123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307 |
- // SPDX-License-Identifier: GPL-2.0-only
- /*
- * Copyright © 2004 Texas Instruments, Jian Zhang <[email protected]>
- * Copyright © 2004 Micron Technology Inc.
- * Copyright © 2004 David Brownell
- */
- #include <linux/platform_device.h>
- #include <linux/dmaengine.h>
- #include <linux/dma-mapping.h>
- #include <linux/delay.h>
- #include <linux/gpio/consumer.h>
- #include <linux/module.h>
- #include <linux/interrupt.h>
- #include <linux/jiffies.h>
- #include <linux/sched.h>
- #include <linux/mtd/mtd.h>
- #include <linux/mtd/nand-ecc-sw-bch.h>
- #include <linux/mtd/rawnand.h>
- #include <linux/mtd/partitions.h>
- #include <linux/omap-dma.h>
- #include <linux/iopoll.h>
- #include <linux/slab.h>
- #include <linux/of.h>
- #include <linux/of_device.h>
- #include <linux/platform_data/elm.h>
- #include <linux/omap-gpmc.h>
- #include <linux/platform_data/mtd-nand-omap2.h>
- #define DRIVER_NAME "omap2-nand"
- #define OMAP_NAND_TIMEOUT_MS 5000
- #define NAND_Ecc_P1e (1 << 0)
- #define NAND_Ecc_P2e (1 << 1)
- #define NAND_Ecc_P4e (1 << 2)
- #define NAND_Ecc_P8e (1 << 3)
- #define NAND_Ecc_P16e (1 << 4)
- #define NAND_Ecc_P32e (1 << 5)
- #define NAND_Ecc_P64e (1 << 6)
- #define NAND_Ecc_P128e (1 << 7)
- #define NAND_Ecc_P256e (1 << 8)
- #define NAND_Ecc_P512e (1 << 9)
- #define NAND_Ecc_P1024e (1 << 10)
- #define NAND_Ecc_P2048e (1 << 11)
- #define NAND_Ecc_P1o (1 << 16)
- #define NAND_Ecc_P2o (1 << 17)
- #define NAND_Ecc_P4o (1 << 18)
- #define NAND_Ecc_P8o (1 << 19)
- #define NAND_Ecc_P16o (1 << 20)
- #define NAND_Ecc_P32o (1 << 21)
- #define NAND_Ecc_P64o (1 << 22)
- #define NAND_Ecc_P128o (1 << 23)
- #define NAND_Ecc_P256o (1 << 24)
- #define NAND_Ecc_P512o (1 << 25)
- #define NAND_Ecc_P1024o (1 << 26)
- #define NAND_Ecc_P2048o (1 << 27)
- #define TF(value) (value ? 1 : 0)
- #define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0)
- #define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1)
- #define P1e(a) (TF(a & NAND_Ecc_P1e) << 2)
- #define P1o(a) (TF(a & NAND_Ecc_P1o) << 3)
- #define P2e(a) (TF(a & NAND_Ecc_P2e) << 4)
- #define P2o(a) (TF(a & NAND_Ecc_P2o) << 5)
- #define P4e(a) (TF(a & NAND_Ecc_P4e) << 6)
- #define P4o(a) (TF(a & NAND_Ecc_P4o) << 7)
- #define P8e(a) (TF(a & NAND_Ecc_P8e) << 0)
- #define P8o(a) (TF(a & NAND_Ecc_P8o) << 1)
- #define P16e(a) (TF(a & NAND_Ecc_P16e) << 2)
- #define P16o(a) (TF(a & NAND_Ecc_P16o) << 3)
- #define P32e(a) (TF(a & NAND_Ecc_P32e) << 4)
- #define P32o(a) (TF(a & NAND_Ecc_P32o) << 5)
- #define P64e(a) (TF(a & NAND_Ecc_P64e) << 6)
- #define P64o(a) (TF(a & NAND_Ecc_P64o) << 7)
- #define P128e(a) (TF(a & NAND_Ecc_P128e) << 0)
- #define P128o(a) (TF(a & NAND_Ecc_P128o) << 1)
- #define P256e(a) (TF(a & NAND_Ecc_P256e) << 2)
- #define P256o(a) (TF(a & NAND_Ecc_P256o) << 3)
- #define P512e(a) (TF(a & NAND_Ecc_P512e) << 4)
- #define P512o(a) (TF(a & NAND_Ecc_P512o) << 5)
- #define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6)
- #define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7)
- #define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0)
- #define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1)
- #define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2)
- #define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3)
- #define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4)
- #define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5)
- #define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6)
- #define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7)
- #define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0)
- #define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1)
- #define PREFETCH_CONFIG1_CS_SHIFT 24
- #define ECC_CONFIG_CS_SHIFT 1
- #define CS_MASK 0x7
- #define ENABLE_PREFETCH (0x1 << 7)
- #define DMA_MPU_MODE_SHIFT 2
- #define ECCSIZE0_SHIFT 12
- #define ECCSIZE1_SHIFT 22
- #define ECC1RESULTSIZE 0x1
- #define ECCCLEAR 0x100
- #define ECC1 0x1
- #define PREFETCH_FIFOTHRESHOLD_MAX 0x40
- #define PREFETCH_FIFOTHRESHOLD(val) ((val) << 8)
- #define PREFETCH_STATUS_COUNT(val) (val & 0x00003fff)
- #define PREFETCH_STATUS_FIFO_CNT(val) ((val >> 24) & 0x7F)
- #define STATUS_BUFF_EMPTY 0x00000001
- #define SECTOR_BYTES 512
- /* 4 bit padding to make byte aligned, 56 = 52 + 4 */
- #define BCH4_BIT_PAD 4
- /* GPMC ecc engine settings for read */
- #define BCH_WRAPMODE_1 1 /* BCH wrap mode 1 */
- #define BCH8R_ECC_SIZE0 0x1a /* ecc_size0 = 26 */
- #define BCH8R_ECC_SIZE1 0x2 /* ecc_size1 = 2 */
- #define BCH4R_ECC_SIZE0 0xd /* ecc_size0 = 13 */
- #define BCH4R_ECC_SIZE1 0x3 /* ecc_size1 = 3 */
- /* GPMC ecc engine settings for write */
- #define BCH_WRAPMODE_6 6 /* BCH wrap mode 6 */
- #define BCH_ECC_SIZE0 0x0 /* ecc_size0 = 0, no oob protection */
- #define BCH_ECC_SIZE1 0x20 /* ecc_size1 = 32 */
- #define BBM_LEN 2
- static u_char bch16_vector[] = {0xf5, 0x24, 0x1c, 0xd0, 0x61, 0xb3, 0xf1, 0x55,
- 0x2e, 0x2c, 0x86, 0xa3, 0xed, 0x36, 0x1b, 0x78,
- 0x48, 0x76, 0xa9, 0x3b, 0x97, 0xd1, 0x7a, 0x93,
- 0x07, 0x0e};
- static u_char bch8_vector[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc,
- 0xac, 0x6b, 0xff, 0x99, 0x7b};
- static u_char bch4_vector[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10};
- struct omap_nand_info {
- struct nand_chip nand;
- struct platform_device *pdev;
- int gpmc_cs;
- bool dev_ready;
- enum nand_io xfer_type;
- enum omap_ecc ecc_opt;
- struct device_node *elm_of_node;
- unsigned long phys_base;
- struct completion comp;
- struct dma_chan *dma;
- int gpmc_irq_fifo;
- int gpmc_irq_count;
- enum {
- OMAP_NAND_IO_READ = 0, /* read */
- OMAP_NAND_IO_WRITE, /* write */
- } iomode;
- u_char *buf;
- int buf_len;
- /* Interface to GPMC */
- void __iomem *fifo;
- struct gpmc_nand_regs reg;
- struct gpmc_nand_ops *ops;
- bool flash_bbt;
- /* fields specific for BCHx_HW ECC scheme */
- struct device *elm_dev;
- /* NAND ready gpio */
- struct gpio_desc *ready_gpiod;
- unsigned int neccpg;
- unsigned int nsteps_per_eccpg;
- unsigned int eccpg_size;
- unsigned int eccpg_bytes;
- void (*data_in)(struct nand_chip *chip, void *buf,
- unsigned int len, bool force_8bit);
- void (*data_out)(struct nand_chip *chip,
- const void *buf, unsigned int len,
- bool force_8bit);
- };
- static inline struct omap_nand_info *mtd_to_omap(struct mtd_info *mtd)
- {
- return container_of(mtd_to_nand(mtd), struct omap_nand_info, nand);
- }
- static void omap_nand_data_in(struct nand_chip *chip, void *buf,
- unsigned int len, bool force_8bit);
- static void omap_nand_data_out(struct nand_chip *chip,
- const void *buf, unsigned int len,
- bool force_8bit);
- /**
- * omap_prefetch_enable - configures and starts prefetch transfer
- * @cs: cs (chip select) number
- * @fifo_th: fifo threshold to be used for read/ write
- * @dma_mode: dma mode enable (1) or disable (0)
- * @u32_count: number of bytes to be transferred
- * @is_write: prefetch read(0) or write post(1) mode
- * @info: NAND device structure containing platform data
- */
- static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode,
- unsigned int u32_count, int is_write, struct omap_nand_info *info)
- {
- u32 val;
- if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
- return -1;
- if (readl(info->reg.gpmc_prefetch_control))
- return -EBUSY;
- /* Set the amount of bytes to be prefetched */
- writel(u32_count, info->reg.gpmc_prefetch_config2);
- /* Set dma/mpu mode, the prefetch read / post write and
- * enable the engine. Set which cs is has requested for.
- */
- val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) |
- PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH |
- (dma_mode << DMA_MPU_MODE_SHIFT) | (is_write & 0x1));
- writel(val, info->reg.gpmc_prefetch_config1);
- /* Start the prefetch engine */
- writel(0x1, info->reg.gpmc_prefetch_control);
- return 0;
- }
- /*
- * omap_prefetch_reset - disables and stops the prefetch engine
- */
- static int omap_prefetch_reset(int cs, struct omap_nand_info *info)
- {
- u32 config1;
- /* check if the same module/cs is trying to reset */
- config1 = readl(info->reg.gpmc_prefetch_config1);
- if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs)
- return -EINVAL;
- /* Stop the PFPW engine */
- writel(0x0, info->reg.gpmc_prefetch_control);
- /* Reset/disable the PFPW engine */
- writel(0x0, info->reg.gpmc_prefetch_config1);
- return 0;
- }
- /**
- * omap_nand_data_in_pref - NAND data in using prefetch engine
- */
- static void omap_nand_data_in_pref(struct nand_chip *chip, void *buf,
- unsigned int len, bool force_8bit)
- {
- struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
- uint32_t r_count = 0;
- int ret = 0;
- u32 *p = (u32 *)buf;
- unsigned int pref_len;
- if (force_8bit) {
- omap_nand_data_in(chip, buf, len, force_8bit);
- return;
- }
- /* read 32-bit words using prefetch and remaining bytes normally */
- /* configure and start prefetch transfer */
- pref_len = len - (len & 3);
- ret = omap_prefetch_enable(info->gpmc_cs,
- PREFETCH_FIFOTHRESHOLD_MAX, 0x0, pref_len, 0x0, info);
- if (ret) {
- /* prefetch engine is busy, use CPU copy method */
- omap_nand_data_in(chip, buf, len, false);
- } else {
- do {
- r_count = readl(info->reg.gpmc_prefetch_status);
- r_count = PREFETCH_STATUS_FIFO_CNT(r_count);
- r_count = r_count >> 2;
- ioread32_rep(info->fifo, p, r_count);
- p += r_count;
- pref_len -= r_count << 2;
- } while (pref_len);
- /* disable and stop the Prefetch engine */
- omap_prefetch_reset(info->gpmc_cs, info);
- /* fetch any remaining bytes */
- if (len & 3)
- omap_nand_data_in(chip, p, len & 3, false);
- }
- }
- /**
- * omap_nand_data_out_pref - NAND data out using Write Posting engine
- */
- static void omap_nand_data_out_pref(struct nand_chip *chip,
- const void *buf, unsigned int len,
- bool force_8bit)
- {
- struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
- uint32_t w_count = 0;
- int i = 0, ret = 0;
- u16 *p = (u16 *)buf;
- unsigned long tim, limit;
- u32 val;
- if (force_8bit) {
- omap_nand_data_out(chip, buf, len, force_8bit);
- return;
- }
- /* take care of subpage writes */
- if (len % 2 != 0) {
- writeb(*(u8 *)buf, info->fifo);
- p = (u16 *)(buf + 1);
- len--;
- }
- /* configure and start prefetch transfer */
- ret = omap_prefetch_enable(info->gpmc_cs,
- PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info);
- if (ret) {
- /* write posting engine is busy, use CPU copy method */
- omap_nand_data_out(chip, buf, len, false);
- } else {
- while (len) {
- w_count = readl(info->reg.gpmc_prefetch_status);
- w_count = PREFETCH_STATUS_FIFO_CNT(w_count);
- w_count = w_count >> 1;
- for (i = 0; (i < w_count) && len; i++, len -= 2)
- iowrite16(*p++, info->fifo);
- }
- /* wait for data to flushed-out before reset the prefetch */
- tim = 0;
- limit = (loops_per_jiffy *
- msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
- do {
- cpu_relax();
- val = readl(info->reg.gpmc_prefetch_status);
- val = PREFETCH_STATUS_COUNT(val);
- } while (val && (tim++ < limit));
- /* disable and stop the PFPW engine */
- omap_prefetch_reset(info->gpmc_cs, info);
- }
- }
- /*
- * omap_nand_dma_callback: callback on the completion of dma transfer
- * @data: pointer to completion data structure
- */
- static void omap_nand_dma_callback(void *data)
- {
- complete((struct completion *) data);
- }
- /*
- * omap_nand_dma_transfer: configure and start dma transfer
- * @chip: nand chip structure
- * @addr: virtual address in RAM of source/destination
- * @len: number of data bytes to be transferred
- * @is_write: flag for read/write operation
- */
- static inline int omap_nand_dma_transfer(struct nand_chip *chip,
- const void *addr, unsigned int len,
- int is_write)
- {
- struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
- struct dma_async_tx_descriptor *tx;
- enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
- DMA_FROM_DEVICE;
- struct scatterlist sg;
- unsigned long tim, limit;
- unsigned n;
- int ret;
- u32 val;
- if (!virt_addr_valid(addr))
- goto out_copy;
- sg_init_one(&sg, addr, len);
- n = dma_map_sg(info->dma->device->dev, &sg, 1, dir);
- if (n == 0) {
- dev_err(&info->pdev->dev,
- "Couldn't DMA map a %d byte buffer\n", len);
- goto out_copy;
- }
- tx = dmaengine_prep_slave_sg(info->dma, &sg, n,
- is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
- DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
- if (!tx)
- goto out_copy_unmap;
- tx->callback = omap_nand_dma_callback;
- tx->callback_param = &info->comp;
- dmaengine_submit(tx);
- init_completion(&info->comp);
- /* setup and start DMA using dma_addr */
- dma_async_issue_pending(info->dma);
- /* configure and start prefetch transfer */
- ret = omap_prefetch_enable(info->gpmc_cs,
- PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info);
- if (ret)
- /* PFPW engine is busy, use cpu copy method */
- goto out_copy_unmap;
- wait_for_completion(&info->comp);
- tim = 0;
- limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
- do {
- cpu_relax();
- val = readl(info->reg.gpmc_prefetch_status);
- val = PREFETCH_STATUS_COUNT(val);
- } while (val && (tim++ < limit));
- /* disable and stop the PFPW engine */
- omap_prefetch_reset(info->gpmc_cs, info);
- dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
- return 0;
- out_copy_unmap:
- dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
- out_copy:
- is_write == 0 ? omap_nand_data_in(chip, (void *)addr, len, false)
- : omap_nand_data_out(chip, addr, len, false);
- return 0;
- }
- /**
- * omap_nand_data_in_dma_pref - NAND data in using DMA and Prefetch
- */
- static void omap_nand_data_in_dma_pref(struct nand_chip *chip, void *buf,
- unsigned int len, bool force_8bit)
- {
- struct mtd_info *mtd = nand_to_mtd(chip);
- if (force_8bit) {
- omap_nand_data_in(chip, buf, len, force_8bit);
- return;
- }
- if (len <= mtd->oobsize)
- omap_nand_data_in_pref(chip, buf, len, false);
- else
- /* start transfer in DMA mode */
- omap_nand_dma_transfer(chip, buf, len, 0x0);
- }
- /**
- * omap_nand_data_out_dma_pref - NAND data out using DMA and write posting
- */
- static void omap_nand_data_out_dma_pref(struct nand_chip *chip,
- const void *buf, unsigned int len,
- bool force_8bit)
- {
- struct mtd_info *mtd = nand_to_mtd(chip);
- if (force_8bit) {
- omap_nand_data_out(chip, buf, len, force_8bit);
- return;
- }
- if (len <= mtd->oobsize)
- omap_nand_data_out_pref(chip, buf, len, false);
- else
- /* start transfer in DMA mode */
- omap_nand_dma_transfer(chip, buf, len, 0x1);
- }
- /*
- * omap_nand_irq - GPMC irq handler
- * @this_irq: gpmc irq number
- * @dev: omap_nand_info structure pointer is passed here
- */
- static irqreturn_t omap_nand_irq(int this_irq, void *dev)
- {
- struct omap_nand_info *info = (struct omap_nand_info *) dev;
- u32 bytes;
- bytes = readl(info->reg.gpmc_prefetch_status);
- bytes = PREFETCH_STATUS_FIFO_CNT(bytes);
- bytes = bytes & 0xFFFC; /* io in multiple of 4 bytes */
- if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
- if (this_irq == info->gpmc_irq_count)
- goto done;
- if (info->buf_len && (info->buf_len < bytes))
- bytes = info->buf_len;
- else if (!info->buf_len)
- bytes = 0;
- iowrite32_rep(info->fifo, (u32 *)info->buf,
- bytes >> 2);
- info->buf = info->buf + bytes;
- info->buf_len -= bytes;
- } else {
- ioread32_rep(info->fifo, (u32 *)info->buf,
- bytes >> 2);
- info->buf = info->buf + bytes;
- if (this_irq == info->gpmc_irq_count)
- goto done;
- }
- return IRQ_HANDLED;
- done:
- complete(&info->comp);
- disable_irq_nosync(info->gpmc_irq_fifo);
- disable_irq_nosync(info->gpmc_irq_count);
- return IRQ_HANDLED;
- }
- /*
- * omap_nand_data_in_irq_pref - NAND data in using Prefetch and IRQ
- */
- static void omap_nand_data_in_irq_pref(struct nand_chip *chip, void *buf,
- unsigned int len, bool force_8bit)
- {
- struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
- struct mtd_info *mtd = nand_to_mtd(&info->nand);
- int ret = 0;
- if (len <= mtd->oobsize || force_8bit) {
- omap_nand_data_in(chip, buf, len, force_8bit);
- return;
- }
- info->iomode = OMAP_NAND_IO_READ;
- info->buf = buf;
- init_completion(&info->comp);
- /* configure and start prefetch transfer */
- ret = omap_prefetch_enable(info->gpmc_cs,
- PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info);
- if (ret) {
- /* PFPW engine is busy, use cpu copy method */
- omap_nand_data_in(chip, buf, len, false);
- return;
- }
- info->buf_len = len;
- enable_irq(info->gpmc_irq_count);
- enable_irq(info->gpmc_irq_fifo);
- /* waiting for read to complete */
- wait_for_completion(&info->comp);
- /* disable and stop the PFPW engine */
- omap_prefetch_reset(info->gpmc_cs, info);
- return;
- }
- /*
- * omap_nand_data_out_irq_pref - NAND out using write posting and IRQ
- */
- static void omap_nand_data_out_irq_pref(struct nand_chip *chip,
- const void *buf, unsigned int len,
- bool force_8bit)
- {
- struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
- struct mtd_info *mtd = nand_to_mtd(&info->nand);
- int ret = 0;
- unsigned long tim, limit;
- u32 val;
- if (len <= mtd->oobsize || force_8bit) {
- omap_nand_data_out(chip, buf, len, force_8bit);
- return;
- }
- info->iomode = OMAP_NAND_IO_WRITE;
- info->buf = (u_char *) buf;
- init_completion(&info->comp);
- /* configure and start prefetch transfer : size=24 */
- ret = omap_prefetch_enable(info->gpmc_cs,
- (PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info);
- if (ret) {
- /* PFPW engine is busy, use cpu copy method */
- omap_nand_data_out(chip, buf, len, false);
- return;
- }
- info->buf_len = len;
- enable_irq(info->gpmc_irq_count);
- enable_irq(info->gpmc_irq_fifo);
- /* waiting for write to complete */
- wait_for_completion(&info->comp);
- /* wait for data to flushed-out before reset the prefetch */
- tim = 0;
- limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
- do {
- val = readl(info->reg.gpmc_prefetch_status);
- val = PREFETCH_STATUS_COUNT(val);
- cpu_relax();
- } while (val && (tim++ < limit));
- /* disable and stop the PFPW engine */
- omap_prefetch_reset(info->gpmc_cs, info);
- return;
- }
- /**
- * gen_true_ecc - This function will generate true ECC value
- * @ecc_buf: buffer to store ecc code
- *
- * This generated true ECC value can be used when correcting
- * data read from NAND flash memory core
- */
- static void gen_true_ecc(u8 *ecc_buf)
- {
- u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
- ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
- ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
- P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
- ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
- P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
- ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
- P1e(tmp) | P2048o(tmp) | P2048e(tmp));
- }
- /**
- * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
- * @ecc_data1: ecc code from nand spare area
- * @ecc_data2: ecc code from hardware register obtained from hardware ecc
- * @page_data: page data
- *
- * This function compares two ECC's and indicates if there is an error.
- * If the error can be corrected it will be corrected to the buffer.
- * If there is no error, %0 is returned. If there is an error but it
- * was corrected, %1 is returned. Otherwise, %-1 is returned.
- */
- static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */
- u8 *ecc_data2, /* read from register */
- u8 *page_data)
- {
- uint i;
- u8 tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
- u8 comp0_bit[8], comp1_bit[8], comp2_bit[8];
- u8 ecc_bit[24];
- u8 ecc_sum = 0;
- u8 find_bit = 0;
- uint find_byte = 0;
- int isEccFF;
- isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
- gen_true_ecc(ecc_data1);
- gen_true_ecc(ecc_data2);
- for (i = 0; i <= 2; i++) {
- *(ecc_data1 + i) = ~(*(ecc_data1 + i));
- *(ecc_data2 + i) = ~(*(ecc_data2 + i));
- }
- for (i = 0; i < 8; i++) {
- tmp0_bit[i] = *ecc_data1 % 2;
- *ecc_data1 = *ecc_data1 / 2;
- }
- for (i = 0; i < 8; i++) {
- tmp1_bit[i] = *(ecc_data1 + 1) % 2;
- *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
- }
- for (i = 0; i < 8; i++) {
- tmp2_bit[i] = *(ecc_data1 + 2) % 2;
- *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
- }
- for (i = 0; i < 8; i++) {
- comp0_bit[i] = *ecc_data2 % 2;
- *ecc_data2 = *ecc_data2 / 2;
- }
- for (i = 0; i < 8; i++) {
- comp1_bit[i] = *(ecc_data2 + 1) % 2;
- *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
- }
- for (i = 0; i < 8; i++) {
- comp2_bit[i] = *(ecc_data2 + 2) % 2;
- *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
- }
- for (i = 0; i < 6; i++)
- ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
- for (i = 0; i < 8; i++)
- ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
- for (i = 0; i < 8; i++)
- ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
- ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
- ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
- for (i = 0; i < 24; i++)
- ecc_sum += ecc_bit[i];
- switch (ecc_sum) {
- case 0:
- /* Not reached because this function is not called if
- * ECC values are equal
- */
- return 0;
- case 1:
- /* Uncorrectable error */
- pr_debug("ECC UNCORRECTED_ERROR 1\n");
- return -EBADMSG;
- case 11:
- /* UN-Correctable error */
- pr_debug("ECC UNCORRECTED_ERROR B\n");
- return -EBADMSG;
- case 12:
- /* Correctable error */
- find_byte = (ecc_bit[23] << 8) +
- (ecc_bit[21] << 7) +
- (ecc_bit[19] << 6) +
- (ecc_bit[17] << 5) +
- (ecc_bit[15] << 4) +
- (ecc_bit[13] << 3) +
- (ecc_bit[11] << 2) +
- (ecc_bit[9] << 1) +
- ecc_bit[7];
- find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
- pr_debug("Correcting single bit ECC error at offset: "
- "%d, bit: %d\n", find_byte, find_bit);
- page_data[find_byte] ^= (1 << find_bit);
- return 1;
- default:
- if (isEccFF) {
- if (ecc_data2[0] == 0 &&
- ecc_data2[1] == 0 &&
- ecc_data2[2] == 0)
- return 0;
- }
- pr_debug("UNCORRECTED_ERROR default\n");
- return -EBADMSG;
- }
- }
- /**
- * omap_correct_data - Compares the ECC read with HW generated ECC
- * @chip: NAND chip object
- * @dat: page data
- * @read_ecc: ecc read from nand flash
- * @calc_ecc: ecc read from HW ECC registers
- *
- * Compares the ecc read from nand spare area with ECC registers values
- * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
- * detection and correction. If there are no errors, %0 is returned. If
- * there were errors and all of the errors were corrected, the number of
- * corrected errors is returned. If uncorrectable errors exist, %-1 is
- * returned.
- */
- static int omap_correct_data(struct nand_chip *chip, u_char *dat,
- u_char *read_ecc, u_char *calc_ecc)
- {
- struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
- int blockCnt = 0, i = 0, ret = 0;
- int stat = 0;
- /* Ex NAND_ECC_HW12_2048 */
- if (info->nand.ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST &&
- info->nand.ecc.size == 2048)
- blockCnt = 4;
- else
- blockCnt = 1;
- for (i = 0; i < blockCnt; i++) {
- if (memcmp(read_ecc, calc_ecc, 3) != 0) {
- ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
- if (ret < 0)
- return ret;
- /* keep track of the number of corrected errors */
- stat += ret;
- }
- read_ecc += 3;
- calc_ecc += 3;
- dat += 512;
- }
- return stat;
- }
- /**
- * omap_calculate_ecc - Generate non-inverted ECC bytes.
- * @chip: NAND chip object
- * @dat: The pointer to data on which ecc is computed
- * @ecc_code: The ecc_code buffer
- *
- * Using noninverted ECC can be considered ugly since writing a blank
- * page ie. padding will clear the ECC bytes. This is no problem as long
- * nobody is trying to write data on the seemingly unused page. Reading
- * an erased page will produce an ECC mismatch between generated and read
- * ECC bytes that has to be dealt with separately.
- */
- static int omap_calculate_ecc(struct nand_chip *chip, const u_char *dat,
- u_char *ecc_code)
- {
- struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
- u32 val;
- val = readl(info->reg.gpmc_ecc_config);
- if (((val >> ECC_CONFIG_CS_SHIFT) & CS_MASK) != info->gpmc_cs)
- return -EINVAL;
- /* read ecc result */
- val = readl(info->reg.gpmc_ecc1_result);
- *ecc_code++ = val; /* P128e, ..., P1e */
- *ecc_code++ = val >> 16; /* P128o, ..., P1o */
- /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
- *ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
- return 0;
- }
- /**
- * omap_enable_hwecc - This function enables the hardware ecc functionality
- * @chip: NAND chip object
- * @mode: Read/Write mode
- */
- static void omap_enable_hwecc(struct nand_chip *chip, int mode)
- {
- struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
- unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
- u32 val;
- /* clear ecc and enable bits */
- val = ECCCLEAR | ECC1;
- writel(val, info->reg.gpmc_ecc_control);
- /* program ecc and result sizes */
- val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) |
- ECC1RESULTSIZE);
- writel(val, info->reg.gpmc_ecc_size_config);
- switch (mode) {
- case NAND_ECC_READ:
- case NAND_ECC_WRITE:
- writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
- break;
- case NAND_ECC_READSYN:
- writel(ECCCLEAR, info->reg.gpmc_ecc_control);
- break;
- default:
- dev_info(&info->pdev->dev,
- "error: unrecognized Mode[%d]!\n", mode);
- break;
- }
- /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */
- val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
- writel(val, info->reg.gpmc_ecc_config);
- }
- /**
- * omap_enable_hwecc_bch - Program GPMC to perform BCH ECC calculation
- * @chip: NAND chip object
- * @mode: Read/Write mode
- *
- * When using BCH with SW correction (i.e. no ELM), sector size is set
- * to 512 bytes and we use BCH_WRAPMODE_6 wrapping mode
- * for both reading and writing with:
- * eccsize0 = 0 (no additional protected byte in spare area)
- * eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
- */
- static void __maybe_unused omap_enable_hwecc_bch(struct nand_chip *chip,
- int mode)
- {
- unsigned int bch_type;
- unsigned int dev_width, nsectors;
- struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
- enum omap_ecc ecc_opt = info->ecc_opt;
- u32 val, wr_mode;
- unsigned int ecc_size1, ecc_size0;
- /* GPMC configurations for calculating ECC */
- switch (ecc_opt) {
- case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
- bch_type = 0;
- nsectors = 1;
- wr_mode = BCH_WRAPMODE_6;
- ecc_size0 = BCH_ECC_SIZE0;
- ecc_size1 = BCH_ECC_SIZE1;
- break;
- case OMAP_ECC_BCH4_CODE_HW:
- bch_type = 0;
- nsectors = chip->ecc.steps;
- if (mode == NAND_ECC_READ) {
- wr_mode = BCH_WRAPMODE_1;
- ecc_size0 = BCH4R_ECC_SIZE0;
- ecc_size1 = BCH4R_ECC_SIZE1;
- } else {
- wr_mode = BCH_WRAPMODE_6;
- ecc_size0 = BCH_ECC_SIZE0;
- ecc_size1 = BCH_ECC_SIZE1;
- }
- break;
- case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
- bch_type = 1;
- nsectors = 1;
- wr_mode = BCH_WRAPMODE_6;
- ecc_size0 = BCH_ECC_SIZE0;
- ecc_size1 = BCH_ECC_SIZE1;
- break;
- case OMAP_ECC_BCH8_CODE_HW:
- bch_type = 1;
- nsectors = chip->ecc.steps;
- if (mode == NAND_ECC_READ) {
- wr_mode = BCH_WRAPMODE_1;
- ecc_size0 = BCH8R_ECC_SIZE0;
- ecc_size1 = BCH8R_ECC_SIZE1;
- } else {
- wr_mode = BCH_WRAPMODE_6;
- ecc_size0 = BCH_ECC_SIZE0;
- ecc_size1 = BCH_ECC_SIZE1;
- }
- break;
- case OMAP_ECC_BCH16_CODE_HW:
- bch_type = 0x2;
- nsectors = chip->ecc.steps;
- if (mode == NAND_ECC_READ) {
- wr_mode = 0x01;
- ecc_size0 = 52; /* ECC bits in nibbles per sector */
- ecc_size1 = 0; /* non-ECC bits in nibbles per sector */
- } else {
- wr_mode = 0x01;
- ecc_size0 = 0; /* extra bits in nibbles per sector */
- ecc_size1 = 52; /* OOB bits in nibbles per sector */
- }
- break;
- default:
- return;
- }
- writel(ECC1, info->reg.gpmc_ecc_control);
- /* Configure ecc size for BCH */
- val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT);
- writel(val, info->reg.gpmc_ecc_size_config);
- dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
- /* BCH configuration */
- val = ((1 << 16) | /* enable BCH */
- (bch_type << 12) | /* BCH4/BCH8/BCH16 */
- (wr_mode << 8) | /* wrap mode */
- (dev_width << 7) | /* bus width */
- (((nsectors-1) & 0x7) << 4) | /* number of sectors */
- (info->gpmc_cs << 1) | /* ECC CS */
- (0x1)); /* enable ECC */
- writel(val, info->reg.gpmc_ecc_config);
- /* Clear ecc and enable bits */
- writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
- }
- static u8 bch4_polynomial[] = {0x28, 0x13, 0xcc, 0x39, 0x96, 0xac, 0x7f};
- static u8 bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
- 0x97, 0x79, 0xe5, 0x24, 0xb5};
- /**
- * _omap_calculate_ecc_bch - Generate ECC bytes for one sector
- * @mtd: MTD device structure
- * @dat: The pointer to data on which ecc is computed
- * @ecc_calc: The ecc_code buffer
- * @i: The sector number (for a multi sector page)
- *
- * Support calculating of BCH4/8/16 ECC vectors for one sector
- * within a page. Sector number is in @i.
- */
- static int _omap_calculate_ecc_bch(struct mtd_info *mtd,
- const u_char *dat, u_char *ecc_calc, int i)
- {
- struct omap_nand_info *info = mtd_to_omap(mtd);
- int eccbytes = info->nand.ecc.bytes;
- struct gpmc_nand_regs *gpmc_regs = &info->reg;
- u8 *ecc_code;
- unsigned long bch_val1, bch_val2, bch_val3, bch_val4;
- u32 val;
- int j;
- ecc_code = ecc_calc;
- switch (info->ecc_opt) {
- case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
- case OMAP_ECC_BCH8_CODE_HW:
- bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
- bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
- bch_val3 = readl(gpmc_regs->gpmc_bch_result2[i]);
- bch_val4 = readl(gpmc_regs->gpmc_bch_result3[i]);
- *ecc_code++ = (bch_val4 & 0xFF);
- *ecc_code++ = ((bch_val3 >> 24) & 0xFF);
- *ecc_code++ = ((bch_val3 >> 16) & 0xFF);
- *ecc_code++ = ((bch_val3 >> 8) & 0xFF);
- *ecc_code++ = (bch_val3 & 0xFF);
- *ecc_code++ = ((bch_val2 >> 24) & 0xFF);
- *ecc_code++ = ((bch_val2 >> 16) & 0xFF);
- *ecc_code++ = ((bch_val2 >> 8) & 0xFF);
- *ecc_code++ = (bch_val2 & 0xFF);
- *ecc_code++ = ((bch_val1 >> 24) & 0xFF);
- *ecc_code++ = ((bch_val1 >> 16) & 0xFF);
- *ecc_code++ = ((bch_val1 >> 8) & 0xFF);
- *ecc_code++ = (bch_val1 & 0xFF);
- break;
- case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
- case OMAP_ECC_BCH4_CODE_HW:
- bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
- bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
- *ecc_code++ = ((bch_val2 >> 12) & 0xFF);
- *ecc_code++ = ((bch_val2 >> 4) & 0xFF);
- *ecc_code++ = ((bch_val2 & 0xF) << 4) |
- ((bch_val1 >> 28) & 0xF);
- *ecc_code++ = ((bch_val1 >> 20) & 0xFF);
- *ecc_code++ = ((bch_val1 >> 12) & 0xFF);
- *ecc_code++ = ((bch_val1 >> 4) & 0xFF);
- *ecc_code++ = ((bch_val1 & 0xF) << 4);
- break;
- case OMAP_ECC_BCH16_CODE_HW:
- val = readl(gpmc_regs->gpmc_bch_result6[i]);
- ecc_code[0] = ((val >> 8) & 0xFF);
- ecc_code[1] = ((val >> 0) & 0xFF);
- val = readl(gpmc_regs->gpmc_bch_result5[i]);
- ecc_code[2] = ((val >> 24) & 0xFF);
- ecc_code[3] = ((val >> 16) & 0xFF);
- ecc_code[4] = ((val >> 8) & 0xFF);
- ecc_code[5] = ((val >> 0) & 0xFF);
- val = readl(gpmc_regs->gpmc_bch_result4[i]);
- ecc_code[6] = ((val >> 24) & 0xFF);
- ecc_code[7] = ((val >> 16) & 0xFF);
- ecc_code[8] = ((val >> 8) & 0xFF);
- ecc_code[9] = ((val >> 0) & 0xFF);
- val = readl(gpmc_regs->gpmc_bch_result3[i]);
- ecc_code[10] = ((val >> 24) & 0xFF);
- ecc_code[11] = ((val >> 16) & 0xFF);
- ecc_code[12] = ((val >> 8) & 0xFF);
- ecc_code[13] = ((val >> 0) & 0xFF);
- val = readl(gpmc_regs->gpmc_bch_result2[i]);
- ecc_code[14] = ((val >> 24) & 0xFF);
- ecc_code[15] = ((val >> 16) & 0xFF);
- ecc_code[16] = ((val >> 8) & 0xFF);
- ecc_code[17] = ((val >> 0) & 0xFF);
- val = readl(gpmc_regs->gpmc_bch_result1[i]);
- ecc_code[18] = ((val >> 24) & 0xFF);
- ecc_code[19] = ((val >> 16) & 0xFF);
- ecc_code[20] = ((val >> 8) & 0xFF);
- ecc_code[21] = ((val >> 0) & 0xFF);
- val = readl(gpmc_regs->gpmc_bch_result0[i]);
- ecc_code[22] = ((val >> 24) & 0xFF);
- ecc_code[23] = ((val >> 16) & 0xFF);
- ecc_code[24] = ((val >> 8) & 0xFF);
- ecc_code[25] = ((val >> 0) & 0xFF);
- break;
- default:
- return -EINVAL;
- }
- /* ECC scheme specific syndrome customizations */
- switch (info->ecc_opt) {
- case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
- /* Add constant polynomial to remainder, so that
- * ECC of blank pages results in 0x0 on reading back
- */
- for (j = 0; j < eccbytes; j++)
- ecc_calc[j] ^= bch4_polynomial[j];
- break;
- case OMAP_ECC_BCH4_CODE_HW:
- /* Set 8th ECC byte as 0x0 for ROM compatibility */
- ecc_calc[eccbytes - 1] = 0x0;
- break;
- case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
- /* Add constant polynomial to remainder, so that
- * ECC of blank pages results in 0x0 on reading back
- */
- for (j = 0; j < eccbytes; j++)
- ecc_calc[j] ^= bch8_polynomial[j];
- break;
- case OMAP_ECC_BCH8_CODE_HW:
- /* Set 14th ECC byte as 0x0 for ROM compatibility */
- ecc_calc[eccbytes - 1] = 0x0;
- break;
- case OMAP_ECC_BCH16_CODE_HW:
- break;
- default:
- return -EINVAL;
- }
- return 0;
- }
- /**
- * omap_calculate_ecc_bch_sw - ECC generator for sector for SW based correction
- * @chip: NAND chip object
- * @dat: The pointer to data on which ecc is computed
- * @ecc_calc: Buffer storing the calculated ECC bytes
- *
- * Support calculating of BCH4/8/16 ECC vectors for one sector. This is used
- * when SW based correction is required as ECC is required for one sector
- * at a time.
- */
- static int omap_calculate_ecc_bch_sw(struct nand_chip *chip,
- const u_char *dat, u_char *ecc_calc)
- {
- return _omap_calculate_ecc_bch(nand_to_mtd(chip), dat, ecc_calc, 0);
- }
- /**
- * omap_calculate_ecc_bch_multi - Generate ECC for multiple sectors
- * @mtd: MTD device structure
- * @dat: The pointer to data on which ecc is computed
- * @ecc_calc: Buffer storing the calculated ECC bytes
- *
- * Support calculating of BCH4/8/16 ecc vectors for the entire page in one go.
- */
- static int omap_calculate_ecc_bch_multi(struct mtd_info *mtd,
- const u_char *dat, u_char *ecc_calc)
- {
- struct omap_nand_info *info = mtd_to_omap(mtd);
- int eccbytes = info->nand.ecc.bytes;
- unsigned long nsectors;
- int i, ret;
- nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
- for (i = 0; i < nsectors; i++) {
- ret = _omap_calculate_ecc_bch(mtd, dat, ecc_calc, i);
- if (ret)
- return ret;
- ecc_calc += eccbytes;
- }
- return 0;
- }
- /**
- * erased_sector_bitflips - count bit flips
- * @data: data sector buffer
- * @oob: oob buffer
- * @info: omap_nand_info
- *
- * Check the bit flips in erased page falls below correctable level.
- * If falls below, report the page as erased with correctable bit
- * flip, else report as uncorrectable page.
- */
- static int erased_sector_bitflips(u_char *data, u_char *oob,
- struct omap_nand_info *info)
- {
- int flip_bits = 0, i;
- for (i = 0; i < info->nand.ecc.size; i++) {
- flip_bits += hweight8(~data[i]);
- if (flip_bits > info->nand.ecc.strength)
- return 0;
- }
- for (i = 0; i < info->nand.ecc.bytes - 1; i++) {
- flip_bits += hweight8(~oob[i]);
- if (flip_bits > info->nand.ecc.strength)
- return 0;
- }
- /*
- * Bit flips falls in correctable level.
- * Fill data area with 0xFF
- */
- if (flip_bits) {
- memset(data, 0xFF, info->nand.ecc.size);
- memset(oob, 0xFF, info->nand.ecc.bytes);
- }
- return flip_bits;
- }
- /**
- * omap_elm_correct_data - corrects page data area in case error reported
- * @chip: NAND chip object
- * @data: page data
- * @read_ecc: ecc read from nand flash
- * @calc_ecc: ecc read from HW ECC registers
- *
- * Calculated ecc vector reported as zero in case of non-error pages.
- * In case of non-zero ecc vector, first filter out erased-pages, and
- * then process data via ELM to detect bit-flips.
- */
- static int omap_elm_correct_data(struct nand_chip *chip, u_char *data,
- u_char *read_ecc, u_char *calc_ecc)
- {
- struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
- struct nand_ecc_ctrl *ecc = &info->nand.ecc;
- int eccsteps = info->nsteps_per_eccpg;
- int i , j, stat = 0;
- int eccflag, actual_eccbytes;
- struct elm_errorvec err_vec[ERROR_VECTOR_MAX];
- u_char *ecc_vec = calc_ecc;
- u_char *spare_ecc = read_ecc;
- u_char *erased_ecc_vec;
- u_char *buf;
- int bitflip_count;
- bool is_error_reported = false;
- u32 bit_pos, byte_pos, error_max, pos;
- int err;
- switch (info->ecc_opt) {
- case OMAP_ECC_BCH4_CODE_HW:
- /* omit 7th ECC byte reserved for ROM code compatibility */
- actual_eccbytes = ecc->bytes - 1;
- erased_ecc_vec = bch4_vector;
- break;
- case OMAP_ECC_BCH8_CODE_HW:
- /* omit 14th ECC byte reserved for ROM code compatibility */
- actual_eccbytes = ecc->bytes - 1;
- erased_ecc_vec = bch8_vector;
- break;
- case OMAP_ECC_BCH16_CODE_HW:
- actual_eccbytes = ecc->bytes;
- erased_ecc_vec = bch16_vector;
- break;
- default:
- dev_err(&info->pdev->dev, "invalid driver configuration\n");
- return -EINVAL;
- }
- /* Initialize elm error vector to zero */
- memset(err_vec, 0, sizeof(err_vec));
- for (i = 0; i < eccsteps ; i++) {
- eccflag = 0; /* initialize eccflag */
- /*
- * Check any error reported,
- * In case of error, non zero ecc reported.
- */
- for (j = 0; j < actual_eccbytes; j++) {
- if (calc_ecc[j] != 0) {
- eccflag = 1; /* non zero ecc, error present */
- break;
- }
- }
- if (eccflag == 1) {
- if (memcmp(calc_ecc, erased_ecc_vec,
- actual_eccbytes) == 0) {
- /*
- * calc_ecc[] matches pattern for ECC(all 0xff)
- * so this is definitely an erased-page
- */
- } else {
- buf = &data[info->nand.ecc.size * i];
- /*
- * count number of 0-bits in read_buf.
- * This check can be removed once a similar
- * check is introduced in generic NAND driver
- */
- bitflip_count = erased_sector_bitflips(
- buf, read_ecc, info);
- if (bitflip_count) {
- /*
- * number of 0-bits within ECC limits
- * So this may be an erased-page
- */
- stat += bitflip_count;
- } else {
- /*
- * Too many 0-bits. It may be a
- * - programmed-page, OR
- * - erased-page with many bit-flips
- * So this page requires check by ELM
- */
- err_vec[i].error_reported = true;
- is_error_reported = true;
- }
- }
- }
- /* Update the ecc vector */
- calc_ecc += ecc->bytes;
- read_ecc += ecc->bytes;
- }
- /* Check if any error reported */
- if (!is_error_reported)
- return stat;
- /* Decode BCH error using ELM module */
- elm_decode_bch_error_page(info->elm_dev, ecc_vec, err_vec);
- err = 0;
- for (i = 0; i < eccsteps; i++) {
- if (err_vec[i].error_uncorrectable) {
- dev_err(&info->pdev->dev,
- "uncorrectable bit-flips found\n");
- err = -EBADMSG;
- } else if (err_vec[i].error_reported) {
- for (j = 0; j < err_vec[i].error_count; j++) {
- switch (info->ecc_opt) {
- case OMAP_ECC_BCH4_CODE_HW:
- /* Add 4 bits to take care of padding */
- pos = err_vec[i].error_loc[j] +
- BCH4_BIT_PAD;
- break;
- case OMAP_ECC_BCH8_CODE_HW:
- case OMAP_ECC_BCH16_CODE_HW:
- pos = err_vec[i].error_loc[j];
- break;
- default:
- return -EINVAL;
- }
- error_max = (ecc->size + actual_eccbytes) * 8;
- /* Calculate bit position of error */
- bit_pos = pos % 8;
- /* Calculate byte position of error */
- byte_pos = (error_max - pos - 1) / 8;
- if (pos < error_max) {
- if (byte_pos < 512) {
- pr_debug("bitflip@dat[%d]=%x\n",
- byte_pos, data[byte_pos]);
- data[byte_pos] ^= 1 << bit_pos;
- } else {
- pr_debug("bitflip@oob[%d]=%x\n",
- (byte_pos - 512),
- spare_ecc[byte_pos - 512]);
- spare_ecc[byte_pos - 512] ^=
- 1 << bit_pos;
- }
- } else {
- dev_err(&info->pdev->dev,
- "invalid bit-flip @ %d:%d\n",
- byte_pos, bit_pos);
- err = -EBADMSG;
- }
- }
- }
- /* Update number of correctable errors */
- stat = max_t(unsigned int, stat, err_vec[i].error_count);
- /* Update page data with sector size */
- data += ecc->size;
- spare_ecc += ecc->bytes;
- }
- return (err) ? err : stat;
- }
- /**
- * omap_write_page_bch - BCH ecc based write page function for entire page
- * @chip: nand chip info structure
- * @buf: data buffer
- * @oob_required: must write chip->oob_poi to OOB
- * @page: page
- *
- * Custom write page method evolved to support multi sector writing in one shot
- */
- static int omap_write_page_bch(struct nand_chip *chip, const uint8_t *buf,
- int oob_required, int page)
- {
- struct mtd_info *mtd = nand_to_mtd(chip);
- struct omap_nand_info *info = mtd_to_omap(mtd);
- uint8_t *ecc_calc = chip->ecc.calc_buf;
- unsigned int eccpg;
- int ret;
- ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
- if (ret)
- return ret;
- for (eccpg = 0; eccpg < info->neccpg; eccpg++) {
- /* Enable GPMC ecc engine */
- chip->ecc.hwctl(chip, NAND_ECC_WRITE);
- /* Write data */
- info->data_out(chip, buf + (eccpg * info->eccpg_size),
- info->eccpg_size, false);
- /* Update ecc vector from GPMC result registers */
- ret = omap_calculate_ecc_bch_multi(mtd,
- buf + (eccpg * info->eccpg_size),
- ecc_calc);
- if (ret)
- return ret;
- ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc,
- chip->oob_poi,
- eccpg * info->eccpg_bytes,
- info->eccpg_bytes);
- if (ret)
- return ret;
- }
- /* Write ecc vector to OOB area */
- info->data_out(chip, chip->oob_poi, mtd->oobsize, false);
- return nand_prog_page_end_op(chip);
- }
- /**
- * omap_write_subpage_bch - BCH hardware ECC based subpage write
- * @chip: nand chip info structure
- * @offset: column address of subpage within the page
- * @data_len: data length
- * @buf: data buffer
- * @oob_required: must write chip->oob_poi to OOB
- * @page: page number to write
- *
- * OMAP optimized subpage write method.
- */
- static int omap_write_subpage_bch(struct nand_chip *chip, u32 offset,
- u32 data_len, const u8 *buf,
- int oob_required, int page)
- {
- struct mtd_info *mtd = nand_to_mtd(chip);
- struct omap_nand_info *info = mtd_to_omap(mtd);
- u8 *ecc_calc = chip->ecc.calc_buf;
- int ecc_size = chip->ecc.size;
- int ecc_bytes = chip->ecc.bytes;
- u32 start_step = offset / ecc_size;
- u32 end_step = (offset + data_len - 1) / ecc_size;
- unsigned int eccpg;
- int step, ret = 0;
- /*
- * Write entire page at one go as it would be optimal
- * as ECC is calculated by hardware.
- * ECC is calculated for all subpages but we choose
- * only what we want.
- */
- ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
- if (ret)
- return ret;
- for (eccpg = 0; eccpg < info->neccpg; eccpg++) {
- /* Enable GPMC ECC engine */
- chip->ecc.hwctl(chip, NAND_ECC_WRITE);
- /* Write data */
- info->data_out(chip, buf + (eccpg * info->eccpg_size),
- info->eccpg_size, false);
- for (step = 0; step < info->nsteps_per_eccpg; step++) {
- unsigned int base_step = eccpg * info->nsteps_per_eccpg;
- const u8 *bufoffs = buf + (eccpg * info->eccpg_size);
- /* Mask ECC of un-touched subpages with 0xFFs */
- if ((step + base_step) < start_step ||
- (step + base_step) > end_step)
- memset(ecc_calc + (step * ecc_bytes), 0xff,
- ecc_bytes);
- else
- ret = _omap_calculate_ecc_bch(mtd,
- bufoffs + (step * ecc_size),
- ecc_calc + (step * ecc_bytes),
- step);
- if (ret)
- return ret;
- }
- /*
- * Copy the calculated ECC for the whole page including the
- * masked values (0xFF) corresponding to unwritten subpages.
- */
- ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi,
- eccpg * info->eccpg_bytes,
- info->eccpg_bytes);
- if (ret)
- return ret;
- }
- /* write OOB buffer to NAND device */
- info->data_out(chip, chip->oob_poi, mtd->oobsize, false);
- return nand_prog_page_end_op(chip);
- }
- /**
- * omap_read_page_bch - BCH ecc based page read function for entire page
- * @chip: nand chip info structure
- * @buf: buffer to store read data
- * @oob_required: caller requires OOB data read to chip->oob_poi
- * @page: page number to read
- *
- * For BCH ecc scheme, GPMC used for syndrome calculation and ELM module
- * used for error correction.
- * Custom method evolved to support ELM error correction & multi sector
- * reading. On reading page data area is read along with OOB data with
- * ecc engine enabled. ecc vector updated after read of OOB data.
- * For non error pages ecc vector reported as zero.
- */
- static int omap_read_page_bch(struct nand_chip *chip, uint8_t *buf,
- int oob_required, int page)
- {
- struct mtd_info *mtd = nand_to_mtd(chip);
- struct omap_nand_info *info = mtd_to_omap(mtd);
- uint8_t *ecc_calc = chip->ecc.calc_buf;
- uint8_t *ecc_code = chip->ecc.code_buf;
- unsigned int max_bitflips = 0, eccpg;
- int stat, ret;
- ret = nand_read_page_op(chip, page, 0, NULL, 0);
- if (ret)
- return ret;
- for (eccpg = 0; eccpg < info->neccpg; eccpg++) {
- /* Enable GPMC ecc engine */
- chip->ecc.hwctl(chip, NAND_ECC_READ);
- /* Read data */
- ret = nand_change_read_column_op(chip, eccpg * info->eccpg_size,
- buf + (eccpg * info->eccpg_size),
- info->eccpg_size, false);
- if (ret)
- return ret;
- /* Read oob bytes */
- ret = nand_change_read_column_op(chip,
- mtd->writesize + BBM_LEN +
- (eccpg * info->eccpg_bytes),
- chip->oob_poi + BBM_LEN +
- (eccpg * info->eccpg_bytes),
- info->eccpg_bytes, false);
- if (ret)
- return ret;
- /* Calculate ecc bytes */
- ret = omap_calculate_ecc_bch_multi(mtd,
- buf + (eccpg * info->eccpg_size),
- ecc_calc);
- if (ret)
- return ret;
- ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code,
- chip->oob_poi,
- eccpg * info->eccpg_bytes,
- info->eccpg_bytes);
- if (ret)
- return ret;
- stat = chip->ecc.correct(chip,
- buf + (eccpg * info->eccpg_size),
- ecc_code, ecc_calc);
- if (stat < 0) {
- mtd->ecc_stats.failed++;
- } else {
- mtd->ecc_stats.corrected += stat;
- max_bitflips = max_t(unsigned int, max_bitflips, stat);
- }
- }
- return max_bitflips;
- }
- /**
- * is_elm_present - checks for presence of ELM module by scanning DT nodes
- * @info: NAND device structure containing platform data
- * @elm_node: ELM's DT node
- */
- static bool is_elm_present(struct omap_nand_info *info,
- struct device_node *elm_node)
- {
- struct platform_device *pdev;
- /* check whether elm-id is passed via DT */
- if (!elm_node) {
- dev_err(&info->pdev->dev, "ELM devicetree node not found\n");
- return false;
- }
- pdev = of_find_device_by_node(elm_node);
- /* check whether ELM device is registered */
- if (!pdev) {
- dev_err(&info->pdev->dev, "ELM device not found\n");
- return false;
- }
- /* ELM module available, now configure it */
- info->elm_dev = &pdev->dev;
- return true;
- }
- static bool omap2_nand_ecc_check(struct omap_nand_info *info)
- {
- bool ecc_needs_bch, ecc_needs_omap_bch, ecc_needs_elm;
- switch (info->ecc_opt) {
- case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
- case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
- ecc_needs_omap_bch = false;
- ecc_needs_bch = true;
- ecc_needs_elm = false;
- break;
- case OMAP_ECC_BCH4_CODE_HW:
- case OMAP_ECC_BCH8_CODE_HW:
- case OMAP_ECC_BCH16_CODE_HW:
- ecc_needs_omap_bch = true;
- ecc_needs_bch = false;
- ecc_needs_elm = true;
- break;
- default:
- ecc_needs_omap_bch = false;
- ecc_needs_bch = false;
- ecc_needs_elm = false;
- break;
- }
- if (ecc_needs_bch && !IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_BCH)) {
- dev_err(&info->pdev->dev,
- "CONFIG_MTD_NAND_ECC_SW_BCH not enabled\n");
- return false;
- }
- if (ecc_needs_omap_bch && !IS_ENABLED(CONFIG_MTD_NAND_OMAP_BCH)) {
- dev_err(&info->pdev->dev,
- "CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
- return false;
- }
- if (ecc_needs_elm && !is_elm_present(info, info->elm_of_node)) {
- dev_err(&info->pdev->dev, "ELM not available\n");
- return false;
- }
- return true;
- }
- static const char * const nand_xfer_types[] = {
- [NAND_OMAP_PREFETCH_POLLED] = "prefetch-polled",
- [NAND_OMAP_POLLED] = "polled",
- [NAND_OMAP_PREFETCH_DMA] = "prefetch-dma",
- [NAND_OMAP_PREFETCH_IRQ] = "prefetch-irq",
- };
- static int omap_get_dt_info(struct device *dev, struct omap_nand_info *info)
- {
- struct device_node *child = dev->of_node;
- int i;
- const char *s;
- u32 cs;
- if (of_property_read_u32(child, "reg", &cs) < 0) {
- dev_err(dev, "reg not found in DT\n");
- return -EINVAL;
- }
- info->gpmc_cs = cs;
- /* detect availability of ELM module. Won't be present pre-OMAP4 */
- info->elm_of_node = of_parse_phandle(child, "ti,elm-id", 0);
- if (!info->elm_of_node) {
- info->elm_of_node = of_parse_phandle(child, "elm_id", 0);
- if (!info->elm_of_node)
- dev_dbg(dev, "ti,elm-id not in DT\n");
- }
- /* select ecc-scheme for NAND */
- if (of_property_read_string(child, "ti,nand-ecc-opt", &s)) {
- dev_err(dev, "ti,nand-ecc-opt not found\n");
- return -EINVAL;
- }
- if (!strcmp(s, "sw")) {
- info->ecc_opt = OMAP_ECC_HAM1_CODE_SW;
- } else if (!strcmp(s, "ham1") ||
- !strcmp(s, "hw") || !strcmp(s, "hw-romcode")) {
- info->ecc_opt = OMAP_ECC_HAM1_CODE_HW;
- } else if (!strcmp(s, "bch4")) {
- if (info->elm_of_node)
- info->ecc_opt = OMAP_ECC_BCH4_CODE_HW;
- else
- info->ecc_opt = OMAP_ECC_BCH4_CODE_HW_DETECTION_SW;
- } else if (!strcmp(s, "bch8")) {
- if (info->elm_of_node)
- info->ecc_opt = OMAP_ECC_BCH8_CODE_HW;
- else
- info->ecc_opt = OMAP_ECC_BCH8_CODE_HW_DETECTION_SW;
- } else if (!strcmp(s, "bch16")) {
- info->ecc_opt = OMAP_ECC_BCH16_CODE_HW;
- } else {
- dev_err(dev, "unrecognized value for ti,nand-ecc-opt\n");
- return -EINVAL;
- }
- /* select data transfer mode */
- if (!of_property_read_string(child, "ti,nand-xfer-type", &s)) {
- for (i = 0; i < ARRAY_SIZE(nand_xfer_types); i++) {
- if (!strcasecmp(s, nand_xfer_types[i])) {
- info->xfer_type = i;
- return 0;
- }
- }
- dev_err(dev, "unrecognized value for ti,nand-xfer-type\n");
- return -EINVAL;
- }
- return 0;
- }
- static int omap_ooblayout_ecc(struct mtd_info *mtd, int section,
- struct mtd_oob_region *oobregion)
- {
- struct omap_nand_info *info = mtd_to_omap(mtd);
- struct nand_chip *chip = &info->nand;
- int off = BBM_LEN;
- if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW &&
- !(chip->options & NAND_BUSWIDTH_16))
- off = 1;
- if (section)
- return -ERANGE;
- oobregion->offset = off;
- oobregion->length = chip->ecc.total;
- return 0;
- }
- static int omap_ooblayout_free(struct mtd_info *mtd, int section,
- struct mtd_oob_region *oobregion)
- {
- struct omap_nand_info *info = mtd_to_omap(mtd);
- struct nand_chip *chip = &info->nand;
- int off = BBM_LEN;
- if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW &&
- !(chip->options & NAND_BUSWIDTH_16))
- off = 1;
- if (section)
- return -ERANGE;
- off += chip->ecc.total;
- if (off >= mtd->oobsize)
- return -ERANGE;
- oobregion->offset = off;
- oobregion->length = mtd->oobsize - off;
- return 0;
- }
- static const struct mtd_ooblayout_ops omap_ooblayout_ops = {
- .ecc = omap_ooblayout_ecc,
- .free = omap_ooblayout_free,
- };
- static int omap_sw_ooblayout_ecc(struct mtd_info *mtd, int section,
- struct mtd_oob_region *oobregion)
- {
- struct nand_device *nand = mtd_to_nanddev(mtd);
- unsigned int nsteps = nanddev_get_ecc_nsteps(nand);
- unsigned int ecc_bytes = nanddev_get_ecc_bytes_per_step(nand);
- int off = BBM_LEN;
- if (section >= nsteps)
- return -ERANGE;
- /*
- * When SW correction is employed, one OMAP specific marker byte is
- * reserved after each ECC step.
- */
- oobregion->offset = off + (section * (ecc_bytes + 1));
- oobregion->length = ecc_bytes;
- return 0;
- }
- static int omap_sw_ooblayout_free(struct mtd_info *mtd, int section,
- struct mtd_oob_region *oobregion)
- {
- struct nand_device *nand = mtd_to_nanddev(mtd);
- unsigned int nsteps = nanddev_get_ecc_nsteps(nand);
- unsigned int ecc_bytes = nanddev_get_ecc_bytes_per_step(nand);
- int off = BBM_LEN;
- if (section)
- return -ERANGE;
- /*
- * When SW correction is employed, one OMAP specific marker byte is
- * reserved after each ECC step.
- */
- off += ((ecc_bytes + 1) * nsteps);
- if (off >= mtd->oobsize)
- return -ERANGE;
- oobregion->offset = off;
- oobregion->length = mtd->oobsize - off;
- return 0;
- }
- static const struct mtd_ooblayout_ops omap_sw_ooblayout_ops = {
- .ecc = omap_sw_ooblayout_ecc,
- .free = omap_sw_ooblayout_free,
- };
- static int omap_nand_attach_chip(struct nand_chip *chip)
- {
- struct mtd_info *mtd = nand_to_mtd(chip);
- struct omap_nand_info *info = mtd_to_omap(mtd);
- struct device *dev = &info->pdev->dev;
- int min_oobbytes = BBM_LEN;
- int elm_bch_strength = -1;
- int oobbytes_per_step;
- dma_cap_mask_t mask;
- int err;
- if (chip->bbt_options & NAND_BBT_USE_FLASH)
- chip->bbt_options |= NAND_BBT_NO_OOB;
- else
- chip->options |= NAND_SKIP_BBTSCAN;
- /* Re-populate low-level callbacks based on xfer modes */
- switch (info->xfer_type) {
- case NAND_OMAP_PREFETCH_POLLED:
- info->data_in = omap_nand_data_in_pref;
- info->data_out = omap_nand_data_out_pref;
- break;
- case NAND_OMAP_POLLED:
- /* Use nand_base defaults for {read,write}_buf */
- break;
- case NAND_OMAP_PREFETCH_DMA:
- dma_cap_zero(mask);
- dma_cap_set(DMA_SLAVE, mask);
- info->dma = dma_request_chan(dev->parent, "rxtx");
- if (IS_ERR(info->dma)) {
- dev_err(dev, "DMA engine request failed\n");
- return PTR_ERR(info->dma);
- } else {
- struct dma_slave_config cfg;
- memset(&cfg, 0, sizeof(cfg));
- cfg.src_addr = info->phys_base;
- cfg.dst_addr = info->phys_base;
- cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
- cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
- cfg.src_maxburst = 16;
- cfg.dst_maxburst = 16;
- err = dmaengine_slave_config(info->dma, &cfg);
- if (err) {
- dev_err(dev,
- "DMA engine slave config failed: %d\n",
- err);
- return err;
- }
- info->data_in = omap_nand_data_in_dma_pref;
- info->data_out = omap_nand_data_out_dma_pref;
- }
- break;
- case NAND_OMAP_PREFETCH_IRQ:
- info->gpmc_irq_fifo = platform_get_irq(info->pdev, 0);
- if (info->gpmc_irq_fifo <= 0)
- return -ENODEV;
- err = devm_request_irq(dev, info->gpmc_irq_fifo,
- omap_nand_irq, IRQF_SHARED,
- "gpmc-nand-fifo", info);
- if (err) {
- dev_err(dev, "Requesting IRQ %d, error %d\n",
- info->gpmc_irq_fifo, err);
- info->gpmc_irq_fifo = 0;
- return err;
- }
- info->gpmc_irq_count = platform_get_irq(info->pdev, 1);
- if (info->gpmc_irq_count <= 0)
- return -ENODEV;
- err = devm_request_irq(dev, info->gpmc_irq_count,
- omap_nand_irq, IRQF_SHARED,
- "gpmc-nand-count", info);
- if (err) {
- dev_err(dev, "Requesting IRQ %d, error %d\n",
- info->gpmc_irq_count, err);
- info->gpmc_irq_count = 0;
- return err;
- }
- info->data_in = omap_nand_data_in_irq_pref;
- info->data_out = omap_nand_data_out_irq_pref;
- break;
- default:
- dev_err(dev, "xfer_type %d not supported!\n", info->xfer_type);
- return -EINVAL;
- }
- if (!omap2_nand_ecc_check(info))
- return -EINVAL;
- /*
- * Bail out earlier to let NAND_ECC_ENGINE_TYPE_SOFT code create its own
- * ooblayout instead of using ours.
- */
- if (info->ecc_opt == OMAP_ECC_HAM1_CODE_SW) {
- chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
- chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
- return 0;
- }
- /* Populate MTD interface based on ECC scheme */
- switch (info->ecc_opt) {
- case OMAP_ECC_HAM1_CODE_HW:
- dev_info(dev, "nand: using OMAP_ECC_HAM1_CODE_HW\n");
- chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
- chip->ecc.bytes = 3;
- chip->ecc.size = 512;
- chip->ecc.strength = 1;
- chip->ecc.calculate = omap_calculate_ecc;
- chip->ecc.hwctl = omap_enable_hwecc;
- chip->ecc.correct = omap_correct_data;
- mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
- oobbytes_per_step = chip->ecc.bytes;
- if (!(chip->options & NAND_BUSWIDTH_16))
- min_oobbytes = 1;
- break;
- case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
- pr_info("nand: using OMAP_ECC_BCH4_CODE_HW_DETECTION_SW\n");
- chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
- chip->ecc.size = 512;
- chip->ecc.bytes = 7;
- chip->ecc.strength = 4;
- chip->ecc.hwctl = omap_enable_hwecc_bch;
- chip->ecc.correct = rawnand_sw_bch_correct;
- chip->ecc.calculate = omap_calculate_ecc_bch_sw;
- mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops);
- /* Reserve one byte for the OMAP marker */
- oobbytes_per_step = chip->ecc.bytes + 1;
- /* Software BCH library is used for locating errors */
- err = rawnand_sw_bch_init(chip);
- if (err) {
- dev_err(dev, "Unable to use BCH library\n");
- return err;
- }
- break;
- case OMAP_ECC_BCH4_CODE_HW:
- pr_info("nand: using OMAP_ECC_BCH4_CODE_HW ECC scheme\n");
- chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
- chip->ecc.size = 512;
- /* 14th bit is kept reserved for ROM-code compatibility */
- chip->ecc.bytes = 7 + 1;
- chip->ecc.strength = 4;
- chip->ecc.hwctl = omap_enable_hwecc_bch;
- chip->ecc.correct = omap_elm_correct_data;
- chip->ecc.read_page = omap_read_page_bch;
- chip->ecc.write_page = omap_write_page_bch;
- chip->ecc.write_subpage = omap_write_subpage_bch;
- mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
- oobbytes_per_step = chip->ecc.bytes;
- elm_bch_strength = BCH4_ECC;
- break;
- case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
- pr_info("nand: using OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
- chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
- chip->ecc.size = 512;
- chip->ecc.bytes = 13;
- chip->ecc.strength = 8;
- chip->ecc.hwctl = omap_enable_hwecc_bch;
- chip->ecc.correct = rawnand_sw_bch_correct;
- chip->ecc.calculate = omap_calculate_ecc_bch_sw;
- mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops);
- /* Reserve one byte for the OMAP marker */
- oobbytes_per_step = chip->ecc.bytes + 1;
- /* Software BCH library is used for locating errors */
- err = rawnand_sw_bch_init(chip);
- if (err) {
- dev_err(dev, "unable to use BCH library\n");
- return err;
- }
- break;
- case OMAP_ECC_BCH8_CODE_HW:
- pr_info("nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme\n");
- chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
- chip->ecc.size = 512;
- /* 14th bit is kept reserved for ROM-code compatibility */
- chip->ecc.bytes = 13 + 1;
- chip->ecc.strength = 8;
- chip->ecc.hwctl = omap_enable_hwecc_bch;
- chip->ecc.correct = omap_elm_correct_data;
- chip->ecc.read_page = omap_read_page_bch;
- chip->ecc.write_page = omap_write_page_bch;
- chip->ecc.write_subpage = omap_write_subpage_bch;
- mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
- oobbytes_per_step = chip->ecc.bytes;
- elm_bch_strength = BCH8_ECC;
- break;
- case OMAP_ECC_BCH16_CODE_HW:
- pr_info("Using OMAP_ECC_BCH16_CODE_HW ECC scheme\n");
- chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
- chip->ecc.size = 512;
- chip->ecc.bytes = 26;
- chip->ecc.strength = 16;
- chip->ecc.hwctl = omap_enable_hwecc_bch;
- chip->ecc.correct = omap_elm_correct_data;
- chip->ecc.read_page = omap_read_page_bch;
- chip->ecc.write_page = omap_write_page_bch;
- chip->ecc.write_subpage = omap_write_subpage_bch;
- mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
- oobbytes_per_step = chip->ecc.bytes;
- elm_bch_strength = BCH16_ECC;
- break;
- default:
- dev_err(dev, "Invalid or unsupported ECC scheme\n");
- return -EINVAL;
- }
- if (elm_bch_strength >= 0) {
- chip->ecc.steps = mtd->writesize / chip->ecc.size;
- info->neccpg = chip->ecc.steps / ERROR_VECTOR_MAX;
- if (info->neccpg) {
- info->nsteps_per_eccpg = ERROR_VECTOR_MAX;
- } else {
- info->neccpg = 1;
- info->nsteps_per_eccpg = chip->ecc.steps;
- }
- info->eccpg_size = info->nsteps_per_eccpg * chip->ecc.size;
- info->eccpg_bytes = info->nsteps_per_eccpg * chip->ecc.bytes;
- err = elm_config(info->elm_dev, elm_bch_strength,
- info->nsteps_per_eccpg, chip->ecc.size,
- chip->ecc.bytes);
- if (err < 0)
- return err;
- }
- /* Check if NAND device's OOB is enough to store ECC signatures */
- min_oobbytes += (oobbytes_per_step *
- (mtd->writesize / chip->ecc.size));
- if (mtd->oobsize < min_oobbytes) {
- dev_err(dev,
- "Not enough OOB bytes: required = %d, available=%d\n",
- min_oobbytes, mtd->oobsize);
- return -EINVAL;
- }
- return 0;
- }
- static void omap_nand_data_in(struct nand_chip *chip, void *buf,
- unsigned int len, bool force_8bit)
- {
- struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
- u32 alignment = ((uintptr_t)buf | len) & 3;
- if (force_8bit || (alignment & 1))
- ioread8_rep(info->fifo, buf, len);
- else if (alignment & 3)
- ioread16_rep(info->fifo, buf, len >> 1);
- else
- ioread32_rep(info->fifo, buf, len >> 2);
- }
- static void omap_nand_data_out(struct nand_chip *chip,
- const void *buf, unsigned int len,
- bool force_8bit)
- {
- struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
- u32 alignment = ((uintptr_t)buf | len) & 3;
- if (force_8bit || (alignment & 1))
- iowrite8_rep(info->fifo, buf, len);
- else if (alignment & 3)
- iowrite16_rep(info->fifo, buf, len >> 1);
- else
- iowrite32_rep(info->fifo, buf, len >> 2);
- }
- static int omap_nand_exec_instr(struct nand_chip *chip,
- const struct nand_op_instr *instr)
- {
- struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
- unsigned int i;
- int ret;
- switch (instr->type) {
- case NAND_OP_CMD_INSTR:
- iowrite8(instr->ctx.cmd.opcode,
- info->reg.gpmc_nand_command);
- break;
- case NAND_OP_ADDR_INSTR:
- for (i = 0; i < instr->ctx.addr.naddrs; i++) {
- iowrite8(instr->ctx.addr.addrs[i],
- info->reg.gpmc_nand_address);
- }
- break;
- case NAND_OP_DATA_IN_INSTR:
- info->data_in(chip, instr->ctx.data.buf.in,
- instr->ctx.data.len,
- instr->ctx.data.force_8bit);
- break;
- case NAND_OP_DATA_OUT_INSTR:
- info->data_out(chip, instr->ctx.data.buf.out,
- instr->ctx.data.len,
- instr->ctx.data.force_8bit);
- break;
- case NAND_OP_WAITRDY_INSTR:
- ret = info->ready_gpiod ?
- nand_gpio_waitrdy(chip, info->ready_gpiod, instr->ctx.waitrdy.timeout_ms) :
- nand_soft_waitrdy(chip, instr->ctx.waitrdy.timeout_ms);
- if (ret)
- return ret;
- break;
- }
- if (instr->delay_ns)
- ndelay(instr->delay_ns);
- return 0;
- }
- static int omap_nand_exec_op(struct nand_chip *chip,
- const struct nand_operation *op,
- bool check_only)
- {
- unsigned int i;
- if (check_only)
- return 0;
- for (i = 0; i < op->ninstrs; i++) {
- int ret;
- ret = omap_nand_exec_instr(chip, &op->instrs[i]);
- if (ret)
- return ret;
- }
- return 0;
- }
- static const struct nand_controller_ops omap_nand_controller_ops = {
- .attach_chip = omap_nand_attach_chip,
- .exec_op = omap_nand_exec_op,
- };
- /* Shared among all NAND instances to synchronize access to the ECC Engine */
- static struct nand_controller omap_gpmc_controller;
- static bool omap_gpmc_controller_initialized;
- static int omap_nand_probe(struct platform_device *pdev)
- {
- struct omap_nand_info *info;
- struct mtd_info *mtd;
- struct nand_chip *nand_chip;
- int err;
- struct resource *res;
- struct device *dev = &pdev->dev;
- void __iomem *vaddr;
- info = devm_kzalloc(&pdev->dev, sizeof(struct omap_nand_info),
- GFP_KERNEL);
- if (!info)
- return -ENOMEM;
- info->pdev = pdev;
- err = omap_get_dt_info(dev, info);
- if (err)
- return err;
- info->ops = gpmc_omap_get_nand_ops(&info->reg, info->gpmc_cs);
- if (!info->ops) {
- dev_err(&pdev->dev, "Failed to get GPMC->NAND interface\n");
- return -ENODEV;
- }
- nand_chip = &info->nand;
- mtd = nand_to_mtd(nand_chip);
- mtd->dev.parent = &pdev->dev;
- nand_set_flash_node(nand_chip, dev->of_node);
- if (!mtd->name) {
- mtd->name = devm_kasprintf(&pdev->dev, GFP_KERNEL,
- "omap2-nand.%d", info->gpmc_cs);
- if (!mtd->name) {
- dev_err(&pdev->dev, "Failed to set MTD name\n");
- return -ENOMEM;
- }
- }
- res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
- vaddr = devm_ioremap_resource(&pdev->dev, res);
- if (IS_ERR(vaddr))
- return PTR_ERR(vaddr);
- info->fifo = vaddr;
- info->phys_base = res->start;
- if (!omap_gpmc_controller_initialized) {
- omap_gpmc_controller.ops = &omap_nand_controller_ops;
- nand_controller_init(&omap_gpmc_controller);
- omap_gpmc_controller_initialized = true;
- }
- nand_chip->controller = &omap_gpmc_controller;
- info->ready_gpiod = devm_gpiod_get_optional(&pdev->dev, "rb",
- GPIOD_IN);
- if (IS_ERR(info->ready_gpiod)) {
- dev_err(dev, "failed to get ready gpio\n");
- return PTR_ERR(info->ready_gpiod);
- }
- if (info->flash_bbt)
- nand_chip->bbt_options |= NAND_BBT_USE_FLASH;
- /* default operations */
- info->data_in = omap_nand_data_in;
- info->data_out = omap_nand_data_out;
- err = nand_scan(nand_chip, 1);
- if (err)
- goto return_error;
- err = mtd_device_register(mtd, NULL, 0);
- if (err)
- goto cleanup_nand;
- platform_set_drvdata(pdev, mtd);
- return 0;
- cleanup_nand:
- nand_cleanup(nand_chip);
- return_error:
- if (!IS_ERR_OR_NULL(info->dma))
- dma_release_channel(info->dma);
- rawnand_sw_bch_cleanup(nand_chip);
- return err;
- }
- static int omap_nand_remove(struct platform_device *pdev)
- {
- struct mtd_info *mtd = platform_get_drvdata(pdev);
- struct nand_chip *nand_chip = mtd_to_nand(mtd);
- struct omap_nand_info *info = mtd_to_omap(mtd);
- rawnand_sw_bch_cleanup(nand_chip);
- if (info->dma)
- dma_release_channel(info->dma);
- WARN_ON(mtd_device_unregister(mtd));
- nand_cleanup(nand_chip);
- return 0;
- }
- /* omap_nand_ids defined in linux/platform_data/mtd-nand-omap2.h */
- MODULE_DEVICE_TABLE(of, omap_nand_ids);
- static struct platform_driver omap_nand_driver = {
- .probe = omap_nand_probe,
- .remove = omap_nand_remove,
- .driver = {
- .name = DRIVER_NAME,
- .of_match_table = omap_nand_ids,
- },
- };
- module_platform_driver(omap_nand_driver);
- MODULE_ALIAS("platform:" DRIVER_NAME);
- MODULE_LICENSE("GPL");
- MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");
|