tmio_nand.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533
  1. /*
  2. * Toshiba TMIO NAND flash controller driver
  3. *
  4. * Slightly murky pre-git history of the driver:
  5. *
  6. * Copyright (c) Ian Molton 2004, 2005, 2008
  7. * Original work, independent of sharps code. Included hardware ECC support.
  8. * Hard ECC did not work for writes in the early revisions.
  9. * Copyright (c) Dirk Opfer 2005.
  10. * Modifications developed from sharps code but
  11. * NOT containing any, ported onto Ians base.
  12. * Copyright (c) Chris Humbert 2005
  13. * Copyright (c) Dmitry Baryshkov 2008
  14. * Minor fixes
  15. *
  16. * Parts copyright Sebastian Carlier
  17. *
  18. * This file is licensed under
  19. * the terms of the GNU General Public License version 2. This program
  20. * is licensed "as is" without any warranty of any kind, whether express
  21. * or implied.
  22. *
  23. */
  24. #include <linux/kernel.h>
  25. #include <linux/module.h>
  26. #include <linux/platform_device.h>
  27. #include <linux/mfd/core.h>
  28. #include <linux/mfd/tmio.h>
  29. #include <linux/delay.h>
  30. #include <linux/io.h>
  31. #include <linux/irq.h>
  32. #include <linux/interrupt.h>
  33. #include <linux/ioport.h>
  34. #include <linux/mtd/mtd.h>
  35. #include <linux/mtd/rawnand.h>
  36. #include <linux/mtd/partitions.h>
  37. #include <linux/slab.h>
  38. /*--------------------------------------------------------------------------*/
  39. /*
  40. * NAND Flash Host Controller Configuration Register
  41. */
  42. #define CCR_COMMAND 0x04 /* w Command */
  43. #define CCR_BASE 0x10 /* l NAND Flash Control Reg Base Addr */
  44. #define CCR_INTP 0x3d /* b Interrupt Pin */
  45. #define CCR_INTE 0x48 /* b Interrupt Enable */
  46. #define CCR_EC 0x4a /* b Event Control */
  47. #define CCR_ICC 0x4c /* b Internal Clock Control */
  48. #define CCR_ECCC 0x5b /* b ECC Control */
  49. #define CCR_NFTC 0x60 /* b NAND Flash Transaction Control */
  50. #define CCR_NFM 0x61 /* b NAND Flash Monitor */
  51. #define CCR_NFPSC 0x62 /* b NAND Flash Power Supply Control */
  52. #define CCR_NFDC 0x63 /* b NAND Flash Detect Control */
  53. /*
  54. * NAND Flash Control Register
  55. */
  56. #define FCR_DATA 0x00 /* bwl Data Register */
  57. #define FCR_MODE 0x04 /* b Mode Register */
  58. #define FCR_STATUS 0x05 /* b Status Register */
  59. #define FCR_ISR 0x06 /* b Interrupt Status Register */
  60. #define FCR_IMR 0x07 /* b Interrupt Mask Register */
  61. /* FCR_MODE Register Command List */
  62. #define FCR_MODE_DATA 0x94 /* Data Data_Mode */
  63. #define FCR_MODE_COMMAND 0x95 /* Data Command_Mode */
  64. #define FCR_MODE_ADDRESS 0x96 /* Data Address_Mode */
  65. #define FCR_MODE_HWECC_CALC 0xB4 /* HW-ECC Data */
  66. #define FCR_MODE_HWECC_RESULT 0xD4 /* HW-ECC Calc result Read_Mode */
  67. #define FCR_MODE_HWECC_RESET 0xF4 /* HW-ECC Reset */
  68. #define FCR_MODE_POWER_ON 0x0C /* Power Supply ON to SSFDC card */
  69. #define FCR_MODE_POWER_OFF 0x08 /* Power Supply OFF to SSFDC card */
  70. #define FCR_MODE_LED_OFF 0x00 /* LED OFF */
  71. #define FCR_MODE_LED_ON 0x04 /* LED ON */
  72. #define FCR_MODE_EJECT_ON 0x68 /* Ejection events active */
  73. #define FCR_MODE_EJECT_OFF 0x08 /* Ejection events ignored */
  74. #define FCR_MODE_LOCK 0x6C /* Lock_Mode. Eject Switch Invalid */
  75. #define FCR_MODE_UNLOCK 0x0C /* UnLock_Mode. Eject Switch is valid */
  76. #define FCR_MODE_CONTROLLER_ID 0x40 /* Controller ID Read */
  77. #define FCR_MODE_STANDBY 0x00 /* SSFDC card Changes Standby State */
  78. #define FCR_MODE_WE 0x80
  79. #define FCR_MODE_ECC1 0x40
  80. #define FCR_MODE_ECC0 0x20
  81. #define FCR_MODE_CE 0x10
  82. #define FCR_MODE_PCNT1 0x08
  83. #define FCR_MODE_PCNT0 0x04
  84. #define FCR_MODE_ALE 0x02
  85. #define FCR_MODE_CLE 0x01
  86. #define FCR_STATUS_BUSY 0x80
  87. /*--------------------------------------------------------------------------*/
  88. struct tmio_nand {
  89. struct nand_controller controller;
  90. struct nand_chip chip;
  91. struct completion comp;
  92. struct platform_device *dev;
  93. void __iomem *ccr;
  94. void __iomem *fcr;
  95. unsigned long fcr_base;
  96. unsigned int irq;
  97. /* for tmio_nand_read_byte */
  98. u8 read;
  99. unsigned read_good:1;
  100. };
  101. static inline struct tmio_nand *mtd_to_tmio(struct mtd_info *mtd)
  102. {
  103. return container_of(mtd_to_nand(mtd), struct tmio_nand, chip);
  104. }
  105. /*--------------------------------------------------------------------------*/
  106. static void tmio_nand_hwcontrol(struct nand_chip *chip, int cmd,
  107. unsigned int ctrl)
  108. {
  109. struct tmio_nand *tmio = mtd_to_tmio(nand_to_mtd(chip));
  110. if (ctrl & NAND_CTRL_CHANGE) {
  111. u8 mode;
  112. if (ctrl & NAND_NCE) {
  113. mode = FCR_MODE_DATA;
  114. if (ctrl & NAND_CLE)
  115. mode |= FCR_MODE_CLE;
  116. else
  117. mode &= ~FCR_MODE_CLE;
  118. if (ctrl & NAND_ALE)
  119. mode |= FCR_MODE_ALE;
  120. else
  121. mode &= ~FCR_MODE_ALE;
  122. } else {
  123. mode = FCR_MODE_STANDBY;
  124. }
  125. tmio_iowrite8(mode, tmio->fcr + FCR_MODE);
  126. tmio->read_good = 0;
  127. }
  128. if (cmd != NAND_CMD_NONE)
  129. tmio_iowrite8(cmd, chip->legacy.IO_ADDR_W);
  130. }
  131. static int tmio_nand_dev_ready(struct nand_chip *chip)
  132. {
  133. struct tmio_nand *tmio = mtd_to_tmio(nand_to_mtd(chip));
  134. return !(tmio_ioread8(tmio->fcr + FCR_STATUS) & FCR_STATUS_BUSY);
  135. }
  136. static irqreturn_t tmio_irq(int irq, void *__tmio)
  137. {
  138. struct tmio_nand *tmio = __tmio;
  139. /* disable RDYREQ interrupt */
  140. tmio_iowrite8(0x00, tmio->fcr + FCR_IMR);
  141. complete(&tmio->comp);
  142. return IRQ_HANDLED;
  143. }
  144. /*
  145. *The TMIO core has a RDYREQ interrupt on the posedge of #SMRB.
  146. *This interrupt is normally disabled, but for long operations like
  147. *erase and write, we enable it to wake us up. The irq handler
  148. *disables the interrupt.
  149. */
  150. static int tmio_nand_wait(struct nand_chip *nand_chip)
  151. {
  152. struct tmio_nand *tmio = mtd_to_tmio(nand_to_mtd(nand_chip));
  153. long timeout;
  154. u8 status;
  155. /* enable RDYREQ interrupt */
  156. tmio_iowrite8(0x0f, tmio->fcr + FCR_ISR);
  157. reinit_completion(&tmio->comp);
  158. tmio_iowrite8(0x81, tmio->fcr + FCR_IMR);
  159. timeout = 400;
  160. timeout = wait_for_completion_timeout(&tmio->comp,
  161. msecs_to_jiffies(timeout));
  162. if (unlikely(!tmio_nand_dev_ready(nand_chip))) {
  163. tmio_iowrite8(0x00, tmio->fcr + FCR_IMR);
  164. dev_warn(&tmio->dev->dev, "still busy after 400 ms\n");
  165. } else if (unlikely(!timeout)) {
  166. tmio_iowrite8(0x00, tmio->fcr + FCR_IMR);
  167. dev_warn(&tmio->dev->dev, "timeout waiting for interrupt\n");
  168. }
  169. nand_status_op(nand_chip, &status);
  170. return status;
  171. }
  172. /*
  173. *The TMIO controller combines two 8-bit data bytes into one 16-bit
  174. *word. This function separates them so nand_base.c works as expected,
  175. *especially its NAND_CMD_READID routines.
  176. *
  177. *To prevent stale data from being read, tmio_nand_hwcontrol() clears
  178. *tmio->read_good.
  179. */
  180. static u_char tmio_nand_read_byte(struct nand_chip *chip)
  181. {
  182. struct tmio_nand *tmio = mtd_to_tmio(nand_to_mtd(chip));
  183. unsigned int data;
  184. if (tmio->read_good--)
  185. return tmio->read;
  186. data = tmio_ioread16(tmio->fcr + FCR_DATA);
  187. tmio->read = data >> 8;
  188. return data;
  189. }
  190. /*
  191. *The TMIO controller converts an 8-bit NAND interface to a 16-bit
  192. *bus interface, so all data reads and writes must be 16-bit wide.
  193. *Thus, we implement 16-bit versions of the read, write, and verify
  194. *buffer functions.
  195. */
  196. static void
  197. tmio_nand_write_buf(struct nand_chip *chip, const u_char *buf, int len)
  198. {
  199. struct tmio_nand *tmio = mtd_to_tmio(nand_to_mtd(chip));
  200. tmio_iowrite16_rep(tmio->fcr + FCR_DATA, buf, len >> 1);
  201. }
  202. static void tmio_nand_read_buf(struct nand_chip *chip, u_char *buf, int len)
  203. {
  204. struct tmio_nand *tmio = mtd_to_tmio(nand_to_mtd(chip));
  205. tmio_ioread16_rep(tmio->fcr + FCR_DATA, buf, len >> 1);
  206. }
  207. static void tmio_nand_enable_hwecc(struct nand_chip *chip, int mode)
  208. {
  209. struct tmio_nand *tmio = mtd_to_tmio(nand_to_mtd(chip));
  210. tmio_iowrite8(FCR_MODE_HWECC_RESET, tmio->fcr + FCR_MODE);
  211. tmio_ioread8(tmio->fcr + FCR_DATA); /* dummy read */
  212. tmio_iowrite8(FCR_MODE_HWECC_CALC, tmio->fcr + FCR_MODE);
  213. }
  214. static int tmio_nand_calculate_ecc(struct nand_chip *chip, const u_char *dat,
  215. u_char *ecc_code)
  216. {
  217. struct tmio_nand *tmio = mtd_to_tmio(nand_to_mtd(chip));
  218. unsigned int ecc;
  219. tmio_iowrite8(FCR_MODE_HWECC_RESULT, tmio->fcr + FCR_MODE);
  220. ecc = tmio_ioread16(tmio->fcr + FCR_DATA);
  221. ecc_code[1] = ecc; /* 000-255 LP7-0 */
  222. ecc_code[0] = ecc >> 8; /* 000-255 LP15-8 */
  223. ecc = tmio_ioread16(tmio->fcr + FCR_DATA);
  224. ecc_code[2] = ecc; /* 000-255 CP5-0,11b */
  225. ecc_code[4] = ecc >> 8; /* 256-511 LP7-0 */
  226. ecc = tmio_ioread16(tmio->fcr + FCR_DATA);
  227. ecc_code[3] = ecc; /* 256-511 LP15-8 */
  228. ecc_code[5] = ecc >> 8; /* 256-511 CP5-0,11b */
  229. tmio_iowrite8(FCR_MODE_DATA, tmio->fcr + FCR_MODE);
  230. return 0;
  231. }
  232. static int tmio_nand_correct_data(struct nand_chip *chip, unsigned char *buf,
  233. unsigned char *read_ecc,
  234. unsigned char *calc_ecc)
  235. {
  236. int r0, r1;
  237. /* assume ecc.size = 512 and ecc.bytes = 6 */
  238. r0 = rawnand_sw_hamming_correct(chip, buf, read_ecc, calc_ecc);
  239. if (r0 < 0)
  240. return r0;
  241. r1 = rawnand_sw_hamming_correct(chip, buf + 256, read_ecc + 3,
  242. calc_ecc + 3);
  243. if (r1 < 0)
  244. return r1;
  245. return r0 + r1;
  246. }
  247. static int tmio_hw_init(struct platform_device *dev, struct tmio_nand *tmio)
  248. {
  249. const struct mfd_cell *cell = mfd_get_cell(dev);
  250. int ret;
  251. if (cell->enable) {
  252. ret = cell->enable(dev);
  253. if (ret)
  254. return ret;
  255. }
  256. /* (4Ch) CLKRUN Enable 1st spcrunc */
  257. tmio_iowrite8(0x81, tmio->ccr + CCR_ICC);
  258. /* (10h)BaseAddress 0x1000 spba.spba2 */
  259. tmio_iowrite16(tmio->fcr_base, tmio->ccr + CCR_BASE);
  260. tmio_iowrite16(tmio->fcr_base >> 16, tmio->ccr + CCR_BASE + 2);
  261. /* (04h)Command Register I/O spcmd */
  262. tmio_iowrite8(0x02, tmio->ccr + CCR_COMMAND);
  263. /* (62h) Power Supply Control ssmpwc */
  264. /* HardPowerOFF - SuspendOFF - PowerSupplyWait_4MS */
  265. tmio_iowrite8(0x02, tmio->ccr + CCR_NFPSC);
  266. /* (63h) Detect Control ssmdtc */
  267. tmio_iowrite8(0x02, tmio->ccr + CCR_NFDC);
  268. /* Interrupt status register clear sintst */
  269. tmio_iowrite8(0x0f, tmio->fcr + FCR_ISR);
  270. /* After power supply, Media are reset smode */
  271. tmio_iowrite8(FCR_MODE_POWER_ON, tmio->fcr + FCR_MODE);
  272. tmio_iowrite8(FCR_MODE_COMMAND, tmio->fcr + FCR_MODE);
  273. tmio_iowrite8(NAND_CMD_RESET, tmio->fcr + FCR_DATA);
  274. /* Standby Mode smode */
  275. tmio_iowrite8(FCR_MODE_STANDBY, tmio->fcr + FCR_MODE);
  276. mdelay(5);
  277. return 0;
  278. }
  279. static void tmio_hw_stop(struct platform_device *dev, struct tmio_nand *tmio)
  280. {
  281. const struct mfd_cell *cell = mfd_get_cell(dev);
  282. tmio_iowrite8(FCR_MODE_POWER_OFF, tmio->fcr + FCR_MODE);
  283. if (cell->disable)
  284. cell->disable(dev);
  285. }
  286. static int tmio_attach_chip(struct nand_chip *chip)
  287. {
  288. if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
  289. return 0;
  290. chip->ecc.size = 512;
  291. chip->ecc.bytes = 6;
  292. chip->ecc.strength = 2;
  293. chip->ecc.hwctl = tmio_nand_enable_hwecc;
  294. chip->ecc.calculate = tmio_nand_calculate_ecc;
  295. chip->ecc.correct = tmio_nand_correct_data;
  296. return 0;
  297. }
  298. static const struct nand_controller_ops tmio_ops = {
  299. .attach_chip = tmio_attach_chip,
  300. };
  301. static int tmio_probe(struct platform_device *dev)
  302. {
  303. struct tmio_nand_data *data = dev_get_platdata(&dev->dev);
  304. struct resource *fcr = platform_get_resource(dev,
  305. IORESOURCE_MEM, 0);
  306. struct resource *ccr = platform_get_resource(dev,
  307. IORESOURCE_MEM, 1);
  308. int irq = platform_get_irq(dev, 0);
  309. struct tmio_nand *tmio;
  310. struct mtd_info *mtd;
  311. struct nand_chip *nand_chip;
  312. int retval;
  313. if (data == NULL)
  314. dev_warn(&dev->dev, "NULL platform data!\n");
  315. if (!ccr || !fcr)
  316. return -EINVAL;
  317. tmio = devm_kzalloc(&dev->dev, sizeof(*tmio), GFP_KERNEL);
  318. if (!tmio)
  319. return -ENOMEM;
  320. init_completion(&tmio->comp);
  321. tmio->dev = dev;
  322. platform_set_drvdata(dev, tmio);
  323. nand_chip = &tmio->chip;
  324. mtd = nand_to_mtd(nand_chip);
  325. mtd->name = "tmio-nand";
  326. mtd->dev.parent = &dev->dev;
  327. nand_controller_init(&tmio->controller);
  328. tmio->controller.ops = &tmio_ops;
  329. nand_chip->controller = &tmio->controller;
  330. tmio->ccr = devm_ioremap(&dev->dev, ccr->start, resource_size(ccr));
  331. if (!tmio->ccr)
  332. return -EIO;
  333. tmio->fcr_base = fcr->start & 0xfffff;
  334. tmio->fcr = devm_ioremap(&dev->dev, fcr->start, resource_size(fcr));
  335. if (!tmio->fcr)
  336. return -EIO;
  337. retval = tmio_hw_init(dev, tmio);
  338. if (retval)
  339. return retval;
  340. /* Set address of NAND IO lines */
  341. nand_chip->legacy.IO_ADDR_R = tmio->fcr;
  342. nand_chip->legacy.IO_ADDR_W = tmio->fcr;
  343. /* Set address of hardware control function */
  344. nand_chip->legacy.cmd_ctrl = tmio_nand_hwcontrol;
  345. nand_chip->legacy.dev_ready = tmio_nand_dev_ready;
  346. nand_chip->legacy.read_byte = tmio_nand_read_byte;
  347. nand_chip->legacy.write_buf = tmio_nand_write_buf;
  348. nand_chip->legacy.read_buf = tmio_nand_read_buf;
  349. if (data)
  350. nand_chip->badblock_pattern = data->badblock_pattern;
  351. /* 15 us command delay time */
  352. nand_chip->legacy.chip_delay = 15;
  353. retval = devm_request_irq(&dev->dev, irq, &tmio_irq, 0,
  354. dev_name(&dev->dev), tmio);
  355. if (retval) {
  356. dev_err(&dev->dev, "request_irq error %d\n", retval);
  357. goto err_irq;
  358. }
  359. tmio->irq = irq;
  360. nand_chip->legacy.waitfunc = tmio_nand_wait;
  361. /* Scan to find existence of the device */
  362. retval = nand_scan(nand_chip, 1);
  363. if (retval)
  364. goto err_irq;
  365. /* Register the partitions */
  366. retval = mtd_device_parse_register(mtd,
  367. data ? data->part_parsers : NULL,
  368. NULL,
  369. data ? data->partition : NULL,
  370. data ? data->num_partitions : 0);
  371. if (!retval)
  372. return retval;
  373. nand_cleanup(nand_chip);
  374. err_irq:
  375. tmio_hw_stop(dev, tmio);
  376. return retval;
  377. }
  378. static int tmio_remove(struct platform_device *dev)
  379. {
  380. struct tmio_nand *tmio = platform_get_drvdata(dev);
  381. struct nand_chip *chip = &tmio->chip;
  382. int ret;
  383. ret = mtd_device_unregister(nand_to_mtd(chip));
  384. WARN_ON(ret);
  385. nand_cleanup(chip);
  386. tmio_hw_stop(dev, tmio);
  387. return 0;
  388. }
  389. #ifdef CONFIG_PM
  390. static int tmio_suspend(struct platform_device *dev, pm_message_t state)
  391. {
  392. const struct mfd_cell *cell = mfd_get_cell(dev);
  393. if (cell->suspend)
  394. cell->suspend(dev);
  395. tmio_hw_stop(dev, platform_get_drvdata(dev));
  396. return 0;
  397. }
  398. static int tmio_resume(struct platform_device *dev)
  399. {
  400. const struct mfd_cell *cell = mfd_get_cell(dev);
  401. /* FIXME - is this required or merely another attack of the broken
  402. * SHARP platform? Looks suspicious.
  403. */
  404. tmio_hw_init(dev, platform_get_drvdata(dev));
  405. if (cell->resume)
  406. cell->resume(dev);
  407. return 0;
  408. }
  409. #else
  410. #define tmio_suspend NULL
  411. #define tmio_resume NULL
  412. #endif
  413. static struct platform_driver tmio_driver = {
  414. .driver.name = "tmio-nand",
  415. .driver.owner = THIS_MODULE,
  416. .probe = tmio_probe,
  417. .remove = tmio_remove,
  418. .suspend = tmio_suspend,
  419. .resume = tmio_resume,
  420. };
  421. module_platform_driver(tmio_driver);
  422. MODULE_LICENSE("GPL v2");
  423. MODULE_AUTHOR("Ian Molton, Dirk Opfer, Chris Humbert, Dmitry Baryshkov");
  424. MODULE_DESCRIPTION("NAND flash driver on Toshiba Mobile IO controller");
  425. MODULE_ALIAS("platform:tmio-nand");