rockchip-nand-controller.c 37 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497
  1. // SPDX-License-Identifier: GPL-2.0 OR MIT
  2. /*
  3. * Rockchip NAND Flash controller driver.
  4. * Copyright (C) 2020 Rockchip Inc.
  5. * Author: Yifeng Zhao <[email protected]>
  6. */
  7. #include <linux/clk.h>
  8. #include <linux/delay.h>
  9. #include <linux/dma-mapping.h>
  10. #include <linux/dmaengine.h>
  11. #include <linux/interrupt.h>
  12. #include <linux/iopoll.h>
  13. #include <linux/module.h>
  14. #include <linux/mtd/mtd.h>
  15. #include <linux/mtd/rawnand.h>
  16. #include <linux/of.h>
  17. #include <linux/of_device.h>
  18. #include <linux/platform_device.h>
  19. #include <linux/slab.h>
  20. /*
  21. * NFC Page Data Layout:
  22. * 1024 bytes data + 4Bytes sys data + 28Bytes~124Bytes ECC data +
  23. * 1024 bytes data + 4Bytes sys data + 28Bytes~124Bytes ECC data +
  24. * ......
  25. * NAND Page Data Layout:
  26. * 1024 * n data + m Bytes oob
  27. * Original Bad Block Mask Location:
  28. * First byte of oob(spare).
  29. * nand_chip->oob_poi data layout:
  30. * 4Bytes sys data + .... + 4Bytes sys data + ECC data.
  31. */
  32. /* NAND controller register definition */
  33. #define NFC_READ (0)
  34. #define NFC_WRITE (1)
  35. #define NFC_FMCTL (0x00)
  36. #define FMCTL_CE_SEL_M 0xFF
  37. #define FMCTL_CE_SEL(x) (1 << (x))
  38. #define FMCTL_WP BIT(8)
  39. #define FMCTL_RDY BIT(9)
  40. #define NFC_FMWAIT (0x04)
  41. #define FLCTL_RST BIT(0)
  42. #define FLCTL_WR (1) /* 0: read, 1: write */
  43. #define FLCTL_XFER_ST BIT(2)
  44. #define FLCTL_XFER_EN BIT(3)
  45. #define FLCTL_ACORRECT BIT(10) /* Auto correct error bits. */
  46. #define FLCTL_XFER_READY BIT(20)
  47. #define FLCTL_XFER_SECTOR (22)
  48. #define FLCTL_TOG_FIX BIT(29)
  49. #define BCHCTL_BANK_M (7 << 5)
  50. #define BCHCTL_BANK (5)
  51. #define DMA_ST BIT(0)
  52. #define DMA_WR (1) /* 0: write, 1: read */
  53. #define DMA_EN BIT(2)
  54. #define DMA_AHB_SIZE (3) /* 0: 1, 1: 2, 2: 4 */
  55. #define DMA_BURST_SIZE (6) /* 0: 1, 3: 4, 5: 8, 7: 16 */
  56. #define DMA_INC_NUM (9) /* 1 - 16 */
  57. #define ECC_ERR_CNT(x, e) ((((x) >> (e).low) & (e).low_mask) |\
  58. (((x) >> (e).high) & (e).high_mask) << (e).low_bn)
  59. #define INT_DMA BIT(0)
  60. #define NFC_BANK (0x800)
  61. #define NFC_BANK_STEP (0x100)
  62. #define BANK_DATA (0x00)
  63. #define BANK_ADDR (0x04)
  64. #define BANK_CMD (0x08)
  65. #define NFC_SRAM0 (0x1000)
  66. #define NFC_SRAM1 (0x1400)
  67. #define NFC_SRAM_SIZE (0x400)
  68. #define NFC_TIMEOUT (500000)
  69. #define NFC_MAX_OOB_PER_STEP 128
  70. #define NFC_MIN_OOB_PER_STEP 64
  71. #define MAX_DATA_SIZE 0xFFFC
  72. #define MAX_ADDRESS_CYC 6
  73. #define NFC_ECC_MAX_MODES 4
  74. #define NFC_MAX_NSELS (8) /* Some Socs only have 1 or 2 CSs. */
  75. #define NFC_SYS_DATA_SIZE (4) /* 4 bytes sys data in oob pre 1024 data.*/
  76. #define RK_DEFAULT_CLOCK_RATE (150 * 1000 * 1000) /* 150 Mhz */
  77. #define ACCTIMING(csrw, rwpw, rwcs) ((csrw) << 12 | (rwpw) << 5 | (rwcs))
  78. enum nfc_type {
  79. NFC_V6,
  80. NFC_V8,
  81. NFC_V9,
  82. };
  83. /**
  84. * struct rk_ecc_cnt_status: represent a ecc status data.
  85. * @err_flag_bit: error flag bit index at register.
  86. * @low: ECC count low bit index at register.
  87. * @low_mask: mask bit.
  88. * @low_bn: ECC count low bit number.
  89. * @high: ECC count high bit index at register.
  90. * @high_mask: mask bit
  91. */
  92. struct ecc_cnt_status {
  93. u8 err_flag_bit;
  94. u8 low;
  95. u8 low_mask;
  96. u8 low_bn;
  97. u8 high;
  98. u8 high_mask;
  99. };
  100. /**
  101. * @type: NFC version
  102. * @ecc_strengths: ECC strengths
  103. * @ecc_cfgs: ECC config values
  104. * @flctl_off: FLCTL register offset
  105. * @bchctl_off: BCHCTL register offset
  106. * @dma_data_buf_off: DMA_DATA_BUF register offset
  107. * @dma_oob_buf_off: DMA_OOB_BUF register offset
  108. * @dma_cfg_off: DMA_CFG register offset
  109. * @dma_st_off: DMA_ST register offset
  110. * @bch_st_off: BCG_ST register offset
  111. * @randmz_off: RANDMZ register offset
  112. * @int_en_off: interrupt enable register offset
  113. * @int_clr_off: interrupt clean register offset
  114. * @int_st_off: interrupt status register offset
  115. * @oob0_off: oob0 register offset
  116. * @oob1_off: oob1 register offset
  117. * @ecc0: represent ECC0 status data
  118. * @ecc1: represent ECC1 status data
  119. */
  120. struct nfc_cfg {
  121. enum nfc_type type;
  122. u8 ecc_strengths[NFC_ECC_MAX_MODES];
  123. u32 ecc_cfgs[NFC_ECC_MAX_MODES];
  124. u32 flctl_off;
  125. u32 bchctl_off;
  126. u32 dma_cfg_off;
  127. u32 dma_data_buf_off;
  128. u32 dma_oob_buf_off;
  129. u32 dma_st_off;
  130. u32 bch_st_off;
  131. u32 randmz_off;
  132. u32 int_en_off;
  133. u32 int_clr_off;
  134. u32 int_st_off;
  135. u32 oob0_off;
  136. u32 oob1_off;
  137. struct ecc_cnt_status ecc0;
  138. struct ecc_cnt_status ecc1;
  139. };
  140. struct rk_nfc_nand_chip {
  141. struct list_head node;
  142. struct nand_chip chip;
  143. u16 boot_blks;
  144. u16 metadata_size;
  145. u32 boot_ecc;
  146. u32 timing;
  147. u8 nsels;
  148. u8 sels[];
  149. /* Nothing after this field. */
  150. };
  151. struct rk_nfc {
  152. struct nand_controller controller;
  153. const struct nfc_cfg *cfg;
  154. struct device *dev;
  155. struct clk *nfc_clk;
  156. struct clk *ahb_clk;
  157. void __iomem *regs;
  158. u32 selected_bank;
  159. u32 band_offset;
  160. u32 cur_ecc;
  161. u32 cur_timing;
  162. struct completion done;
  163. struct list_head chips;
  164. u8 *page_buf;
  165. u32 *oob_buf;
  166. u32 page_buf_size;
  167. u32 oob_buf_size;
  168. unsigned long assigned_cs;
  169. };
  170. static inline struct rk_nfc_nand_chip *rk_nfc_to_rknand(struct nand_chip *chip)
  171. {
  172. return container_of(chip, struct rk_nfc_nand_chip, chip);
  173. }
  174. static inline u8 *rk_nfc_buf_to_data_ptr(struct nand_chip *chip, const u8 *p, int i)
  175. {
  176. return (u8 *)p + i * chip->ecc.size;
  177. }
  178. static inline u8 *rk_nfc_buf_to_oob_ptr(struct nand_chip *chip, int i)
  179. {
  180. u8 *poi;
  181. poi = chip->oob_poi + i * NFC_SYS_DATA_SIZE;
  182. return poi;
  183. }
  184. static inline u8 *rk_nfc_buf_to_oob_ecc_ptr(struct nand_chip *chip, int i)
  185. {
  186. struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
  187. u8 *poi;
  188. poi = chip->oob_poi + rknand->metadata_size + chip->ecc.bytes * i;
  189. return poi;
  190. }
  191. static inline int rk_nfc_data_len(struct nand_chip *chip)
  192. {
  193. return chip->ecc.size + chip->ecc.bytes + NFC_SYS_DATA_SIZE;
  194. }
  195. static inline u8 *rk_nfc_data_ptr(struct nand_chip *chip, int i)
  196. {
  197. struct rk_nfc *nfc = nand_get_controller_data(chip);
  198. return nfc->page_buf + i * rk_nfc_data_len(chip);
  199. }
  200. static inline u8 *rk_nfc_oob_ptr(struct nand_chip *chip, int i)
  201. {
  202. struct rk_nfc *nfc = nand_get_controller_data(chip);
  203. return nfc->page_buf + i * rk_nfc_data_len(chip) + chip->ecc.size;
  204. }
  205. static int rk_nfc_hw_ecc_setup(struct nand_chip *chip, u32 strength)
  206. {
  207. struct rk_nfc *nfc = nand_get_controller_data(chip);
  208. u32 reg, i;
  209. for (i = 0; i < NFC_ECC_MAX_MODES; i++) {
  210. if (strength == nfc->cfg->ecc_strengths[i]) {
  211. reg = nfc->cfg->ecc_cfgs[i];
  212. break;
  213. }
  214. }
  215. if (i >= NFC_ECC_MAX_MODES)
  216. return -EINVAL;
  217. writel(reg, nfc->regs + nfc->cfg->bchctl_off);
  218. /* Save chip ECC setting */
  219. nfc->cur_ecc = strength;
  220. return 0;
  221. }
  222. static void rk_nfc_select_chip(struct nand_chip *chip, int cs)
  223. {
  224. struct rk_nfc *nfc = nand_get_controller_data(chip);
  225. struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
  226. struct nand_ecc_ctrl *ecc = &chip->ecc;
  227. u32 val;
  228. if (cs < 0) {
  229. nfc->selected_bank = -1;
  230. /* Deselect the currently selected target. */
  231. val = readl_relaxed(nfc->regs + NFC_FMCTL);
  232. val &= ~FMCTL_CE_SEL_M;
  233. writel(val, nfc->regs + NFC_FMCTL);
  234. return;
  235. }
  236. nfc->selected_bank = rknand->sels[cs];
  237. nfc->band_offset = NFC_BANK + nfc->selected_bank * NFC_BANK_STEP;
  238. val = readl_relaxed(nfc->regs + NFC_FMCTL);
  239. val &= ~FMCTL_CE_SEL_M;
  240. val |= FMCTL_CE_SEL(nfc->selected_bank);
  241. writel(val, nfc->regs + NFC_FMCTL);
  242. /*
  243. * Compare current chip timing with selected chip timing and
  244. * change if needed.
  245. */
  246. if (nfc->cur_timing != rknand->timing) {
  247. writel(rknand->timing, nfc->regs + NFC_FMWAIT);
  248. nfc->cur_timing = rknand->timing;
  249. }
  250. /*
  251. * Compare current chip ECC setting with selected chip ECC setting and
  252. * change if needed.
  253. */
  254. if (nfc->cur_ecc != ecc->strength)
  255. rk_nfc_hw_ecc_setup(chip, ecc->strength);
  256. }
  257. static inline int rk_nfc_wait_ioready(struct rk_nfc *nfc)
  258. {
  259. int rc;
  260. u32 val;
  261. rc = readl_relaxed_poll_timeout(nfc->regs + NFC_FMCTL, val,
  262. val & FMCTL_RDY, 10, NFC_TIMEOUT);
  263. return rc;
  264. }
  265. static void rk_nfc_read_buf(struct rk_nfc *nfc, u8 *buf, int len)
  266. {
  267. int i;
  268. for (i = 0; i < len; i++)
  269. buf[i] = readb_relaxed(nfc->regs + nfc->band_offset +
  270. BANK_DATA);
  271. }
  272. static void rk_nfc_write_buf(struct rk_nfc *nfc, const u8 *buf, int len)
  273. {
  274. int i;
  275. for (i = 0; i < len; i++)
  276. writeb(buf[i], nfc->regs + nfc->band_offset + BANK_DATA);
  277. }
  278. static int rk_nfc_cmd(struct nand_chip *chip,
  279. const struct nand_subop *subop)
  280. {
  281. struct rk_nfc *nfc = nand_get_controller_data(chip);
  282. unsigned int i, j, remaining, start;
  283. int reg_offset = nfc->band_offset;
  284. u8 *inbuf = NULL;
  285. const u8 *outbuf;
  286. u32 cnt = 0;
  287. int ret = 0;
  288. for (i = 0; i < subop->ninstrs; i++) {
  289. const struct nand_op_instr *instr = &subop->instrs[i];
  290. switch (instr->type) {
  291. case NAND_OP_CMD_INSTR:
  292. writeb(instr->ctx.cmd.opcode,
  293. nfc->regs + reg_offset + BANK_CMD);
  294. break;
  295. case NAND_OP_ADDR_INSTR:
  296. remaining = nand_subop_get_num_addr_cyc(subop, i);
  297. start = nand_subop_get_addr_start_off(subop, i);
  298. for (j = 0; j < 8 && j + start < remaining; j++)
  299. writeb(instr->ctx.addr.addrs[j + start],
  300. nfc->regs + reg_offset + BANK_ADDR);
  301. break;
  302. case NAND_OP_DATA_IN_INSTR:
  303. case NAND_OP_DATA_OUT_INSTR:
  304. start = nand_subop_get_data_start_off(subop, i);
  305. cnt = nand_subop_get_data_len(subop, i);
  306. if (instr->type == NAND_OP_DATA_OUT_INSTR) {
  307. outbuf = instr->ctx.data.buf.out + start;
  308. rk_nfc_write_buf(nfc, outbuf, cnt);
  309. } else {
  310. inbuf = instr->ctx.data.buf.in + start;
  311. rk_nfc_read_buf(nfc, inbuf, cnt);
  312. }
  313. break;
  314. case NAND_OP_WAITRDY_INSTR:
  315. if (rk_nfc_wait_ioready(nfc) < 0) {
  316. ret = -ETIMEDOUT;
  317. dev_err(nfc->dev, "IO not ready\n");
  318. }
  319. break;
  320. }
  321. }
  322. return ret;
  323. }
  324. static const struct nand_op_parser rk_nfc_op_parser = NAND_OP_PARSER(
  325. NAND_OP_PARSER_PATTERN(
  326. rk_nfc_cmd,
  327. NAND_OP_PARSER_PAT_CMD_ELEM(true),
  328. NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC),
  329. NAND_OP_PARSER_PAT_CMD_ELEM(true),
  330. NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
  331. NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, MAX_DATA_SIZE)),
  332. NAND_OP_PARSER_PATTERN(
  333. rk_nfc_cmd,
  334. NAND_OP_PARSER_PAT_CMD_ELEM(true),
  335. NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC),
  336. NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, MAX_DATA_SIZE),
  337. NAND_OP_PARSER_PAT_CMD_ELEM(true),
  338. NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
  339. );
  340. static int rk_nfc_exec_op(struct nand_chip *chip,
  341. const struct nand_operation *op,
  342. bool check_only)
  343. {
  344. if (!check_only)
  345. rk_nfc_select_chip(chip, op->cs);
  346. return nand_op_parser_exec_op(chip, &rk_nfc_op_parser, op,
  347. check_only);
  348. }
  349. static int rk_nfc_setup_interface(struct nand_chip *chip, int target,
  350. const struct nand_interface_config *conf)
  351. {
  352. struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
  353. struct rk_nfc *nfc = nand_get_controller_data(chip);
  354. const struct nand_sdr_timings *timings;
  355. u32 rate, tc2rw, trwpw, trw2c;
  356. u32 temp;
  357. if (target < 0)
  358. return 0;
  359. timings = nand_get_sdr_timings(conf);
  360. if (IS_ERR(timings))
  361. return -EOPNOTSUPP;
  362. if (IS_ERR(nfc->nfc_clk))
  363. rate = clk_get_rate(nfc->ahb_clk);
  364. else
  365. rate = clk_get_rate(nfc->nfc_clk);
  366. /* Turn clock rate into kHz. */
  367. rate /= 1000;
  368. tc2rw = 1;
  369. trw2c = 1;
  370. trwpw = max(timings->tWC_min, timings->tRC_min) / 1000;
  371. trwpw = DIV_ROUND_UP(trwpw * rate, 1000000);
  372. temp = timings->tREA_max / 1000;
  373. temp = DIV_ROUND_UP(temp * rate, 1000000);
  374. if (trwpw < temp)
  375. trwpw = temp;
  376. /*
  377. * ACCON: access timing control register
  378. * -------------------------------------
  379. * 31:18: reserved
  380. * 17:12: csrw, clock cycles from the falling edge of CSn to the
  381. * falling edge of RDn or WRn
  382. * 11:11: reserved
  383. * 10:05: rwpw, the width of RDn or WRn in processor clock cycles
  384. * 04:00: rwcs, clock cycles from the rising edge of RDn or WRn to the
  385. * rising edge of CSn
  386. */
  387. /* Save chip timing */
  388. rknand->timing = ACCTIMING(tc2rw, trwpw, trw2c);
  389. return 0;
  390. }
  391. static void rk_nfc_xfer_start(struct rk_nfc *nfc, u8 rw, u8 n_KB,
  392. dma_addr_t dma_data, dma_addr_t dma_oob)
  393. {
  394. u32 dma_reg, fl_reg, bch_reg;
  395. dma_reg = DMA_ST | ((!rw) << DMA_WR) | DMA_EN | (2 << DMA_AHB_SIZE) |
  396. (7 << DMA_BURST_SIZE) | (16 << DMA_INC_NUM);
  397. fl_reg = (rw << FLCTL_WR) | FLCTL_XFER_EN | FLCTL_ACORRECT |
  398. (n_KB << FLCTL_XFER_SECTOR) | FLCTL_TOG_FIX;
  399. if (nfc->cfg->type == NFC_V6 || nfc->cfg->type == NFC_V8) {
  400. bch_reg = readl_relaxed(nfc->regs + nfc->cfg->bchctl_off);
  401. bch_reg = (bch_reg & (~BCHCTL_BANK_M)) |
  402. (nfc->selected_bank << BCHCTL_BANK);
  403. writel(bch_reg, nfc->regs + nfc->cfg->bchctl_off);
  404. }
  405. writel(dma_reg, nfc->regs + nfc->cfg->dma_cfg_off);
  406. writel((u32)dma_data, nfc->regs + nfc->cfg->dma_data_buf_off);
  407. writel((u32)dma_oob, nfc->regs + nfc->cfg->dma_oob_buf_off);
  408. writel(fl_reg, nfc->regs + nfc->cfg->flctl_off);
  409. fl_reg |= FLCTL_XFER_ST;
  410. writel(fl_reg, nfc->regs + nfc->cfg->flctl_off);
  411. }
  412. static int rk_nfc_wait_for_xfer_done(struct rk_nfc *nfc)
  413. {
  414. void __iomem *ptr;
  415. u32 reg;
  416. ptr = nfc->regs + nfc->cfg->flctl_off;
  417. return readl_relaxed_poll_timeout(ptr, reg,
  418. reg & FLCTL_XFER_READY,
  419. 10, NFC_TIMEOUT);
  420. }
  421. static int rk_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf,
  422. int oob_on, int page)
  423. {
  424. struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
  425. struct rk_nfc *nfc = nand_get_controller_data(chip);
  426. struct mtd_info *mtd = nand_to_mtd(chip);
  427. struct nand_ecc_ctrl *ecc = &chip->ecc;
  428. int i, pages_per_blk;
  429. pages_per_blk = mtd->erasesize / mtd->writesize;
  430. if ((chip->options & NAND_IS_BOOT_MEDIUM) &&
  431. (page < (pages_per_blk * rknand->boot_blks)) &&
  432. rknand->boot_ecc != ecc->strength) {
  433. /*
  434. * There's currently no method to notify the MTD framework that
  435. * a different ECC strength is in use for the boot blocks.
  436. */
  437. return -EIO;
  438. }
  439. if (!buf)
  440. memset(nfc->page_buf, 0xff, mtd->writesize + mtd->oobsize);
  441. for (i = 0; i < ecc->steps; i++) {
  442. /* Copy data to the NFC buffer. */
  443. if (buf)
  444. memcpy(rk_nfc_data_ptr(chip, i),
  445. rk_nfc_buf_to_data_ptr(chip, buf, i),
  446. ecc->size);
  447. /*
  448. * The first four bytes of OOB are reserved for the
  449. * boot ROM. In some debugging cases, such as with a
  450. * read, erase and write back test these 4 bytes stored
  451. * in OOB also need to be written back.
  452. *
  453. * The function nand_block_bad detects bad blocks like:
  454. *
  455. * bad = chip->oob_poi[chip->badblockpos];
  456. *
  457. * chip->badblockpos == 0 for a large page NAND Flash,
  458. * so chip->oob_poi[0] is the bad block mask (BBM).
  459. *
  460. * The OOB data layout on the NFC is:
  461. *
  462. * PA0 PA1 PA2 PA3 | BBM OOB1 OOB2 OOB3 | ...
  463. *
  464. * or
  465. *
  466. * 0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ...
  467. *
  468. * The code here just swaps the first 4 bytes with the last
  469. * 4 bytes without losing any data.
  470. *
  471. * The chip->oob_poi data layout:
  472. *
  473. * BBM OOB1 OOB2 OOB3 |......| PA0 PA1 PA2 PA3
  474. *
  475. * The rk_nfc_ooblayout_free() function already has reserved
  476. * these 4 bytes together with 2 bytes for BBM
  477. * by reducing it's length:
  478. *
  479. * oob_region->length = rknand->metadata_size - NFC_SYS_DATA_SIZE - 2;
  480. */
  481. if (!i)
  482. memcpy(rk_nfc_oob_ptr(chip, i),
  483. rk_nfc_buf_to_oob_ptr(chip, ecc->steps - 1),
  484. NFC_SYS_DATA_SIZE);
  485. else
  486. memcpy(rk_nfc_oob_ptr(chip, i),
  487. rk_nfc_buf_to_oob_ptr(chip, i - 1),
  488. NFC_SYS_DATA_SIZE);
  489. /* Copy ECC data to the NFC buffer. */
  490. memcpy(rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE,
  491. rk_nfc_buf_to_oob_ecc_ptr(chip, i),
  492. ecc->bytes);
  493. }
  494. nand_prog_page_begin_op(chip, page, 0, NULL, 0);
  495. rk_nfc_write_buf(nfc, buf, mtd->writesize + mtd->oobsize);
  496. return nand_prog_page_end_op(chip);
  497. }
  498. static int rk_nfc_write_page_hwecc(struct nand_chip *chip, const u8 *buf,
  499. int oob_on, int page)
  500. {
  501. struct mtd_info *mtd = nand_to_mtd(chip);
  502. struct rk_nfc *nfc = nand_get_controller_data(chip);
  503. struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
  504. struct nand_ecc_ctrl *ecc = &chip->ecc;
  505. int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP :
  506. NFC_MIN_OOB_PER_STEP;
  507. int pages_per_blk = mtd->erasesize / mtd->writesize;
  508. int ret = 0, i, boot_rom_mode = 0;
  509. dma_addr_t dma_data, dma_oob;
  510. u32 tmp;
  511. u8 *oob;
  512. nand_prog_page_begin_op(chip, page, 0, NULL, 0);
  513. if (buf)
  514. memcpy(nfc->page_buf, buf, mtd->writesize);
  515. else
  516. memset(nfc->page_buf, 0xFF, mtd->writesize);
  517. /*
  518. * The first blocks (4, 8 or 16 depending on the device) are used
  519. * by the boot ROM and the first 32 bits of OOB need to link to
  520. * the next page address in the same block. We can't directly copy
  521. * OOB data from the MTD framework, because this page address
  522. * conflicts for example with the bad block marker (BBM),
  523. * so we shift all OOB data including the BBM with 4 byte positions.
  524. * As a consequence the OOB size available to the MTD framework is
  525. * also reduced with 4 bytes.
  526. *
  527. * PA0 PA1 PA2 PA3 | BBM OOB1 OOB2 OOB3 | ...
  528. *
  529. * If a NAND is not a boot medium or the page is not a boot block,
  530. * the first 4 bytes are left untouched by writing 0xFF to them.
  531. *
  532. * 0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ...
  533. *
  534. * The code here just swaps the first 4 bytes with the last
  535. * 4 bytes without losing any data.
  536. *
  537. * The chip->oob_poi data layout:
  538. *
  539. * BBM OOB1 OOB2 OOB3 |......| PA0 PA1 PA2 PA3
  540. *
  541. * Configure the ECC algorithm supported by the boot ROM.
  542. */
  543. if ((page < (pages_per_blk * rknand->boot_blks)) &&
  544. (chip->options & NAND_IS_BOOT_MEDIUM)) {
  545. boot_rom_mode = 1;
  546. if (rknand->boot_ecc != ecc->strength)
  547. rk_nfc_hw_ecc_setup(chip, rknand->boot_ecc);
  548. }
  549. for (i = 0; i < ecc->steps; i++) {
  550. if (!i)
  551. oob = chip->oob_poi + (ecc->steps - 1) * NFC_SYS_DATA_SIZE;
  552. else
  553. oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE;
  554. tmp = oob[0] | oob[1] << 8 | oob[2] << 16 | oob[3] << 24;
  555. if (nfc->cfg->type == NFC_V9)
  556. nfc->oob_buf[i] = tmp;
  557. else
  558. nfc->oob_buf[i * (oob_step / 4)] = tmp;
  559. }
  560. dma_data = dma_map_single(nfc->dev, (void *)nfc->page_buf,
  561. mtd->writesize, DMA_TO_DEVICE);
  562. dma_oob = dma_map_single(nfc->dev, nfc->oob_buf,
  563. ecc->steps * oob_step,
  564. DMA_TO_DEVICE);
  565. reinit_completion(&nfc->done);
  566. writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off);
  567. rk_nfc_xfer_start(nfc, NFC_WRITE, ecc->steps, dma_data,
  568. dma_oob);
  569. ret = wait_for_completion_timeout(&nfc->done,
  570. msecs_to_jiffies(100));
  571. if (!ret)
  572. dev_warn(nfc->dev, "write: wait dma done timeout.\n");
  573. /*
  574. * Whether the DMA transfer is completed or not. The driver
  575. * needs to check the NFC`s status register to see if the data
  576. * transfer was completed.
  577. */
  578. ret = rk_nfc_wait_for_xfer_done(nfc);
  579. dma_unmap_single(nfc->dev, dma_data, mtd->writesize,
  580. DMA_TO_DEVICE);
  581. dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step,
  582. DMA_TO_DEVICE);
  583. if (boot_rom_mode && rknand->boot_ecc != ecc->strength)
  584. rk_nfc_hw_ecc_setup(chip, ecc->strength);
  585. if (ret) {
  586. dev_err(nfc->dev, "write: wait transfer done timeout.\n");
  587. return -ETIMEDOUT;
  588. }
  589. return nand_prog_page_end_op(chip);
  590. }
  591. static int rk_nfc_write_oob(struct nand_chip *chip, int page)
  592. {
  593. return rk_nfc_write_page_hwecc(chip, NULL, 1, page);
  594. }
  595. static int rk_nfc_read_page_raw(struct nand_chip *chip, u8 *buf, int oob_on,
  596. int page)
  597. {
  598. struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
  599. struct rk_nfc *nfc = nand_get_controller_data(chip);
  600. struct mtd_info *mtd = nand_to_mtd(chip);
  601. struct nand_ecc_ctrl *ecc = &chip->ecc;
  602. int i, pages_per_blk;
  603. pages_per_blk = mtd->erasesize / mtd->writesize;
  604. if ((chip->options & NAND_IS_BOOT_MEDIUM) &&
  605. (page < (pages_per_blk * rknand->boot_blks)) &&
  606. rknand->boot_ecc != ecc->strength) {
  607. /*
  608. * There's currently no method to notify the MTD framework that
  609. * a different ECC strength is in use for the boot blocks.
  610. */
  611. return -EIO;
  612. }
  613. nand_read_page_op(chip, page, 0, NULL, 0);
  614. rk_nfc_read_buf(nfc, nfc->page_buf, mtd->writesize + mtd->oobsize);
  615. for (i = 0; i < ecc->steps; i++) {
  616. /*
  617. * The first four bytes of OOB are reserved for the
  618. * boot ROM. In some debugging cases, such as with a read,
  619. * erase and write back test, these 4 bytes also must be
  620. * saved somewhere, otherwise this information will be
  621. * lost during a write back.
  622. */
  623. if (!i)
  624. memcpy(rk_nfc_buf_to_oob_ptr(chip, ecc->steps - 1),
  625. rk_nfc_oob_ptr(chip, i),
  626. NFC_SYS_DATA_SIZE);
  627. else
  628. memcpy(rk_nfc_buf_to_oob_ptr(chip, i - 1),
  629. rk_nfc_oob_ptr(chip, i),
  630. NFC_SYS_DATA_SIZE);
  631. /* Copy ECC data from the NFC buffer. */
  632. memcpy(rk_nfc_buf_to_oob_ecc_ptr(chip, i),
  633. rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE,
  634. ecc->bytes);
  635. /* Copy data from the NFC buffer. */
  636. if (buf)
  637. memcpy(rk_nfc_buf_to_data_ptr(chip, buf, i),
  638. rk_nfc_data_ptr(chip, i),
  639. ecc->size);
  640. }
  641. return 0;
  642. }
  643. static int rk_nfc_read_page_hwecc(struct nand_chip *chip, u8 *buf, int oob_on,
  644. int page)
  645. {
  646. struct mtd_info *mtd = nand_to_mtd(chip);
  647. struct rk_nfc *nfc = nand_get_controller_data(chip);
  648. struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
  649. struct nand_ecc_ctrl *ecc = &chip->ecc;
  650. int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP :
  651. NFC_MIN_OOB_PER_STEP;
  652. int pages_per_blk = mtd->erasesize / mtd->writesize;
  653. dma_addr_t dma_data, dma_oob;
  654. int ret = 0, i, cnt, boot_rom_mode = 0;
  655. int max_bitflips = 0, bch_st, ecc_fail = 0;
  656. u8 *oob;
  657. u32 tmp;
  658. nand_read_page_op(chip, page, 0, NULL, 0);
  659. dma_data = dma_map_single(nfc->dev, nfc->page_buf,
  660. mtd->writesize,
  661. DMA_FROM_DEVICE);
  662. dma_oob = dma_map_single(nfc->dev, nfc->oob_buf,
  663. ecc->steps * oob_step,
  664. DMA_FROM_DEVICE);
  665. /*
  666. * The first blocks (4, 8 or 16 depending on the device)
  667. * are used by the boot ROM.
  668. * Configure the ECC algorithm supported by the boot ROM.
  669. */
  670. if ((page < (pages_per_blk * rknand->boot_blks)) &&
  671. (chip->options & NAND_IS_BOOT_MEDIUM)) {
  672. boot_rom_mode = 1;
  673. if (rknand->boot_ecc != ecc->strength)
  674. rk_nfc_hw_ecc_setup(chip, rknand->boot_ecc);
  675. }
  676. reinit_completion(&nfc->done);
  677. writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off);
  678. rk_nfc_xfer_start(nfc, NFC_READ, ecc->steps, dma_data,
  679. dma_oob);
  680. ret = wait_for_completion_timeout(&nfc->done,
  681. msecs_to_jiffies(100));
  682. if (!ret)
  683. dev_warn(nfc->dev, "read: wait dma done timeout.\n");
  684. /*
  685. * Whether the DMA transfer is completed or not. The driver
  686. * needs to check the NFC`s status register to see if the data
  687. * transfer was completed.
  688. */
  689. ret = rk_nfc_wait_for_xfer_done(nfc);
  690. dma_unmap_single(nfc->dev, dma_data, mtd->writesize,
  691. DMA_FROM_DEVICE);
  692. dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step,
  693. DMA_FROM_DEVICE);
  694. if (ret) {
  695. ret = -ETIMEDOUT;
  696. dev_err(nfc->dev, "read: wait transfer done timeout.\n");
  697. goto timeout_err;
  698. }
  699. for (i = 0; i < ecc->steps; i++) {
  700. if (!i)
  701. oob = chip->oob_poi + (ecc->steps - 1) * NFC_SYS_DATA_SIZE;
  702. else
  703. oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE;
  704. if (nfc->cfg->type == NFC_V9)
  705. tmp = nfc->oob_buf[i];
  706. else
  707. tmp = nfc->oob_buf[i * (oob_step / 4)];
  708. *oob++ = (u8)tmp;
  709. *oob++ = (u8)(tmp >> 8);
  710. *oob++ = (u8)(tmp >> 16);
  711. *oob++ = (u8)(tmp >> 24);
  712. }
  713. for (i = 0; i < (ecc->steps / 2); i++) {
  714. bch_st = readl_relaxed(nfc->regs +
  715. nfc->cfg->bch_st_off + i * 4);
  716. if (bch_st & BIT(nfc->cfg->ecc0.err_flag_bit) ||
  717. bch_st & BIT(nfc->cfg->ecc1.err_flag_bit)) {
  718. mtd->ecc_stats.failed++;
  719. ecc_fail = 1;
  720. } else {
  721. cnt = ECC_ERR_CNT(bch_st, nfc->cfg->ecc0);
  722. mtd->ecc_stats.corrected += cnt;
  723. max_bitflips = max_t(u32, max_bitflips, cnt);
  724. cnt = ECC_ERR_CNT(bch_st, nfc->cfg->ecc1);
  725. mtd->ecc_stats.corrected += cnt;
  726. max_bitflips = max_t(u32, max_bitflips, cnt);
  727. }
  728. }
  729. if (buf)
  730. memcpy(buf, nfc->page_buf, mtd->writesize);
  731. timeout_err:
  732. if (boot_rom_mode && rknand->boot_ecc != ecc->strength)
  733. rk_nfc_hw_ecc_setup(chip, ecc->strength);
  734. if (ret)
  735. return ret;
  736. if (ecc_fail) {
  737. dev_err(nfc->dev, "read page: %x ecc error!\n", page);
  738. return 0;
  739. }
  740. return max_bitflips;
  741. }
  742. static int rk_nfc_read_oob(struct nand_chip *chip, int page)
  743. {
  744. return rk_nfc_read_page_hwecc(chip, NULL, 1, page);
  745. }
  746. static inline void rk_nfc_hw_init(struct rk_nfc *nfc)
  747. {
  748. /* Disable flash wp. */
  749. writel(FMCTL_WP, nfc->regs + NFC_FMCTL);
  750. /* Config default timing 40ns at 150 Mhz NFC clock. */
  751. writel(0x1081, nfc->regs + NFC_FMWAIT);
  752. nfc->cur_timing = 0x1081;
  753. /* Disable randomizer and DMA. */
  754. writel(0, nfc->regs + nfc->cfg->randmz_off);
  755. writel(0, nfc->regs + nfc->cfg->dma_cfg_off);
  756. writel(FLCTL_RST, nfc->regs + nfc->cfg->flctl_off);
  757. }
  758. static irqreturn_t rk_nfc_irq(int irq, void *id)
  759. {
  760. struct rk_nfc *nfc = id;
  761. u32 sta, ien;
  762. sta = readl_relaxed(nfc->regs + nfc->cfg->int_st_off);
  763. ien = readl_relaxed(nfc->regs + nfc->cfg->int_en_off);
  764. if (!(sta & ien))
  765. return IRQ_NONE;
  766. writel(sta, nfc->regs + nfc->cfg->int_clr_off);
  767. writel(~sta & ien, nfc->regs + nfc->cfg->int_en_off);
  768. complete(&nfc->done);
  769. return IRQ_HANDLED;
  770. }
  771. static int rk_nfc_enable_clks(struct device *dev, struct rk_nfc *nfc)
  772. {
  773. int ret;
  774. if (!IS_ERR(nfc->nfc_clk)) {
  775. ret = clk_prepare_enable(nfc->nfc_clk);
  776. if (ret) {
  777. dev_err(dev, "failed to enable NFC clk\n");
  778. return ret;
  779. }
  780. }
  781. ret = clk_prepare_enable(nfc->ahb_clk);
  782. if (ret) {
  783. dev_err(dev, "failed to enable ahb clk\n");
  784. clk_disable_unprepare(nfc->nfc_clk);
  785. return ret;
  786. }
  787. return 0;
  788. }
  789. static void rk_nfc_disable_clks(struct rk_nfc *nfc)
  790. {
  791. clk_disable_unprepare(nfc->nfc_clk);
  792. clk_disable_unprepare(nfc->ahb_clk);
  793. }
  794. static int rk_nfc_ooblayout_free(struct mtd_info *mtd, int section,
  795. struct mtd_oob_region *oob_region)
  796. {
  797. struct nand_chip *chip = mtd_to_nand(mtd);
  798. struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
  799. if (section)
  800. return -ERANGE;
  801. oob_region->length = rknand->metadata_size - NFC_SYS_DATA_SIZE - 2;
  802. oob_region->offset = 2;
  803. return 0;
  804. }
  805. static int rk_nfc_ooblayout_ecc(struct mtd_info *mtd, int section,
  806. struct mtd_oob_region *oob_region)
  807. {
  808. struct nand_chip *chip = mtd_to_nand(mtd);
  809. struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
  810. if (section)
  811. return -ERANGE;
  812. oob_region->length = mtd->oobsize - rknand->metadata_size;
  813. oob_region->offset = rknand->metadata_size;
  814. return 0;
  815. }
  816. static const struct mtd_ooblayout_ops rk_nfc_ooblayout_ops = {
  817. .free = rk_nfc_ooblayout_free,
  818. .ecc = rk_nfc_ooblayout_ecc,
  819. };
  820. static int rk_nfc_ecc_init(struct device *dev, struct mtd_info *mtd)
  821. {
  822. struct nand_chip *chip = mtd_to_nand(mtd);
  823. struct rk_nfc *nfc = nand_get_controller_data(chip);
  824. struct nand_ecc_ctrl *ecc = &chip->ecc;
  825. const u8 *strengths = nfc->cfg->ecc_strengths;
  826. u8 max_strength, nfc_max_strength;
  827. int i;
  828. nfc_max_strength = nfc->cfg->ecc_strengths[0];
  829. /* If optional dt settings not present. */
  830. if (!ecc->size || !ecc->strength ||
  831. ecc->strength > nfc_max_strength) {
  832. chip->ecc.size = 1024;
  833. ecc->steps = mtd->writesize / ecc->size;
  834. /*
  835. * HW ECC always requests the number of ECC bytes per 1024 byte
  836. * blocks. The first 4 OOB bytes are reserved for sys data.
  837. */
  838. max_strength = ((mtd->oobsize / ecc->steps) - 4) * 8 /
  839. fls(8 * 1024);
  840. if (max_strength > nfc_max_strength)
  841. max_strength = nfc_max_strength;
  842. for (i = 0; i < 4; i++) {
  843. if (max_strength >= strengths[i])
  844. break;
  845. }
  846. if (i >= 4) {
  847. dev_err(nfc->dev, "unsupported ECC strength\n");
  848. return -EOPNOTSUPP;
  849. }
  850. ecc->strength = strengths[i];
  851. }
  852. ecc->steps = mtd->writesize / ecc->size;
  853. ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * chip->ecc.size), 8);
  854. return 0;
  855. }
  856. static int rk_nfc_attach_chip(struct nand_chip *chip)
  857. {
  858. struct mtd_info *mtd = nand_to_mtd(chip);
  859. struct device *dev = mtd->dev.parent;
  860. struct rk_nfc *nfc = nand_get_controller_data(chip);
  861. struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
  862. struct nand_ecc_ctrl *ecc = &chip->ecc;
  863. int new_page_len, new_oob_len;
  864. void *buf;
  865. int ret;
  866. if (chip->options & NAND_BUSWIDTH_16) {
  867. dev_err(dev, "16 bits bus width not supported");
  868. return -EINVAL;
  869. }
  870. if (ecc->engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
  871. return 0;
  872. ret = rk_nfc_ecc_init(dev, mtd);
  873. if (ret)
  874. return ret;
  875. rknand->metadata_size = NFC_SYS_DATA_SIZE * ecc->steps;
  876. if (rknand->metadata_size < NFC_SYS_DATA_SIZE + 2) {
  877. dev_err(dev,
  878. "driver needs at least %d bytes of meta data\n",
  879. NFC_SYS_DATA_SIZE + 2);
  880. return -EIO;
  881. }
  882. /* Check buffer first, avoid duplicate alloc buffer. */
  883. new_page_len = mtd->writesize + mtd->oobsize;
  884. if (nfc->page_buf && new_page_len > nfc->page_buf_size) {
  885. buf = krealloc(nfc->page_buf, new_page_len,
  886. GFP_KERNEL | GFP_DMA);
  887. if (!buf)
  888. return -ENOMEM;
  889. nfc->page_buf = buf;
  890. nfc->page_buf_size = new_page_len;
  891. }
  892. new_oob_len = ecc->steps * NFC_MAX_OOB_PER_STEP;
  893. if (nfc->oob_buf && new_oob_len > nfc->oob_buf_size) {
  894. buf = krealloc(nfc->oob_buf, new_oob_len,
  895. GFP_KERNEL | GFP_DMA);
  896. if (!buf) {
  897. kfree(nfc->page_buf);
  898. nfc->page_buf = NULL;
  899. return -ENOMEM;
  900. }
  901. nfc->oob_buf = buf;
  902. nfc->oob_buf_size = new_oob_len;
  903. }
  904. if (!nfc->page_buf) {
  905. nfc->page_buf = kzalloc(new_page_len, GFP_KERNEL | GFP_DMA);
  906. if (!nfc->page_buf)
  907. return -ENOMEM;
  908. nfc->page_buf_size = new_page_len;
  909. }
  910. if (!nfc->oob_buf) {
  911. nfc->oob_buf = kzalloc(new_oob_len, GFP_KERNEL | GFP_DMA);
  912. if (!nfc->oob_buf) {
  913. kfree(nfc->page_buf);
  914. nfc->page_buf = NULL;
  915. return -ENOMEM;
  916. }
  917. nfc->oob_buf_size = new_oob_len;
  918. }
  919. chip->ecc.write_page_raw = rk_nfc_write_page_raw;
  920. chip->ecc.write_page = rk_nfc_write_page_hwecc;
  921. chip->ecc.write_oob = rk_nfc_write_oob;
  922. chip->ecc.read_page_raw = rk_nfc_read_page_raw;
  923. chip->ecc.read_page = rk_nfc_read_page_hwecc;
  924. chip->ecc.read_oob = rk_nfc_read_oob;
  925. return 0;
  926. }
  927. static const struct nand_controller_ops rk_nfc_controller_ops = {
  928. .attach_chip = rk_nfc_attach_chip,
  929. .exec_op = rk_nfc_exec_op,
  930. .setup_interface = rk_nfc_setup_interface,
  931. };
  932. static int rk_nfc_nand_chip_init(struct device *dev, struct rk_nfc *nfc,
  933. struct device_node *np)
  934. {
  935. struct rk_nfc_nand_chip *rknand;
  936. struct nand_chip *chip;
  937. struct mtd_info *mtd;
  938. int nsels;
  939. u32 tmp;
  940. int ret;
  941. int i;
  942. if (!of_get_property(np, "reg", &nsels))
  943. return -ENODEV;
  944. nsels /= sizeof(u32);
  945. if (!nsels || nsels > NFC_MAX_NSELS) {
  946. dev_err(dev, "invalid reg property size %d\n", nsels);
  947. return -EINVAL;
  948. }
  949. rknand = devm_kzalloc(dev, sizeof(*rknand) + nsels * sizeof(u8),
  950. GFP_KERNEL);
  951. if (!rknand)
  952. return -ENOMEM;
  953. rknand->nsels = nsels;
  954. for (i = 0; i < nsels; i++) {
  955. ret = of_property_read_u32_index(np, "reg", i, &tmp);
  956. if (ret) {
  957. dev_err(dev, "reg property failure : %d\n", ret);
  958. return ret;
  959. }
  960. if (tmp >= NFC_MAX_NSELS) {
  961. dev_err(dev, "invalid CS: %u\n", tmp);
  962. return -EINVAL;
  963. }
  964. if (test_and_set_bit(tmp, &nfc->assigned_cs)) {
  965. dev_err(dev, "CS %u already assigned\n", tmp);
  966. return -EINVAL;
  967. }
  968. rknand->sels[i] = tmp;
  969. }
  970. chip = &rknand->chip;
  971. chip->controller = &nfc->controller;
  972. nand_set_flash_node(chip, np);
  973. nand_set_controller_data(chip, nfc);
  974. chip->options |= NAND_USES_DMA | NAND_NO_SUBPAGE_WRITE;
  975. chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
  976. /* Set default mode in case dt entry is missing. */
  977. chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
  978. mtd = nand_to_mtd(chip);
  979. mtd->owner = THIS_MODULE;
  980. mtd->dev.parent = dev;
  981. if (!mtd->name) {
  982. dev_err(nfc->dev, "NAND label property is mandatory\n");
  983. return -EINVAL;
  984. }
  985. mtd_set_ooblayout(mtd, &rk_nfc_ooblayout_ops);
  986. rk_nfc_hw_init(nfc);
  987. ret = nand_scan(chip, nsels);
  988. if (ret)
  989. return ret;
  990. if (chip->options & NAND_IS_BOOT_MEDIUM) {
  991. ret = of_property_read_u32(np, "rockchip,boot-blks", &tmp);
  992. rknand->boot_blks = ret ? 0 : tmp;
  993. ret = of_property_read_u32(np, "rockchip,boot-ecc-strength",
  994. &tmp);
  995. rknand->boot_ecc = ret ? chip->ecc.strength : tmp;
  996. }
  997. ret = mtd_device_register(mtd, NULL, 0);
  998. if (ret) {
  999. dev_err(dev, "MTD parse partition error\n");
  1000. nand_cleanup(chip);
  1001. return ret;
  1002. }
  1003. list_add_tail(&rknand->node, &nfc->chips);
  1004. return 0;
  1005. }
  1006. static void rk_nfc_chips_cleanup(struct rk_nfc *nfc)
  1007. {
  1008. struct rk_nfc_nand_chip *rknand, *tmp;
  1009. struct nand_chip *chip;
  1010. int ret;
  1011. list_for_each_entry_safe(rknand, tmp, &nfc->chips, node) {
  1012. chip = &rknand->chip;
  1013. ret = mtd_device_unregister(nand_to_mtd(chip));
  1014. WARN_ON(ret);
  1015. nand_cleanup(chip);
  1016. list_del(&rknand->node);
  1017. }
  1018. }
  1019. static int rk_nfc_nand_chips_init(struct device *dev, struct rk_nfc *nfc)
  1020. {
  1021. struct device_node *np = dev->of_node, *nand_np;
  1022. int nchips = of_get_child_count(np);
  1023. int ret;
  1024. if (!nchips || nchips > NFC_MAX_NSELS) {
  1025. dev_err(nfc->dev, "incorrect number of NAND chips (%d)\n",
  1026. nchips);
  1027. return -EINVAL;
  1028. }
  1029. for_each_child_of_node(np, nand_np) {
  1030. ret = rk_nfc_nand_chip_init(dev, nfc, nand_np);
  1031. if (ret) {
  1032. of_node_put(nand_np);
  1033. rk_nfc_chips_cleanup(nfc);
  1034. return ret;
  1035. }
  1036. }
  1037. return 0;
  1038. }
  1039. static struct nfc_cfg nfc_v6_cfg = {
  1040. .type = NFC_V6,
  1041. .ecc_strengths = {60, 40, 24, 16},
  1042. .ecc_cfgs = {
  1043. 0x00040011, 0x00040001, 0x00000011, 0x00000001,
  1044. },
  1045. .flctl_off = 0x08,
  1046. .bchctl_off = 0x0C,
  1047. .dma_cfg_off = 0x10,
  1048. .dma_data_buf_off = 0x14,
  1049. .dma_oob_buf_off = 0x18,
  1050. .dma_st_off = 0x1C,
  1051. .bch_st_off = 0x20,
  1052. .randmz_off = 0x150,
  1053. .int_en_off = 0x16C,
  1054. .int_clr_off = 0x170,
  1055. .int_st_off = 0x174,
  1056. .oob0_off = 0x200,
  1057. .oob1_off = 0x230,
  1058. .ecc0 = {
  1059. .err_flag_bit = 2,
  1060. .low = 3,
  1061. .low_mask = 0x1F,
  1062. .low_bn = 5,
  1063. .high = 27,
  1064. .high_mask = 0x1,
  1065. },
  1066. .ecc1 = {
  1067. .err_flag_bit = 15,
  1068. .low = 16,
  1069. .low_mask = 0x1F,
  1070. .low_bn = 5,
  1071. .high = 29,
  1072. .high_mask = 0x1,
  1073. },
  1074. };
  1075. static struct nfc_cfg nfc_v8_cfg = {
  1076. .type = NFC_V8,
  1077. .ecc_strengths = {16, 16, 16, 16},
  1078. .ecc_cfgs = {
  1079. 0x00000001, 0x00000001, 0x00000001, 0x00000001,
  1080. },
  1081. .flctl_off = 0x08,
  1082. .bchctl_off = 0x0C,
  1083. .dma_cfg_off = 0x10,
  1084. .dma_data_buf_off = 0x14,
  1085. .dma_oob_buf_off = 0x18,
  1086. .dma_st_off = 0x1C,
  1087. .bch_st_off = 0x20,
  1088. .randmz_off = 0x150,
  1089. .int_en_off = 0x16C,
  1090. .int_clr_off = 0x170,
  1091. .int_st_off = 0x174,
  1092. .oob0_off = 0x200,
  1093. .oob1_off = 0x230,
  1094. .ecc0 = {
  1095. .err_flag_bit = 2,
  1096. .low = 3,
  1097. .low_mask = 0x1F,
  1098. .low_bn = 5,
  1099. .high = 27,
  1100. .high_mask = 0x1,
  1101. },
  1102. .ecc1 = {
  1103. .err_flag_bit = 15,
  1104. .low = 16,
  1105. .low_mask = 0x1F,
  1106. .low_bn = 5,
  1107. .high = 29,
  1108. .high_mask = 0x1,
  1109. },
  1110. };
  1111. static struct nfc_cfg nfc_v9_cfg = {
  1112. .type = NFC_V9,
  1113. .ecc_strengths = {70, 60, 40, 16},
  1114. .ecc_cfgs = {
  1115. 0x00000001, 0x06000001, 0x04000001, 0x02000001,
  1116. },
  1117. .flctl_off = 0x10,
  1118. .bchctl_off = 0x20,
  1119. .dma_cfg_off = 0x30,
  1120. .dma_data_buf_off = 0x34,
  1121. .dma_oob_buf_off = 0x38,
  1122. .dma_st_off = 0x3C,
  1123. .bch_st_off = 0x150,
  1124. .randmz_off = 0x208,
  1125. .int_en_off = 0x120,
  1126. .int_clr_off = 0x124,
  1127. .int_st_off = 0x128,
  1128. .oob0_off = 0x200,
  1129. .oob1_off = 0x204,
  1130. .ecc0 = {
  1131. .err_flag_bit = 2,
  1132. .low = 3,
  1133. .low_mask = 0x7F,
  1134. .low_bn = 7,
  1135. .high = 0,
  1136. .high_mask = 0x0,
  1137. },
  1138. .ecc1 = {
  1139. .err_flag_bit = 18,
  1140. .low = 19,
  1141. .low_mask = 0x7F,
  1142. .low_bn = 7,
  1143. .high = 0,
  1144. .high_mask = 0x0,
  1145. },
  1146. };
  1147. static const struct of_device_id rk_nfc_id_table[] = {
  1148. {
  1149. .compatible = "rockchip,px30-nfc",
  1150. .data = &nfc_v9_cfg
  1151. },
  1152. {
  1153. .compatible = "rockchip,rk2928-nfc",
  1154. .data = &nfc_v6_cfg
  1155. },
  1156. {
  1157. .compatible = "rockchip,rv1108-nfc",
  1158. .data = &nfc_v8_cfg
  1159. },
  1160. { /* sentinel */ }
  1161. };
  1162. MODULE_DEVICE_TABLE(of, rk_nfc_id_table);
  1163. static int rk_nfc_probe(struct platform_device *pdev)
  1164. {
  1165. struct device *dev = &pdev->dev;
  1166. struct rk_nfc *nfc;
  1167. int ret, irq;
  1168. nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
  1169. if (!nfc)
  1170. return -ENOMEM;
  1171. nand_controller_init(&nfc->controller);
  1172. INIT_LIST_HEAD(&nfc->chips);
  1173. nfc->controller.ops = &rk_nfc_controller_ops;
  1174. nfc->cfg = of_device_get_match_data(dev);
  1175. nfc->dev = dev;
  1176. init_completion(&nfc->done);
  1177. nfc->regs = devm_platform_ioremap_resource(pdev, 0);
  1178. if (IS_ERR(nfc->regs)) {
  1179. ret = PTR_ERR(nfc->regs);
  1180. goto release_nfc;
  1181. }
  1182. nfc->nfc_clk = devm_clk_get(dev, "nfc");
  1183. if (IS_ERR(nfc->nfc_clk)) {
  1184. dev_dbg(dev, "no NFC clk\n");
  1185. /* Some earlier models, such as rk3066, have no NFC clk. */
  1186. }
  1187. nfc->ahb_clk = devm_clk_get(dev, "ahb");
  1188. if (IS_ERR(nfc->ahb_clk)) {
  1189. dev_err(dev, "no ahb clk\n");
  1190. ret = PTR_ERR(nfc->ahb_clk);
  1191. goto release_nfc;
  1192. }
  1193. ret = rk_nfc_enable_clks(dev, nfc);
  1194. if (ret)
  1195. goto release_nfc;
  1196. irq = platform_get_irq(pdev, 0);
  1197. if (irq < 0) {
  1198. ret = -EINVAL;
  1199. goto clk_disable;
  1200. }
  1201. writel(0, nfc->regs + nfc->cfg->int_en_off);
  1202. ret = devm_request_irq(dev, irq, rk_nfc_irq, 0x0, "rk-nand", nfc);
  1203. if (ret) {
  1204. dev_err(dev, "failed to request NFC irq\n");
  1205. goto clk_disable;
  1206. }
  1207. platform_set_drvdata(pdev, nfc);
  1208. ret = rk_nfc_nand_chips_init(dev, nfc);
  1209. if (ret) {
  1210. dev_err(dev, "failed to init NAND chips\n");
  1211. goto clk_disable;
  1212. }
  1213. return 0;
  1214. clk_disable:
  1215. rk_nfc_disable_clks(nfc);
  1216. release_nfc:
  1217. return ret;
  1218. }
  1219. static int rk_nfc_remove(struct platform_device *pdev)
  1220. {
  1221. struct rk_nfc *nfc = platform_get_drvdata(pdev);
  1222. kfree(nfc->page_buf);
  1223. kfree(nfc->oob_buf);
  1224. rk_nfc_chips_cleanup(nfc);
  1225. rk_nfc_disable_clks(nfc);
  1226. return 0;
  1227. }
  1228. static int __maybe_unused rk_nfc_suspend(struct device *dev)
  1229. {
  1230. struct rk_nfc *nfc = dev_get_drvdata(dev);
  1231. rk_nfc_disable_clks(nfc);
  1232. return 0;
  1233. }
  1234. static int __maybe_unused rk_nfc_resume(struct device *dev)
  1235. {
  1236. struct rk_nfc *nfc = dev_get_drvdata(dev);
  1237. struct rk_nfc_nand_chip *rknand;
  1238. struct nand_chip *chip;
  1239. int ret;
  1240. u32 i;
  1241. ret = rk_nfc_enable_clks(dev, nfc);
  1242. if (ret)
  1243. return ret;
  1244. /* Reset NAND chip if VCC was powered off. */
  1245. list_for_each_entry(rknand, &nfc->chips, node) {
  1246. chip = &rknand->chip;
  1247. for (i = 0; i < rknand->nsels; i++)
  1248. nand_reset(chip, i);
  1249. }
  1250. return 0;
  1251. }
  1252. static const struct dev_pm_ops rk_nfc_pm_ops = {
  1253. SET_SYSTEM_SLEEP_PM_OPS(rk_nfc_suspend, rk_nfc_resume)
  1254. };
  1255. static struct platform_driver rk_nfc_driver = {
  1256. .probe = rk_nfc_probe,
  1257. .remove = rk_nfc_remove,
  1258. .driver = {
  1259. .name = "rockchip-nfc",
  1260. .of_match_table = rk_nfc_id_table,
  1261. .pm = &rk_nfc_pm_ops,
  1262. },
  1263. };
  1264. module_platform_driver(rk_nfc_driver);
  1265. MODULE_LICENSE("Dual MIT/GPL");
  1266. MODULE_AUTHOR("Yifeng Zhao <[email protected]>");
  1267. MODULE_DESCRIPTION("Rockchip Nand Flash Controller Driver");
  1268. MODULE_ALIAS("platform:rockchip-nand-controller");