micron.c 9.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Copyright (c) 2016-2017 Micron Technology, Inc.
  4. *
  5. * Authors:
  6. * Peter Pan <[email protected]>
  7. */
  8. #include <linux/device.h>
  9. #include <linux/kernel.h>
  10. #include <linux/mtd/spinand.h>
  11. #define SPINAND_MFR_MICRON 0x2c
  12. #define MICRON_STATUS_ECC_MASK GENMASK(6, 4)
  13. #define MICRON_STATUS_ECC_NO_BITFLIPS (0 << 4)
  14. #define MICRON_STATUS_ECC_1TO3_BITFLIPS (1 << 4)
  15. #define MICRON_STATUS_ECC_4TO6_BITFLIPS (3 << 4)
  16. #define MICRON_STATUS_ECC_7TO8_BITFLIPS (5 << 4)
  17. #define MICRON_CFG_CR BIT(0)
  18. /*
  19. * As per datasheet, die selection is done by the 6th bit of Die
  20. * Select Register (Address 0xD0).
  21. */
  22. #define MICRON_DIE_SELECT_REG 0xD0
  23. #define MICRON_SELECT_DIE(x) ((x) << 6)
  24. static SPINAND_OP_VARIANTS(quadio_read_cache_variants,
  25. SPINAND_PAGE_READ_FROM_CACHE_QUADIO_OP(0, 2, NULL, 0),
  26. SPINAND_PAGE_READ_FROM_CACHE_X4_OP(0, 1, NULL, 0),
  27. SPINAND_PAGE_READ_FROM_CACHE_DUALIO_OP(0, 1, NULL, 0),
  28. SPINAND_PAGE_READ_FROM_CACHE_X2_OP(0, 1, NULL, 0),
  29. SPINAND_PAGE_READ_FROM_CACHE_OP(true, 0, 1, NULL, 0),
  30. SPINAND_PAGE_READ_FROM_CACHE_OP(false, 0, 1, NULL, 0));
  31. static SPINAND_OP_VARIANTS(x4_write_cache_variants,
  32. SPINAND_PROG_LOAD_X4(true, 0, NULL, 0),
  33. SPINAND_PROG_LOAD(true, 0, NULL, 0));
  34. static SPINAND_OP_VARIANTS(x4_update_cache_variants,
  35. SPINAND_PROG_LOAD_X4(false, 0, NULL, 0),
  36. SPINAND_PROG_LOAD(false, 0, NULL, 0));
  37. /* Micron MT29F2G01AAAED Device */
  38. static SPINAND_OP_VARIANTS(x4_read_cache_variants,
  39. SPINAND_PAGE_READ_FROM_CACHE_X4_OP(0, 1, NULL, 0),
  40. SPINAND_PAGE_READ_FROM_CACHE_X2_OP(0, 1, NULL, 0),
  41. SPINAND_PAGE_READ_FROM_CACHE_OP(true, 0, 1, NULL, 0),
  42. SPINAND_PAGE_READ_FROM_CACHE_OP(false, 0, 1, NULL, 0));
  43. static SPINAND_OP_VARIANTS(x1_write_cache_variants,
  44. SPINAND_PROG_LOAD(true, 0, NULL, 0));
  45. static SPINAND_OP_VARIANTS(x1_update_cache_variants,
  46. SPINAND_PROG_LOAD(false, 0, NULL, 0));
  47. static int micron_8_ooblayout_ecc(struct mtd_info *mtd, int section,
  48. struct mtd_oob_region *region)
  49. {
  50. if (section)
  51. return -ERANGE;
  52. region->offset = mtd->oobsize / 2;
  53. region->length = mtd->oobsize / 2;
  54. return 0;
  55. }
  56. static int micron_8_ooblayout_free(struct mtd_info *mtd, int section,
  57. struct mtd_oob_region *region)
  58. {
  59. if (section)
  60. return -ERANGE;
  61. /* Reserve 2 bytes for the BBM. */
  62. region->offset = 2;
  63. region->length = (mtd->oobsize / 2) - 2;
  64. return 0;
  65. }
  66. static const struct mtd_ooblayout_ops micron_8_ooblayout = {
  67. .ecc = micron_8_ooblayout_ecc,
  68. .free = micron_8_ooblayout_free,
  69. };
  70. static int micron_4_ooblayout_ecc(struct mtd_info *mtd, int section,
  71. struct mtd_oob_region *region)
  72. {
  73. struct spinand_device *spinand = mtd_to_spinand(mtd);
  74. if (section >= spinand->base.memorg.pagesize /
  75. mtd->ecc_step_size)
  76. return -ERANGE;
  77. region->offset = (section * 16) + 8;
  78. region->length = 8;
  79. return 0;
  80. }
  81. static int micron_4_ooblayout_free(struct mtd_info *mtd, int section,
  82. struct mtd_oob_region *region)
  83. {
  84. struct spinand_device *spinand = mtd_to_spinand(mtd);
  85. if (section >= spinand->base.memorg.pagesize /
  86. mtd->ecc_step_size)
  87. return -ERANGE;
  88. if (section) {
  89. region->offset = 16 * section;
  90. region->length = 8;
  91. } else {
  92. /* section 0 has two bytes reserved for the BBM */
  93. region->offset = 2;
  94. region->length = 6;
  95. }
  96. return 0;
  97. }
  98. static const struct mtd_ooblayout_ops micron_4_ooblayout = {
  99. .ecc = micron_4_ooblayout_ecc,
  100. .free = micron_4_ooblayout_free,
  101. };
  102. static int micron_select_target(struct spinand_device *spinand,
  103. unsigned int target)
  104. {
  105. struct spi_mem_op op = SPINAND_SET_FEATURE_OP(MICRON_DIE_SELECT_REG,
  106. spinand->scratchbuf);
  107. if (target > 1)
  108. return -EINVAL;
  109. *spinand->scratchbuf = MICRON_SELECT_DIE(target);
  110. return spi_mem_exec_op(spinand->spimem, &op);
  111. }
  112. static int micron_8_ecc_get_status(struct spinand_device *spinand,
  113. u8 status)
  114. {
  115. switch (status & MICRON_STATUS_ECC_MASK) {
  116. case STATUS_ECC_NO_BITFLIPS:
  117. return 0;
  118. case STATUS_ECC_UNCOR_ERROR:
  119. return -EBADMSG;
  120. case MICRON_STATUS_ECC_1TO3_BITFLIPS:
  121. return 3;
  122. case MICRON_STATUS_ECC_4TO6_BITFLIPS:
  123. return 6;
  124. case MICRON_STATUS_ECC_7TO8_BITFLIPS:
  125. return 8;
  126. default:
  127. break;
  128. }
  129. return -EINVAL;
  130. }
  131. static const struct spinand_info micron_spinand_table[] = {
  132. /* M79A 2Gb 3.3V */
  133. SPINAND_INFO("MT29F2G01ABAGD",
  134. SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x24),
  135. NAND_MEMORG(1, 2048, 128, 64, 2048, 40, 2, 1, 1),
  136. NAND_ECCREQ(8, 512),
  137. SPINAND_INFO_OP_VARIANTS(&quadio_read_cache_variants,
  138. &x4_write_cache_variants,
  139. &x4_update_cache_variants),
  140. 0,
  141. SPINAND_ECCINFO(&micron_8_ooblayout,
  142. micron_8_ecc_get_status)),
  143. /* M79A 2Gb 1.8V */
  144. SPINAND_INFO("MT29F2G01ABBGD",
  145. SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x25),
  146. NAND_MEMORG(1, 2048, 128, 64, 2048, 40, 2, 1, 1),
  147. NAND_ECCREQ(8, 512),
  148. SPINAND_INFO_OP_VARIANTS(&quadio_read_cache_variants,
  149. &x4_write_cache_variants,
  150. &x4_update_cache_variants),
  151. 0,
  152. SPINAND_ECCINFO(&micron_8_ooblayout,
  153. micron_8_ecc_get_status)),
  154. /* M78A 1Gb 3.3V */
  155. SPINAND_INFO("MT29F1G01ABAFD",
  156. SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x14),
  157. NAND_MEMORG(1, 2048, 128, 64, 1024, 20, 1, 1, 1),
  158. NAND_ECCREQ(8, 512),
  159. SPINAND_INFO_OP_VARIANTS(&quadio_read_cache_variants,
  160. &x4_write_cache_variants,
  161. &x4_update_cache_variants),
  162. 0,
  163. SPINAND_ECCINFO(&micron_8_ooblayout,
  164. micron_8_ecc_get_status)),
  165. /* M78A 1Gb 1.8V */
  166. SPINAND_INFO("MT29F1G01ABAFD",
  167. SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x15),
  168. NAND_MEMORG(1, 2048, 128, 64, 1024, 20, 1, 1, 1),
  169. NAND_ECCREQ(8, 512),
  170. SPINAND_INFO_OP_VARIANTS(&quadio_read_cache_variants,
  171. &x4_write_cache_variants,
  172. &x4_update_cache_variants),
  173. 0,
  174. SPINAND_ECCINFO(&micron_8_ooblayout,
  175. micron_8_ecc_get_status)),
  176. /* M79A 4Gb 3.3V */
  177. SPINAND_INFO("MT29F4G01ADAGD",
  178. SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x36),
  179. NAND_MEMORG(1, 2048, 128, 64, 2048, 80, 2, 1, 2),
  180. NAND_ECCREQ(8, 512),
  181. SPINAND_INFO_OP_VARIANTS(&quadio_read_cache_variants,
  182. &x4_write_cache_variants,
  183. &x4_update_cache_variants),
  184. 0,
  185. SPINAND_ECCINFO(&micron_8_ooblayout,
  186. micron_8_ecc_get_status),
  187. SPINAND_SELECT_TARGET(micron_select_target)),
  188. /* M70A 4Gb 3.3V */
  189. SPINAND_INFO("MT29F4G01ABAFD",
  190. SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x34),
  191. NAND_MEMORG(1, 4096, 256, 64, 2048, 40, 1, 1, 1),
  192. NAND_ECCREQ(8, 512),
  193. SPINAND_INFO_OP_VARIANTS(&quadio_read_cache_variants,
  194. &x4_write_cache_variants,
  195. &x4_update_cache_variants),
  196. SPINAND_HAS_CR_FEAT_BIT,
  197. SPINAND_ECCINFO(&micron_8_ooblayout,
  198. micron_8_ecc_get_status)),
  199. /* M70A 4Gb 1.8V */
  200. SPINAND_INFO("MT29F4G01ABBFD",
  201. SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x35),
  202. NAND_MEMORG(1, 4096, 256, 64, 2048, 40, 1, 1, 1),
  203. NAND_ECCREQ(8, 512),
  204. SPINAND_INFO_OP_VARIANTS(&quadio_read_cache_variants,
  205. &x4_write_cache_variants,
  206. &x4_update_cache_variants),
  207. SPINAND_HAS_CR_FEAT_BIT,
  208. SPINAND_ECCINFO(&micron_8_ooblayout,
  209. micron_8_ecc_get_status)),
  210. /* M70A 8Gb 3.3V */
  211. SPINAND_INFO("MT29F8G01ADAFD",
  212. SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x46),
  213. NAND_MEMORG(1, 4096, 256, 64, 2048, 40, 1, 1, 2),
  214. NAND_ECCREQ(8, 512),
  215. SPINAND_INFO_OP_VARIANTS(&quadio_read_cache_variants,
  216. &x4_write_cache_variants,
  217. &x4_update_cache_variants),
  218. SPINAND_HAS_CR_FEAT_BIT,
  219. SPINAND_ECCINFO(&micron_8_ooblayout,
  220. micron_8_ecc_get_status),
  221. SPINAND_SELECT_TARGET(micron_select_target)),
  222. /* M70A 8Gb 1.8V */
  223. SPINAND_INFO("MT29F8G01ADBFD",
  224. SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x47),
  225. NAND_MEMORG(1, 4096, 256, 64, 2048, 40, 1, 1, 2),
  226. NAND_ECCREQ(8, 512),
  227. SPINAND_INFO_OP_VARIANTS(&quadio_read_cache_variants,
  228. &x4_write_cache_variants,
  229. &x4_update_cache_variants),
  230. SPINAND_HAS_CR_FEAT_BIT,
  231. SPINAND_ECCINFO(&micron_8_ooblayout,
  232. micron_8_ecc_get_status),
  233. SPINAND_SELECT_TARGET(micron_select_target)),
  234. /* M69A 2Gb 3.3V */
  235. SPINAND_INFO("MT29F2G01AAAED",
  236. SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x9F),
  237. NAND_MEMORG(1, 2048, 64, 64, 2048, 80, 2, 1, 1),
  238. NAND_ECCREQ(4, 512),
  239. SPINAND_INFO_OP_VARIANTS(&x4_read_cache_variants,
  240. &x1_write_cache_variants,
  241. &x1_update_cache_variants),
  242. 0,
  243. SPINAND_ECCINFO(&micron_4_ooblayout, NULL)),
  244. };
  245. static int micron_spinand_init(struct spinand_device *spinand)
  246. {
  247. /*
  248. * M70A device series enable Continuous Read feature at Power-up,
  249. * which is not supported. Disable this bit to avoid any possible
  250. * failure.
  251. */
  252. if (spinand->flags & SPINAND_HAS_CR_FEAT_BIT)
  253. return spinand_upd_cfg(spinand, MICRON_CFG_CR, 0);
  254. return 0;
  255. }
  256. static const struct spinand_manufacturer_ops micron_spinand_manuf_ops = {
  257. .init = micron_spinand_init,
  258. };
  259. const struct spinand_manufacturer micron_spinand_manufacturer = {
  260. .id = SPINAND_MFR_MICRON,
  261. .name = "Micron",
  262. .chips = micron_spinand_table,
  263. .nchips = ARRAY_SIZE(micron_spinand_table),
  264. .ops = &micron_spinand_manuf_ops,
  265. };