rcar_canfd.c 61 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108
  1. // SPDX-License-Identifier: GPL-2.0+
  2. /* Renesas R-Car CAN FD device driver
  3. *
  4. * Copyright (C) 2015 Renesas Electronics Corp.
  5. */
  6. /* The R-Car CAN FD controller can operate in either one of the below two modes
  7. * - CAN FD only mode
  8. * - Classical CAN (CAN 2.0) only mode
  9. *
  10. * This driver puts the controller in CAN FD only mode by default. In this
  11. * mode, the controller acts as a CAN FD node that can also interoperate with
  12. * CAN 2.0 nodes.
  13. *
  14. * To switch the controller to Classical CAN (CAN 2.0) only mode, add
  15. * "renesas,no-can-fd" optional property to the device tree node. A h/w reset is
  16. * also required to switch modes.
  17. *
  18. * Note: The h/w manual register naming convention is clumsy and not acceptable
  19. * to use as it is in the driver. However, those names are added as comments
  20. * wherever it is modified to a readable name.
  21. */
  22. #include <linux/module.h>
  23. #include <linux/moduleparam.h>
  24. #include <linux/kernel.h>
  25. #include <linux/types.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/errno.h>
  28. #include <linux/ethtool.h>
  29. #include <linux/netdevice.h>
  30. #include <linux/platform_device.h>
  31. #include <linux/can/dev.h>
  32. #include <linux/clk.h>
  33. #include <linux/of.h>
  34. #include <linux/of_device.h>
  35. #include <linux/bitmap.h>
  36. #include <linux/bitops.h>
  37. #include <linux/iopoll.h>
  38. #include <linux/reset.h>
  39. #define RCANFD_DRV_NAME "rcar_canfd"
  40. enum rcanfd_chip_id {
  41. RENESAS_RCAR_GEN3 = 0,
  42. RENESAS_RZG2L,
  43. RENESAS_R8A779A0,
  44. };
  45. /* Global register bits */
  46. /* RSCFDnCFDGRMCFG */
  47. #define RCANFD_GRMCFG_RCMC BIT(0)
  48. /* RSCFDnCFDGCFG / RSCFDnGCFG */
  49. #define RCANFD_GCFG_EEFE BIT(6)
  50. #define RCANFD_GCFG_CMPOC BIT(5) /* CAN FD only */
  51. #define RCANFD_GCFG_DCS BIT(4)
  52. #define RCANFD_GCFG_DCE BIT(1)
  53. #define RCANFD_GCFG_TPRI BIT(0)
  54. /* RSCFDnCFDGCTR / RSCFDnGCTR */
  55. #define RCANFD_GCTR_TSRST BIT(16)
  56. #define RCANFD_GCTR_CFMPOFIE BIT(11) /* CAN FD only */
  57. #define RCANFD_GCTR_THLEIE BIT(10)
  58. #define RCANFD_GCTR_MEIE BIT(9)
  59. #define RCANFD_GCTR_DEIE BIT(8)
  60. #define RCANFD_GCTR_GSLPR BIT(2)
  61. #define RCANFD_GCTR_GMDC_MASK (0x3)
  62. #define RCANFD_GCTR_GMDC_GOPM (0x0)
  63. #define RCANFD_GCTR_GMDC_GRESET (0x1)
  64. #define RCANFD_GCTR_GMDC_GTEST (0x2)
  65. /* RSCFDnCFDGSTS / RSCFDnGSTS */
  66. #define RCANFD_GSTS_GRAMINIT BIT(3)
  67. #define RCANFD_GSTS_GSLPSTS BIT(2)
  68. #define RCANFD_GSTS_GHLTSTS BIT(1)
  69. #define RCANFD_GSTS_GRSTSTS BIT(0)
  70. /* Non-operational status */
  71. #define RCANFD_GSTS_GNOPM (BIT(0) | BIT(1) | BIT(2) | BIT(3))
  72. /* RSCFDnCFDGERFL / RSCFDnGERFL */
  73. #define RCANFD_GERFL_EEF0_7 GENMASK(23, 16)
  74. #define RCANFD_GERFL_EEF(ch) BIT(16 + (ch))
  75. #define RCANFD_GERFL_CMPOF BIT(3) /* CAN FD only */
  76. #define RCANFD_GERFL_THLES BIT(2)
  77. #define RCANFD_GERFL_MES BIT(1)
  78. #define RCANFD_GERFL_DEF BIT(0)
  79. #define RCANFD_GERFL_ERR(gpriv, x) \
  80. ((x) & (reg_v3u(gpriv, RCANFD_GERFL_EEF0_7, \
  81. RCANFD_GERFL_EEF(0) | RCANFD_GERFL_EEF(1)) | \
  82. RCANFD_GERFL_MES | \
  83. ((gpriv)->fdmode ? RCANFD_GERFL_CMPOF : 0)))
  84. /* AFL Rx rules registers */
  85. /* RSCFDnCFDGAFLCFG0 / RSCFDnGAFLCFG0 */
  86. #define RCANFD_GAFLCFG_SETRNC(gpriv, n, x) \
  87. (((x) & reg_v3u(gpriv, 0x1ff, 0xff)) << \
  88. (reg_v3u(gpriv, 16, 24) - ((n) & 1) * reg_v3u(gpriv, 16, 8)))
  89. #define RCANFD_GAFLCFG_GETRNC(gpriv, n, x) \
  90. (((x) >> (reg_v3u(gpriv, 16, 24) - ((n) & 1) * reg_v3u(gpriv, 16, 8))) & \
  91. reg_v3u(gpriv, 0x1ff, 0xff))
  92. /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */
  93. #define RCANFD_GAFLECTR_AFLDAE BIT(8)
  94. #define RCANFD_GAFLECTR_AFLPN(gpriv, x) ((x) & reg_v3u(gpriv, 0x7f, 0x1f))
  95. /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */
  96. #define RCANFD_GAFLID_GAFLLB BIT(29)
  97. /* RSCFDnCFDGAFLP1_j / RSCFDnGAFLP1_j */
  98. #define RCANFD_GAFLP1_GAFLFDP(x) (1 << (x))
  99. /* Channel register bits */
  100. /* RSCFDnCmCFG - Classical CAN only */
  101. #define RCANFD_CFG_SJW(x) (((x) & 0x3) << 24)
  102. #define RCANFD_CFG_TSEG2(x) (((x) & 0x7) << 20)
  103. #define RCANFD_CFG_TSEG1(x) (((x) & 0xf) << 16)
  104. #define RCANFD_CFG_BRP(x) (((x) & 0x3ff) << 0)
  105. /* RSCFDnCFDCmNCFG - CAN FD only */
  106. #define RCANFD_NCFG_NTSEG2(gpriv, x) \
  107. (((x) & reg_v3u(gpriv, 0x7f, 0x1f)) << reg_v3u(gpriv, 25, 24))
  108. #define RCANFD_NCFG_NTSEG1(gpriv, x) \
  109. (((x) & reg_v3u(gpriv, 0xff, 0x7f)) << reg_v3u(gpriv, 17, 16))
  110. #define RCANFD_NCFG_NSJW(gpriv, x) \
  111. (((x) & reg_v3u(gpriv, 0x7f, 0x1f)) << reg_v3u(gpriv, 10, 11))
  112. #define RCANFD_NCFG_NBRP(x) (((x) & 0x3ff) << 0)
  113. /* RSCFDnCFDCmCTR / RSCFDnCmCTR */
  114. #define RCANFD_CCTR_CTME BIT(24)
  115. #define RCANFD_CCTR_ERRD BIT(23)
  116. #define RCANFD_CCTR_BOM_MASK (0x3 << 21)
  117. #define RCANFD_CCTR_BOM_ISO (0x0 << 21)
  118. #define RCANFD_CCTR_BOM_BENTRY (0x1 << 21)
  119. #define RCANFD_CCTR_BOM_BEND (0x2 << 21)
  120. #define RCANFD_CCTR_TDCVFIE BIT(19)
  121. #define RCANFD_CCTR_SOCOIE BIT(18)
  122. #define RCANFD_CCTR_EOCOIE BIT(17)
  123. #define RCANFD_CCTR_TAIE BIT(16)
  124. #define RCANFD_CCTR_ALIE BIT(15)
  125. #define RCANFD_CCTR_BLIE BIT(14)
  126. #define RCANFD_CCTR_OLIE BIT(13)
  127. #define RCANFD_CCTR_BORIE BIT(12)
  128. #define RCANFD_CCTR_BOEIE BIT(11)
  129. #define RCANFD_CCTR_EPIE BIT(10)
  130. #define RCANFD_CCTR_EWIE BIT(9)
  131. #define RCANFD_CCTR_BEIE BIT(8)
  132. #define RCANFD_CCTR_CSLPR BIT(2)
  133. #define RCANFD_CCTR_CHMDC_MASK (0x3)
  134. #define RCANFD_CCTR_CHDMC_COPM (0x0)
  135. #define RCANFD_CCTR_CHDMC_CRESET (0x1)
  136. #define RCANFD_CCTR_CHDMC_CHLT (0x2)
  137. /* RSCFDnCFDCmSTS / RSCFDnCmSTS */
  138. #define RCANFD_CSTS_COMSTS BIT(7)
  139. #define RCANFD_CSTS_RECSTS BIT(6)
  140. #define RCANFD_CSTS_TRMSTS BIT(5)
  141. #define RCANFD_CSTS_BOSTS BIT(4)
  142. #define RCANFD_CSTS_EPSTS BIT(3)
  143. #define RCANFD_CSTS_SLPSTS BIT(2)
  144. #define RCANFD_CSTS_HLTSTS BIT(1)
  145. #define RCANFD_CSTS_CRSTSTS BIT(0)
  146. #define RCANFD_CSTS_TECCNT(x) (((x) >> 24) & 0xff)
  147. #define RCANFD_CSTS_RECCNT(x) (((x) >> 16) & 0xff)
  148. /* RSCFDnCFDCmERFL / RSCFDnCmERFL */
  149. #define RCANFD_CERFL_ADERR BIT(14)
  150. #define RCANFD_CERFL_B0ERR BIT(13)
  151. #define RCANFD_CERFL_B1ERR BIT(12)
  152. #define RCANFD_CERFL_CERR BIT(11)
  153. #define RCANFD_CERFL_AERR BIT(10)
  154. #define RCANFD_CERFL_FERR BIT(9)
  155. #define RCANFD_CERFL_SERR BIT(8)
  156. #define RCANFD_CERFL_ALF BIT(7)
  157. #define RCANFD_CERFL_BLF BIT(6)
  158. #define RCANFD_CERFL_OVLF BIT(5)
  159. #define RCANFD_CERFL_BORF BIT(4)
  160. #define RCANFD_CERFL_BOEF BIT(3)
  161. #define RCANFD_CERFL_EPF BIT(2)
  162. #define RCANFD_CERFL_EWF BIT(1)
  163. #define RCANFD_CERFL_BEF BIT(0)
  164. #define RCANFD_CERFL_ERR(x) ((x) & (0x7fff)) /* above bits 14:0 */
  165. /* RSCFDnCFDCmDCFG */
  166. #define RCANFD_DCFG_DSJW(x) (((x) & 0x7) << 24)
  167. #define RCANFD_DCFG_DTSEG2(gpriv, x) \
  168. (((x) & reg_v3u(gpriv, 0x0f, 0x7)) << reg_v3u(gpriv, 16, 20))
  169. #define RCANFD_DCFG_DTSEG1(gpriv, x) \
  170. (((x) & reg_v3u(gpriv, 0x1f, 0xf)) << reg_v3u(gpriv, 8, 16))
  171. #define RCANFD_DCFG_DBRP(x) (((x) & 0xff) << 0)
  172. /* RSCFDnCFDCmFDCFG */
  173. #define RCANFD_FDCFG_CLOE BIT(30)
  174. #define RCANFD_FDCFG_FDOE BIT(28)
  175. #define RCANFD_FDCFG_TDCE BIT(9)
  176. #define RCANFD_FDCFG_TDCOC BIT(8)
  177. #define RCANFD_FDCFG_TDCO(x) (((x) & 0x7f) >> 16)
  178. /* RSCFDnCFDRFCCx */
  179. #define RCANFD_RFCC_RFIM BIT(12)
  180. #define RCANFD_RFCC_RFDC(x) (((x) & 0x7) << 8)
  181. #define RCANFD_RFCC_RFPLS(x) (((x) & 0x7) << 4)
  182. #define RCANFD_RFCC_RFIE BIT(1)
  183. #define RCANFD_RFCC_RFE BIT(0)
  184. /* RSCFDnCFDRFSTSx */
  185. #define RCANFD_RFSTS_RFIF BIT(3)
  186. #define RCANFD_RFSTS_RFMLT BIT(2)
  187. #define RCANFD_RFSTS_RFFLL BIT(1)
  188. #define RCANFD_RFSTS_RFEMP BIT(0)
  189. /* RSCFDnCFDRFIDx */
  190. #define RCANFD_RFID_RFIDE BIT(31)
  191. #define RCANFD_RFID_RFRTR BIT(30)
  192. /* RSCFDnCFDRFPTRx */
  193. #define RCANFD_RFPTR_RFDLC(x) (((x) >> 28) & 0xf)
  194. #define RCANFD_RFPTR_RFPTR(x) (((x) >> 16) & 0xfff)
  195. #define RCANFD_RFPTR_RFTS(x) (((x) >> 0) & 0xffff)
  196. /* RSCFDnCFDRFFDSTSx */
  197. #define RCANFD_RFFDSTS_RFFDF BIT(2)
  198. #define RCANFD_RFFDSTS_RFBRS BIT(1)
  199. #define RCANFD_RFFDSTS_RFESI BIT(0)
  200. /* Common FIFO bits */
  201. /* RSCFDnCFDCFCCk */
  202. #define RCANFD_CFCC_CFTML(gpriv, x) (((x) & 0xf) << reg_v3u(gpriv, 16, 20))
  203. #define RCANFD_CFCC_CFM(gpriv, x) (((x) & 0x3) << reg_v3u(gpriv, 8, 16))
  204. #define RCANFD_CFCC_CFIM BIT(12)
  205. #define RCANFD_CFCC_CFDC(gpriv, x) (((x) & 0x7) << reg_v3u(gpriv, 21, 8))
  206. #define RCANFD_CFCC_CFPLS(x) (((x) & 0x7) << 4)
  207. #define RCANFD_CFCC_CFTXIE BIT(2)
  208. #define RCANFD_CFCC_CFE BIT(0)
  209. /* RSCFDnCFDCFSTSk */
  210. #define RCANFD_CFSTS_CFMC(x) (((x) >> 8) & 0xff)
  211. #define RCANFD_CFSTS_CFTXIF BIT(4)
  212. #define RCANFD_CFSTS_CFMLT BIT(2)
  213. #define RCANFD_CFSTS_CFFLL BIT(1)
  214. #define RCANFD_CFSTS_CFEMP BIT(0)
  215. /* RSCFDnCFDCFIDk */
  216. #define RCANFD_CFID_CFIDE BIT(31)
  217. #define RCANFD_CFID_CFRTR BIT(30)
  218. #define RCANFD_CFID_CFID_MASK(x) ((x) & 0x1fffffff)
  219. /* RSCFDnCFDCFPTRk */
  220. #define RCANFD_CFPTR_CFDLC(x) (((x) & 0xf) << 28)
  221. #define RCANFD_CFPTR_CFPTR(x) (((x) & 0xfff) << 16)
  222. #define RCANFD_CFPTR_CFTS(x) (((x) & 0xff) << 0)
  223. /* RSCFDnCFDCFFDCSTSk */
  224. #define RCANFD_CFFDCSTS_CFFDF BIT(2)
  225. #define RCANFD_CFFDCSTS_CFBRS BIT(1)
  226. #define RCANFD_CFFDCSTS_CFESI BIT(0)
  227. /* This controller supports either Classical CAN only mode or CAN FD only mode.
  228. * These modes are supported in two separate set of register maps & names.
  229. * However, some of the register offsets are common for both modes. Those
  230. * offsets are listed below as Common registers.
  231. *
  232. * The CAN FD only mode specific registers & Classical CAN only mode specific
  233. * registers are listed separately. Their register names starts with
  234. * RCANFD_F_xxx & RCANFD_C_xxx respectively.
  235. */
  236. /* Common registers */
  237. /* RSCFDnCFDCmNCFG / RSCFDnCmCFG */
  238. #define RCANFD_CCFG(m) (0x0000 + (0x10 * (m)))
  239. /* RSCFDnCFDCmCTR / RSCFDnCmCTR */
  240. #define RCANFD_CCTR(m) (0x0004 + (0x10 * (m)))
  241. /* RSCFDnCFDCmSTS / RSCFDnCmSTS */
  242. #define RCANFD_CSTS(m) (0x0008 + (0x10 * (m)))
  243. /* RSCFDnCFDCmERFL / RSCFDnCmERFL */
  244. #define RCANFD_CERFL(m) (0x000C + (0x10 * (m)))
  245. /* RSCFDnCFDGCFG / RSCFDnGCFG */
  246. #define RCANFD_GCFG (0x0084)
  247. /* RSCFDnCFDGCTR / RSCFDnGCTR */
  248. #define RCANFD_GCTR (0x0088)
  249. /* RSCFDnCFDGCTS / RSCFDnGCTS */
  250. #define RCANFD_GSTS (0x008c)
  251. /* RSCFDnCFDGERFL / RSCFDnGERFL */
  252. #define RCANFD_GERFL (0x0090)
  253. /* RSCFDnCFDGTSC / RSCFDnGTSC */
  254. #define RCANFD_GTSC (0x0094)
  255. /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */
  256. #define RCANFD_GAFLECTR (0x0098)
  257. /* RSCFDnCFDGAFLCFG / RSCFDnGAFLCFG */
  258. #define RCANFD_GAFLCFG(ch) (0x009c + (0x04 * ((ch) / 2)))
  259. /* RSCFDnCFDRMNB / RSCFDnRMNB */
  260. #define RCANFD_RMNB (0x00a4)
  261. /* RSCFDnCFDRMND / RSCFDnRMND */
  262. #define RCANFD_RMND(y) (0x00a8 + (0x04 * (y)))
  263. /* RSCFDnCFDRFCCx / RSCFDnRFCCx */
  264. #define RCANFD_RFCC(gpriv, x) (reg_v3u(gpriv, 0x00c0, 0x00b8) + (0x04 * (x)))
  265. /* RSCFDnCFDRFSTSx / RSCFDnRFSTSx */
  266. #define RCANFD_RFSTS(gpriv, x) (RCANFD_RFCC(gpriv, x) + 0x20)
  267. /* RSCFDnCFDRFPCTRx / RSCFDnRFPCTRx */
  268. #define RCANFD_RFPCTR(gpriv, x) (RCANFD_RFCC(gpriv, x) + 0x40)
  269. /* Common FIFO Control registers */
  270. /* RSCFDnCFDCFCCx / RSCFDnCFCCx */
  271. #define RCANFD_CFCC(gpriv, ch, idx) \
  272. (reg_v3u(gpriv, 0x0120, 0x0118) + (0x0c * (ch)) + (0x04 * (idx)))
  273. /* RSCFDnCFDCFSTSx / RSCFDnCFSTSx */
  274. #define RCANFD_CFSTS(gpriv, ch, idx) \
  275. (reg_v3u(gpriv, 0x01e0, 0x0178) + (0x0c * (ch)) + (0x04 * (idx)))
  276. /* RSCFDnCFDCFPCTRx / RSCFDnCFPCTRx */
  277. #define RCANFD_CFPCTR(gpriv, ch, idx) \
  278. (reg_v3u(gpriv, 0x0240, 0x01d8) + (0x0c * (ch)) + (0x04 * (idx)))
  279. /* RSCFDnCFDFESTS / RSCFDnFESTS */
  280. #define RCANFD_FESTS (0x0238)
  281. /* RSCFDnCFDFFSTS / RSCFDnFFSTS */
  282. #define RCANFD_FFSTS (0x023c)
  283. /* RSCFDnCFDFMSTS / RSCFDnFMSTS */
  284. #define RCANFD_FMSTS (0x0240)
  285. /* RSCFDnCFDRFISTS / RSCFDnRFISTS */
  286. #define RCANFD_RFISTS (0x0244)
  287. /* RSCFDnCFDCFRISTS / RSCFDnCFRISTS */
  288. #define RCANFD_CFRISTS (0x0248)
  289. /* RSCFDnCFDCFTISTS / RSCFDnCFTISTS */
  290. #define RCANFD_CFTISTS (0x024c)
  291. /* RSCFDnCFDTMCp / RSCFDnTMCp */
  292. #define RCANFD_TMC(p) (0x0250 + (0x01 * (p)))
  293. /* RSCFDnCFDTMSTSp / RSCFDnTMSTSp */
  294. #define RCANFD_TMSTS(p) (0x02d0 + (0x01 * (p)))
  295. /* RSCFDnCFDTMTRSTSp / RSCFDnTMTRSTSp */
  296. #define RCANFD_TMTRSTS(y) (0x0350 + (0x04 * (y)))
  297. /* RSCFDnCFDTMTARSTSp / RSCFDnTMTARSTSp */
  298. #define RCANFD_TMTARSTS(y) (0x0360 + (0x04 * (y)))
  299. /* RSCFDnCFDTMTCSTSp / RSCFDnTMTCSTSp */
  300. #define RCANFD_TMTCSTS(y) (0x0370 + (0x04 * (y)))
  301. /* RSCFDnCFDTMTASTSp / RSCFDnTMTASTSp */
  302. #define RCANFD_TMTASTS(y) (0x0380 + (0x04 * (y)))
  303. /* RSCFDnCFDTMIECy / RSCFDnTMIECy */
  304. #define RCANFD_TMIEC(y) (0x0390 + (0x04 * (y)))
  305. /* RSCFDnCFDTXQCCm / RSCFDnTXQCCm */
  306. #define RCANFD_TXQCC(m) (0x03a0 + (0x04 * (m)))
  307. /* RSCFDnCFDTXQSTSm / RSCFDnTXQSTSm */
  308. #define RCANFD_TXQSTS(m) (0x03c0 + (0x04 * (m)))
  309. /* RSCFDnCFDTXQPCTRm / RSCFDnTXQPCTRm */
  310. #define RCANFD_TXQPCTR(m) (0x03e0 + (0x04 * (m)))
  311. /* RSCFDnCFDTHLCCm / RSCFDnTHLCCm */
  312. #define RCANFD_THLCC(m) (0x0400 + (0x04 * (m)))
  313. /* RSCFDnCFDTHLSTSm / RSCFDnTHLSTSm */
  314. #define RCANFD_THLSTS(m) (0x0420 + (0x04 * (m)))
  315. /* RSCFDnCFDTHLPCTRm / RSCFDnTHLPCTRm */
  316. #define RCANFD_THLPCTR(m) (0x0440 + (0x04 * (m)))
  317. /* RSCFDnCFDGTINTSTS0 / RSCFDnGTINTSTS0 */
  318. #define RCANFD_GTINTSTS0 (0x0460)
  319. /* RSCFDnCFDGTINTSTS1 / RSCFDnGTINTSTS1 */
  320. #define RCANFD_GTINTSTS1 (0x0464)
  321. /* RSCFDnCFDGTSTCFG / RSCFDnGTSTCFG */
  322. #define RCANFD_GTSTCFG (0x0468)
  323. /* RSCFDnCFDGTSTCTR / RSCFDnGTSTCTR */
  324. #define RCANFD_GTSTCTR (0x046c)
  325. /* RSCFDnCFDGLOCKK / RSCFDnGLOCKK */
  326. #define RCANFD_GLOCKK (0x047c)
  327. /* RSCFDnCFDGRMCFG */
  328. #define RCANFD_GRMCFG (0x04fc)
  329. /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */
  330. #define RCANFD_GAFLID(offset, j) ((offset) + (0x10 * (j)))
  331. /* RSCFDnCFDGAFLMj / RSCFDnGAFLMj */
  332. #define RCANFD_GAFLM(offset, j) ((offset) + 0x04 + (0x10 * (j)))
  333. /* RSCFDnCFDGAFLP0j / RSCFDnGAFLP0j */
  334. #define RCANFD_GAFLP0(offset, j) ((offset) + 0x08 + (0x10 * (j)))
  335. /* RSCFDnCFDGAFLP1j / RSCFDnGAFLP1j */
  336. #define RCANFD_GAFLP1(offset, j) ((offset) + 0x0c + (0x10 * (j)))
  337. /* Classical CAN only mode register map */
  338. /* RSCFDnGAFLXXXj offset */
  339. #define RCANFD_C_GAFL_OFFSET (0x0500)
  340. /* RSCFDnRMXXXq -> RCANFD_C_RMXXX(q) */
  341. #define RCANFD_C_RMID(q) (0x0600 + (0x10 * (q)))
  342. #define RCANFD_C_RMPTR(q) (0x0604 + (0x10 * (q)))
  343. #define RCANFD_C_RMDF0(q) (0x0608 + (0x10 * (q)))
  344. #define RCANFD_C_RMDF1(q) (0x060c + (0x10 * (q)))
  345. /* RSCFDnRFXXx -> RCANFD_C_RFXX(x) */
  346. #define RCANFD_C_RFOFFSET (0x0e00)
  347. #define RCANFD_C_RFID(x) (RCANFD_C_RFOFFSET + (0x10 * (x)))
  348. #define RCANFD_C_RFPTR(x) (RCANFD_C_RFOFFSET + 0x04 + (0x10 * (x)))
  349. #define RCANFD_C_RFDF(x, df) \
  350. (RCANFD_C_RFOFFSET + 0x08 + (0x10 * (x)) + (0x04 * (df)))
  351. /* RSCFDnCFXXk -> RCANFD_C_CFXX(ch, k) */
  352. #define RCANFD_C_CFOFFSET (0x0e80)
  353. #define RCANFD_C_CFID(ch, idx) \
  354. (RCANFD_C_CFOFFSET + (0x30 * (ch)) + (0x10 * (idx)))
  355. #define RCANFD_C_CFPTR(ch, idx) \
  356. (RCANFD_C_CFOFFSET + 0x04 + (0x30 * (ch)) + (0x10 * (idx)))
  357. #define RCANFD_C_CFDF(ch, idx, df) \
  358. (RCANFD_C_CFOFFSET + 0x08 + (0x30 * (ch)) + (0x10 * (idx)) + (0x04 * (df)))
  359. /* RSCFDnTMXXp -> RCANFD_C_TMXX(p) */
  360. #define RCANFD_C_TMID(p) (0x1000 + (0x10 * (p)))
  361. #define RCANFD_C_TMPTR(p) (0x1004 + (0x10 * (p)))
  362. #define RCANFD_C_TMDF0(p) (0x1008 + (0x10 * (p)))
  363. #define RCANFD_C_TMDF1(p) (0x100c + (0x10 * (p)))
  364. /* RSCFDnTHLACCm */
  365. #define RCANFD_C_THLACC(m) (0x1800 + (0x04 * (m)))
  366. /* RSCFDnRPGACCr */
  367. #define RCANFD_C_RPGACC(r) (0x1900 + (0x04 * (r)))
  368. /* R-Car V3U Classical and CAN FD mode specific register map */
  369. #define RCANFD_V3U_CFDCFG (0x1314)
  370. #define RCANFD_V3U_DCFG(m) (0x1400 + (0x20 * (m)))
  371. #define RCANFD_V3U_GAFL_OFFSET (0x1800)
  372. /* CAN FD mode specific register map */
  373. /* RSCFDnCFDCmXXX -> RCANFD_F_XXX(m) */
  374. #define RCANFD_F_DCFG(m) (0x0500 + (0x20 * (m)))
  375. #define RCANFD_F_CFDCFG(m) (0x0504 + (0x20 * (m)))
  376. #define RCANFD_F_CFDCTR(m) (0x0508 + (0x20 * (m)))
  377. #define RCANFD_F_CFDSTS(m) (0x050c + (0x20 * (m)))
  378. #define RCANFD_F_CFDCRC(m) (0x0510 + (0x20 * (m)))
  379. /* RSCFDnCFDGAFLXXXj offset */
  380. #define RCANFD_F_GAFL_OFFSET (0x1000)
  381. /* RSCFDnCFDRMXXXq -> RCANFD_F_RMXXX(q) */
  382. #define RCANFD_F_RMID(q) (0x2000 + (0x20 * (q)))
  383. #define RCANFD_F_RMPTR(q) (0x2004 + (0x20 * (q)))
  384. #define RCANFD_F_RMFDSTS(q) (0x2008 + (0x20 * (q)))
  385. #define RCANFD_F_RMDF(q, b) (0x200c + (0x04 * (b)) + (0x20 * (q)))
  386. /* RSCFDnCFDRFXXx -> RCANFD_F_RFXX(x) */
  387. #define RCANFD_F_RFOFFSET(gpriv) reg_v3u(gpriv, 0x6000, 0x3000)
  388. #define RCANFD_F_RFID(gpriv, x) (RCANFD_F_RFOFFSET(gpriv) + (0x80 * (x)))
  389. #define RCANFD_F_RFPTR(gpriv, x) (RCANFD_F_RFOFFSET(gpriv) + 0x04 + (0x80 * (x)))
  390. #define RCANFD_F_RFFDSTS(gpriv, x) (RCANFD_F_RFOFFSET(gpriv) + 0x08 + (0x80 * (x)))
  391. #define RCANFD_F_RFDF(gpriv, x, df) \
  392. (RCANFD_F_RFOFFSET(gpriv) + 0x0c + (0x80 * (x)) + (0x04 * (df)))
  393. /* RSCFDnCFDCFXXk -> RCANFD_F_CFXX(ch, k) */
  394. #define RCANFD_F_CFOFFSET(gpriv) reg_v3u(gpriv, 0x6400, 0x3400)
  395. #define RCANFD_F_CFID(gpriv, ch, idx) \
  396. (RCANFD_F_CFOFFSET(gpriv) + (0x180 * (ch)) + (0x80 * (idx)))
  397. #define RCANFD_F_CFPTR(gpriv, ch, idx) \
  398. (RCANFD_F_CFOFFSET(gpriv) + 0x04 + (0x180 * (ch)) + (0x80 * (idx)))
  399. #define RCANFD_F_CFFDCSTS(gpriv, ch, idx) \
  400. (RCANFD_F_CFOFFSET(gpriv) + 0x08 + (0x180 * (ch)) + (0x80 * (idx)))
  401. #define RCANFD_F_CFDF(gpriv, ch, idx, df) \
  402. (RCANFD_F_CFOFFSET(gpriv) + 0x0c + (0x180 * (ch)) + (0x80 * (idx)) + \
  403. (0x04 * (df)))
  404. /* RSCFDnCFDTMXXp -> RCANFD_F_TMXX(p) */
  405. #define RCANFD_F_TMID(p) (0x4000 + (0x20 * (p)))
  406. #define RCANFD_F_TMPTR(p) (0x4004 + (0x20 * (p)))
  407. #define RCANFD_F_TMFDCTR(p) (0x4008 + (0x20 * (p)))
  408. #define RCANFD_F_TMDF(p, b) (0x400c + (0x20 * (p)) + (0x04 * (b)))
  409. /* RSCFDnCFDTHLACCm */
  410. #define RCANFD_F_THLACC(m) (0x6000 + (0x04 * (m)))
  411. /* RSCFDnCFDRPGACCr */
  412. #define RCANFD_F_RPGACC(r) (0x6400 + (0x04 * (r)))
  413. /* Constants */
  414. #define RCANFD_FIFO_DEPTH 8 /* Tx FIFO depth */
  415. #define RCANFD_NAPI_WEIGHT 8 /* Rx poll quota */
  416. #define RCANFD_NUM_CHANNELS 8 /* Eight channels max */
  417. #define RCANFD_CHANNELS_MASK BIT((RCANFD_NUM_CHANNELS) - 1)
  418. #define RCANFD_GAFL_PAGENUM(entry) ((entry) / 16)
  419. #define RCANFD_CHANNEL_NUMRULES 1 /* only one rule per channel */
  420. /* Rx FIFO is a global resource of the controller. There are 8 such FIFOs
  421. * available. Each channel gets a dedicated Rx FIFO (i.e.) the channel
  422. * number is added to RFFIFO index.
  423. */
  424. #define RCANFD_RFFIFO_IDX 0
  425. /* Tx/Rx or Common FIFO is a per channel resource. Each channel has 3 Common
  426. * FIFOs dedicated to them. Use the first (index 0) FIFO out of the 3 for Tx.
  427. */
  428. #define RCANFD_CFFIFO_IDX 0
  429. /* fCAN clock select register settings */
  430. enum rcar_canfd_fcanclk {
  431. RCANFD_CANFDCLK = 0, /* CANFD clock */
  432. RCANFD_EXTCLK, /* Externally input clock */
  433. };
  434. struct rcar_canfd_global;
  435. /* Channel priv data */
  436. struct rcar_canfd_channel {
  437. struct can_priv can; /* Must be the first member */
  438. struct net_device *ndev;
  439. struct rcar_canfd_global *gpriv; /* Controller reference */
  440. void __iomem *base; /* Register base address */
  441. struct napi_struct napi;
  442. u32 tx_head; /* Incremented on xmit */
  443. u32 tx_tail; /* Incremented on xmit done */
  444. u32 channel; /* Channel number */
  445. spinlock_t tx_lock; /* To protect tx path */
  446. };
  447. /* Global priv data */
  448. struct rcar_canfd_global {
  449. struct rcar_canfd_channel *ch[RCANFD_NUM_CHANNELS];
  450. void __iomem *base; /* Register base address */
  451. struct platform_device *pdev; /* Respective platform device */
  452. struct clk *clkp; /* Peripheral clock */
  453. struct clk *can_clk; /* fCAN clock */
  454. enum rcar_canfd_fcanclk fcan; /* CANFD or Ext clock */
  455. unsigned long channels_mask; /* Enabled channels mask */
  456. bool fdmode; /* CAN FD or Classical CAN only mode */
  457. struct reset_control *rstc1;
  458. struct reset_control *rstc2;
  459. enum rcanfd_chip_id chip_id;
  460. u32 max_channels;
  461. };
  462. /* CAN FD mode nominal rate constants */
  463. static const struct can_bittiming_const rcar_canfd_nom_bittiming_const = {
  464. .name = RCANFD_DRV_NAME,
  465. .tseg1_min = 2,
  466. .tseg1_max = 128,
  467. .tseg2_min = 2,
  468. .tseg2_max = 32,
  469. .sjw_max = 32,
  470. .brp_min = 1,
  471. .brp_max = 1024,
  472. .brp_inc = 1,
  473. };
  474. /* CAN FD mode data rate constants */
  475. static const struct can_bittiming_const rcar_canfd_data_bittiming_const = {
  476. .name = RCANFD_DRV_NAME,
  477. .tseg1_min = 2,
  478. .tseg1_max = 16,
  479. .tseg2_min = 2,
  480. .tseg2_max = 8,
  481. .sjw_max = 8,
  482. .brp_min = 1,
  483. .brp_max = 256,
  484. .brp_inc = 1,
  485. };
  486. /* Classical CAN mode bitrate constants */
  487. static const struct can_bittiming_const rcar_canfd_bittiming_const = {
  488. .name = RCANFD_DRV_NAME,
  489. .tseg1_min = 4,
  490. .tseg1_max = 16,
  491. .tseg2_min = 2,
  492. .tseg2_max = 8,
  493. .sjw_max = 4,
  494. .brp_min = 1,
  495. .brp_max = 1024,
  496. .brp_inc = 1,
  497. };
  498. /* Helper functions */
  499. static inline bool is_v3u(struct rcar_canfd_global *gpriv)
  500. {
  501. return gpriv->chip_id == RENESAS_R8A779A0;
  502. }
  503. static inline u32 reg_v3u(struct rcar_canfd_global *gpriv,
  504. u32 v3u, u32 not_v3u)
  505. {
  506. return is_v3u(gpriv) ? v3u : not_v3u;
  507. }
  508. static inline void rcar_canfd_update(u32 mask, u32 val, u32 __iomem *reg)
  509. {
  510. u32 data = readl(reg);
  511. data &= ~mask;
  512. data |= (val & mask);
  513. writel(data, reg);
  514. }
  515. static inline u32 rcar_canfd_read(void __iomem *base, u32 offset)
  516. {
  517. return readl(base + (offset));
  518. }
  519. static inline void rcar_canfd_write(void __iomem *base, u32 offset, u32 val)
  520. {
  521. writel(val, base + (offset));
  522. }
  523. static void rcar_canfd_set_bit(void __iomem *base, u32 reg, u32 val)
  524. {
  525. rcar_canfd_update(val, val, base + (reg));
  526. }
  527. static void rcar_canfd_clear_bit(void __iomem *base, u32 reg, u32 val)
  528. {
  529. rcar_canfd_update(val, 0, base + (reg));
  530. }
  531. static void rcar_canfd_update_bit(void __iomem *base, u32 reg,
  532. u32 mask, u32 val)
  533. {
  534. rcar_canfd_update(mask, val, base + (reg));
  535. }
  536. static void rcar_canfd_get_data(struct rcar_canfd_channel *priv,
  537. struct canfd_frame *cf, u32 off)
  538. {
  539. u32 i, lwords;
  540. lwords = DIV_ROUND_UP(cf->len, sizeof(u32));
  541. for (i = 0; i < lwords; i++)
  542. *((u32 *)cf->data + i) =
  543. rcar_canfd_read(priv->base, off + (i * sizeof(u32)));
  544. }
  545. static void rcar_canfd_put_data(struct rcar_canfd_channel *priv,
  546. struct canfd_frame *cf, u32 off)
  547. {
  548. u32 i, lwords;
  549. lwords = DIV_ROUND_UP(cf->len, sizeof(u32));
  550. for (i = 0; i < lwords; i++)
  551. rcar_canfd_write(priv->base, off + (i * sizeof(u32)),
  552. *((u32 *)cf->data + i));
  553. }
  554. static void rcar_canfd_tx_failure_cleanup(struct net_device *ndev)
  555. {
  556. u32 i;
  557. for (i = 0; i < RCANFD_FIFO_DEPTH; i++)
  558. can_free_echo_skb(ndev, i, NULL);
  559. }
  560. static void rcar_canfd_set_mode(struct rcar_canfd_global *gpriv)
  561. {
  562. if (is_v3u(gpriv)) {
  563. if (gpriv->fdmode)
  564. rcar_canfd_set_bit(gpriv->base, RCANFD_V3U_CFDCFG,
  565. RCANFD_FDCFG_FDOE);
  566. else
  567. rcar_canfd_set_bit(gpriv->base, RCANFD_V3U_CFDCFG,
  568. RCANFD_FDCFG_CLOE);
  569. } else {
  570. if (gpriv->fdmode)
  571. rcar_canfd_set_bit(gpriv->base, RCANFD_GRMCFG,
  572. RCANFD_GRMCFG_RCMC);
  573. else
  574. rcar_canfd_clear_bit(gpriv->base, RCANFD_GRMCFG,
  575. RCANFD_GRMCFG_RCMC);
  576. }
  577. }
  578. static int rcar_canfd_reset_controller(struct rcar_canfd_global *gpriv)
  579. {
  580. u32 sts, ch;
  581. int err;
  582. /* Check RAMINIT flag as CAN RAM initialization takes place
  583. * after the MCU reset
  584. */
  585. err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
  586. !(sts & RCANFD_GSTS_GRAMINIT), 2, 500000);
  587. if (err) {
  588. dev_dbg(&gpriv->pdev->dev, "global raminit failed\n");
  589. return err;
  590. }
  591. /* Transition to Global Reset mode */
  592. rcar_canfd_clear_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR);
  593. rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR,
  594. RCANFD_GCTR_GMDC_MASK, RCANFD_GCTR_GMDC_GRESET);
  595. /* Ensure Global reset mode */
  596. err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
  597. (sts & RCANFD_GSTS_GRSTSTS), 2, 500000);
  598. if (err) {
  599. dev_dbg(&gpriv->pdev->dev, "global reset failed\n");
  600. return err;
  601. }
  602. /* Reset Global error flags */
  603. rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0x0);
  604. /* Set the controller into appropriate mode */
  605. rcar_canfd_set_mode(gpriv);
  606. /* Transition all Channels to reset mode */
  607. for_each_set_bit(ch, &gpriv->channels_mask, gpriv->max_channels) {
  608. rcar_canfd_clear_bit(gpriv->base,
  609. RCANFD_CCTR(ch), RCANFD_CCTR_CSLPR);
  610. rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch),
  611. RCANFD_CCTR_CHMDC_MASK,
  612. RCANFD_CCTR_CHDMC_CRESET);
  613. /* Ensure Channel reset mode */
  614. err = readl_poll_timeout((gpriv->base + RCANFD_CSTS(ch)), sts,
  615. (sts & RCANFD_CSTS_CRSTSTS),
  616. 2, 500000);
  617. if (err) {
  618. dev_dbg(&gpriv->pdev->dev,
  619. "channel %u reset failed\n", ch);
  620. return err;
  621. }
  622. }
  623. return 0;
  624. }
  625. static void rcar_canfd_configure_controller(struct rcar_canfd_global *gpriv)
  626. {
  627. u32 cfg, ch;
  628. /* Global configuration settings */
  629. /* ECC Error flag Enable */
  630. cfg = RCANFD_GCFG_EEFE;
  631. if (gpriv->fdmode)
  632. /* Truncate payload to configured message size RFPLS */
  633. cfg |= RCANFD_GCFG_CMPOC;
  634. /* Set External Clock if selected */
  635. if (gpriv->fcan != RCANFD_CANFDCLK)
  636. cfg |= RCANFD_GCFG_DCS;
  637. rcar_canfd_set_bit(gpriv->base, RCANFD_GCFG, cfg);
  638. /* Channel configuration settings */
  639. for_each_set_bit(ch, &gpriv->channels_mask, gpriv->max_channels) {
  640. rcar_canfd_set_bit(gpriv->base, RCANFD_CCTR(ch),
  641. RCANFD_CCTR_ERRD);
  642. rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch),
  643. RCANFD_CCTR_BOM_MASK,
  644. RCANFD_CCTR_BOM_BENTRY);
  645. }
  646. }
  647. static void rcar_canfd_configure_afl_rules(struct rcar_canfd_global *gpriv,
  648. u32 ch)
  649. {
  650. u32 cfg;
  651. int offset, start, page, num_rules = RCANFD_CHANNEL_NUMRULES;
  652. u32 ridx = ch + RCANFD_RFFIFO_IDX;
  653. if (ch == 0) {
  654. start = 0; /* Channel 0 always starts from 0th rule */
  655. } else {
  656. /* Get number of Channel 0 rules and adjust */
  657. cfg = rcar_canfd_read(gpriv->base, RCANFD_GAFLCFG(ch));
  658. start = RCANFD_GAFLCFG_GETRNC(gpriv, 0, cfg);
  659. }
  660. /* Enable write access to entry */
  661. page = RCANFD_GAFL_PAGENUM(start);
  662. rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLECTR,
  663. (RCANFD_GAFLECTR_AFLPN(gpriv, page) |
  664. RCANFD_GAFLECTR_AFLDAE));
  665. /* Write number of rules for channel */
  666. rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLCFG(ch),
  667. RCANFD_GAFLCFG_SETRNC(gpriv, ch, num_rules));
  668. if (is_v3u(gpriv))
  669. offset = RCANFD_V3U_GAFL_OFFSET;
  670. else if (gpriv->fdmode)
  671. offset = RCANFD_F_GAFL_OFFSET;
  672. else
  673. offset = RCANFD_C_GAFL_OFFSET;
  674. /* Accept all IDs */
  675. rcar_canfd_write(gpriv->base, RCANFD_GAFLID(offset, start), 0);
  676. /* IDE or RTR is not considered for matching */
  677. rcar_canfd_write(gpriv->base, RCANFD_GAFLM(offset, start), 0);
  678. /* Any data length accepted */
  679. rcar_canfd_write(gpriv->base, RCANFD_GAFLP0(offset, start), 0);
  680. /* Place the msg in corresponding Rx FIFO entry */
  681. rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLP1(offset, start),
  682. RCANFD_GAFLP1_GAFLFDP(ridx));
  683. /* Disable write access to page */
  684. rcar_canfd_clear_bit(gpriv->base,
  685. RCANFD_GAFLECTR, RCANFD_GAFLECTR_AFLDAE);
  686. }
  687. static void rcar_canfd_configure_rx(struct rcar_canfd_global *gpriv, u32 ch)
  688. {
  689. /* Rx FIFO is used for reception */
  690. u32 cfg;
  691. u16 rfdc, rfpls;
  692. /* Select Rx FIFO based on channel */
  693. u32 ridx = ch + RCANFD_RFFIFO_IDX;
  694. rfdc = 2; /* b010 - 8 messages Rx FIFO depth */
  695. if (gpriv->fdmode)
  696. rfpls = 7; /* b111 - Max 64 bytes payload */
  697. else
  698. rfpls = 0; /* b000 - Max 8 bytes payload */
  699. cfg = (RCANFD_RFCC_RFIM | RCANFD_RFCC_RFDC(rfdc) |
  700. RCANFD_RFCC_RFPLS(rfpls) | RCANFD_RFCC_RFIE);
  701. rcar_canfd_write(gpriv->base, RCANFD_RFCC(gpriv, ridx), cfg);
  702. }
  703. static void rcar_canfd_configure_tx(struct rcar_canfd_global *gpriv, u32 ch)
  704. {
  705. /* Tx/Rx(Common) FIFO configured in Tx mode is
  706. * used for transmission
  707. *
  708. * Each channel has 3 Common FIFO dedicated to them.
  709. * Use the 1st (index 0) out of 3
  710. */
  711. u32 cfg;
  712. u16 cftml, cfm, cfdc, cfpls;
  713. cftml = 0; /* 0th buffer */
  714. cfm = 1; /* b01 - Transmit mode */
  715. cfdc = 2; /* b010 - 8 messages Tx FIFO depth */
  716. if (gpriv->fdmode)
  717. cfpls = 7; /* b111 - Max 64 bytes payload */
  718. else
  719. cfpls = 0; /* b000 - Max 8 bytes payload */
  720. cfg = (RCANFD_CFCC_CFTML(gpriv, cftml) | RCANFD_CFCC_CFM(gpriv, cfm) |
  721. RCANFD_CFCC_CFIM | RCANFD_CFCC_CFDC(gpriv, cfdc) |
  722. RCANFD_CFCC_CFPLS(cfpls) | RCANFD_CFCC_CFTXIE);
  723. rcar_canfd_write(gpriv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX), cfg);
  724. if (gpriv->fdmode)
  725. /* Clear FD mode specific control/status register */
  726. rcar_canfd_write(gpriv->base,
  727. RCANFD_F_CFFDCSTS(gpriv, ch, RCANFD_CFFIFO_IDX), 0);
  728. }
  729. static void rcar_canfd_enable_global_interrupts(struct rcar_canfd_global *gpriv)
  730. {
  731. u32 ctr;
  732. /* Clear any stray error interrupt flags */
  733. rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0);
  734. /* Global interrupts setup */
  735. ctr = RCANFD_GCTR_MEIE;
  736. if (gpriv->fdmode)
  737. ctr |= RCANFD_GCTR_CFMPOFIE;
  738. rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, ctr);
  739. }
  740. static void rcar_canfd_disable_global_interrupts(struct rcar_canfd_global
  741. *gpriv)
  742. {
  743. /* Disable all interrupts */
  744. rcar_canfd_write(gpriv->base, RCANFD_GCTR, 0);
  745. /* Clear any stray error interrupt flags */
  746. rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0);
  747. }
  748. static void rcar_canfd_enable_channel_interrupts(struct rcar_canfd_channel
  749. *priv)
  750. {
  751. u32 ctr, ch = priv->channel;
  752. /* Clear any stray error flags */
  753. rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0);
  754. /* Channel interrupts setup */
  755. ctr = (RCANFD_CCTR_TAIE |
  756. RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE |
  757. RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE |
  758. RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE |
  759. RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE);
  760. rcar_canfd_set_bit(priv->base, RCANFD_CCTR(ch), ctr);
  761. }
  762. static void rcar_canfd_disable_channel_interrupts(struct rcar_canfd_channel
  763. *priv)
  764. {
  765. u32 ctr, ch = priv->channel;
  766. ctr = (RCANFD_CCTR_TAIE |
  767. RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE |
  768. RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE |
  769. RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE |
  770. RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE);
  771. rcar_canfd_clear_bit(priv->base, RCANFD_CCTR(ch), ctr);
  772. /* Clear any stray error flags */
  773. rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0);
  774. }
  775. static void rcar_canfd_global_error(struct net_device *ndev)
  776. {
  777. struct rcar_canfd_channel *priv = netdev_priv(ndev);
  778. struct rcar_canfd_global *gpriv = priv->gpriv;
  779. struct net_device_stats *stats = &ndev->stats;
  780. u32 ch = priv->channel;
  781. u32 gerfl, sts;
  782. u32 ridx = ch + RCANFD_RFFIFO_IDX;
  783. gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL);
  784. if (gerfl & RCANFD_GERFL_EEF(ch)) {
  785. netdev_dbg(ndev, "Ch%u: ECC Error flag\n", ch);
  786. stats->tx_dropped++;
  787. }
  788. if (gerfl & RCANFD_GERFL_MES) {
  789. sts = rcar_canfd_read(priv->base,
  790. RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX));
  791. if (sts & RCANFD_CFSTS_CFMLT) {
  792. netdev_dbg(ndev, "Tx Message Lost flag\n");
  793. stats->tx_dropped++;
  794. rcar_canfd_write(priv->base,
  795. RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX),
  796. sts & ~RCANFD_CFSTS_CFMLT);
  797. }
  798. sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx));
  799. if (sts & RCANFD_RFSTS_RFMLT) {
  800. netdev_dbg(ndev, "Rx Message Lost flag\n");
  801. stats->rx_dropped++;
  802. rcar_canfd_write(priv->base, RCANFD_RFSTS(gpriv, ridx),
  803. sts & ~RCANFD_RFSTS_RFMLT);
  804. }
  805. }
  806. if (gpriv->fdmode && gerfl & RCANFD_GERFL_CMPOF) {
  807. /* Message Lost flag will be set for respective channel
  808. * when this condition happens with counters and flags
  809. * already updated.
  810. */
  811. netdev_dbg(ndev, "global payload overflow interrupt\n");
  812. }
  813. /* Clear all global error interrupts. Only affected channels bits
  814. * get cleared
  815. */
  816. rcar_canfd_write(priv->base, RCANFD_GERFL, 0);
  817. }
  818. static void rcar_canfd_error(struct net_device *ndev, u32 cerfl,
  819. u16 txerr, u16 rxerr)
  820. {
  821. struct rcar_canfd_channel *priv = netdev_priv(ndev);
  822. struct net_device_stats *stats = &ndev->stats;
  823. struct can_frame *cf;
  824. struct sk_buff *skb;
  825. u32 ch = priv->channel;
  826. netdev_dbg(ndev, "ch erfl %x txerr %u rxerr %u\n", cerfl, txerr, rxerr);
  827. /* Propagate the error condition to the CAN stack */
  828. skb = alloc_can_err_skb(ndev, &cf);
  829. if (!skb) {
  830. stats->rx_dropped++;
  831. return;
  832. }
  833. /* Channel error interrupts */
  834. if (cerfl & RCANFD_CERFL_BEF) {
  835. netdev_dbg(ndev, "Bus error\n");
  836. cf->can_id |= CAN_ERR_BUSERROR | CAN_ERR_PROT;
  837. cf->data[2] = CAN_ERR_PROT_UNSPEC;
  838. priv->can.can_stats.bus_error++;
  839. }
  840. if (cerfl & RCANFD_CERFL_ADERR) {
  841. netdev_dbg(ndev, "ACK Delimiter Error\n");
  842. stats->tx_errors++;
  843. cf->data[3] |= CAN_ERR_PROT_LOC_ACK_DEL;
  844. }
  845. if (cerfl & RCANFD_CERFL_B0ERR) {
  846. netdev_dbg(ndev, "Bit Error (dominant)\n");
  847. stats->tx_errors++;
  848. cf->data[2] |= CAN_ERR_PROT_BIT0;
  849. }
  850. if (cerfl & RCANFD_CERFL_B1ERR) {
  851. netdev_dbg(ndev, "Bit Error (recessive)\n");
  852. stats->tx_errors++;
  853. cf->data[2] |= CAN_ERR_PROT_BIT1;
  854. }
  855. if (cerfl & RCANFD_CERFL_CERR) {
  856. netdev_dbg(ndev, "CRC Error\n");
  857. stats->rx_errors++;
  858. cf->data[3] |= CAN_ERR_PROT_LOC_CRC_SEQ;
  859. }
  860. if (cerfl & RCANFD_CERFL_AERR) {
  861. netdev_dbg(ndev, "ACK Error\n");
  862. stats->tx_errors++;
  863. cf->can_id |= CAN_ERR_ACK;
  864. cf->data[3] |= CAN_ERR_PROT_LOC_ACK;
  865. }
  866. if (cerfl & RCANFD_CERFL_FERR) {
  867. netdev_dbg(ndev, "Form Error\n");
  868. stats->rx_errors++;
  869. cf->data[2] |= CAN_ERR_PROT_FORM;
  870. }
  871. if (cerfl & RCANFD_CERFL_SERR) {
  872. netdev_dbg(ndev, "Stuff Error\n");
  873. stats->rx_errors++;
  874. cf->data[2] |= CAN_ERR_PROT_STUFF;
  875. }
  876. if (cerfl & RCANFD_CERFL_ALF) {
  877. netdev_dbg(ndev, "Arbitration lost Error\n");
  878. priv->can.can_stats.arbitration_lost++;
  879. cf->can_id |= CAN_ERR_LOSTARB;
  880. cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC;
  881. }
  882. if (cerfl & RCANFD_CERFL_BLF) {
  883. netdev_dbg(ndev, "Bus Lock Error\n");
  884. stats->rx_errors++;
  885. cf->can_id |= CAN_ERR_BUSERROR;
  886. }
  887. if (cerfl & RCANFD_CERFL_EWF) {
  888. netdev_dbg(ndev, "Error warning interrupt\n");
  889. priv->can.state = CAN_STATE_ERROR_WARNING;
  890. priv->can.can_stats.error_warning++;
  891. cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
  892. cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_WARNING :
  893. CAN_ERR_CRTL_RX_WARNING;
  894. cf->data[6] = txerr;
  895. cf->data[7] = rxerr;
  896. }
  897. if (cerfl & RCANFD_CERFL_EPF) {
  898. netdev_dbg(ndev, "Error passive interrupt\n");
  899. priv->can.state = CAN_STATE_ERROR_PASSIVE;
  900. priv->can.can_stats.error_passive++;
  901. cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
  902. cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_PASSIVE :
  903. CAN_ERR_CRTL_RX_PASSIVE;
  904. cf->data[6] = txerr;
  905. cf->data[7] = rxerr;
  906. }
  907. if (cerfl & RCANFD_CERFL_BOEF) {
  908. netdev_dbg(ndev, "Bus-off entry interrupt\n");
  909. rcar_canfd_tx_failure_cleanup(ndev);
  910. priv->can.state = CAN_STATE_BUS_OFF;
  911. priv->can.can_stats.bus_off++;
  912. can_bus_off(ndev);
  913. cf->can_id |= CAN_ERR_BUSOFF;
  914. }
  915. if (cerfl & RCANFD_CERFL_OVLF) {
  916. netdev_dbg(ndev,
  917. "Overload Frame Transmission error interrupt\n");
  918. stats->tx_errors++;
  919. cf->can_id |= CAN_ERR_PROT;
  920. cf->data[2] |= CAN_ERR_PROT_OVERLOAD;
  921. }
  922. /* Clear channel error interrupts that are handled */
  923. rcar_canfd_write(priv->base, RCANFD_CERFL(ch),
  924. RCANFD_CERFL_ERR(~cerfl));
  925. netif_rx(skb);
  926. }
  927. static void rcar_canfd_tx_done(struct net_device *ndev)
  928. {
  929. struct rcar_canfd_channel *priv = netdev_priv(ndev);
  930. struct rcar_canfd_global *gpriv = priv->gpriv;
  931. struct net_device_stats *stats = &ndev->stats;
  932. u32 sts;
  933. unsigned long flags;
  934. u32 ch = priv->channel;
  935. do {
  936. u8 unsent, sent;
  937. sent = priv->tx_tail % RCANFD_FIFO_DEPTH;
  938. stats->tx_packets++;
  939. stats->tx_bytes += can_get_echo_skb(ndev, sent, NULL);
  940. spin_lock_irqsave(&priv->tx_lock, flags);
  941. priv->tx_tail++;
  942. sts = rcar_canfd_read(priv->base,
  943. RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX));
  944. unsent = RCANFD_CFSTS_CFMC(sts);
  945. /* Wake producer only when there is room */
  946. if (unsent != RCANFD_FIFO_DEPTH)
  947. netif_wake_queue(ndev);
  948. if (priv->tx_head - priv->tx_tail <= unsent) {
  949. spin_unlock_irqrestore(&priv->tx_lock, flags);
  950. break;
  951. }
  952. spin_unlock_irqrestore(&priv->tx_lock, flags);
  953. } while (1);
  954. /* Clear interrupt */
  955. rcar_canfd_write(priv->base, RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX),
  956. sts & ~RCANFD_CFSTS_CFTXIF);
  957. }
  958. static void rcar_canfd_handle_global_err(struct rcar_canfd_global *gpriv, u32 ch)
  959. {
  960. struct rcar_canfd_channel *priv = gpriv->ch[ch];
  961. struct net_device *ndev = priv->ndev;
  962. u32 gerfl;
  963. /* Handle global error interrupts */
  964. gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL);
  965. if (unlikely(RCANFD_GERFL_ERR(gpriv, gerfl)))
  966. rcar_canfd_global_error(ndev);
  967. }
  968. static irqreturn_t rcar_canfd_global_err_interrupt(int irq, void *dev_id)
  969. {
  970. struct rcar_canfd_global *gpriv = dev_id;
  971. u32 ch;
  972. for_each_set_bit(ch, &gpriv->channels_mask, gpriv->max_channels)
  973. rcar_canfd_handle_global_err(gpriv, ch);
  974. return IRQ_HANDLED;
  975. }
  976. static void rcar_canfd_handle_global_receive(struct rcar_canfd_global *gpriv, u32 ch)
  977. {
  978. struct rcar_canfd_channel *priv = gpriv->ch[ch];
  979. u32 ridx = ch + RCANFD_RFFIFO_IDX;
  980. u32 sts, cc;
  981. /* Handle Rx interrupts */
  982. sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx));
  983. cc = rcar_canfd_read(priv->base, RCANFD_RFCC(gpriv, ridx));
  984. if (likely(sts & RCANFD_RFSTS_RFIF &&
  985. cc & RCANFD_RFCC_RFIE)) {
  986. if (napi_schedule_prep(&priv->napi)) {
  987. /* Disable Rx FIFO interrupts */
  988. rcar_canfd_clear_bit(priv->base,
  989. RCANFD_RFCC(gpriv, ridx),
  990. RCANFD_RFCC_RFIE);
  991. __napi_schedule(&priv->napi);
  992. }
  993. }
  994. }
  995. static irqreturn_t rcar_canfd_global_receive_fifo_interrupt(int irq, void *dev_id)
  996. {
  997. struct rcar_canfd_global *gpriv = dev_id;
  998. u32 ch;
  999. for_each_set_bit(ch, &gpriv->channels_mask, gpriv->max_channels)
  1000. rcar_canfd_handle_global_receive(gpriv, ch);
  1001. return IRQ_HANDLED;
  1002. }
  1003. static irqreturn_t rcar_canfd_global_interrupt(int irq, void *dev_id)
  1004. {
  1005. struct rcar_canfd_global *gpriv = dev_id;
  1006. u32 ch;
  1007. /* Global error interrupts still indicate a condition specific
  1008. * to a channel. RxFIFO interrupt is a global interrupt.
  1009. */
  1010. for_each_set_bit(ch, &gpriv->channels_mask, gpriv->max_channels) {
  1011. rcar_canfd_handle_global_err(gpriv, ch);
  1012. rcar_canfd_handle_global_receive(gpriv, ch);
  1013. }
  1014. return IRQ_HANDLED;
  1015. }
  1016. static void rcar_canfd_state_change(struct net_device *ndev,
  1017. u16 txerr, u16 rxerr)
  1018. {
  1019. struct rcar_canfd_channel *priv = netdev_priv(ndev);
  1020. struct net_device_stats *stats = &ndev->stats;
  1021. enum can_state rx_state, tx_state, state = priv->can.state;
  1022. struct can_frame *cf;
  1023. struct sk_buff *skb;
  1024. /* Handle transition from error to normal states */
  1025. if (txerr < 96 && rxerr < 96)
  1026. state = CAN_STATE_ERROR_ACTIVE;
  1027. else if (txerr < 128 && rxerr < 128)
  1028. state = CAN_STATE_ERROR_WARNING;
  1029. if (state != priv->can.state) {
  1030. netdev_dbg(ndev, "state: new %d, old %d: txerr %u, rxerr %u\n",
  1031. state, priv->can.state, txerr, rxerr);
  1032. skb = alloc_can_err_skb(ndev, &cf);
  1033. if (!skb) {
  1034. stats->rx_dropped++;
  1035. return;
  1036. }
  1037. tx_state = txerr >= rxerr ? state : 0;
  1038. rx_state = txerr <= rxerr ? state : 0;
  1039. can_change_state(ndev, cf, tx_state, rx_state);
  1040. netif_rx(skb);
  1041. }
  1042. }
  1043. static void rcar_canfd_handle_channel_tx(struct rcar_canfd_global *gpriv, u32 ch)
  1044. {
  1045. struct rcar_canfd_channel *priv = gpriv->ch[ch];
  1046. struct net_device *ndev = priv->ndev;
  1047. u32 sts;
  1048. /* Handle Tx interrupts */
  1049. sts = rcar_canfd_read(priv->base,
  1050. RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX));
  1051. if (likely(sts & RCANFD_CFSTS_CFTXIF))
  1052. rcar_canfd_tx_done(ndev);
  1053. }
  1054. static irqreturn_t rcar_canfd_channel_tx_interrupt(int irq, void *dev_id)
  1055. {
  1056. struct rcar_canfd_channel *priv = dev_id;
  1057. rcar_canfd_handle_channel_tx(priv->gpriv, priv->channel);
  1058. return IRQ_HANDLED;
  1059. }
  1060. static void rcar_canfd_handle_channel_err(struct rcar_canfd_global *gpriv, u32 ch)
  1061. {
  1062. struct rcar_canfd_channel *priv = gpriv->ch[ch];
  1063. struct net_device *ndev = priv->ndev;
  1064. u16 txerr, rxerr;
  1065. u32 sts, cerfl;
  1066. /* Handle channel error interrupts */
  1067. cerfl = rcar_canfd_read(priv->base, RCANFD_CERFL(ch));
  1068. sts = rcar_canfd_read(priv->base, RCANFD_CSTS(ch));
  1069. txerr = RCANFD_CSTS_TECCNT(sts);
  1070. rxerr = RCANFD_CSTS_RECCNT(sts);
  1071. if (unlikely(RCANFD_CERFL_ERR(cerfl)))
  1072. rcar_canfd_error(ndev, cerfl, txerr, rxerr);
  1073. /* Handle state change to lower states */
  1074. if (unlikely(priv->can.state != CAN_STATE_ERROR_ACTIVE &&
  1075. priv->can.state != CAN_STATE_BUS_OFF))
  1076. rcar_canfd_state_change(ndev, txerr, rxerr);
  1077. }
  1078. static irqreturn_t rcar_canfd_channel_err_interrupt(int irq, void *dev_id)
  1079. {
  1080. struct rcar_canfd_channel *priv = dev_id;
  1081. rcar_canfd_handle_channel_err(priv->gpriv, priv->channel);
  1082. return IRQ_HANDLED;
  1083. }
  1084. static irqreturn_t rcar_canfd_channel_interrupt(int irq, void *dev_id)
  1085. {
  1086. struct rcar_canfd_global *gpriv = dev_id;
  1087. u32 ch;
  1088. /* Common FIFO is a per channel resource */
  1089. for_each_set_bit(ch, &gpriv->channels_mask, gpriv->max_channels) {
  1090. rcar_canfd_handle_channel_err(gpriv, ch);
  1091. rcar_canfd_handle_channel_tx(gpriv, ch);
  1092. }
  1093. return IRQ_HANDLED;
  1094. }
  1095. static void rcar_canfd_set_bittiming(struct net_device *dev)
  1096. {
  1097. struct rcar_canfd_channel *priv = netdev_priv(dev);
  1098. struct rcar_canfd_global *gpriv = priv->gpriv;
  1099. const struct can_bittiming *bt = &priv->can.bittiming;
  1100. const struct can_bittiming *dbt = &priv->can.data_bittiming;
  1101. u16 brp, sjw, tseg1, tseg2;
  1102. u32 cfg;
  1103. u32 ch = priv->channel;
  1104. /* Nominal bit timing settings */
  1105. brp = bt->brp - 1;
  1106. sjw = bt->sjw - 1;
  1107. tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
  1108. tseg2 = bt->phase_seg2 - 1;
  1109. if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
  1110. /* CAN FD only mode */
  1111. cfg = (RCANFD_NCFG_NTSEG1(gpriv, tseg1) | RCANFD_NCFG_NBRP(brp) |
  1112. RCANFD_NCFG_NSJW(gpriv, sjw) | RCANFD_NCFG_NTSEG2(gpriv, tseg2));
  1113. rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg);
  1114. netdev_dbg(priv->ndev, "nrate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
  1115. brp, sjw, tseg1, tseg2);
  1116. /* Data bit timing settings */
  1117. brp = dbt->brp - 1;
  1118. sjw = dbt->sjw - 1;
  1119. tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
  1120. tseg2 = dbt->phase_seg2 - 1;
  1121. cfg = (RCANFD_DCFG_DTSEG1(gpriv, tseg1) | RCANFD_DCFG_DBRP(brp) |
  1122. RCANFD_DCFG_DSJW(sjw) | RCANFD_DCFG_DTSEG2(gpriv, tseg2));
  1123. if (is_v3u(gpriv))
  1124. rcar_canfd_write(priv->base, RCANFD_V3U_DCFG(ch), cfg);
  1125. else
  1126. rcar_canfd_write(priv->base, RCANFD_F_DCFG(ch), cfg);
  1127. netdev_dbg(priv->ndev, "drate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
  1128. brp, sjw, tseg1, tseg2);
  1129. } else {
  1130. /* Classical CAN only mode */
  1131. if (is_v3u(gpriv)) {
  1132. cfg = (RCANFD_NCFG_NTSEG1(gpriv, tseg1) |
  1133. RCANFD_NCFG_NBRP(brp) |
  1134. RCANFD_NCFG_NSJW(gpriv, sjw) |
  1135. RCANFD_NCFG_NTSEG2(gpriv, tseg2));
  1136. } else {
  1137. cfg = (RCANFD_CFG_TSEG1(tseg1) |
  1138. RCANFD_CFG_BRP(brp) |
  1139. RCANFD_CFG_SJW(sjw) |
  1140. RCANFD_CFG_TSEG2(tseg2));
  1141. }
  1142. rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg);
  1143. netdev_dbg(priv->ndev,
  1144. "rate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
  1145. brp, sjw, tseg1, tseg2);
  1146. }
  1147. }
  1148. static int rcar_canfd_start(struct net_device *ndev)
  1149. {
  1150. struct rcar_canfd_channel *priv = netdev_priv(ndev);
  1151. struct rcar_canfd_global *gpriv = priv->gpriv;
  1152. int err = -EOPNOTSUPP;
  1153. u32 sts, ch = priv->channel;
  1154. u32 ridx = ch + RCANFD_RFFIFO_IDX;
  1155. rcar_canfd_set_bittiming(ndev);
  1156. rcar_canfd_enable_channel_interrupts(priv);
  1157. /* Set channel to Operational mode */
  1158. rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch),
  1159. RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_COPM);
  1160. /* Verify channel mode change */
  1161. err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts,
  1162. (sts & RCANFD_CSTS_COMSTS), 2, 500000);
  1163. if (err) {
  1164. netdev_err(ndev, "channel %u communication state failed\n", ch);
  1165. goto fail_mode_change;
  1166. }
  1167. /* Enable Common & Rx FIFO */
  1168. rcar_canfd_set_bit(priv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX),
  1169. RCANFD_CFCC_CFE);
  1170. rcar_canfd_set_bit(priv->base, RCANFD_RFCC(gpriv, ridx), RCANFD_RFCC_RFE);
  1171. priv->can.state = CAN_STATE_ERROR_ACTIVE;
  1172. return 0;
  1173. fail_mode_change:
  1174. rcar_canfd_disable_channel_interrupts(priv);
  1175. return err;
  1176. }
  1177. static int rcar_canfd_open(struct net_device *ndev)
  1178. {
  1179. struct rcar_canfd_channel *priv = netdev_priv(ndev);
  1180. struct rcar_canfd_global *gpriv = priv->gpriv;
  1181. int err;
  1182. /* Peripheral clock is already enabled in probe */
  1183. err = clk_prepare_enable(gpriv->can_clk);
  1184. if (err) {
  1185. netdev_err(ndev, "failed to enable CAN clock, error %d\n", err);
  1186. goto out_clock;
  1187. }
  1188. err = open_candev(ndev);
  1189. if (err) {
  1190. netdev_err(ndev, "open_candev() failed, error %d\n", err);
  1191. goto out_can_clock;
  1192. }
  1193. napi_enable(&priv->napi);
  1194. err = rcar_canfd_start(ndev);
  1195. if (err)
  1196. goto out_close;
  1197. netif_start_queue(ndev);
  1198. return 0;
  1199. out_close:
  1200. napi_disable(&priv->napi);
  1201. close_candev(ndev);
  1202. out_can_clock:
  1203. clk_disable_unprepare(gpriv->can_clk);
  1204. out_clock:
  1205. return err;
  1206. }
  1207. static void rcar_canfd_stop(struct net_device *ndev)
  1208. {
  1209. struct rcar_canfd_channel *priv = netdev_priv(ndev);
  1210. struct rcar_canfd_global *gpriv = priv->gpriv;
  1211. int err;
  1212. u32 sts, ch = priv->channel;
  1213. u32 ridx = ch + RCANFD_RFFIFO_IDX;
  1214. /* Transition to channel reset mode */
  1215. rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch),
  1216. RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_CRESET);
  1217. /* Check Channel reset mode */
  1218. err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts,
  1219. (sts & RCANFD_CSTS_CRSTSTS), 2, 500000);
  1220. if (err)
  1221. netdev_err(ndev, "channel %u reset failed\n", ch);
  1222. rcar_canfd_disable_channel_interrupts(priv);
  1223. /* Disable Common & Rx FIFO */
  1224. rcar_canfd_clear_bit(priv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX),
  1225. RCANFD_CFCC_CFE);
  1226. rcar_canfd_clear_bit(priv->base, RCANFD_RFCC(gpriv, ridx), RCANFD_RFCC_RFE);
  1227. /* Set the state as STOPPED */
  1228. priv->can.state = CAN_STATE_STOPPED;
  1229. }
  1230. static int rcar_canfd_close(struct net_device *ndev)
  1231. {
  1232. struct rcar_canfd_channel *priv = netdev_priv(ndev);
  1233. struct rcar_canfd_global *gpriv = priv->gpriv;
  1234. netif_stop_queue(ndev);
  1235. rcar_canfd_stop(ndev);
  1236. napi_disable(&priv->napi);
  1237. clk_disable_unprepare(gpriv->can_clk);
  1238. close_candev(ndev);
  1239. return 0;
  1240. }
  1241. static netdev_tx_t rcar_canfd_start_xmit(struct sk_buff *skb,
  1242. struct net_device *ndev)
  1243. {
  1244. struct rcar_canfd_channel *priv = netdev_priv(ndev);
  1245. struct rcar_canfd_global *gpriv = priv->gpriv;
  1246. struct canfd_frame *cf = (struct canfd_frame *)skb->data;
  1247. u32 sts = 0, id, dlc;
  1248. unsigned long flags;
  1249. u32 ch = priv->channel;
  1250. if (can_dev_dropped_skb(ndev, skb))
  1251. return NETDEV_TX_OK;
  1252. if (cf->can_id & CAN_EFF_FLAG) {
  1253. id = cf->can_id & CAN_EFF_MASK;
  1254. id |= RCANFD_CFID_CFIDE;
  1255. } else {
  1256. id = cf->can_id & CAN_SFF_MASK;
  1257. }
  1258. if (cf->can_id & CAN_RTR_FLAG)
  1259. id |= RCANFD_CFID_CFRTR;
  1260. dlc = RCANFD_CFPTR_CFDLC(can_fd_len2dlc(cf->len));
  1261. if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || is_v3u(gpriv)) {
  1262. rcar_canfd_write(priv->base,
  1263. RCANFD_F_CFID(gpriv, ch, RCANFD_CFFIFO_IDX), id);
  1264. rcar_canfd_write(priv->base,
  1265. RCANFD_F_CFPTR(gpriv, ch, RCANFD_CFFIFO_IDX), dlc);
  1266. if (can_is_canfd_skb(skb)) {
  1267. /* CAN FD frame format */
  1268. sts |= RCANFD_CFFDCSTS_CFFDF;
  1269. if (cf->flags & CANFD_BRS)
  1270. sts |= RCANFD_CFFDCSTS_CFBRS;
  1271. if (priv->can.state == CAN_STATE_ERROR_PASSIVE)
  1272. sts |= RCANFD_CFFDCSTS_CFESI;
  1273. }
  1274. rcar_canfd_write(priv->base,
  1275. RCANFD_F_CFFDCSTS(gpriv, ch, RCANFD_CFFIFO_IDX), sts);
  1276. rcar_canfd_put_data(priv, cf,
  1277. RCANFD_F_CFDF(gpriv, ch, RCANFD_CFFIFO_IDX, 0));
  1278. } else {
  1279. rcar_canfd_write(priv->base,
  1280. RCANFD_C_CFID(ch, RCANFD_CFFIFO_IDX), id);
  1281. rcar_canfd_write(priv->base,
  1282. RCANFD_C_CFPTR(ch, RCANFD_CFFIFO_IDX), dlc);
  1283. rcar_canfd_put_data(priv, cf,
  1284. RCANFD_C_CFDF(ch, RCANFD_CFFIFO_IDX, 0));
  1285. }
  1286. can_put_echo_skb(skb, ndev, priv->tx_head % RCANFD_FIFO_DEPTH, 0);
  1287. spin_lock_irqsave(&priv->tx_lock, flags);
  1288. priv->tx_head++;
  1289. /* Stop the queue if we've filled all FIFO entries */
  1290. if (priv->tx_head - priv->tx_tail >= RCANFD_FIFO_DEPTH)
  1291. netif_stop_queue(ndev);
  1292. /* Start Tx: Write 0xff to CFPC to increment the CPU-side
  1293. * pointer for the Common FIFO
  1294. */
  1295. rcar_canfd_write(priv->base,
  1296. RCANFD_CFPCTR(gpriv, ch, RCANFD_CFFIFO_IDX), 0xff);
  1297. spin_unlock_irqrestore(&priv->tx_lock, flags);
  1298. return NETDEV_TX_OK;
  1299. }
  1300. static void rcar_canfd_rx_pkt(struct rcar_canfd_channel *priv)
  1301. {
  1302. struct net_device_stats *stats = &priv->ndev->stats;
  1303. struct rcar_canfd_global *gpriv = priv->gpriv;
  1304. struct canfd_frame *cf;
  1305. struct sk_buff *skb;
  1306. u32 sts = 0, id, dlc;
  1307. u32 ch = priv->channel;
  1308. u32 ridx = ch + RCANFD_RFFIFO_IDX;
  1309. if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || is_v3u(gpriv)) {
  1310. id = rcar_canfd_read(priv->base, RCANFD_F_RFID(gpriv, ridx));
  1311. dlc = rcar_canfd_read(priv->base, RCANFD_F_RFPTR(gpriv, ridx));
  1312. sts = rcar_canfd_read(priv->base, RCANFD_F_RFFDSTS(gpriv, ridx));
  1313. if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) &&
  1314. sts & RCANFD_RFFDSTS_RFFDF)
  1315. skb = alloc_canfd_skb(priv->ndev, &cf);
  1316. else
  1317. skb = alloc_can_skb(priv->ndev,
  1318. (struct can_frame **)&cf);
  1319. } else {
  1320. id = rcar_canfd_read(priv->base, RCANFD_C_RFID(ridx));
  1321. dlc = rcar_canfd_read(priv->base, RCANFD_C_RFPTR(ridx));
  1322. skb = alloc_can_skb(priv->ndev, (struct can_frame **)&cf);
  1323. }
  1324. if (!skb) {
  1325. stats->rx_dropped++;
  1326. return;
  1327. }
  1328. if (id & RCANFD_RFID_RFIDE)
  1329. cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG;
  1330. else
  1331. cf->can_id = id & CAN_SFF_MASK;
  1332. if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
  1333. if (sts & RCANFD_RFFDSTS_RFFDF)
  1334. cf->len = can_fd_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
  1335. else
  1336. cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
  1337. if (sts & RCANFD_RFFDSTS_RFESI) {
  1338. cf->flags |= CANFD_ESI;
  1339. netdev_dbg(priv->ndev, "ESI Error\n");
  1340. }
  1341. if (!(sts & RCANFD_RFFDSTS_RFFDF) && (id & RCANFD_RFID_RFRTR)) {
  1342. cf->can_id |= CAN_RTR_FLAG;
  1343. } else {
  1344. if (sts & RCANFD_RFFDSTS_RFBRS)
  1345. cf->flags |= CANFD_BRS;
  1346. rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(gpriv, ridx, 0));
  1347. }
  1348. } else {
  1349. cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
  1350. if (id & RCANFD_RFID_RFRTR)
  1351. cf->can_id |= CAN_RTR_FLAG;
  1352. else if (is_v3u(gpriv))
  1353. rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(gpriv, ridx, 0));
  1354. else
  1355. rcar_canfd_get_data(priv, cf, RCANFD_C_RFDF(ridx, 0));
  1356. }
  1357. /* Write 0xff to RFPC to increment the CPU-side
  1358. * pointer of the Rx FIFO
  1359. */
  1360. rcar_canfd_write(priv->base, RCANFD_RFPCTR(gpriv, ridx), 0xff);
  1361. if (!(cf->can_id & CAN_RTR_FLAG))
  1362. stats->rx_bytes += cf->len;
  1363. stats->rx_packets++;
  1364. netif_receive_skb(skb);
  1365. }
  1366. static int rcar_canfd_rx_poll(struct napi_struct *napi, int quota)
  1367. {
  1368. struct rcar_canfd_channel *priv =
  1369. container_of(napi, struct rcar_canfd_channel, napi);
  1370. struct rcar_canfd_global *gpriv = priv->gpriv;
  1371. int num_pkts;
  1372. u32 sts;
  1373. u32 ch = priv->channel;
  1374. u32 ridx = ch + RCANFD_RFFIFO_IDX;
  1375. for (num_pkts = 0; num_pkts < quota; num_pkts++) {
  1376. sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx));
  1377. /* Check FIFO empty condition */
  1378. if (sts & RCANFD_RFSTS_RFEMP)
  1379. break;
  1380. rcar_canfd_rx_pkt(priv);
  1381. /* Clear interrupt bit */
  1382. if (sts & RCANFD_RFSTS_RFIF)
  1383. rcar_canfd_write(priv->base, RCANFD_RFSTS(gpriv, ridx),
  1384. sts & ~RCANFD_RFSTS_RFIF);
  1385. }
  1386. /* All packets processed */
  1387. if (num_pkts < quota) {
  1388. if (napi_complete_done(napi, num_pkts)) {
  1389. /* Enable Rx FIFO interrupts */
  1390. rcar_canfd_set_bit(priv->base, RCANFD_RFCC(gpriv, ridx),
  1391. RCANFD_RFCC_RFIE);
  1392. }
  1393. }
  1394. return num_pkts;
  1395. }
  1396. static int rcar_canfd_do_set_mode(struct net_device *ndev, enum can_mode mode)
  1397. {
  1398. int err;
  1399. switch (mode) {
  1400. case CAN_MODE_START:
  1401. err = rcar_canfd_start(ndev);
  1402. if (err)
  1403. return err;
  1404. netif_wake_queue(ndev);
  1405. return 0;
  1406. default:
  1407. return -EOPNOTSUPP;
  1408. }
  1409. }
  1410. static int rcar_canfd_get_berr_counter(const struct net_device *dev,
  1411. struct can_berr_counter *bec)
  1412. {
  1413. struct rcar_canfd_channel *priv = netdev_priv(dev);
  1414. u32 val, ch = priv->channel;
  1415. /* Peripheral clock is already enabled in probe */
  1416. val = rcar_canfd_read(priv->base, RCANFD_CSTS(ch));
  1417. bec->txerr = RCANFD_CSTS_TECCNT(val);
  1418. bec->rxerr = RCANFD_CSTS_RECCNT(val);
  1419. return 0;
  1420. }
  1421. static const struct net_device_ops rcar_canfd_netdev_ops = {
  1422. .ndo_open = rcar_canfd_open,
  1423. .ndo_stop = rcar_canfd_close,
  1424. .ndo_start_xmit = rcar_canfd_start_xmit,
  1425. .ndo_change_mtu = can_change_mtu,
  1426. };
  1427. static const struct ethtool_ops rcar_canfd_ethtool_ops = {
  1428. .get_ts_info = ethtool_op_get_ts_info,
  1429. };
  1430. static int rcar_canfd_channel_probe(struct rcar_canfd_global *gpriv, u32 ch,
  1431. u32 fcan_freq)
  1432. {
  1433. struct platform_device *pdev = gpriv->pdev;
  1434. struct rcar_canfd_channel *priv;
  1435. struct net_device *ndev;
  1436. int err = -ENODEV;
  1437. ndev = alloc_candev(sizeof(*priv), RCANFD_FIFO_DEPTH);
  1438. if (!ndev) {
  1439. dev_err(&pdev->dev, "alloc_candev() failed\n");
  1440. return -ENOMEM;
  1441. }
  1442. priv = netdev_priv(ndev);
  1443. ndev->netdev_ops = &rcar_canfd_netdev_ops;
  1444. ndev->ethtool_ops = &rcar_canfd_ethtool_ops;
  1445. ndev->flags |= IFF_ECHO;
  1446. priv->ndev = ndev;
  1447. priv->base = gpriv->base;
  1448. priv->channel = ch;
  1449. priv->gpriv = gpriv;
  1450. priv->can.clock.freq = fcan_freq;
  1451. dev_info(&pdev->dev, "can_clk rate is %u\n", priv->can.clock.freq);
  1452. if (gpriv->chip_id == RENESAS_RZG2L) {
  1453. char *irq_name;
  1454. int err_irq;
  1455. int tx_irq;
  1456. err_irq = platform_get_irq_byname(pdev, ch == 0 ? "ch0_err" : "ch1_err");
  1457. if (err_irq < 0) {
  1458. err = err_irq;
  1459. goto fail;
  1460. }
  1461. tx_irq = platform_get_irq_byname(pdev, ch == 0 ? "ch0_trx" : "ch1_trx");
  1462. if (tx_irq < 0) {
  1463. err = tx_irq;
  1464. goto fail;
  1465. }
  1466. irq_name = devm_kasprintf(&pdev->dev, GFP_KERNEL,
  1467. "canfd.ch%d_err", ch);
  1468. if (!irq_name) {
  1469. err = -ENOMEM;
  1470. goto fail;
  1471. }
  1472. err = devm_request_irq(&pdev->dev, err_irq,
  1473. rcar_canfd_channel_err_interrupt, 0,
  1474. irq_name, priv);
  1475. if (err) {
  1476. dev_err(&pdev->dev, "devm_request_irq CH Err(%d) failed, error %d\n",
  1477. err_irq, err);
  1478. goto fail;
  1479. }
  1480. irq_name = devm_kasprintf(&pdev->dev, GFP_KERNEL,
  1481. "canfd.ch%d_trx", ch);
  1482. if (!irq_name) {
  1483. err = -ENOMEM;
  1484. goto fail;
  1485. }
  1486. err = devm_request_irq(&pdev->dev, tx_irq,
  1487. rcar_canfd_channel_tx_interrupt, 0,
  1488. irq_name, priv);
  1489. if (err) {
  1490. dev_err(&pdev->dev, "devm_request_irq Tx (%d) failed, error %d\n",
  1491. tx_irq, err);
  1492. goto fail;
  1493. }
  1494. }
  1495. if (gpriv->fdmode) {
  1496. priv->can.bittiming_const = &rcar_canfd_nom_bittiming_const;
  1497. priv->can.data_bittiming_const =
  1498. &rcar_canfd_data_bittiming_const;
  1499. /* Controller starts in CAN FD only mode */
  1500. err = can_set_static_ctrlmode(ndev, CAN_CTRLMODE_FD);
  1501. if (err)
  1502. goto fail;
  1503. priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING;
  1504. } else {
  1505. /* Controller starts in Classical CAN only mode */
  1506. priv->can.bittiming_const = &rcar_canfd_bittiming_const;
  1507. priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING;
  1508. }
  1509. priv->can.do_set_mode = rcar_canfd_do_set_mode;
  1510. priv->can.do_get_berr_counter = rcar_canfd_get_berr_counter;
  1511. SET_NETDEV_DEV(ndev, &pdev->dev);
  1512. netif_napi_add_weight(ndev, &priv->napi, rcar_canfd_rx_poll,
  1513. RCANFD_NAPI_WEIGHT);
  1514. spin_lock_init(&priv->tx_lock);
  1515. gpriv->ch[priv->channel] = priv;
  1516. err = register_candev(ndev);
  1517. if (err) {
  1518. dev_err(&pdev->dev,
  1519. "register_candev() failed, error %d\n", err);
  1520. goto fail_candev;
  1521. }
  1522. dev_info(&pdev->dev, "device registered (channel %u)\n", priv->channel);
  1523. return 0;
  1524. fail_candev:
  1525. netif_napi_del(&priv->napi);
  1526. fail:
  1527. free_candev(ndev);
  1528. return err;
  1529. }
  1530. static void rcar_canfd_channel_remove(struct rcar_canfd_global *gpriv, u32 ch)
  1531. {
  1532. struct rcar_canfd_channel *priv = gpriv->ch[ch];
  1533. if (priv) {
  1534. unregister_candev(priv->ndev);
  1535. netif_napi_del(&priv->napi);
  1536. free_candev(priv->ndev);
  1537. }
  1538. }
  1539. static int rcar_canfd_probe(struct platform_device *pdev)
  1540. {
  1541. void __iomem *addr;
  1542. u32 sts, ch, fcan_freq;
  1543. struct rcar_canfd_global *gpriv;
  1544. struct device_node *of_child;
  1545. unsigned long channels_mask = 0;
  1546. int err, ch_irq, g_irq;
  1547. int g_err_irq, g_recc_irq;
  1548. bool fdmode = true; /* CAN FD only mode - default */
  1549. enum rcanfd_chip_id chip_id;
  1550. int max_channels;
  1551. char name[9] = "channelX";
  1552. int i;
  1553. chip_id = (uintptr_t)of_device_get_match_data(&pdev->dev);
  1554. max_channels = chip_id == RENESAS_R8A779A0 ? 8 : 2;
  1555. if (of_property_read_bool(pdev->dev.of_node, "renesas,no-can-fd"))
  1556. fdmode = false; /* Classical CAN only mode */
  1557. for (i = 0; i < max_channels; ++i) {
  1558. name[7] = '0' + i;
  1559. of_child = of_get_child_by_name(pdev->dev.of_node, name);
  1560. if (of_child && of_device_is_available(of_child))
  1561. channels_mask |= BIT(i);
  1562. of_node_put(of_child);
  1563. }
  1564. if (chip_id != RENESAS_RZG2L) {
  1565. ch_irq = platform_get_irq_byname_optional(pdev, "ch_int");
  1566. if (ch_irq < 0) {
  1567. /* For backward compatibility get irq by index */
  1568. ch_irq = platform_get_irq(pdev, 0);
  1569. if (ch_irq < 0)
  1570. return ch_irq;
  1571. }
  1572. g_irq = platform_get_irq_byname_optional(pdev, "g_int");
  1573. if (g_irq < 0) {
  1574. /* For backward compatibility get irq by index */
  1575. g_irq = platform_get_irq(pdev, 1);
  1576. if (g_irq < 0)
  1577. return g_irq;
  1578. }
  1579. } else {
  1580. g_err_irq = platform_get_irq_byname(pdev, "g_err");
  1581. if (g_err_irq < 0)
  1582. return g_err_irq;
  1583. g_recc_irq = platform_get_irq_byname(pdev, "g_recc");
  1584. if (g_recc_irq < 0)
  1585. return g_recc_irq;
  1586. }
  1587. /* Global controller context */
  1588. gpriv = devm_kzalloc(&pdev->dev, sizeof(*gpriv), GFP_KERNEL);
  1589. if (!gpriv)
  1590. return -ENOMEM;
  1591. gpriv->pdev = pdev;
  1592. gpriv->channels_mask = channels_mask;
  1593. gpriv->fdmode = fdmode;
  1594. gpriv->chip_id = chip_id;
  1595. gpriv->max_channels = max_channels;
  1596. if (gpriv->chip_id == RENESAS_RZG2L) {
  1597. gpriv->rstc1 = devm_reset_control_get_exclusive(&pdev->dev, "rstp_n");
  1598. if (IS_ERR(gpriv->rstc1))
  1599. return dev_err_probe(&pdev->dev, PTR_ERR(gpriv->rstc1),
  1600. "failed to get rstp_n\n");
  1601. gpriv->rstc2 = devm_reset_control_get_exclusive(&pdev->dev, "rstc_n");
  1602. if (IS_ERR(gpriv->rstc2))
  1603. return dev_err_probe(&pdev->dev, PTR_ERR(gpriv->rstc2),
  1604. "failed to get rstc_n\n");
  1605. }
  1606. /* Peripheral clock */
  1607. gpriv->clkp = devm_clk_get(&pdev->dev, "fck");
  1608. if (IS_ERR(gpriv->clkp))
  1609. return dev_err_probe(&pdev->dev, PTR_ERR(gpriv->clkp),
  1610. "cannot get peripheral clock\n");
  1611. /* fCAN clock: Pick External clock. If not available fallback to
  1612. * CANFD clock
  1613. */
  1614. gpriv->can_clk = devm_clk_get(&pdev->dev, "can_clk");
  1615. if (IS_ERR(gpriv->can_clk) || (clk_get_rate(gpriv->can_clk) == 0)) {
  1616. gpriv->can_clk = devm_clk_get(&pdev->dev, "canfd");
  1617. if (IS_ERR(gpriv->can_clk))
  1618. return dev_err_probe(&pdev->dev, PTR_ERR(gpriv->can_clk),
  1619. "cannot get canfd clock\n");
  1620. gpriv->fcan = RCANFD_CANFDCLK;
  1621. } else {
  1622. gpriv->fcan = RCANFD_EXTCLK;
  1623. }
  1624. fcan_freq = clk_get_rate(gpriv->can_clk);
  1625. if (gpriv->fcan == RCANFD_CANFDCLK && gpriv->chip_id != RENESAS_RZG2L)
  1626. /* CANFD clock is further divided by (1/2) within the IP */
  1627. fcan_freq /= 2;
  1628. addr = devm_platform_ioremap_resource(pdev, 0);
  1629. if (IS_ERR(addr)) {
  1630. err = PTR_ERR(addr);
  1631. goto fail_dev;
  1632. }
  1633. gpriv->base = addr;
  1634. /* Request IRQ that's common for both channels */
  1635. if (gpriv->chip_id != RENESAS_RZG2L) {
  1636. err = devm_request_irq(&pdev->dev, ch_irq,
  1637. rcar_canfd_channel_interrupt, 0,
  1638. "canfd.ch_int", gpriv);
  1639. if (err) {
  1640. dev_err(&pdev->dev, "devm_request_irq(%d) failed, error %d\n",
  1641. ch_irq, err);
  1642. goto fail_dev;
  1643. }
  1644. err = devm_request_irq(&pdev->dev, g_irq,
  1645. rcar_canfd_global_interrupt, 0,
  1646. "canfd.g_int", gpriv);
  1647. if (err) {
  1648. dev_err(&pdev->dev, "devm_request_irq(%d) failed, error %d\n",
  1649. g_irq, err);
  1650. goto fail_dev;
  1651. }
  1652. } else {
  1653. err = devm_request_irq(&pdev->dev, g_recc_irq,
  1654. rcar_canfd_global_receive_fifo_interrupt, 0,
  1655. "canfd.g_recc", gpriv);
  1656. if (err) {
  1657. dev_err(&pdev->dev, "devm_request_irq(%d) failed, error %d\n",
  1658. g_recc_irq, err);
  1659. goto fail_dev;
  1660. }
  1661. err = devm_request_irq(&pdev->dev, g_err_irq,
  1662. rcar_canfd_global_err_interrupt, 0,
  1663. "canfd.g_err", gpriv);
  1664. if (err) {
  1665. dev_err(&pdev->dev, "devm_request_irq(%d) failed, error %d\n",
  1666. g_err_irq, err);
  1667. goto fail_dev;
  1668. }
  1669. }
  1670. err = reset_control_reset(gpriv->rstc1);
  1671. if (err)
  1672. goto fail_dev;
  1673. err = reset_control_reset(gpriv->rstc2);
  1674. if (err) {
  1675. reset_control_assert(gpriv->rstc1);
  1676. goto fail_dev;
  1677. }
  1678. /* Enable peripheral clock for register access */
  1679. err = clk_prepare_enable(gpriv->clkp);
  1680. if (err) {
  1681. dev_err(&pdev->dev,
  1682. "failed to enable peripheral clock, error %d\n", err);
  1683. goto fail_reset;
  1684. }
  1685. err = rcar_canfd_reset_controller(gpriv);
  1686. if (err) {
  1687. dev_err(&pdev->dev, "reset controller failed\n");
  1688. goto fail_clk;
  1689. }
  1690. /* Controller in Global reset & Channel reset mode */
  1691. rcar_canfd_configure_controller(gpriv);
  1692. /* Configure per channel attributes */
  1693. for_each_set_bit(ch, &gpriv->channels_mask, max_channels) {
  1694. /* Configure Channel's Rx fifo */
  1695. rcar_canfd_configure_rx(gpriv, ch);
  1696. /* Configure Channel's Tx (Common) fifo */
  1697. rcar_canfd_configure_tx(gpriv, ch);
  1698. /* Configure receive rules */
  1699. rcar_canfd_configure_afl_rules(gpriv, ch);
  1700. }
  1701. /* Configure common interrupts */
  1702. rcar_canfd_enable_global_interrupts(gpriv);
  1703. /* Start Global operation mode */
  1704. rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GMDC_MASK,
  1705. RCANFD_GCTR_GMDC_GOPM);
  1706. /* Verify mode change */
  1707. err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
  1708. !(sts & RCANFD_GSTS_GNOPM), 2, 500000);
  1709. if (err) {
  1710. dev_err(&pdev->dev, "global operational mode failed\n");
  1711. goto fail_mode;
  1712. }
  1713. for_each_set_bit(ch, &gpriv->channels_mask, max_channels) {
  1714. err = rcar_canfd_channel_probe(gpriv, ch, fcan_freq);
  1715. if (err)
  1716. goto fail_channel;
  1717. }
  1718. platform_set_drvdata(pdev, gpriv);
  1719. dev_info(&pdev->dev, "global operational state (clk %d, fdmode %d)\n",
  1720. gpriv->fcan, gpriv->fdmode);
  1721. return 0;
  1722. fail_channel:
  1723. for_each_set_bit(ch, &gpriv->channels_mask, max_channels)
  1724. rcar_canfd_channel_remove(gpriv, ch);
  1725. fail_mode:
  1726. rcar_canfd_disable_global_interrupts(gpriv);
  1727. fail_clk:
  1728. clk_disable_unprepare(gpriv->clkp);
  1729. fail_reset:
  1730. reset_control_assert(gpriv->rstc1);
  1731. reset_control_assert(gpriv->rstc2);
  1732. fail_dev:
  1733. return err;
  1734. }
  1735. static int rcar_canfd_remove(struct platform_device *pdev)
  1736. {
  1737. struct rcar_canfd_global *gpriv = platform_get_drvdata(pdev);
  1738. u32 ch;
  1739. rcar_canfd_reset_controller(gpriv);
  1740. rcar_canfd_disable_global_interrupts(gpriv);
  1741. for_each_set_bit(ch, &gpriv->channels_mask, gpriv->max_channels) {
  1742. rcar_canfd_disable_channel_interrupts(gpriv->ch[ch]);
  1743. rcar_canfd_channel_remove(gpriv, ch);
  1744. }
  1745. /* Enter global sleep mode */
  1746. rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR);
  1747. clk_disable_unprepare(gpriv->clkp);
  1748. reset_control_assert(gpriv->rstc1);
  1749. reset_control_assert(gpriv->rstc2);
  1750. return 0;
  1751. }
  1752. static int __maybe_unused rcar_canfd_suspend(struct device *dev)
  1753. {
  1754. return 0;
  1755. }
  1756. static int __maybe_unused rcar_canfd_resume(struct device *dev)
  1757. {
  1758. return 0;
  1759. }
  1760. static SIMPLE_DEV_PM_OPS(rcar_canfd_pm_ops, rcar_canfd_suspend,
  1761. rcar_canfd_resume);
  1762. static const __maybe_unused struct of_device_id rcar_canfd_of_table[] = {
  1763. { .compatible = "renesas,rcar-gen3-canfd", .data = (void *)RENESAS_RCAR_GEN3 },
  1764. { .compatible = "renesas,rzg2l-canfd", .data = (void *)RENESAS_RZG2L },
  1765. { .compatible = "renesas,r8a779a0-canfd", .data = (void *)RENESAS_R8A779A0 },
  1766. { }
  1767. };
  1768. MODULE_DEVICE_TABLE(of, rcar_canfd_of_table);
  1769. static struct platform_driver rcar_canfd_driver = {
  1770. .driver = {
  1771. .name = RCANFD_DRV_NAME,
  1772. .of_match_table = of_match_ptr(rcar_canfd_of_table),
  1773. .pm = &rcar_canfd_pm_ops,
  1774. },
  1775. .probe = rcar_canfd_probe,
  1776. .remove = rcar_canfd_remove,
  1777. };
  1778. module_platform_driver(rcar_canfd_driver);
  1779. MODULE_AUTHOR("Ramesh Shanmugasundaram <[email protected]>");
  1780. MODULE_LICENSE("GPL");
  1781. MODULE_DESCRIPTION("CAN FD driver for Renesas R-Car SoC");
  1782. MODULE_ALIAS("platform:" RCANFD_DRV_NAME);