mtd_nandecctest.c 8.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  3. #include <linux/kernel.h>
  4. #include <linux/module.h>
  5. #include <linux/list.h>
  6. #include <linux/random.h>
  7. #include <linux/string.h>
  8. #include <linux/bitops.h>
  9. #include <linux/slab.h>
  10. #include <linux/mtd/nand-ecc-sw-hamming.h>
  11. #include "mtd_test.h"
  12. /*
  13. * Test the implementation for software ECC
  14. *
  15. * No actual MTD device is needed, So we don't need to warry about losing
  16. * important data by human error.
  17. *
  18. * This covers possible patterns of corruption which can be reliably corrected
  19. * or detected.
  20. */
  21. #if IS_ENABLED(CONFIG_MTD_RAW_NAND)
  22. struct nand_ecc_test {
  23. const char *name;
  24. void (*prepare)(void *, void *, void *, void *, const size_t);
  25. int (*verify)(void *, void *, void *, const size_t);
  26. };
  27. /*
  28. * The reason for this __change_bit_le() instead of __change_bit() is to inject
  29. * bit error properly within the region which is not a multiple of
  30. * sizeof(unsigned long) on big-endian systems
  31. */
  32. #ifdef __LITTLE_ENDIAN
  33. #define __change_bit_le(nr, addr) __change_bit(nr, addr)
  34. #elif defined(__BIG_ENDIAN)
  35. #define __change_bit_le(nr, addr) \
  36. __change_bit((nr) ^ ((BITS_PER_LONG - 1) & ~0x7), addr)
  37. #else
  38. #error "Unknown byte order"
  39. #endif
  40. static void single_bit_error_data(void *error_data, void *correct_data,
  41. size_t size)
  42. {
  43. unsigned int offset = prandom_u32_max(size * BITS_PER_BYTE);
  44. memcpy(error_data, correct_data, size);
  45. __change_bit_le(offset, error_data);
  46. }
  47. static void double_bit_error_data(void *error_data, void *correct_data,
  48. size_t size)
  49. {
  50. unsigned int offset[2];
  51. offset[0] = prandom_u32_max(size * BITS_PER_BYTE);
  52. do {
  53. offset[1] = prandom_u32_max(size * BITS_PER_BYTE);
  54. } while (offset[0] == offset[1]);
  55. memcpy(error_data, correct_data, size);
  56. __change_bit_le(offset[0], error_data);
  57. __change_bit_le(offset[1], error_data);
  58. }
  59. static unsigned int random_ecc_bit(size_t size)
  60. {
  61. unsigned int offset = prandom_u32_max(3 * BITS_PER_BYTE);
  62. if (size == 256) {
  63. /*
  64. * Don't inject a bit error into the insignificant bits (16th
  65. * and 17th bit) in ECC code for 256 byte data block
  66. */
  67. while (offset == 16 || offset == 17)
  68. offset = prandom_u32_max(3 * BITS_PER_BYTE);
  69. }
  70. return offset;
  71. }
  72. static void single_bit_error_ecc(void *error_ecc, void *correct_ecc,
  73. size_t size)
  74. {
  75. unsigned int offset = random_ecc_bit(size);
  76. memcpy(error_ecc, correct_ecc, 3);
  77. __change_bit_le(offset, error_ecc);
  78. }
  79. static void double_bit_error_ecc(void *error_ecc, void *correct_ecc,
  80. size_t size)
  81. {
  82. unsigned int offset[2];
  83. offset[0] = random_ecc_bit(size);
  84. do {
  85. offset[1] = random_ecc_bit(size);
  86. } while (offset[0] == offset[1]);
  87. memcpy(error_ecc, correct_ecc, 3);
  88. __change_bit_le(offset[0], error_ecc);
  89. __change_bit_le(offset[1], error_ecc);
  90. }
  91. static void no_bit_error(void *error_data, void *error_ecc,
  92. void *correct_data, void *correct_ecc, const size_t size)
  93. {
  94. memcpy(error_data, correct_data, size);
  95. memcpy(error_ecc, correct_ecc, 3);
  96. }
  97. static int no_bit_error_verify(void *error_data, void *error_ecc,
  98. void *correct_data, const size_t size)
  99. {
  100. bool sm_order = IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC);
  101. unsigned char calc_ecc[3];
  102. int ret;
  103. ecc_sw_hamming_calculate(error_data, size, calc_ecc, sm_order);
  104. ret = ecc_sw_hamming_correct(error_data, error_ecc, calc_ecc, size,
  105. sm_order);
  106. if (ret == 0 && !memcmp(correct_data, error_data, size))
  107. return 0;
  108. return -EINVAL;
  109. }
  110. static void single_bit_error_in_data(void *error_data, void *error_ecc,
  111. void *correct_data, void *correct_ecc, const size_t size)
  112. {
  113. single_bit_error_data(error_data, correct_data, size);
  114. memcpy(error_ecc, correct_ecc, 3);
  115. }
  116. static void single_bit_error_in_ecc(void *error_data, void *error_ecc,
  117. void *correct_data, void *correct_ecc, const size_t size)
  118. {
  119. memcpy(error_data, correct_data, size);
  120. single_bit_error_ecc(error_ecc, correct_ecc, size);
  121. }
  122. static int single_bit_error_correct(void *error_data, void *error_ecc,
  123. void *correct_data, const size_t size)
  124. {
  125. bool sm_order = IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC);
  126. unsigned char calc_ecc[3];
  127. int ret;
  128. ecc_sw_hamming_calculate(error_data, size, calc_ecc, sm_order);
  129. ret = ecc_sw_hamming_correct(error_data, error_ecc, calc_ecc, size,
  130. sm_order);
  131. if (ret == 1 && !memcmp(correct_data, error_data, size))
  132. return 0;
  133. return -EINVAL;
  134. }
  135. static void double_bit_error_in_data(void *error_data, void *error_ecc,
  136. void *correct_data, void *correct_ecc, const size_t size)
  137. {
  138. double_bit_error_data(error_data, correct_data, size);
  139. memcpy(error_ecc, correct_ecc, 3);
  140. }
  141. static void single_bit_error_in_data_and_ecc(void *error_data, void *error_ecc,
  142. void *correct_data, void *correct_ecc, const size_t size)
  143. {
  144. single_bit_error_data(error_data, correct_data, size);
  145. single_bit_error_ecc(error_ecc, correct_ecc, size);
  146. }
  147. static void double_bit_error_in_ecc(void *error_data, void *error_ecc,
  148. void *correct_data, void *correct_ecc, const size_t size)
  149. {
  150. memcpy(error_data, correct_data, size);
  151. double_bit_error_ecc(error_ecc, correct_ecc, size);
  152. }
  153. static int double_bit_error_detect(void *error_data, void *error_ecc,
  154. void *correct_data, const size_t size)
  155. {
  156. bool sm_order = IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC);
  157. unsigned char calc_ecc[3];
  158. int ret;
  159. ecc_sw_hamming_calculate(error_data, size, calc_ecc, sm_order);
  160. ret = ecc_sw_hamming_correct(error_data, error_ecc, calc_ecc, size,
  161. sm_order);
  162. return (ret == -EBADMSG) ? 0 : -EINVAL;
  163. }
  164. static const struct nand_ecc_test nand_ecc_test[] = {
  165. {
  166. .name = "no-bit-error",
  167. .prepare = no_bit_error,
  168. .verify = no_bit_error_verify,
  169. },
  170. {
  171. .name = "single-bit-error-in-data-correct",
  172. .prepare = single_bit_error_in_data,
  173. .verify = single_bit_error_correct,
  174. },
  175. {
  176. .name = "single-bit-error-in-ecc-correct",
  177. .prepare = single_bit_error_in_ecc,
  178. .verify = single_bit_error_correct,
  179. },
  180. {
  181. .name = "double-bit-error-in-data-detect",
  182. .prepare = double_bit_error_in_data,
  183. .verify = double_bit_error_detect,
  184. },
  185. {
  186. .name = "single-bit-error-in-data-and-ecc-detect",
  187. .prepare = single_bit_error_in_data_and_ecc,
  188. .verify = double_bit_error_detect,
  189. },
  190. {
  191. .name = "double-bit-error-in-ecc-detect",
  192. .prepare = double_bit_error_in_ecc,
  193. .verify = double_bit_error_detect,
  194. },
  195. };
  196. static void dump_data_ecc(void *error_data, void *error_ecc, void *correct_data,
  197. void *correct_ecc, const size_t size)
  198. {
  199. pr_info("hexdump of error data:\n");
  200. print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 4,
  201. error_data, size, false);
  202. print_hex_dump(KERN_INFO, "hexdump of error ecc: ",
  203. DUMP_PREFIX_NONE, 16, 1, error_ecc, 3, false);
  204. pr_info("hexdump of correct data:\n");
  205. print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 4,
  206. correct_data, size, false);
  207. print_hex_dump(KERN_INFO, "hexdump of correct ecc: ",
  208. DUMP_PREFIX_NONE, 16, 1, correct_ecc, 3, false);
  209. }
  210. static int nand_ecc_test_run(const size_t size)
  211. {
  212. bool sm_order = IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC);
  213. int i;
  214. int err = 0;
  215. void *error_data;
  216. void *error_ecc;
  217. void *correct_data;
  218. void *correct_ecc;
  219. error_data = kmalloc(size, GFP_KERNEL);
  220. error_ecc = kmalloc(3, GFP_KERNEL);
  221. correct_data = kmalloc(size, GFP_KERNEL);
  222. correct_ecc = kmalloc(3, GFP_KERNEL);
  223. if (!error_data || !error_ecc || !correct_data || !correct_ecc) {
  224. err = -ENOMEM;
  225. goto error;
  226. }
  227. get_random_bytes(correct_data, size);
  228. ecc_sw_hamming_calculate(correct_data, size, correct_ecc, sm_order);
  229. for (i = 0; i < ARRAY_SIZE(nand_ecc_test); i++) {
  230. nand_ecc_test[i].prepare(error_data, error_ecc,
  231. correct_data, correct_ecc, size);
  232. err = nand_ecc_test[i].verify(error_data, error_ecc,
  233. correct_data, size);
  234. if (err) {
  235. pr_err("not ok - %s-%zd\n",
  236. nand_ecc_test[i].name, size);
  237. dump_data_ecc(error_data, error_ecc,
  238. correct_data, correct_ecc, size);
  239. break;
  240. }
  241. pr_info("ok - %s-%zd\n",
  242. nand_ecc_test[i].name, size);
  243. err = mtdtest_relax();
  244. if (err)
  245. break;
  246. }
  247. error:
  248. kfree(error_data);
  249. kfree(error_ecc);
  250. kfree(correct_data);
  251. kfree(correct_ecc);
  252. return err;
  253. }
  254. #else
  255. static int nand_ecc_test_run(const size_t size)
  256. {
  257. return 0;
  258. }
  259. #endif
  260. static int __init ecc_test_init(void)
  261. {
  262. int err;
  263. err = nand_ecc_test_run(256);
  264. if (err)
  265. return err;
  266. return nand_ecc_test_run(512);
  267. }
  268. static void __exit ecc_test_exit(void)
  269. {
  270. }
  271. module_init(ecc_test_init);
  272. module_exit(ecc_test_exit);
  273. MODULE_DESCRIPTION("NAND ECC function test module");
  274. MODULE_AUTHOR("Akinobu Mita");
  275. MODULE_LICENSE("GPL");