nand_toshiba.c 7.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302
  1. // SPDX-License-Identifier: GPL-2.0-or-later
  2. /*
  3. * Copyright (C) 2017 Free Electrons
  4. * Copyright (C) 2017 NextThing Co
  5. *
  6. * Author: Boris Brezillon <[email protected]>
  7. */
  8. #include "internals.h"
  9. /* Bit for detecting BENAND */
  10. #define TOSHIBA_NAND_ID4_IS_BENAND BIT(7)
  11. /* Recommended to rewrite for BENAND */
  12. #define TOSHIBA_NAND_STATUS_REWRITE_RECOMMENDED BIT(3)
  13. /* ECC Status Read Command for BENAND */
  14. #define TOSHIBA_NAND_CMD_ECC_STATUS_READ 0x7A
  15. /* ECC Status Mask for BENAND */
  16. #define TOSHIBA_NAND_ECC_STATUS_MASK 0x0F
  17. /* Uncorrectable Error for BENAND */
  18. #define TOSHIBA_NAND_ECC_STATUS_UNCORR 0x0F
  19. /* Max ECC Steps for BENAND */
  20. #define TOSHIBA_NAND_MAX_ECC_STEPS 8
  21. static int toshiba_nand_benand_read_eccstatus_op(struct nand_chip *chip,
  22. u8 *buf)
  23. {
  24. u8 *ecc_status = buf;
  25. if (nand_has_exec_op(chip)) {
  26. const struct nand_sdr_timings *sdr =
  27. nand_get_sdr_timings(nand_get_interface_config(chip));
  28. struct nand_op_instr instrs[] = {
  29. NAND_OP_CMD(TOSHIBA_NAND_CMD_ECC_STATUS_READ,
  30. PSEC_TO_NSEC(sdr->tADL_min)),
  31. NAND_OP_8BIT_DATA_IN(chip->ecc.steps, ecc_status, 0),
  32. };
  33. struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
  34. return nand_exec_op(chip, &op);
  35. }
  36. return -ENOTSUPP;
  37. }
  38. static int toshiba_nand_benand_eccstatus(struct nand_chip *chip)
  39. {
  40. struct mtd_info *mtd = nand_to_mtd(chip);
  41. int ret;
  42. unsigned int max_bitflips = 0;
  43. u8 status, ecc_status[TOSHIBA_NAND_MAX_ECC_STEPS];
  44. /* Check Status */
  45. ret = toshiba_nand_benand_read_eccstatus_op(chip, ecc_status);
  46. if (!ret) {
  47. unsigned int i, bitflips = 0;
  48. for (i = 0; i < chip->ecc.steps; i++) {
  49. bitflips = ecc_status[i] & TOSHIBA_NAND_ECC_STATUS_MASK;
  50. if (bitflips == TOSHIBA_NAND_ECC_STATUS_UNCORR) {
  51. mtd->ecc_stats.failed++;
  52. } else {
  53. mtd->ecc_stats.corrected += bitflips;
  54. max_bitflips = max(max_bitflips, bitflips);
  55. }
  56. }
  57. return max_bitflips;
  58. }
  59. /*
  60. * Fallback to regular status check if
  61. * toshiba_nand_benand_read_eccstatus_op() failed.
  62. */
  63. ret = nand_status_op(chip, &status);
  64. if (ret)
  65. return ret;
  66. if (status & NAND_STATUS_FAIL) {
  67. /* uncorrected */
  68. mtd->ecc_stats.failed++;
  69. } else if (status & TOSHIBA_NAND_STATUS_REWRITE_RECOMMENDED) {
  70. /* corrected */
  71. max_bitflips = mtd->bitflip_threshold;
  72. mtd->ecc_stats.corrected += max_bitflips;
  73. }
  74. return max_bitflips;
  75. }
  76. static int
  77. toshiba_nand_read_page_benand(struct nand_chip *chip, uint8_t *buf,
  78. int oob_required, int page)
  79. {
  80. int ret;
  81. ret = nand_read_page_raw(chip, buf, oob_required, page);
  82. if (ret)
  83. return ret;
  84. return toshiba_nand_benand_eccstatus(chip);
  85. }
  86. static int
  87. toshiba_nand_read_subpage_benand(struct nand_chip *chip, uint32_t data_offs,
  88. uint32_t readlen, uint8_t *bufpoi, int page)
  89. {
  90. int ret;
  91. ret = nand_read_page_op(chip, page, data_offs,
  92. bufpoi + data_offs, readlen);
  93. if (ret)
  94. return ret;
  95. return toshiba_nand_benand_eccstatus(chip);
  96. }
  97. static void toshiba_nand_benand_init(struct nand_chip *chip)
  98. {
  99. struct mtd_info *mtd = nand_to_mtd(chip);
  100. /*
  101. * On BENAND, the entire OOB region can be used by the MTD user.
  102. * The calculated ECC bytes are stored into other isolated
  103. * area which is not accessible to users.
  104. * This is why chip->ecc.bytes = 0.
  105. */
  106. chip->ecc.bytes = 0;
  107. chip->ecc.size = 512;
  108. chip->ecc.strength = 8;
  109. chip->ecc.read_page = toshiba_nand_read_page_benand;
  110. chip->ecc.read_subpage = toshiba_nand_read_subpage_benand;
  111. chip->ecc.write_page = nand_write_page_raw;
  112. chip->ecc.read_page_raw = nand_read_page_raw_notsupp;
  113. chip->ecc.write_page_raw = nand_write_page_raw_notsupp;
  114. chip->options |= NAND_SUBPAGE_READ;
  115. mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout());
  116. }
  117. static void toshiba_nand_decode_id(struct nand_chip *chip)
  118. {
  119. struct nand_device *base = &chip->base;
  120. struct nand_ecc_props requirements = {};
  121. struct mtd_info *mtd = nand_to_mtd(chip);
  122. struct nand_memory_organization *memorg;
  123. memorg = nanddev_get_memorg(&chip->base);
  124. nand_decode_ext_id(chip);
  125. /*
  126. * Toshiba 24nm raw SLC (i.e., not BENAND) have 32B OOB per
  127. * 512B page. For Toshiba SLC, we decode the 5th/6th byte as
  128. * follows:
  129. * - ID byte 6, bits[2:0]: 100b -> 43nm, 101b -> 32nm,
  130. * 110b -> 24nm
  131. * - ID byte 5, bit[7]: 1 -> BENAND, 0 -> raw SLC
  132. */
  133. if (chip->id.len >= 6 && nand_is_slc(chip) &&
  134. (chip->id.data[5] & 0x7) == 0x6 /* 24nm */ &&
  135. !(chip->id.data[4] & TOSHIBA_NAND_ID4_IS_BENAND) /* !BENAND */) {
  136. memorg->oobsize = 32 * memorg->pagesize >> 9;
  137. mtd->oobsize = memorg->oobsize;
  138. }
  139. /*
  140. * Extract ECC requirements from 6th id byte.
  141. * For Toshiba SLC, ecc requrements are as follows:
  142. * - 43nm: 1 bit ECC for each 512Byte is required.
  143. * - 32nm: 4 bit ECC for each 512Byte is required.
  144. * - 24nm: 8 bit ECC for each 512Byte is required.
  145. */
  146. if (chip->id.len >= 6 && nand_is_slc(chip)) {
  147. requirements.step_size = 512;
  148. switch (chip->id.data[5] & 0x7) {
  149. case 0x4:
  150. requirements.strength = 1;
  151. break;
  152. case 0x5:
  153. requirements.strength = 4;
  154. break;
  155. case 0x6:
  156. requirements.strength = 8;
  157. break;
  158. default:
  159. WARN(1, "Could not get ECC info");
  160. requirements.step_size = 0;
  161. break;
  162. }
  163. }
  164. nanddev_set_ecc_requirements(base, &requirements);
  165. }
  166. static int
  167. tc58teg5dclta00_choose_interface_config(struct nand_chip *chip,
  168. struct nand_interface_config *iface)
  169. {
  170. onfi_fill_interface_config(chip, iface, NAND_SDR_IFACE, 5);
  171. return nand_choose_best_sdr_timings(chip, iface, NULL);
  172. }
  173. static int
  174. tc58nvg0s3e_choose_interface_config(struct nand_chip *chip,
  175. struct nand_interface_config *iface)
  176. {
  177. onfi_fill_interface_config(chip, iface, NAND_SDR_IFACE, 2);
  178. return nand_choose_best_sdr_timings(chip, iface, NULL);
  179. }
  180. static int
  181. th58nvg2s3hbai4_choose_interface_config(struct nand_chip *chip,
  182. struct nand_interface_config *iface)
  183. {
  184. struct nand_sdr_timings *sdr = &iface->timings.sdr;
  185. /* Start with timings from the closest timing mode, mode 4. */
  186. onfi_fill_interface_config(chip, iface, NAND_SDR_IFACE, 4);
  187. /* Patch timings that differ from mode 4. */
  188. sdr->tALS_min = 12000;
  189. sdr->tCHZ_max = 20000;
  190. sdr->tCLS_min = 12000;
  191. sdr->tCOH_min = 0;
  192. sdr->tDS_min = 12000;
  193. sdr->tRHOH_min = 25000;
  194. sdr->tRHW_min = 30000;
  195. sdr->tRHZ_max = 60000;
  196. sdr->tWHR_min = 60000;
  197. /* Patch timings not part of onfi timing mode. */
  198. sdr->tPROG_max = 700000000;
  199. sdr->tBERS_max = 5000000000;
  200. return nand_choose_best_sdr_timings(chip, iface, sdr);
  201. }
  202. static int tc58teg5dclta00_init(struct nand_chip *chip)
  203. {
  204. struct mtd_info *mtd = nand_to_mtd(chip);
  205. chip->ops.choose_interface_config =
  206. &tc58teg5dclta00_choose_interface_config;
  207. chip->options |= NAND_NEED_SCRAMBLING;
  208. mtd_set_pairing_scheme(mtd, &dist3_pairing_scheme);
  209. return 0;
  210. }
  211. static int tc58nvg0s3e_init(struct nand_chip *chip)
  212. {
  213. chip->ops.choose_interface_config =
  214. &tc58nvg0s3e_choose_interface_config;
  215. return 0;
  216. }
  217. static int th58nvg2s3hbai4_init(struct nand_chip *chip)
  218. {
  219. chip->ops.choose_interface_config =
  220. &th58nvg2s3hbai4_choose_interface_config;
  221. return 0;
  222. }
  223. static int toshiba_nand_init(struct nand_chip *chip)
  224. {
  225. if (nand_is_slc(chip))
  226. chip->options |= NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE;
  227. /* Check that chip is BENAND and ECC mode is on-die */
  228. if (nand_is_slc(chip) &&
  229. chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_DIE &&
  230. chip->id.data[4] & TOSHIBA_NAND_ID4_IS_BENAND)
  231. toshiba_nand_benand_init(chip);
  232. if (!strcmp("TC58TEG5DCLTA00", chip->parameters.model))
  233. tc58teg5dclta00_init(chip);
  234. if (!strncmp("TC58NVG0S3E", chip->parameters.model,
  235. sizeof("TC58NVG0S3E") - 1))
  236. tc58nvg0s3e_init(chip);
  237. if ((!strncmp("TH58NVG2S3HBAI4", chip->parameters.model,
  238. sizeof("TH58NVG2S3HBAI4") - 1)) ||
  239. (!strncmp("TH58NVG3S0HBAI4", chip->parameters.model,
  240. sizeof("TH58NVG3S0HBAI4") - 1)))
  241. th58nvg2s3hbai4_init(chip);
  242. return 0;
  243. }
  244. const struct nand_manufacturer_ops toshiba_nand_manuf_ops = {
  245. .detect = toshiba_nand_decode_id,
  246. .init = toshiba_nand_init,
  247. };