  345. retval = hw->mac.ops.setup_link(hw);
  346. /* implicit goto out */
  347. } else {
  348. retval = e1000e_force_mac_fc(hw);
  349. if (retval)
  350. goto out;
  351. e1000e_set_fc_watermarks(hw);
  352. }
  353. }
  354. out:
  355. pm_runtime_put_sync(netdev->dev.parent);
  356. clear_bit(__E1000_RESETTING, &adapter->state);
  357. return retval;
  358. }
  359. static u32 e1000_get_msglevel(struct net_device *netdev)
  360. {
  361. struct e1000_adapter *adapter = netdev_priv(netdev);
  362. return adapter->msg_enable;
  363. }
  364. static void e1000_set_msglevel(struct net_device *netdev, u32 data)
  365. {
  366. struct e1000_adapter *adapter = netdev_priv(netdev);
  367. adapter->msg_enable = data;
  368. }
  369. static int e1000_get_regs_len(struct net_device __always_unused *netdev)
  370. {
  371. #define E1000_REGS_LEN 32 /* overestimate */
  372. return E1000_REGS_LEN * sizeof(u32);
  373. }
  374. static void e1000_get_regs(struct net_device *netdev,
  375. struct ethtool_regs *regs, void *p)
  376. {
  377. struct e1000_adapter *adapter = netdev_priv(netdev);
  378. struct e1000_hw *hw = &adapter->hw;
  379. u32 *regs_buff = p;
  380. u16 phy_data;
  381. pm_runtime_get_sync(netdev->dev.parent);
  382. memset(p, 0, E1000_REGS_LEN * sizeof(u32));
  383. regs->version = (1u << 24) |
  384. (adapter->pdev->revision << 16) |
  385. adapter->pdev->device;
  386. regs_buff[0] = er32(CTRL);
  387. regs_buff[1] = er32(STATUS);
  388. regs_buff[2] = er32(RCTL);
  389. regs_buff[3] = er32(RDLEN(0));
  390. regs_buff[4] = er32(RDH(0));
  391. regs_buff[5] = er32(RDT(0));
  392. regs_buff[6] = er32(RDTR);
  393. regs_buff[7] = er32(TCTL);
  394. regs_buff[8] = er32(TDLEN(0));
  395. regs_buff[9] = er32(TDH(0));
  396. regs_buff[10] = er32(TDT(0));
  397. regs_buff[11] = er32(TIDV);
  398. regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */
  399. /* ethtool doesn't use anything past this point, so all this
  400. * code is likely legacy junk for apps that may or may not exist
  401. */
  402. if (hw->phy.type == e1000_phy_m88) {
  403. e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
  404. regs_buff[13] = (u32)phy_data; /* cable length */
  405. regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
  406. regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
  407. regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
  408. e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
  409. regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
  410. regs_buff[18] = regs_buff[13]; /* cable polarity */
  411. regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
  412. regs_buff[20] = regs_buff[17]; /* polarity correction */
  413. /* phy receive errors */
  414. regs_buff[22] = adapter->phy_stats.receive_errors;
  415. regs_buff[23] = regs_buff[13]; /* mdix mode */
  416. }
  417. regs_buff[21] = 0; /* was idle_errors */
  418. e1e_rphy(hw, MII_STAT1000, &phy_data);
  419. regs_buff[24] = (u32)phy_data; /* phy local receiver status */
  420. regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
  421. pm_runtime_put_sync(netdev->dev.parent);
  422. }
  423. static int e1000_get_eeprom_len(struct net_device *netdev)
  424. {
  425. struct e1000_adapter *adapter = netdev_priv(netdev);
  426. return adapter->hw.nvm.word_size * 2;
  427. }
  428. static int e1000_get_eeprom(struct net_device *netdev,
  429. struct ethtool_eeprom *eeprom, u8 *bytes)
  430. {
  431. struct e1000_adapter *adapter = netdev_priv(netdev);
  432. struct e1000_hw *hw = &adapter->hw;
  433. u16 *eeprom_buff;
  434. int first_word;
  435. int last_word;
  436. int ret_val = 0;
  437. u16 i;
  438. if (eeprom->len == 0)
  439. return -EINVAL;
  440. eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
  441. first_word = eeprom->offset >> 1;
  442. last_word = (eeprom->offset + eeprom->len - 1) >> 1;
  443. eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16),
  444. GFP_KERNEL);
  445. if (!eeprom_buff)
  446. return -ENOMEM;
  447. pm_runtime_get_sync(netdev->dev.parent);
  448. if (hw->nvm.type == e1000_nvm_eeprom_spi) {
  449. ret_val = e1000_read_nvm(hw, first_word,
  450. last_word - first_word + 1,
  451. eeprom_buff);
  452. } else {
  453. for (i = 0; i < last_word - first_word + 1; i++) {
  454. ret_val = e1000_read_nvm(hw, first_word + i, 1,
  455. &eeprom_buff[i]);
  456. if (ret_val)
  457. break;
  458. }
  459. }
  460. pm_runtime_put_sync(netdev->dev.parent);
  461. if (ret_val) {
  462. /* a read error occurred, throw away the result */
  463. memset(eeprom_buff, 0xff, sizeof(u16) *
  464. (last_word - first_word + 1));
  465. } else {
  466. /* Device's eeprom is always little-endian, word addressable */
  467. for (i = 0; i < last_word - first_word + 1; i++)
  468. le16_to_cpus(&eeprom_buff[i]);
  469. }
  470. memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
  471. kfree(eeprom_buff);
  472. return ret_val;
  473. }
  474. static int e1000_set_eeprom(struct net_device *netdev,
  475. struct ethtool_eeprom *eeprom, u8 *bytes)
  476. {
  477. struct e1000_adapter *adapter = netdev_priv(netdev);
  478. struct e1000_hw *hw = &adapter->hw;
  479. u16 *eeprom_buff;
  480. void *ptr;
  481. int max_len;
  482. int first_word;
  483. int last_word;
  484. int ret_val = 0;
  485. u16 i;
  486. if (eeprom->len == 0)
  487. return -EOPNOTSUPP;
  488. if (eeprom->magic !=
  489. (adapter->pdev->vendor | (adapter->pdev->device << 16)))
  490. return -EFAULT;
  491. if (adapter->flags & FLAG_READ_ONLY_NVM)
  492. return -EINVAL;
  493. max_len = hw->nvm.word_size * 2;
  494. first_word = eeprom->offset >> 1;
  495. last_word = (eeprom->offset + eeprom->len - 1) >> 1;
  496. eeprom_buff = kmalloc(max_len, GFP_KERNEL);
  497. if (!eeprom_buff)
  498. return -ENOMEM;
  499. ptr = (void *)eeprom_buff;
  500. pm_runtime_get_sync(netdev->dev.parent);
  501. if (eeprom->offset & 1) {
  502. /* need read/modify/write of first changed EEPROM word */
  503. /* only the second byte of the word is being modified */
  504. ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
  505. ptr++;
  506. }
  507. if (((eeprom->offset + eeprom->len) & 1) && (!ret_val))
  508. /* need read/modify/write of last changed EEPROM word */
  509. /* only the first byte of the word is being modified */
  510. ret_val = e1000_read_nvm(hw, last_word, 1,
  511. &eeprom_buff[last_word - first_word]);
  512. if (ret_val)
  513. goto out;
  514. /* Device's eeprom is always little-endian, word addressable */
  515. for (i = 0; i < last_word - first_word + 1; i++)
  516. le16_to_cpus(&eeprom_buff[i]);
  517. memcpy(ptr, bytes, eeprom->len);
  518. for (i = 0; i < last_word - first_word + 1; i++)
  519. cpu_to_le16s(&eeprom_buff[i]);
  520. ret_val = e1000_write_nvm(hw, first_word,
  521. last_word - first_word + 1, eeprom_buff);
  522. if (ret_val)
  523. goto out;
  524. /* Update the checksum over the first part of the EEPROM if needed
  525. * and flush shadow RAM for applicable controllers
  526. */
  527. if ((first_word <= NVM_CHECKSUM_REG) ||
  528. (hw->mac.type == e1000_82583) ||
  529. (hw->mac.type == e1000_82574) ||
  530. (hw->mac.type == e1000_82573))
  531. ret_val = e1000e_update_nvm_checksum(hw);
  532. out:
  533. pm_runtime_put_sync(netdev->dev.parent);
  534. kfree(eeprom_buff);
  535. return ret_val;
  536. }
  537. static void e1000_get_drvinfo(struct net_device *netdev,
  538. struct ethtool_drvinfo *drvinfo)
  539. {
  540. struct e1000_adapter *adapter = netdev_priv(netdev);
  541. strscpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver));
  542. /* EEPROM image version # is reported as firmware version # for
  543. * PCI-E controllers
  544. */
  545. snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
  546. "%d.%d-%d",
  547. (adapter->eeprom_vers & 0xF000) >> 12,
  548. (adapter->eeprom_vers & 0x0FF0) >> 4,
  549. (adapter->eeprom_vers & 0x000F));
  550. strscpy(drvinfo->bus_info, pci_name(adapter->pdev),
  551. sizeof(drvinfo->bus_info));
  552. }
  553. static void e1000_get_ringparam(struct net_device *netdev,
  554. struct ethtool_ringparam *ring,
  555. struct kernel_ethtool_ringparam *kernel_ring,
  556. struct netlink_ext_ack *extack)
  557. {
  558. struct e1000_adapter *adapter = netdev_priv(netdev);
  559. ring->rx_max_pending = E1000_MAX_RXD;
  560. ring->tx_max_pending = E1000_MAX_TXD;
  561. ring->rx_pending = adapter->rx_ring_count;
  562. ring->tx_pending = adapter->tx_ring_count;
  563. }
  564. static int e1000_set_ringparam(struct net_device *netdev,
  565. struct ethtool_ringparam *ring,
  566. struct kernel_ethtool_ringparam *kernel_ring,
  567. struct netlink_ext_ack *extack)
  568. {
  569. struct e1000_adapter *adapter = netdev_priv(netdev);
  570. struct e1000_ring *temp_tx = NULL, *temp_rx = NULL;
  571. int err = 0, size = sizeof(struct e1000_ring);
  572. bool set_tx = false, set_rx = false;
  573. u16 new_rx_count, new_tx_count;
  574. if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
  575. return -EINVAL;
  576. new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD,
  577. E1000_MAX_RXD);
  578. new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
  579. new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD,
  580. E1000_MAX_TXD);
  581. new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
  582. if ((new_tx_count == adapter->tx_ring_count) &&
  583. (new_rx_count == adapter->rx_ring_count))
  584. /* nothing to do */
  585. return 0;
  586. while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
  587. usleep_range(1000, 2000);
  588. if (!netif_running(adapter->netdev)) {
  589. /* Set counts now and allocate resources during open() */
  590. adapter->tx_ring->count = new_tx_count;
  591. adapter->rx_ring->count = new_rx_count;
  592. adapter->tx_ring_count = new_tx_count;
  593. adapter->rx_ring_count = new_rx_count;
  594. goto clear_reset;
  595. }
  596. set_tx = (new_tx_count != adapter->tx_ring_count);
  597. set_rx = (new_rx_count != adapter->rx_ring_count);
  598. /* Allocate temporary storage for ring updates */
  599. if (set_tx) {
  600. temp_tx = vmalloc(size);
  601. if (!temp_tx) {
  602. err = -ENOMEM;
  603. goto free_temp;
  604. }
  605. }
  606. if (set_rx) {
  607. temp_rx = vmalloc(size);
  608. if (!temp_rx) {
  609. err = -ENOMEM;
  610. goto free_temp;
  611. }
  612. }
  613. pm_runtime_get_sync(netdev->dev.parent);
  614. e1000e_down(adapter, true);
  615. /* We can't just free everything and then setup again, because the
  616. * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
  617. * structs. First, attempt to allocate new resources...
  618. */
  619. if (set_tx) {
  620. memcpy(temp_tx, adapter->tx_ring, size);
  621. temp_tx->count = new_tx_count;
  622. err = e1000e_setup_tx_resources(temp_tx);
  623. if (err)
  624. goto err_setup;
  625. }
  626. if (set_rx) {
  627. memcpy(temp_rx, adapter->rx_ring, size);
  628. temp_rx->count = new_rx_count;
  629. err = e1000e_setup_rx_resources(temp_rx);
  630. if (err)
  631. goto err_setup_rx;
  632. }
  633. /* ...then free the old resources and copy back any new ring data */
  634. if (set_tx) {
  635. e1000e_free_tx_resources(adapter->tx_ring);
  636. memcpy(adapter->tx_ring, temp_tx, size);
  637. adapter->tx_ring_count = new_tx_count;
  638. }
  639. if (set_rx) {
  640. e1000e_free_rx_resources(adapter->rx_ring);
  641. memcpy(adapter->rx_ring, temp_rx, size);
  642. adapter->rx_ring_count = new_rx_count;
  643. }
  644. err_setup_rx:
  645. if (err && set_tx)
  646. e1000e_free_tx_resources(temp_tx);
  647. err_setup:
  648. e1000e_up(adapter);
  649. pm_runtime_put_sync(netdev->dev.parent);
  650. free_temp:
  651. vfree(temp_tx);
  652. vfree(temp_rx);
  653. clear_reset:
  654. clear_bit(__E1000_RESETTING, &adapter->state);
  655. return err;
  656. }
  657. static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
  658. int reg, int offset, u32 mask, u32 write)
  659. {
  660. u32 pat, val;
  661. static const u32 test[] = {
  662. 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
  663. };
  664. for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
  665. E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
  666. (test[pat] & write));
  667. val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
  668. if (val != (test[pat] & write & mask)) {
  669. e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
  670. reg + (offset << 2), val,
  671. (test[pat] & write & mask));
  672. *data = reg;
  673. return true;
  674. }
  675. }
  676. return false;
  677. }
  678. static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
  679. int reg, u32 mask, u32 write)
  680. {
  681. u32 val;
  682. __ew32(&adapter->hw, reg, write & mask);
  683. val = __er32(&adapter->hw, reg);
  684. if ((write & mask) != (val & mask)) {
  685. e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
  686. reg, (val & mask), (write & mask));
  687. *data = reg;
  688. return true;
  689. }
  690. return false;
  691. }
  692. #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \
  693. do { \
  694. if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
  695. return 1; \
  696. } while (0)
  697. #define REG_PATTERN_TEST(reg, mask, write) \
  698. REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
  699. #define REG_SET_AND_CHECK(reg, mask, write) \
  700. do { \
  701. if (reg_set_and_check(adapter, data, reg, mask, write)) \
  702. return 1; \
  703. } while (0)
  704. static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
  705. {
  706. struct e1000_hw *hw = &adapter->hw;
  707. struct e1000_mac_info *mac = &adapter->hw.mac;
  708. u32 value;
  709. u32 before;
  710. u32 after;
  711. u32 i;
  712. u32 toggle;
  713. u32 mask;
  714. u32 wlock_mac = 0;
  715. /* The status register is Read Only, so a write should fail.
  716. * Some bits that get toggled are ignored. There are several bits
  717. * on newer hardware that are r/w.
  718. */
  719. switch (mac->type) {
  720. case e1000_82571:
  721. case e1000_82572:
  722. case e1000_80003es2lan:
  723. toggle = 0x7FFFF3FF;
  724. break;
  725. default:
  726. toggle = 0x7FFFF033;
  727. break;
  728. }
  729. before = er32(STATUS);
  730. value = (er32(STATUS) & toggle);
  731. ew32(STATUS, toggle);
  732. after = er32(STATUS) & toggle;
  733. if (value != after) {
  734. e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n",
  735. after, value);
  736. *data = 1;
  737. return 1;
  738. }
  739. /* restore previous status */
  740. ew32(STATUS, before);
  741. if (!(adapter->flags & FLAG_IS_ICH)) {
  742. REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
  743. REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
  744. REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
  745. REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
  746. }
  747. REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
  748. REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
  749. REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF);
  750. REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF);
  751. REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF);
  752. REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
  753. REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
  754. REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
  755. REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
  756. REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF);
  757. REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
  758. before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
  759. REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
  760. REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
  761. REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
  762. REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
  763. if (!(adapter->flags & FLAG_IS_ICH))
  764. REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
  765. REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
  766. REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
  767. mask = 0x8003FFFF;
  768. switch (mac->type) {
  769. case e1000_ich10lan:
  770. case e1000_pchlan:
  771. case e1000_pch2lan:
  772. case e1000_pch_lpt:
  773. case e1000_pch_spt:
  774. case e1000_pch_cnp:
  775. case e1000_pch_tgp:
  776. case e1000_pch_adp:
  777. case e1000_pch_mtp:
  778. case e1000_pch_lnp:
  779. mask |= BIT(18);
  780. break;
  781. default:
  782. break;
  783. }
  784. if (mac->type >= e1000_pch_lpt)
  785. wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >>
  786. E1000_FWSM_WLOCK_MAC_SHIFT;
  787. for (i = 0; i < mac->rar_entry_count; i++) {
  788. if (mac->type >= e1000_pch_lpt) {
  789. /* Cannot test write-protected SHRAL[n] registers */
  790. if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac)))
  791. continue;
  792. /* SHRAH[9] different than the others */
  793. if (i == 10)
  794. mask |= BIT(30);
  795. else
  796. mask &= ~BIT(30);
  797. }
  798. if (mac->type == e1000_pch2lan) {
  799. /* SHRAH[0,1,2] different than previous */
  800. if (i == 1)
  801. mask &= 0xFFF4FFFF;
  802. /* SHRAH[3] different than SHRAH[0,1,2] */
  803. if (i == 4)
  804. mask |= BIT(30);
  805. /* RAR[1-6] owned by management engine - skipping */
  806. if (i > 0)
  807. i += 6;
  808. }
  809. REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask,
  810. 0xFFFFFFFF);
  811. /* reset index to actual value */
  812. if ((mac->type == e1000_pch2lan) && (i > 6))
  813. i -= 6;
  814. }
  815. for (i = 0; i < mac->mta_reg_count; i++)
  816. REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
  817. *data = 0;
  818. return 0;
  819. }
  820. static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
  821. {
  822. u16 temp;
  823. u16 checksum = 0;
  824. u16 i;
  825. *data = 0;
  826. /* Read and add up the contents of the EEPROM */
  827. for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
  828. if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
  829. *data = 1;
  830. return *data;
  831. }
  832. checksum += temp;
  833. }
  834. /* If Checksum is not Correct return error else test passed */
  835. if ((checksum != (u16)NVM_SUM) && !(*data))
  836. *data = 2;
  837. return *data;
  838. }
  839. static irqreturn_t e1000_test_intr(int __always_unused irq, void *data)
  840. {
  841. struct net_device *netdev = (struct net_device *)data;
  842. struct e1000_adapter *adapter = netdev_priv(netdev);
  843. struct e1000_hw *hw = &adapter->hw;
  844. adapter->test_icr |= er32(ICR);
  845. return IRQ_HANDLED;
  846. }
  847. static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
  848. {
  849. struct net_device *netdev = adapter->netdev;
  850. struct e1000_hw *hw = &adapter->hw;
  851. u32 mask;
  852. u32 shared_int = 1;
  853. u32 irq = adapter->pdev->irq;
  854. int i;
  855. int ret_val = 0;
  856. int int_mode = E1000E_INT_MODE_LEGACY;
  857. *data = 0;
  858. /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
  859. if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
  860. int_mode = adapter->int_mode;
  861. e1000e_reset_interrupt_capability(adapter);
  862. adapter->int_mode = E1000E_INT_MODE_LEGACY;
  863. e1000e_set_interrupt_capability(adapter);
  864. }
  865. /* Hook up test interrupt handler just for this test */
  866. if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
  867. netdev)) {
  868. shared_int = 0;
  869. } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name,
  870. netdev)) {
  871. *data = 1;
  872. ret_val = -1;
  873. goto out;
  874. }
  875. e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
  876. /* Disable all the interrupts */
  877. ew32(IMC, 0xFFFFFFFF);
  878. e1e_flush();
  879. usleep_range(10000, 11000);
  880. /* Test each interrupt */
  881. for (i = 0; i < 10; i++) {
  882. /* Interrupt to test */
  883. mask = BIT(i);
  884. if (adapter->flags & FLAG_IS_ICH) {
  885. switch (mask) {
  886. case E1000_ICR_RXSEQ:
  887. continue;
  888. case 0x00000100:
  889. if (adapter->hw.mac.type == e1000_ich8lan ||
  890. adapter->hw.mac.type == e1000_ich9lan)
  891. continue;
  892. break;
  893. default:
  894. break;
  895. }
  896. }
  897. if (!shared_int) {
  898. /* Disable the interrupt to be reported in
  899. * the cause register and then force the same
  900. * interrupt and see if one gets posted. If
  901. * an interrupt was posted to the bus, the
  902. * test failed.
  903. */
  904. adapter->test_icr = 0;
  905. ew32(IMC, mask);
  906. ew32(ICS, mask);
  907. e1e_flush();
  908. usleep_range(10000, 11000);
  909. if (adapter->test_icr & mask) {
  910. *data = 3;
  911. break;
  912. }
  913. }
  914. /* Enable the interrupt to be reported in
  915. * the cause register and then force the same
  916. * interrupt and see if one gets posted. If
  917. * an interrupt was not posted to the bus, the
  918. * test failed.
  919. */
  920. adapter->test_icr = 0;
  921. ew32(IMS, mask);
  922. ew32(ICS, mask);
  923. e1e_flush();
  924. usleep_range(10000, 11000);
  925. if (!(adapter->test_icr & mask)) {
  926. *data = 4;
  927. break;
  928. }
  929. if (!shared_int) {
  930. /* Disable the other interrupts to be reported in
  931. * the cause register and then force the other
  932. * interrupts and see if any get posted. If
  933. * an interrupt was posted to the bus, the
  934. * test failed.
  935. */
  936. adapter->test_icr = 0;
  937. ew32(IMC, ~mask & 0x00007FFF);
  938. ew32(ICS, ~mask & 0x00007FFF);
  939. e1e_flush();
  940. usleep_range(10000, 11000);
  941. if (adapter->test_icr) {
  942. *data = 5;
  943. break;
  944. }
  945. }
  946. }
  947. /* Disable all the interrupts */
  948. ew32(IMC, 0xFFFFFFFF);
  949. e1e_flush();
  950. usleep_range(10000, 11000);
  951. /* Unhook test interrupt handler */
  952. free_irq(irq, netdev);
  953. out:
  954. if (int_mode == E1000E_INT_MODE_MSIX) {
  955. e1000e_reset_interrupt_capability(adapter);
  956. adapter->int_mode = int_mode;
  957. e1000e_set_interrupt_capability(adapter);
  958. }
  959. return ret_val;
  960. }
  961. static void e1000_free_desc_rings(struct e1000_adapter *adapter)
  962. {
  963. struct e1000_ring *tx_ring = &adapter->test_tx_ring;
  964. struct e1000_ring *rx_ring = &adapter->test_rx_ring;
  965. struct pci_dev *pdev = adapter->pdev;
  966. struct e1000_buffer *buffer_info;
  967. int i;
  968. if (tx_ring->desc && tx_ring->buffer_info) {
  969. for (i = 0; i < tx_ring->count; i++) {
  970. buffer_info = &tx_ring->buffer_info[i];
  971. if (buffer_info->dma)
  972. dma_unmap_single(&pdev->dev,
  973. buffer_info->dma,
  974. buffer_info->length,
  975. DMA_TO_DEVICE);
  976. dev_kfree_skb(buffer_info->skb);
  977. }
  978. }
  979. if (rx_ring->desc && rx_ring->buffer_info) {
  980. for (i = 0; i < rx_ring->count; i++) {
  981. buffer_info = &rx_ring->buffer_info[i];
  982. if (buffer_info->dma)
  983. dma_unmap_single(&pdev->dev,
  984. buffer_info->dma,
  985. 2048, DMA_FROM_DEVICE);
  986. dev_kfree_skb(buffer_info->skb);
  987. }
  988. }
  989. if (tx_ring->desc) {
  990. dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
  991. tx_ring->dma);
  992. tx_ring->desc = NULL;
  993. }
  994. if (rx_ring->desc) {
  995. dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
  996. rx_ring->dma);
  997. rx_ring->desc = NULL;
  998. }
  999. kfree(tx_ring->buffer_info);
  1000. tx_ring->buffer_info = NULL;
  1001. kfree(rx_ring->buffer_info);
  1002. rx_ring->buffer_info = NULL;
  1003. }
  1004. static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
  1005. {
  1006. struct e1000_ring *tx_ring = &adapter->test_tx_ring;
  1007. struct e1000_ring *rx_ring = &adapter->test_rx_ring;
  1008. struct pci_dev *pdev = adapter->pdev;
  1009. struct e1000_hw *hw = &adapter->hw;
  1010. u32 rctl;
  1011. int i;
  1012. int ret_val;
  1013. /* Setup Tx descriptor ring and Tx buffers */
  1014. if (!tx_ring->count)
  1015. tx_ring->count = E1000_DEFAULT_TXD;
  1016. tx_ring->buffer_info = kcalloc(tx_ring->count,
  1017. sizeof(struct e1000_buffer), GFP_KERNEL);
  1018. if (!tx_ring->buffer_info) {
  1019. ret_val = 1;
  1020. goto err_nomem;
  1021. }
  1022. tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
  1023. tx_ring->size = ALIGN(tx_ring->size, 4096);
  1024. tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
  1025. &tx_ring->dma, GFP_KERNEL);
  1026. if (!tx_ring->desc) {
  1027. ret_val = 2;
  1028. goto err_nomem;
  1029. }
  1030. tx_ring->next_to_use = 0;
  1031. tx_ring->next_to_clean = 0;
  1032. ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF));
  1033. ew32(TDBAH(0), ((u64)tx_ring->dma >> 32));
  1034. ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc));
  1035. ew32(TDH(0), 0);
  1036. ew32(TDT(0), 0);
  1037. ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
  1038. E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
  1039. E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
  1040. for (i = 0; i < tx_ring->count; i++) {
  1041. struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
  1042. struct sk_buff *skb;
  1043. unsigned int skb_size = 1024;
  1044. skb = alloc_skb(skb_size, GFP_KERNEL);
  1045. if (!skb) {
  1046. ret_val = 3;
  1047. goto err_nomem;
  1048. }
  1049. skb_put(skb, skb_size);
  1050. tx_ring->buffer_info[i].skb = skb;
  1051. tx_ring->buffer_info[i].length = skb->len;
  1052. tx_ring->buffer_info[i].dma =
  1053. dma_map_single(&pdev->dev, skb->data, skb->len,
  1054. DMA_TO_DEVICE);
  1055. if (dma_mapping_error(&pdev->dev,
  1056. tx_ring->buffer_info[i].dma)) {
  1057. ret_val = 4;
  1058. goto err_nomem;
  1059. }
  1060. tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
  1061. tx_desc->lower.data = cpu_to_le32(skb->len);
  1062. tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
  1063. E1000_TXD_CMD_IFCS |
  1064. E1000_TXD_CMD_RS);
  1065. tx_desc->upper.data = 0;
  1066. }
  1067. /* Setup Rx descriptor ring and Rx buffers */
  1068. if (!rx_ring->count)
  1069. rx_ring->count = E1000_DEFAULT_RXD;
  1070. rx_ring->buffer_info = kcalloc(rx_ring->count,
  1071. sizeof(struct e1000_buffer), GFP_KERNEL);
  1072. if (!rx_ring->buffer_info) {
  1073. ret_val = 5;
  1074. goto err_nomem;
  1075. }
  1076. rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
  1077. rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
  1078. &rx_ring->dma, GFP_KERNEL);
  1079. if (!rx_ring->desc) {
  1080. ret_val = 6;
  1081. goto err_nomem;
  1082. }
  1083. rx_ring->next_to_use = 0;
  1084. rx_ring->next_to_clean = 0;
  1085. rctl = er32(RCTL);
  1086. if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
  1087. ew32(RCTL, rctl & ~E1000_RCTL_EN);
  1088. ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF));
  1089. ew32(RDBAH(0), ((u64)rx_ring->dma >> 32));
  1090. ew32(RDLEN(0), rx_ring->size);
  1091. ew32(RDH(0), 0);
  1092. ew32(RDT(0), 0);
  1093. rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
  1094. E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
  1095. E1000_RCTL_SBP | E1000_RCTL_SECRC |
  1096. E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
  1097. (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
  1098. ew32(RCTL, rctl);
  1099. for (i = 0; i < rx_ring->count; i++) {
  1100. union e1000_rx_desc_extended *rx_desc;
  1101. struct sk_buff *skb;
  1102. skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
  1103. if (!skb) {
  1104. ret_val = 7;
  1105. goto err_nomem;
  1106. }
  1107. skb_reserve(skb, NET_IP_ALIGN);
  1108. rx_ring->buffer_info[i].skb = skb;
  1109. rx_ring->buffer_info[i].dma =
  1110. dma_map_single(&pdev->dev, skb->data, 2048,
  1111. DMA_FROM_DEVICE);
  1112. if (dma_mapping_error(&pdev->dev,
  1113. rx_ring->buffer_info[i].dma)) {
  1114. ret_val = 8;
  1115. goto err_nomem;
  1116. }
  1117. rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
  1118. rx_desc->read.buffer_addr =
  1119. cpu_to_le64(rx_ring->buffer_info[i].dma);
  1120. memset(skb->data, 0x00, skb->len);
  1121. }
  1122. return 0;
  1123. err_nomem:
  1124. e1000_free_desc_rings(adapter);
  1125. return ret_val;
  1126. }
  1127. static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
  1128. {
  1129. /* Write out to PHY registers 29 and 30 to disable the Receiver. */
  1130. e1e_wphy(&adapter->hw, 29, 0x001F);
  1131. e1e_wphy(&adapter->hw, 30, 0x8FFC);
  1132. e1e_wphy(&adapter->hw, 29, 0x001A);
  1133. e1e_wphy(&adapter->hw, 30, 0x8FF0);
  1134. }
  1135. static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
  1136. {
  1137. struct e1000_hw *hw = &adapter->hw;
  1138. u32 ctrl_reg = 0;
  1139. u16 phy_reg = 0;
  1140. s32 ret_val = 0;
  1141. hw->mac.autoneg = 0;
  1142. if (hw->phy.type == e1000_phy_ife) {
  1143. /* force 100, set loopback */
  1144. e1e_wphy(hw, MII_BMCR, 0x6100);
  1145. /* Now set up the MAC to the same speed/duplex as the PHY. */
  1146. ctrl_reg = er32(CTRL);
  1147. ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
  1148. ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
  1149. E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
  1150. E1000_CTRL_SPD_100 |/* Force Speed to 100 */
  1151. E1000_CTRL_FD); /* Force Duplex to FULL */
  1152. ew32(CTRL, ctrl_reg);
  1153. e1e_flush();
  1154. usleep_range(500, 1000);
  1155. return 0;
  1156. }
  1157. /* Specific PHY configuration for loopback */
  1158. switch (hw->phy.type) {
  1159. case e1000_phy_m88:
  1160. /* Auto-MDI/MDIX Off */
  1161. e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
  1162. /* reset to update Auto-MDI/MDIX */
  1163. e1e_wphy(hw, MII_BMCR, 0x9140);
  1164. /* autoneg off */
  1165. e1e_wphy(hw, MII_BMCR, 0x8140);
  1166. break;
  1167. case e1000_phy_gg82563:
  1168. e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
  1169. break;
  1170. case e1000_phy_bm:
  1171. /* Set Default MAC Interface speed to 1GB */
  1172. e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
  1173. phy_reg &= ~0x0007;
  1174. phy_reg |= 0x006;
  1175. e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
  1176. /* Assert SW reset for above settings to take effect */
  1177. hw->phy.ops.commit(hw);
  1178. usleep_range(1000, 2000);
  1179. /* Force Full Duplex */
  1180. e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
  1181. e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
  1182. /* Set Link Up (in force link) */
  1183. e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
  1184. e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
  1185. /* Force Link */
  1186. e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
  1187. e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
  1188. /* Set Early Link Enable */
  1189. e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
  1190. e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
  1191. break;
  1192. case e1000_phy_82577:
  1193. case e1000_phy_82578:
  1194. /* Workaround: K1 must be disabled for stable 1Gbps operation */
  1195. ret_val = hw->phy.ops.acquire(hw);
  1196. if (ret_val) {
  1197. e_err("Cannot setup 1Gbps loopback.\n");
  1198. return ret_val;
  1199. }
  1200. e1000_configure_k1_ich8lan(hw, false);
  1201. hw->phy.ops.release(hw);
  1202. break;
  1203. case e1000_phy_82579:
  1204. /* Disable PHY energy detect power down */
  1205. e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
  1206. e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~BIT(3));
  1207. /* Disable full chip energy detect */
  1208. e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
  1209. e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
  1210. /* Enable loopback on the PHY */
  1211. e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
  1212. break;
  1213. default:
  1214. break;
  1215. }
  1216. /* force 1000, set loopback */
  1217. e1e_wphy(hw, MII_BMCR, 0x4140);
  1218. msleep(250);
  1219. /* Now set up the MAC to the same speed/duplex as the PHY. */
  1220. ctrl_reg = er32(CTRL);
  1221. ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
  1222. ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
  1223. E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
  1224. E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
  1225. E1000_CTRL_FD); /* Force Duplex to FULL */
  1226. if (adapter->flags & FLAG_IS_ICH)
  1227. ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */
  1228. if (hw->phy.media_type == e1000_media_type_copper &&
  1229. hw->phy.type == e1000_phy_m88) {
  1230. ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
  1231. } else {
  1232. /* Set the ILOS bit on the fiber Nic if half duplex link is
  1233. * detected.
  1234. */
  1235. if ((er32(STATUS) & E1000_STATUS_FD) == 0)
  1236. ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
  1237. }
  1238. ew32(CTRL, ctrl_reg);
  1239. /* Disable the receiver on the PHY so when a cable is plugged in, the
  1240. * PHY does not begin to autoneg when a cable is reconnected to the NIC.
  1241. */
  1242. if (hw->phy.type == e1000_phy_m88)
  1243. e1000_phy_disable_receiver(adapter);
  1244. usleep_range(500, 1000);
  1245. return 0;
  1246. }
  1247. static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
  1248. {
  1249. struct e1000_hw *hw = &adapter->hw;
  1250. u32 ctrl = er32(CTRL);
  1251. int link;
  1252. /* special requirements for 82571/82572 fiber adapters */
  1253. /* jump through hoops to make sure link is up because serdes
  1254. * link is hardwired up
  1255. */
  1256. ctrl |= E1000_CTRL_SLU;
  1257. ew32(CTRL, ctrl);
  1258. /* disable autoneg */
  1259. ctrl = er32(TXCW);
  1260. ctrl &= ~BIT(31);
  1261. ew32(TXCW, ctrl);
  1262. link = (er32(STATUS) & E1000_STATUS_LU);
  1263. if (!link) {
  1264. /* set invert loss of signal */
  1265. ctrl = er32(CTRL);
  1266. ctrl |= E1000_CTRL_ILOS;
  1267. ew32(CTRL, ctrl);
  1268. }
  1269. /* special write to serdes control register to enable SerDes analog
  1270. * loopback
  1271. */
  1272. ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK);
  1273. e1e_flush();
  1274. usleep_range(10000, 11000);
  1275. return 0;
  1276. }
  1277. /* only call this for fiber/serdes connections to es2lan */
  1278. static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
  1279. {
  1280. struct e1000_hw *hw = &adapter->hw;
  1281. u32 ctrlext = er32(CTRL_EXT);
  1282. u32 ctrl = er32(CTRL);
  1283. /* save CTRL_EXT to restore later, reuse an empty variable (unused
  1284. * on mac_type 80003es2lan)
  1285. */
  1286. adapter->tx_fifo_head = ctrlext;
  1287. /* clear the serdes mode bits, putting the device into mac loopback */
  1288. ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
  1289. ew32(CTRL_EXT, ctrlext);
  1290. /* force speed to 1000/FD, link up */
  1291. ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
  1292. ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
  1293. E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
  1294. ew32(CTRL, ctrl);
  1295. /* set mac loopback */
  1296. ctrl = er32(RCTL);
  1297. ctrl |= E1000_RCTL_LBM_MAC;
  1298. ew32(RCTL, ctrl);
  1299. /* set testing mode parameters (no need to reset later) */
  1300. #define KMRNCTRLSTA_OPMODE (0x1F << 16)
  1301. #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
  1302. ew32(KMRNCTRLSTA,
  1303. (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
  1304. return 0;
  1305. }
  1306. static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
  1307. {
  1308. struct e1000_hw *hw = &adapter->hw;
  1309. u32 rctl, fext_nvm11, tarc0;
  1310. if (hw->mac.type >= e1000_pch_spt) {
  1311. fext_nvm11 = er32(FEXTNVM11);
  1312. fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
  1313. ew32(FEXTNVM11, fext_nvm11);
  1314. tarc0 = er32(TARC(0));
  1315. /* clear bits 28 & 29 (control of MULR concurrent requests) */
  1316. tarc0 &= 0xcfffffff;
  1317. /* set bit 29 (value of MULR requests is now 2) */
  1318. tarc0 |= 0x20000000;
  1319. ew32(TARC(0), tarc0);
  1320. }
  1321. if (hw->phy.media_type == e1000_media_type_fiber ||
  1322. hw->phy.media_type == e1000_media_type_internal_serdes) {
  1323. switch (hw->mac.type) {
  1324. case e1000_80003es2lan:
  1325. return e1000_set_es2lan_mac_loopback(adapter);
  1326. case e1000_82571:
  1327. case e1000_82572:
  1328. return e1000_set_82571_fiber_loopback(adapter);
  1329. default:
  1330. rctl = er32(RCTL);
  1331. rctl |= E1000_RCTL_LBM_TCVR;
  1332. ew32(RCTL, rctl);
  1333. return 0;
  1334. }
  1335. } else if (hw->phy.media_type == e1000_media_type_copper) {
  1336. return e1000_integrated_phy_loopback(adapter);
  1337. }
  1338. return 7;
  1339. }
  1340. static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
  1341. {
  1342. struct e1000_hw *hw = &adapter->hw;
  1343. u32 rctl, fext_nvm11, tarc0;
  1344. u16 phy_reg;
  1345. rctl = er32(RCTL);
  1346. rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
  1347. ew32(RCTL, rctl);
  1348. switch (hw->mac.type) {
  1349. case e1000_pch_spt:
  1350. case e1000_pch_cnp:
  1351. case e1000_pch_tgp:
  1352. case e1000_pch_adp:
  1353. case e1000_pch_mtp:
  1354. case e1000_pch_lnp:
  1355. fext_nvm11 = er32(FEXTNVM11);
  1356. fext_nvm11 &= ~E1000_FEXTNVM11_DISABLE_MULR_FIX;
  1357. ew32(FEXTNVM11, fext_nvm11);
  1358. tarc0 = er32(TARC(0));
  1359. /* clear bits 28 & 29 (control of MULR concurrent requests) */
  1360. /* set bit 29 (value of MULR requests is now 0) */
  1361. tarc0 &= 0xcfffffff;
  1362. ew32(TARC(0), tarc0);
  1363. fallthrough;
  1364. case e1000_80003es2lan:
  1365. if (hw->phy.media_type == e1000_media_type_fiber ||
  1366. hw->phy.media_type == e1000_media_type_internal_serdes) {
  1367. /* restore CTRL_EXT, stealing space from tx_fifo_head */
  1368. ew32(CTRL_EXT, adapter->tx_fifo_head);
  1369. adapter->tx_fifo_head = 0;
  1370. }
  1371. fallthrough;
  1372. case e1000_82571:
  1373. case e1000_82572:
  1374. if (hw->phy.media_type == e1000_media_type_fiber ||
  1375. hw->phy.media_type == e1000_media_type_internal_serdes) {
  1376. ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
  1377. e1e_flush();
  1378. usleep_range(10000, 11000);
  1379. break;
  1380. }
  1381. fallthrough;
  1382. default:
  1383. hw->mac.autoneg = 1;
  1384. if (hw->phy.type == e1000_phy_gg82563)
  1385. e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
  1386. e1e_rphy(hw, MII_BMCR, &phy_reg);
  1387. if (phy_reg & BMCR_LOOPBACK) {
  1388. phy_reg &= ~BMCR_LOOPBACK;
  1389. e1e_wphy(hw, MII_BMCR, phy_reg);
  1390. if (hw->phy.ops.commit)
  1391. hw->phy.ops.commit(hw);
  1392. }
  1393. break;
  1394. }
  1395. }
  1396. static void e1000_create_lbtest_frame(struct sk_buff *skb,
  1397. unsigned int frame_size)
  1398. {
  1399. memset(skb->data, 0xFF, frame_size);
  1400. frame_size &= ~1;
  1401. memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
  1402. skb->data[frame_size / 2 + 10] = 0xBE;
  1403. skb->data[frame_size / 2 + 12] = 0xAF;
  1404. }
  1405. static int e1000_check_lbtest_frame(struct sk_buff *skb,
  1406. unsigned int frame_size)
  1407. {
  1408. frame_size &= ~1;
  1409. if (*(skb->data + 3) == 0xFF)
  1410. if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
  1411. (*(skb->data + frame_size / 2 + 12) == 0xAF))
  1412. return 0;
  1413. return 13;
  1414. }
  1415. static int e1000_run_loopback_test(struct e1000_adapter *adapter)
  1416. {
  1417. struct e1000_ring *tx_ring = &adapter->test_tx_ring;
  1418. struct e1000_ring *rx_ring = &adapter->test_rx_ring;
  1419. struct pci_dev *pdev = adapter->pdev;
  1420. struct e1000_hw *hw = &adapter->hw;
  1421. struct e1000_buffer *buffer_info;
  1422. int i, j, k, l;
  1423. int lc;
  1424. int good_cnt;
  1425. int ret_val = 0;
  1426. unsigned long time;
  1427. ew32(RDT(0), rx_ring->count - 1);
  1428. /* Calculate the loop count based on the largest descriptor ring
  1429. * The idea is to wrap the largest ring a number of times using 64
  1430. * send/receive pairs during each loop
  1431. */
  1432. if (rx_ring->count <= tx_ring->count)
  1433. lc = ((tx_ring->count / 64) * 2) + 1;
  1434. else
  1435. lc = ((rx_ring->count / 64) * 2) + 1;
  1436. k = 0;
  1437. l = 0;
  1438. /* loop count loop */
  1439. for (j = 0; j <= lc; j++) {
  1440. /* send the packets */
  1441. for (i = 0; i < 64; i++) {
  1442. buffer_info = &tx_ring->buffer_info[k];
  1443. e1000_create_lbtest_frame(buffer_info->skb, 1024);
  1444. dma_sync_single_for_device(&pdev->dev,
  1445. buffer_info->dma,
  1446. buffer_info->length,
  1447. DMA_TO_DEVICE);
  1448. k++;
  1449. if (k == tx_ring->count)
  1450. k = 0;
  1451. }
  1452. ew32(TDT(0), k);
  1453. e1e_flush();
  1454. msleep(200);
  1455. time = jiffies; /* set the start time for the receive */
  1456. good_cnt = 0;
  1457. /* receive the sent packets */
  1458. do {
  1459. buffer_info = &rx_ring->buffer_info[l];
  1460. dma_sync_single_for_cpu(&pdev->dev,
  1461. buffer_info->dma, 2048,
  1462. DMA_FROM_DEVICE);
  1463. ret_val = e1000_check_lbtest_frame(buffer_info->skb,
  1464. 1024);
  1465. if (!ret_val)
  1466. good_cnt++;
  1467. l++;
  1468. if (l == rx_ring->count)
  1469. l = 0;
  1470. /* time + 20 msecs (200 msecs on 2.4) is more than
  1471. * enough time to complete the receives, if it's
  1472. * exceeded, break and error off
  1473. */
  1474. } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
  1475. if (good_cnt != 64) {
  1476. ret_val = 13; /* ret_val is the same as mis-compare */
  1477. break;
  1478. }
  1479. if (time_after(jiffies, time + 20)) {
  1480. ret_val = 14; /* error code for time out error */
  1481. break;
  1482. }
  1483. }
  1484. return ret_val;
  1485. }
  1486. static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
  1487. {
  1488. struct e1000_hw *hw = &adapter->hw;
  1489. /* PHY loopback cannot be performed if SoL/IDER sessions are active */
  1490. if (hw->phy.ops.check_reset_block &&
  1491. hw->phy.ops.check_reset_block(hw)) {
  1492. e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
  1493. *data = 0;
  1494. goto out;
  1495. }
  1496. *data = e1000_setup_desc_rings(adapter);
  1497. if (*data)
  1498. goto out;
  1499. *data = e1000_setup_loopback_test(adapter);
  1500. if (*data)
  1501. goto err_loopback;
  1502. *data = e1000_run_loopback_test(adapter);
  1503. e1000_loopback_cleanup(adapter);
  1504. err_loopback:
  1505. e1000_free_desc_rings(adapter);
  1506. out:
  1507. return *data;
  1508. }
  1509. static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
  1510. {
  1511. struct e1000_hw *hw = &adapter->hw;
  1512. *data = 0;
  1513. if (hw->phy.media_type == e1000_media_type_internal_serdes) {
  1514. int i = 0;
  1515. hw->mac.serdes_has_link = false;
  1516. /* On some blade server designs, link establishment
  1517. * could take as long as 2-3 minutes
  1518. */
  1519. do {
  1520. hw->mac.ops.check_for_link(hw);
  1521. if (hw->mac.serdes_has_link)
  1522. return *data;
  1523. msleep(20);
  1524. } while (i++ < 3750);
  1525. *data = 1;
  1526. } else {
  1527. hw->mac.ops.check_for_link(hw);
  1528. if (hw->mac.autoneg)
  1529. /* On some Phy/switch combinations, link establishment
  1530. * can take a few seconds more than expected.
  1531. */
  1532. msleep_interruptible(5000);
  1533. if (!(er32(STATUS) & E1000_STATUS_LU))
  1534. *data = 1;
  1535. }
  1536. return *data;
  1537. }
  1538. static int e1000e_get_sset_count(struct net_device __always_unused *netdev,
  1539. int sset)
  1540. {
  1541. switch (sset) {
  1542. case ETH_SS_TEST:
  1543. return E1000_TEST_LEN;
  1544. case ETH_SS_STATS:
  1545. return E1000_STATS_LEN;
  1546. case ETH_SS_PRIV_FLAGS:
  1547. return E1000E_PRIV_FLAGS_STR_LEN;
  1548. default:
  1549. return -EOPNOTSUPP;
  1550. }
  1551. }
  1552. static void e1000_diag_test(struct net_device *netdev,
  1553. struct ethtool_test *eth_test, u64 *data)
  1554. {
  1555. struct e1000_adapter *adapter = netdev_priv(netdev);
  1556. u16 autoneg_advertised;
  1557. u8 forced_speed_duplex;
  1558. u8 autoneg;
  1559. bool if_running = netif_running(netdev);
  1560. pm_runtime_get_sync(netdev->dev.parent);
  1561. set_bit(__E1000_TESTING, &adapter->state);
  1562. if (!if_running) {
  1563. /* Get control of and reset hardware */
  1564. if (adapter->flags & FLAG_HAS_AMT)
  1565. e1000e_get_hw_control(adapter);
  1566. e1000e_power_up_phy(adapter);
  1567. adapter->hw.phy.autoneg_wait_to_complete = 1;
  1568. e1000e_reset(adapter);
  1569. adapter->hw.phy.autoneg_wait_to_complete = 0;
  1570. }
  1571. if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
  1572. /* Offline tests */
  1573. /* save speed, duplex, autoneg settings */
  1574. autoneg_advertised = adapter->hw.phy.autoneg_advertised;
  1575. forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
  1576. autoneg = adapter->hw.mac.autoneg;
  1577. e_info("offline testing starting\n");
  1578. if (if_running)
  1579. /* indicate we're in test mode */
  1580. e1000e_close(netdev);
  1581. if (e1000_reg_test(adapter, &data[0]))
  1582. eth_test->flags |= ETH_TEST_FL_FAILED;
  1583. e1000e_reset(adapter);
  1584. if (e1000_eeprom_test(adapter, &data[1]))
  1585. eth_test->flags |= ETH_TEST_FL_FAILED;
  1586. e1000e_reset(adapter);
  1587. if (e1000_intr_test(adapter, &data[2]))
  1588. eth_test->flags |= ETH_TEST_FL_FAILED;
  1589. e1000e_reset(adapter);
  1590. if (e1000_loopback_test(adapter, &data[3]))
  1591. eth_test->flags |= ETH_TEST_FL_FAILED;
  1592. /* force this routine to wait until autoneg complete/timeout */
  1593. adapter->hw.phy.autoneg_wait_to_complete = 1;
  1594. e1000e_reset(adapter);
  1595. adapter->hw.phy.autoneg_wait_to_complete = 0;
  1596. if (e1000_link_test(adapter, &data[4]))
  1597. eth_test->flags |= ETH_TEST_FL_FAILED;
  1598. /* restore speed, duplex, autoneg settings */
  1599. adapter->hw.phy.autoneg_advertised = autoneg_advertised;
  1600. adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
  1601. adapter->hw.mac.autoneg = autoneg;
  1602. e1000e_reset(adapter);
  1603. clear_bit(__E1000_TESTING, &adapter->state);
  1604. if (if_running)
  1605. e1000e_open(netdev);
  1606. } else {
  1607. /* Online tests */
  1608. e_info("online testing starting\n");
  1609. /* register, eeprom, intr and loopback tests not run online */
  1610. data[0] = 0;
  1611. data[1] = 0;
  1612. data[2] = 0;
  1613. data[3] = 0;
  1614. if (e1000_link_test(adapter, &data[4]))
  1615. eth_test->flags |= ETH_TEST_FL_FAILED;
  1616. clear_bit(__E1000_TESTING, &adapter->state);
  1617. }
  1618. if (!if_running) {
  1619. e1000e_reset(adapter);
  1620. if (adapter->flags & FLAG_HAS_AMT)
  1621. e1000e_release_hw_control(adapter);
  1622. }
  1623. msleep_interruptible(4 * 1000);
  1624. pm_runtime_put_sync(netdev->dev.parent);
  1625. }
  1626. static void e1000_get_wol(struct net_device *netdev,
  1627. struct ethtool_wolinfo *wol)
  1628. {
  1629. struct e1000_adapter *adapter = netdev_priv(netdev);
  1630. wol->supported = 0;
  1631. wol->wolopts = 0;
  1632. if (!(adapter->flags & FLAG_HAS_WOL) ||
  1633. !device_can_wakeup(&adapter->pdev->dev))
  1634. return;
  1635. wol->supported = WAKE_UCAST | WAKE_MCAST |
  1636. WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
  1637. /* apply any specific unsupported masks here */
  1638. if (adapter->flags & FLAG_NO_WAKE_UCAST) {
  1639. wol->supported &= ~WAKE_UCAST;
  1640. if (adapter->wol & E1000_WUFC_EX)
  1641. e_err("Interface does not support directed (unicast) frame wake-up packets\n");
  1642. }
  1643. if (adapter->wol & E1000_WUFC_EX)
  1644. wol->wolopts |= WAKE_UCAST;
  1645. if (adapter->wol & E1000_WUFC_MC)
  1646. wol->wolopts |= WAKE_MCAST;
  1647. if (adapter->wol & E1000_WUFC_BC)
  1648. wol->wolopts |= WAKE_BCAST;
  1649. if (adapter->wol & E1000_WUFC_MAG)
  1650. wol->wolopts |= WAKE_MAGIC;
  1651. if (adapter->wol & E1000_WUFC_LNKC)
  1652. wol->wolopts |= WAKE_PHY;
  1653. }
  1654. static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
  1655. {
  1656. struct e1000_adapter *adapter = netdev_priv(netdev);
  1657. if (!(adapter->flags & FLAG_HAS_WOL) ||
  1658. !device_can_wakeup(&adapter->pdev->dev) ||
  1659. (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
  1660. WAKE_MAGIC | WAKE_PHY)))
  1661. return -EOPNOTSUPP;
  1662. /* these settings will always override what we currently have */
  1663. adapter->wol = 0;
  1664. if (wol->wolopts & WAKE_UCAST)
  1665. adapter->wol |= E1000_WUFC_EX;
  1666. if (wol->wolopts & WAKE_MCAST)
  1667. adapter->wol |= E1000_WUFC_MC;
  1668. if (wol->wolopts & WAKE_BCAST)
  1669. adapter->wol |= E1000_WUFC_BC;
  1670. if (wol->wolopts & WAKE_MAGIC)
  1671. adapter->wol |= E1000_WUFC_MAG;
  1672. if (wol->wolopts & WAKE_PHY)
  1673. adapter->wol |= E1000_WUFC_LNKC;
  1674. device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
  1675. return 0;
  1676. }
  1677. static int e1000_set_phys_id(struct net_device *netdev,
  1678. enum ethtool_phys_id_state state)
  1679. {
  1680. struct e1000_adapter *adapter = netdev_priv(netdev);
  1681. struct e1000_hw *hw = &adapter->hw;
  1682. switch (state) {
  1683. case ETHTOOL_ID_ACTIVE:
  1684. pm_runtime_get_sync(netdev->dev.parent);
  1685. if (!hw->mac.ops.blink_led)
  1686. return 2; /* cycle on/off twice per second */
  1687. hw->mac.ops.blink_led(hw);
  1688. break;
  1689. case ETHTOOL_ID_INACTIVE:
  1690. if (hw->phy.type == e1000_phy_ife)
  1691. e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
  1692. hw->mac.ops.led_off(hw);
  1693. hw->mac.ops.cleanup_led(hw);
  1694. pm_runtime_put_sync(netdev->dev.parent);
  1695. break;
  1696. case ETHTOOL_ID_ON:
  1697. hw->mac.ops.led_on(hw);
  1698. break;
  1699. case ETHTOOL_ID_OFF:
  1700. hw->mac.ops.led_off(hw);
  1701. break;
  1702. }
  1703. return 0;
  1704. }
  1705. static int e1000_get_coalesce(struct net_device *netdev,
  1706. struct ethtool_coalesce *ec,
  1707. struct kernel_ethtool_coalesce *kernel_coal,
  1708. struct netlink_ext_ack *extack)
  1709. {
  1710. struct e1000_adapter *adapter = netdev_priv(netdev);
  1711. if (adapter->itr_setting <= 4)
  1712. ec->rx_coalesce_usecs = adapter->itr_setting;
  1713. else
  1714. ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
  1715. return 0;
  1716. }
  1717. static int e1000_set_coalesce(struct net_device *netdev,
  1718. struct ethtool_coalesce *ec,
  1719. struct kernel_ethtool_coalesce *kernel_coal,
  1720. struct netlink_ext_ack *extack)
  1721. {
  1722. struct e1000_adapter *adapter = netdev_priv(netdev);
  1723. if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
  1724. ((ec->rx_coalesce_usecs > 4) &&
  1725. (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
  1726. (ec->rx_coalesce_usecs == 2))
  1727. return -EINVAL;
  1728. if (ec->rx_coalesce_usecs == 4) {
  1729. adapter->itr_setting = 4;
  1730. adapter->itr = adapter->itr_setting;
  1731. } else if (ec->rx_coalesce_usecs <= 3) {
  1732. adapter->itr = 20000;
  1733. adapter->itr_setting = ec->rx_coalesce_usecs;
  1734. } else {
  1735. adapter->itr = (1000000 / ec->rx_coalesce_usecs);
  1736. adapter->itr_setting = adapter->itr & ~3;
  1737. }
  1738. pm_runtime_get_sync(netdev->dev.parent);
  1739. if (adapter->itr_setting != 0)
  1740. e1000e_write_itr(adapter, adapter->itr);
  1741. else
  1742. e1000e_write_itr(adapter, 0);
  1743. pm_runtime_put_sync(netdev->dev.parent);
  1744. return 0;
  1745. }
  1746. static int e1000_nway_reset(struct net_device *netdev)
  1747. {
  1748. struct e1000_adapter *adapter = netdev_priv(netdev);
  1749. if (!netif_running(netdev))
  1750. return -EAGAIN;
  1751. if (!adapter->hw.mac.autoneg)
  1752. return -EINVAL;
  1753. pm_runtime_get_sync(netdev->dev.parent);
  1754. e1000e_reinit_locked(adapter);
  1755. pm_runtime_put_sync(netdev->dev.parent);
  1756. return 0;
  1757. }
  1758. static void e1000_get_ethtool_stats(struct net_device *netdev,
  1759. struct ethtool_stats __always_unused *stats,
  1760. u64 *data)
  1761. {
  1762. struct e1000_adapter *adapter = netdev_priv(netdev);
  1763. struct rtnl_link_stats64 net_stats;
  1764. int i;
  1765. char *p = NULL;
  1766. pm_runtime_get_sync(netdev->dev.parent);
  1767. dev_get_stats(netdev, &net_stats);
  1768. pm_runtime_put_sync(netdev->dev.parent);
  1769. for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
  1770. switch (e1000_gstrings_stats[i].type) {
  1771. case NETDEV_STATS:
  1772. p = (char *)&net_stats +
  1773. e1000_gstrings_stats[i].stat_offset;
  1774. break;
  1775. case E1000_STATS:
  1776. p = (char *)adapter +
  1777. e1000_gstrings_stats[i].stat_offset;
  1778. break;
  1779. default:
  1780. data[i] = 0;
  1781. continue;
  1782. }
  1783. data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
  1784. sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
  1785. }
  1786. }
  1787. static void e1000_get_strings(struct net_device __always_unused *netdev,
  1788. u32 stringset, u8 *data)
  1789. {
  1790. u8 *p = data;
  1791. int i;
  1792. switch (stringset) {
  1793. case ETH_SS_TEST:
  1794. memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
  1795. break;
  1796. case ETH_SS_STATS:
  1797. for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
  1798. memcpy(p, e1000_gstrings_stats[i].stat_string,
  1799. ETH_GSTRING_LEN);
  1800. p += ETH_GSTRING_LEN;
  1801. }
  1802. break;
  1803. case ETH_SS_PRIV_FLAGS:
  1804. memcpy(data, e1000e_priv_flags_strings,
  1805. E1000E_PRIV_FLAGS_STR_LEN * ETH_GSTRING_LEN);
  1806. break;
  1807. }
  1808. }
  1809. static int e1000_get_rxnfc(struct net_device *netdev,
  1810. struct ethtool_rxnfc *info,
  1811. u32 __always_unused *rule_locs)
  1812. {
  1813. info->data = 0;
  1814. switch (info->cmd) {
  1815. case ETHTOOL_GRXFH: {
  1816. struct e1000_adapter *adapter = netdev_priv(netdev);
  1817. struct e1000_hw *hw = &adapter->hw;
  1818. u32 mrqc;
  1819. pm_runtime_get_sync(netdev->dev.parent);
  1820. mrqc = er32(MRQC);
  1821. pm_runtime_put_sync(netdev->dev.parent);
  1822. if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK))
  1823. return 0;
  1824. switch (info->flow_type) {
  1825. case TCP_V4_FLOW:
  1826. if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
  1827. info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
  1828. fallthrough;
  1829. case UDP_V4_FLOW:
  1830. case SCTP_V4_FLOW:
  1831. case AH_ESP_V4_FLOW:
  1832. case IPV4_FLOW:
  1833. if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
  1834. info->data |= RXH_IP_SRC | RXH_IP_DST;
  1835. break;
  1836. case TCP_V6_FLOW:
  1837. if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
  1838. info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
  1839. fallthrough;
  1840. case UDP_V6_FLOW:
  1841. case SCTP_V6_FLOW:
  1842. case AH_ESP_V6_FLOW:
  1843. case IPV6_FLOW:
  1844. if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
  1845. info->data |= RXH_IP_SRC | RXH_IP_DST;
  1846. break;
  1847. default:
  1848. break;
  1849. }
  1850. return 0;
  1851. }
  1852. default:
  1853. return -EOPNOTSUPP;
  1854. }
  1855. }
  1856. static int e1000e_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
  1857. {
  1858. struct e1000_adapter *adapter = netdev_priv(netdev);
  1859. struct e1000_hw *hw = &adapter->hw;
  1860. u16 cap_addr, lpa_addr, pcs_stat_addr, phy_data;
  1861. u32 ret_val;
  1862. if (!(adapter->flags2 & FLAG2_HAS_EEE))
  1863. return -EOPNOTSUPP;
  1864. switch (hw->phy.type) {
  1865. case e1000_phy_82579:
  1866. cap_addr = I82579_EEE_CAPABILITY;
  1867. lpa_addr = I82579_EEE_LP_ABILITY;
  1868. pcs_stat_addr = I82579_EEE_PCS_STATUS;
  1869. break;
  1870. case e1000_phy_i217:
  1871. cap_addr = I217_EEE_CAPABILITY;
  1872. lpa_addr = I217_EEE_LP_ABILITY;
  1873. pcs_stat_addr = I217_EEE_PCS_STATUS;
  1874. break;
  1875. default:
  1876. return -EOPNOTSUPP;
  1877. }
  1878. pm_runtime_get_sync(netdev->dev.parent);
  1879. ret_val = hw->phy.ops.acquire(hw);
  1880. if (ret_val) {
  1881. pm_runtime_put_sync(netdev->dev.parent);
  1882. return -EBUSY;
  1883. }
  1884. /* EEE Capability */
  1885. ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data);
  1886. if (ret_val)
  1887. goto release;
  1888. edata->supported = mmd_eee_cap_to_ethtool_sup_t(phy_data);
  1889. /* EEE Advertised */
  1890. edata->advertised = mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
  1891. /* EEE Link Partner Advertised */
  1892. ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data);
  1893. if (ret_val)
  1894. goto release;
  1895. edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
  1896. /* EEE PCS Status */
  1897. ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data);
  1898. if (ret_val)
  1899. goto release;
  1900. if (hw->phy.type == e1000_phy_82579)
  1901. phy_data <<= 8;
  1902. /* Result of the EEE auto negotiation - there is no register that
  1903. * has the status of the EEE negotiation so do a best-guess based
  1904. * on whether Tx or Rx LPI indications have been received.
  1905. */
  1906. if (phy_data & (E1000_EEE_TX_LPI_RCVD | E1000_EEE_RX_LPI_RCVD))
  1907. edata->eee_active = true;
  1908. edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable;
  1909. edata->tx_lpi_enabled = true;
  1910. edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT;
  1911. release:
  1912. hw->phy.ops.release(hw);
  1913. if (ret_val)
  1914. ret_val = -ENODATA;
  1915. pm_runtime_put_sync(netdev->dev.parent);
  1916. return ret_val;
  1917. }
  1918. static int e1000e_set_eee(struct net_device *netdev, struct ethtool_eee *edata)
  1919. {
  1920. struct e1000_adapter *adapter = netdev_priv(netdev);
  1921. struct e1000_hw *hw = &adapter->hw;
  1922. struct ethtool_eee eee_curr;
  1923. s32 ret_val;
  1924. ret_val = e1000e_get_eee(netdev, &eee_curr);
  1925. if (ret_val)
  1926. return ret_val;
  1927. if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
  1928. e_err("Setting EEE tx-lpi is not supported\n");
  1929. return -EINVAL;
  1930. }
  1931. if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) {
  1932. e_err("Setting EEE Tx LPI timer is not supported\n");
  1933. return -EINVAL;
  1934. }
  1935. if (edata->advertised & ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) {
  1936. e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n");
  1937. return -EINVAL;
  1938. }
  1939. adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
  1940. hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled;
  1941. pm_runtime_get_sync(netdev->dev.parent);
  1942. /* reset the link */
  1943. if (netif_running(netdev))
  1944. e1000e_reinit_locked(adapter);
  1945. else
  1946. e1000e_reset(adapter);
  1947. pm_runtime_put_sync(netdev->dev.parent);
  1948. return 0;
  1949. }
  1950. static int e1000e_get_ts_info(struct net_device *netdev,
  1951. struct ethtool_ts_info *info)
  1952. {
  1953. struct e1000_adapter *adapter = netdev_priv(netdev);
  1954. ethtool_op_get_ts_info(netdev, info);
  1955. if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
  1956. return 0;
  1957. info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
  1958. SOF_TIMESTAMPING_RX_HARDWARE |
  1959. SOF_TIMESTAMPING_RAW_HARDWARE);
  1960. info->tx_types = BIT(HWTSTAMP_TX_OFF) | BIT(HWTSTAMP_TX_ON);
  1961. info->rx_filters = (BIT(HWTSTAMP_FILTER_NONE) |
  1962. BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
  1963. BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
  1964. BIT(HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
  1965. BIT(HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
  1966. BIT(HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
  1967. BIT(HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
  1968. BIT(HWTSTAMP_FILTER_PTP_V2_EVENT) |
  1969. BIT(HWTSTAMP_FILTER_PTP_V2_SYNC) |
  1970. BIT(HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) |
  1971. BIT(HWTSTAMP_FILTER_ALL));
  1972. if (adapter->ptp_clock)
  1973. info->phc_index = ptp_clock_index(adapter->ptp_clock);
  1974. return 0;
  1975. }
  1976. static u32 e1000e_get_priv_flags(struct net_device *netdev)
  1977. {
  1978. struct e1000_adapter *adapter = netdev_priv(netdev);
  1979. u32 priv_flags = 0;
  1980. if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
  1981. priv_flags |= E1000E_PRIV_FLAGS_S0IX_ENABLED;
  1982. return priv_flags;
  1983. }
  1984. static int e1000e_set_priv_flags(struct net_device *netdev, u32 priv_flags)
  1985. {
  1986. struct e1000_adapter *adapter = netdev_priv(netdev);
  1987. unsigned int flags2 = adapter->flags2;
  1988. flags2 &= ~FLAG2_ENABLE_S0IX_FLOWS;
  1989. if (priv_flags & E1000E_PRIV_FLAGS_S0IX_ENABLED) {
  1990. struct e1000_hw *hw = &adapter->hw;
  1991. if (hw->mac.type < e1000_pch_cnp)
  1992. return -EINVAL;
  1993. flags2 |= FLAG2_ENABLE_S0IX_FLOWS;
  1994. }
  1995. if (flags2 != adapter->flags2)
  1996. adapter->flags2 = flags2;
  1997. return 0;
  1998. }
  1999. static const struct ethtool_ops e1000_ethtool_ops = {
  2000. .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS,
  2001. .get_drvinfo = e1000_get_drvinfo,
  2002. .get_regs_len = e1000_get_regs_len,
  2003. .get_regs = e1000_get_regs,
  2004. .get_wol = e1000_get_wol,
  2005. .set_wol = e1000_set_wol,
  2006. .get_msglevel = e1000_get_msglevel,
  2007. .set_msglevel = e1000_set_msglevel,
  2008. .nway_reset = e1000_nway_reset,
  2009. .get_link = ethtool_op_get_link,
  2010. .get_eeprom_len = e1000_get_eeprom_len,
  2011. .get_eeprom = e1000_get_eeprom,
  2012. .set_eeprom = e1000_set_eeprom,
  2013. .get_ringparam = e1000_get_ringparam,
  2014. .set_ringparam = e1000_set_ringparam,
  2015. .get_pauseparam = e1000_get_pauseparam,
  2016. .set_pauseparam = e1000_set_pauseparam,
  2017. .self_test = e1000_diag_test,
  2018. .get_strings = e1000_get_strings,
  2019. .set_phys_id = e1000_set_phys_id,
  2020. .get_ethtool_stats = e1000_get_ethtool_stats,
  2021. .get_sset_count = e1000e_get_sset_count,
  2022. .get_coalesce = e1000_get_coalesce,
  2023. .set_coalesce = e1000_set_coalesce,
  2024. .get_rxnfc = e1000_get_rxnfc,
  2025. .get_ts_info = e1000e_get_ts_info,
  2026. .get_eee = e1000e_get_eee,
  2027. .set_eee = e1000e_set_eee,
  2028. .get_link_ksettings = e1000_get_link_ksettings,
  2029. .set_link_ksettings = e1000_set_link_ksettings,
  2030. .get_priv_flags = e1000e_get_priv_flags,
  2031. .set_priv_flags = e1000e_set_priv_flags,
  2032. };
  2033. void e1000e_set_ethtool_ops(struct net_device *netdev)
  2034. {
  2035. netdev->ethtool_ops = &e1000_ethtool_ops;
  2036. }