meson_nand.c 36 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472
  1. // SPDX-License-Identifier: (GPL-2.0+ OR MIT)
  2. /*
  3. * Amlogic Meson Nand Flash Controller Driver
  4. *
  5. * Copyright (c) 2018 Amlogic, inc.
  6. * Author: Liang Yang <[email protected]>
  7. */
  8. #include <linux/platform_device.h>
  9. #include <linux/dma-mapping.h>
  10. #include <linux/interrupt.h>
  11. #include <linux/clk.h>
  12. #include <linux/clk-provider.h>
  13. #include <linux/mtd/rawnand.h>
  14. #include <linux/mtd/mtd.h>
  15. #include <linux/mfd/syscon.h>
  16. #include <linux/regmap.h>
  17. #include <linux/slab.h>
  18. #include <linux/module.h>
  19. #include <linux/iopoll.h>
  20. #include <linux/of.h>
  21. #include <linux/of_device.h>
  22. #include <linux/sched/task_stack.h>
  23. #define NFC_REG_CMD 0x00
  24. #define NFC_CMD_IDLE (0xc << 14)
  25. #define NFC_CMD_CLE (0x5 << 14)
  26. #define NFC_CMD_ALE (0x6 << 14)
  27. #define NFC_CMD_ADL ((0 << 16) | (3 << 20))
  28. #define NFC_CMD_ADH ((1 << 16) | (3 << 20))
  29. #define NFC_CMD_AIL ((2 << 16) | (3 << 20))
  30. #define NFC_CMD_AIH ((3 << 16) | (3 << 20))
  31. #define NFC_CMD_SEED ((8 << 16) | (3 << 20))
  32. #define NFC_CMD_M2N ((0 << 17) | (2 << 20))
  33. #define NFC_CMD_N2M ((1 << 17) | (2 << 20))
  34. #define NFC_CMD_RB BIT(20)
  35. #define NFC_CMD_SCRAMBLER_ENABLE BIT(19)
  36. #define NFC_CMD_SCRAMBLER_DISABLE 0
  37. #define NFC_CMD_SHORTMODE_DISABLE 0
  38. #define NFC_CMD_RB_INT BIT(14)
  39. #define NFC_CMD_GET_SIZE(x) (((x) >> 22) & GENMASK(4, 0))
  40. #define NFC_REG_CFG 0x04
  41. #define NFC_REG_DADR 0x08
  42. #define NFC_REG_IADR 0x0c
  43. #define NFC_REG_BUF 0x10
  44. #define NFC_REG_INFO 0x14
  45. #define NFC_REG_DC 0x18
  46. #define NFC_REG_ADR 0x1c
  47. #define NFC_REG_DL 0x20
  48. #define NFC_REG_DH 0x24
  49. #define NFC_REG_CADR 0x28
  50. #define NFC_REG_SADR 0x2c
  51. #define NFC_REG_PINS 0x30
  52. #define NFC_REG_VER 0x38
  53. #define NFC_RB_IRQ_EN BIT(21)
  54. #define CLK_DIV_SHIFT 0
  55. #define CLK_DIV_WIDTH 6
  56. #define CMDRWGEN(cmd_dir, ran, bch, short_mode, page_size, pages) \
  57. ( \
  58. (cmd_dir) | \
  59. ((ran) << 19) | \
  60. ((bch) << 14) | \
  61. ((short_mode) << 13) | \
  62. (((page_size) & 0x7f) << 6) | \
  63. ((pages) & 0x3f) \
  64. )
  65. #define GENCMDDADDRL(adl, addr) ((adl) | ((addr) & 0xffff))
  66. #define GENCMDDADDRH(adh, addr) ((adh) | (((addr) >> 16) & 0xffff))
  67. #define GENCMDIADDRL(ail, addr) ((ail) | ((addr) & 0xffff))
  68. #define GENCMDIADDRH(aih, addr) ((aih) | (((addr) >> 16) & 0xffff))
  69. #define DMA_DIR(dir) ((dir) ? NFC_CMD_N2M : NFC_CMD_M2N)
  70. #define DMA_ADDR_ALIGN 8
  71. #define ECC_CHECK_RETURN_FF (-1)
  72. #define NAND_CE0 (0xe << 10)
  73. #define NAND_CE1 (0xd << 10)
  74. #define DMA_BUSY_TIMEOUT 0x100000
  75. #define CMD_FIFO_EMPTY_TIMEOUT 1000
  76. #define MAX_CE_NUM 2
  77. /* eMMC clock register, misc control */
  78. #define CLK_SELECT_NAND BIT(31)
  79. #define NFC_CLK_CYCLE 6
  80. /* nand flash controller delay 3 ns */
  81. #define NFC_DEFAULT_DELAY 3000
  82. #define ROW_ADDER(page, index) (((page) >> (8 * (index))) & 0xff)
  83. #define MAX_CYCLE_ADDRS 5
  84. #define DIRREAD 1
  85. #define DIRWRITE 0
  86. #define ECC_PARITY_BCH8_512B 14
  87. #define ECC_COMPLETE BIT(31)
  88. #define ECC_ERR_CNT(x) (((x) >> 24) & GENMASK(5, 0))
  89. #define ECC_ZERO_CNT(x) (((x) >> 16) & GENMASK(5, 0))
  90. #define ECC_UNCORRECTABLE 0x3f
  91. #define PER_INFO_BYTE 8
  92. struct meson_nfc_nand_chip {
  93. struct list_head node;
  94. struct nand_chip nand;
  95. unsigned long clk_rate;
  96. unsigned long level1_divider;
  97. u32 bus_timing;
  98. u32 twb;
  99. u32 tadl;
  100. u32 tbers_max;
  101. u32 bch_mode;
  102. u8 *data_buf;
  103. __le64 *info_buf;
  104. u32 nsels;
  105. u8 sels[];
  106. };
  107. struct meson_nand_ecc {
  108. u32 bch;
  109. u32 strength;
  110. };
  111. struct meson_nfc_data {
  112. const struct nand_ecc_caps *ecc_caps;
  113. };
  114. struct meson_nfc_param {
  115. u32 chip_select;
  116. u32 rb_select;
  117. };
  118. struct nand_rw_cmd {
  119. u32 cmd0;
  120. u32 addrs[MAX_CYCLE_ADDRS];
  121. u32 cmd1;
  122. };
  123. struct nand_timing {
  124. u32 twb;
  125. u32 tadl;
  126. u32 tbers_max;
  127. };
  128. struct meson_nfc {
  129. struct nand_controller controller;
  130. struct clk *core_clk;
  131. struct clk *device_clk;
  132. struct clk *nand_clk;
  133. struct clk_divider nand_divider;
  134. unsigned long clk_rate;
  135. u32 bus_timing;
  136. struct device *dev;
  137. void __iomem *reg_base;
  138. void __iomem *reg_clk;
  139. struct completion completion;
  140. struct list_head chips;
  141. const struct meson_nfc_data *data;
  142. struct meson_nfc_param param;
  143. struct nand_timing timing;
  144. union {
  145. int cmd[32];
  146. struct nand_rw_cmd rw;
  147. } cmdfifo;
  148. dma_addr_t daddr;
  149. dma_addr_t iaddr;
  150. u32 info_bytes;
  151. unsigned long assigned_cs;
  152. };
  153. enum {
  154. NFC_ECC_BCH8_1K = 2,
  155. NFC_ECC_BCH24_1K,
  156. NFC_ECC_BCH30_1K,
  157. NFC_ECC_BCH40_1K,
  158. NFC_ECC_BCH50_1K,
  159. NFC_ECC_BCH60_1K,
  160. };
  161. #define MESON_ECC_DATA(b, s) { .bch = (b), .strength = (s)}
  162. static struct meson_nand_ecc meson_ecc[] = {
  163. MESON_ECC_DATA(NFC_ECC_BCH8_1K, 8),
  164. MESON_ECC_DATA(NFC_ECC_BCH24_1K, 24),
  165. MESON_ECC_DATA(NFC_ECC_BCH30_1K, 30),
  166. MESON_ECC_DATA(NFC_ECC_BCH40_1K, 40),
  167. MESON_ECC_DATA(NFC_ECC_BCH50_1K, 50),
  168. MESON_ECC_DATA(NFC_ECC_BCH60_1K, 60),
  169. };
  170. static int meson_nand_calc_ecc_bytes(int step_size, int strength)
  171. {
  172. int ecc_bytes;
  173. if (step_size == 512 && strength == 8)
  174. return ECC_PARITY_BCH8_512B;
  175. ecc_bytes = DIV_ROUND_UP(strength * fls(step_size * 8), 8);
  176. ecc_bytes = ALIGN(ecc_bytes, 2);
  177. return ecc_bytes;
  178. }
  179. NAND_ECC_CAPS_SINGLE(meson_gxl_ecc_caps,
  180. meson_nand_calc_ecc_bytes, 1024, 8, 24, 30, 40, 50, 60);
  181. NAND_ECC_CAPS_SINGLE(meson_axg_ecc_caps,
  182. meson_nand_calc_ecc_bytes, 1024, 8);
  183. static struct meson_nfc_nand_chip *to_meson_nand(struct nand_chip *nand)
  184. {
  185. return container_of(nand, struct meson_nfc_nand_chip, nand);
  186. }
  187. static void meson_nfc_select_chip(struct nand_chip *nand, int chip)
  188. {
  189. struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
  190. struct meson_nfc *nfc = nand_get_controller_data(nand);
  191. int ret, value;
  192. if (chip < 0 || WARN_ON_ONCE(chip >= meson_chip->nsels))
  193. return;
  194. nfc->param.chip_select = meson_chip->sels[chip] ? NAND_CE1 : NAND_CE0;
  195. nfc->param.rb_select = nfc->param.chip_select;
  196. nfc->timing.twb = meson_chip->twb;
  197. nfc->timing.tadl = meson_chip->tadl;
  198. nfc->timing.tbers_max = meson_chip->tbers_max;
  199. if (nfc->clk_rate != meson_chip->clk_rate) {
  200. ret = clk_set_rate(nfc->nand_clk, meson_chip->clk_rate);
  201. if (ret) {
  202. dev_err(nfc->dev, "failed to set clock rate\n");
  203. return;
  204. }
  205. nfc->clk_rate = meson_chip->clk_rate;
  206. }
  207. if (nfc->bus_timing != meson_chip->bus_timing) {
  208. value = (NFC_CLK_CYCLE - 1) | (meson_chip->bus_timing << 5);
  209. writel(value, nfc->reg_base + NFC_REG_CFG);
  210. writel((1 << 31), nfc->reg_base + NFC_REG_CMD);
  211. nfc->bus_timing = meson_chip->bus_timing;
  212. }
  213. }
  214. static void meson_nfc_cmd_idle(struct meson_nfc *nfc, u32 time)
  215. {
  216. writel(nfc->param.chip_select | NFC_CMD_IDLE | (time & 0x3ff),
  217. nfc->reg_base + NFC_REG_CMD);
  218. }
  219. static void meson_nfc_cmd_seed(struct meson_nfc *nfc, u32 seed)
  220. {
  221. writel(NFC_CMD_SEED | (0xc2 + (seed & 0x7fff)),
  222. nfc->reg_base + NFC_REG_CMD);
  223. }
  224. static void meson_nfc_cmd_access(struct nand_chip *nand, int raw, bool dir,
  225. int scrambler)
  226. {
  227. struct mtd_info *mtd = nand_to_mtd(nand);
  228. struct meson_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd));
  229. struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
  230. u32 bch = meson_chip->bch_mode, cmd;
  231. int len = mtd->writesize, pagesize, pages;
  232. pagesize = nand->ecc.size;
  233. if (raw) {
  234. len = mtd->writesize + mtd->oobsize;
  235. cmd = (len & GENMASK(13, 0)) | scrambler | DMA_DIR(dir);
  236. writel(cmd, nfc->reg_base + NFC_REG_CMD);
  237. return;
  238. }
  239. pages = len / nand->ecc.size;
  240. cmd = CMDRWGEN(DMA_DIR(dir), scrambler, bch,
  241. NFC_CMD_SHORTMODE_DISABLE, pagesize, pages);
  242. writel(cmd, nfc->reg_base + NFC_REG_CMD);
  243. }
  244. static void meson_nfc_drain_cmd(struct meson_nfc *nfc)
  245. {
  246. /*
  247. * Insert two commands to make sure all valid commands are finished.
  248. *
  249. * The Nand flash controller is designed as two stages pipleline -
  250. * a) fetch and b) excute.
  251. * There might be cases when the driver see command queue is empty,
  252. * but the Nand flash controller still has two commands buffered,
  253. * one is fetched into NFC request queue (ready to run), and another
  254. * is actively executing. So pushing 2 "IDLE" commands guarantees that
  255. * the pipeline is emptied.
  256. */
  257. meson_nfc_cmd_idle(nfc, 0);
  258. meson_nfc_cmd_idle(nfc, 0);
  259. }
  260. static int meson_nfc_wait_cmd_finish(struct meson_nfc *nfc,
  261. unsigned int timeout_ms)
  262. {
  263. u32 cmd_size = 0;
  264. int ret;
  265. /* wait cmd fifo is empty */
  266. ret = readl_relaxed_poll_timeout(nfc->reg_base + NFC_REG_CMD, cmd_size,
  267. !NFC_CMD_GET_SIZE(cmd_size),
  268. 10, timeout_ms * 1000);
  269. if (ret)
  270. dev_err(nfc->dev, "wait for empty CMD FIFO time out\n");
  271. return ret;
  272. }
  273. static int meson_nfc_wait_dma_finish(struct meson_nfc *nfc)
  274. {
  275. meson_nfc_drain_cmd(nfc);
  276. return meson_nfc_wait_cmd_finish(nfc, DMA_BUSY_TIMEOUT);
  277. }
  278. static u8 *meson_nfc_oob_ptr(struct nand_chip *nand, int i)
  279. {
  280. struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
  281. int len;
  282. len = nand->ecc.size * (i + 1) + (nand->ecc.bytes + 2) * i;
  283. return meson_chip->data_buf + len;
  284. }
  285. static u8 *meson_nfc_data_ptr(struct nand_chip *nand, int i)
  286. {
  287. struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
  288. int len, temp;
  289. temp = nand->ecc.size + nand->ecc.bytes;
  290. len = (temp + 2) * i;
  291. return meson_chip->data_buf + len;
  292. }
  293. static void meson_nfc_get_data_oob(struct nand_chip *nand,
  294. u8 *buf, u8 *oobbuf)
  295. {
  296. int i, oob_len = 0;
  297. u8 *dsrc, *osrc;
  298. oob_len = nand->ecc.bytes + 2;
  299. for (i = 0; i < nand->ecc.steps; i++) {
  300. if (buf) {
  301. dsrc = meson_nfc_data_ptr(nand, i);
  302. memcpy(buf, dsrc, nand->ecc.size);
  303. buf += nand->ecc.size;
  304. }
  305. osrc = meson_nfc_oob_ptr(nand, i);
  306. memcpy(oobbuf, osrc, oob_len);
  307. oobbuf += oob_len;
  308. }
  309. }
  310. static void meson_nfc_set_data_oob(struct nand_chip *nand,
  311. const u8 *buf, u8 *oobbuf)
  312. {
  313. int i, oob_len = 0;
  314. u8 *dsrc, *osrc;
  315. oob_len = nand->ecc.bytes + 2;
  316. for (i = 0; i < nand->ecc.steps; i++) {
  317. if (buf) {
  318. dsrc = meson_nfc_data_ptr(nand, i);
  319. memcpy(dsrc, buf, nand->ecc.size);
  320. buf += nand->ecc.size;
  321. }
  322. osrc = meson_nfc_oob_ptr(nand, i);
  323. memcpy(osrc, oobbuf, oob_len);
  324. oobbuf += oob_len;
  325. }
  326. }
  327. static int meson_nfc_queue_rb(struct meson_nfc *nfc, int timeout_ms)
  328. {
  329. u32 cmd, cfg;
  330. int ret = 0;
  331. meson_nfc_cmd_idle(nfc, nfc->timing.twb);
  332. meson_nfc_drain_cmd(nfc);
  333. meson_nfc_wait_cmd_finish(nfc, CMD_FIFO_EMPTY_TIMEOUT);
  334. cfg = readl(nfc->reg_base + NFC_REG_CFG);
  335. cfg |= NFC_RB_IRQ_EN;
  336. writel(cfg, nfc->reg_base + NFC_REG_CFG);
  337. reinit_completion(&nfc->completion);
  338. /* use the max erase time as the maximum clock for waiting R/B */
  339. cmd = NFC_CMD_RB | NFC_CMD_RB_INT
  340. | nfc->param.chip_select | nfc->timing.tbers_max;
  341. writel(cmd, nfc->reg_base + NFC_REG_CMD);
  342. ret = wait_for_completion_timeout(&nfc->completion,
  343. msecs_to_jiffies(timeout_ms));
  344. if (ret == 0)
  345. ret = -1;
  346. return ret;
  347. }
  348. static void meson_nfc_set_user_byte(struct nand_chip *nand, u8 *oob_buf)
  349. {
  350. struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
  351. __le64 *info;
  352. int i, count;
  353. for (i = 0, count = 0; i < nand->ecc.steps; i++, count += 2) {
  354. info = &meson_chip->info_buf[i];
  355. *info |= oob_buf[count];
  356. *info |= oob_buf[count + 1] << 8;
  357. }
  358. }
  359. static void meson_nfc_get_user_byte(struct nand_chip *nand, u8 *oob_buf)
  360. {
  361. struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
  362. __le64 *info;
  363. int i, count;
  364. for (i = 0, count = 0; i < nand->ecc.steps; i++, count += 2) {
  365. info = &meson_chip->info_buf[i];
  366. oob_buf[count] = *info;
  367. oob_buf[count + 1] = *info >> 8;
  368. }
  369. }
  370. static int meson_nfc_ecc_correct(struct nand_chip *nand, u32 *bitflips,
  371. u64 *correct_bitmap)
  372. {
  373. struct mtd_info *mtd = nand_to_mtd(nand);
  374. struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
  375. __le64 *info;
  376. int ret = 0, i;
  377. for (i = 0; i < nand->ecc.steps; i++) {
  378. info = &meson_chip->info_buf[i];
  379. if (ECC_ERR_CNT(*info) != ECC_UNCORRECTABLE) {
  380. mtd->ecc_stats.corrected += ECC_ERR_CNT(*info);
  381. *bitflips = max_t(u32, *bitflips, ECC_ERR_CNT(*info));
  382. *correct_bitmap |= BIT_ULL(i);
  383. continue;
  384. }
  385. if ((nand->options & NAND_NEED_SCRAMBLING) &&
  386. ECC_ZERO_CNT(*info) < nand->ecc.strength) {
  387. mtd->ecc_stats.corrected += ECC_ZERO_CNT(*info);
  388. *bitflips = max_t(u32, *bitflips,
  389. ECC_ZERO_CNT(*info));
  390. ret = ECC_CHECK_RETURN_FF;
  391. } else {
  392. ret = -EBADMSG;
  393. }
  394. }
  395. return ret;
  396. }
  397. static int meson_nfc_dma_buffer_setup(struct nand_chip *nand, void *databuf,
  398. int datalen, void *infobuf, int infolen,
  399. enum dma_data_direction dir)
  400. {
  401. struct meson_nfc *nfc = nand_get_controller_data(nand);
  402. u32 cmd;
  403. int ret = 0;
  404. nfc->daddr = dma_map_single(nfc->dev, databuf, datalen, dir);
  405. ret = dma_mapping_error(nfc->dev, nfc->daddr);
  406. if (ret) {
  407. dev_err(nfc->dev, "DMA mapping error\n");
  408. return ret;
  409. }
  410. cmd = GENCMDDADDRL(NFC_CMD_ADL, nfc->daddr);
  411. writel(cmd, nfc->reg_base + NFC_REG_CMD);
  412. cmd = GENCMDDADDRH(NFC_CMD_ADH, nfc->daddr);
  413. writel(cmd, nfc->reg_base + NFC_REG_CMD);
  414. if (infobuf) {
  415. nfc->iaddr = dma_map_single(nfc->dev, infobuf, infolen, dir);
  416. ret = dma_mapping_error(nfc->dev, nfc->iaddr);
  417. if (ret) {
  418. dev_err(nfc->dev, "DMA mapping error\n");
  419. dma_unmap_single(nfc->dev,
  420. nfc->daddr, datalen, dir);
  421. return ret;
  422. }
  423. nfc->info_bytes = infolen;
  424. cmd = GENCMDIADDRL(NFC_CMD_AIL, nfc->iaddr);
  425. writel(cmd, nfc->reg_base + NFC_REG_CMD);
  426. cmd = GENCMDIADDRH(NFC_CMD_AIH, nfc->iaddr);
  427. writel(cmd, nfc->reg_base + NFC_REG_CMD);
  428. }
  429. return ret;
  430. }
  431. static void meson_nfc_dma_buffer_release(struct nand_chip *nand,
  432. int datalen, int infolen,
  433. enum dma_data_direction dir)
  434. {
  435. struct meson_nfc *nfc = nand_get_controller_data(nand);
  436. dma_unmap_single(nfc->dev, nfc->daddr, datalen, dir);
  437. if (infolen) {
  438. dma_unmap_single(nfc->dev, nfc->iaddr, infolen, dir);
  439. nfc->info_bytes = 0;
  440. }
  441. }
  442. static int meson_nfc_read_buf(struct nand_chip *nand, u8 *buf, int len)
  443. {
  444. struct meson_nfc *nfc = nand_get_controller_data(nand);
  445. int ret = 0;
  446. u32 cmd;
  447. u8 *info;
  448. info = kzalloc(PER_INFO_BYTE, GFP_KERNEL);
  449. if (!info)
  450. return -ENOMEM;
  451. ret = meson_nfc_dma_buffer_setup(nand, buf, len, info,
  452. PER_INFO_BYTE, DMA_FROM_DEVICE);
  453. if (ret)
  454. goto out;
  455. cmd = NFC_CMD_N2M | (len & GENMASK(13, 0));
  456. writel(cmd, nfc->reg_base + NFC_REG_CMD);
  457. meson_nfc_drain_cmd(nfc);
  458. meson_nfc_wait_cmd_finish(nfc, 1000);
  459. meson_nfc_dma_buffer_release(nand, len, PER_INFO_BYTE, DMA_FROM_DEVICE);
  460. out:
  461. kfree(info);
  462. return ret;
  463. }
  464. static int meson_nfc_write_buf(struct nand_chip *nand, u8 *buf, int len)
  465. {
  466. struct meson_nfc *nfc = nand_get_controller_data(nand);
  467. int ret = 0;
  468. u32 cmd;
  469. ret = meson_nfc_dma_buffer_setup(nand, buf, len, NULL,
  470. 0, DMA_TO_DEVICE);
  471. if (ret)
  472. return ret;
  473. cmd = NFC_CMD_M2N | (len & GENMASK(13, 0));
  474. writel(cmd, nfc->reg_base + NFC_REG_CMD);
  475. meson_nfc_drain_cmd(nfc);
  476. meson_nfc_wait_cmd_finish(nfc, 1000);
  477. meson_nfc_dma_buffer_release(nand, len, 0, DMA_TO_DEVICE);
  478. return ret;
  479. }
  480. static int meson_nfc_rw_cmd_prepare_and_execute(struct nand_chip *nand,
  481. int page, bool in)
  482. {
  483. const struct nand_sdr_timings *sdr =
  484. nand_get_sdr_timings(nand_get_interface_config(nand));
  485. struct mtd_info *mtd = nand_to_mtd(nand);
  486. struct meson_nfc *nfc = nand_get_controller_data(nand);
  487. u32 *addrs = nfc->cmdfifo.rw.addrs;
  488. u32 cs = nfc->param.chip_select;
  489. u32 cmd0, cmd_num, row_start;
  490. int i;
  491. cmd_num = sizeof(struct nand_rw_cmd) / sizeof(int);
  492. cmd0 = in ? NAND_CMD_READ0 : NAND_CMD_SEQIN;
  493. nfc->cmdfifo.rw.cmd0 = cs | NFC_CMD_CLE | cmd0;
  494. addrs[0] = cs | NFC_CMD_ALE | 0;
  495. if (mtd->writesize <= 512) {
  496. cmd_num--;
  497. row_start = 1;
  498. } else {
  499. addrs[1] = cs | NFC_CMD_ALE | 0;
  500. row_start = 2;
  501. }
  502. addrs[row_start] = cs | NFC_CMD_ALE | ROW_ADDER(page, 0);
  503. addrs[row_start + 1] = cs | NFC_CMD_ALE | ROW_ADDER(page, 1);
  504. if (nand->options & NAND_ROW_ADDR_3)
  505. addrs[row_start + 2] =
  506. cs | NFC_CMD_ALE | ROW_ADDER(page, 2);
  507. else
  508. cmd_num--;
  509. /* subtract cmd1 */
  510. cmd_num--;
  511. for (i = 0; i < cmd_num; i++)
  512. writel_relaxed(nfc->cmdfifo.cmd[i],
  513. nfc->reg_base + NFC_REG_CMD);
  514. if (in) {
  515. nfc->cmdfifo.rw.cmd1 = cs | NFC_CMD_CLE | NAND_CMD_READSTART;
  516. writel(nfc->cmdfifo.rw.cmd1, nfc->reg_base + NFC_REG_CMD);
  517. meson_nfc_queue_rb(nfc, PSEC_TO_MSEC(sdr->tR_max));
  518. } else {
  519. meson_nfc_cmd_idle(nfc, nfc->timing.tadl);
  520. }
  521. return 0;
  522. }
  523. static int meson_nfc_write_page_sub(struct nand_chip *nand,
  524. int page, int raw)
  525. {
  526. const struct nand_sdr_timings *sdr =
  527. nand_get_sdr_timings(nand_get_interface_config(nand));
  528. struct mtd_info *mtd = nand_to_mtd(nand);
  529. struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
  530. struct meson_nfc *nfc = nand_get_controller_data(nand);
  531. int data_len, info_len;
  532. u32 cmd;
  533. int ret;
  534. meson_nfc_select_chip(nand, nand->cur_cs);
  535. data_len = mtd->writesize + mtd->oobsize;
  536. info_len = nand->ecc.steps * PER_INFO_BYTE;
  537. ret = meson_nfc_rw_cmd_prepare_and_execute(nand, page, DIRWRITE);
  538. if (ret)
  539. return ret;
  540. ret = meson_nfc_dma_buffer_setup(nand, meson_chip->data_buf,
  541. data_len, meson_chip->info_buf,
  542. info_len, DMA_TO_DEVICE);
  543. if (ret)
  544. return ret;
  545. if (nand->options & NAND_NEED_SCRAMBLING) {
  546. meson_nfc_cmd_seed(nfc, page);
  547. meson_nfc_cmd_access(nand, raw, DIRWRITE,
  548. NFC_CMD_SCRAMBLER_ENABLE);
  549. } else {
  550. meson_nfc_cmd_access(nand, raw, DIRWRITE,
  551. NFC_CMD_SCRAMBLER_DISABLE);
  552. }
  553. cmd = nfc->param.chip_select | NFC_CMD_CLE | NAND_CMD_PAGEPROG;
  554. writel(cmd, nfc->reg_base + NFC_REG_CMD);
  555. meson_nfc_queue_rb(nfc, PSEC_TO_MSEC(sdr->tPROG_max));
  556. meson_nfc_dma_buffer_release(nand, data_len, info_len, DMA_TO_DEVICE);
  557. return ret;
  558. }
  559. static int meson_nfc_write_page_raw(struct nand_chip *nand, const u8 *buf,
  560. int oob_required, int page)
  561. {
  562. u8 *oob_buf = nand->oob_poi;
  563. meson_nfc_set_data_oob(nand, buf, oob_buf);
  564. return meson_nfc_write_page_sub(nand, page, 1);
  565. }
  566. static int meson_nfc_write_page_hwecc(struct nand_chip *nand,
  567. const u8 *buf, int oob_required, int page)
  568. {
  569. struct mtd_info *mtd = nand_to_mtd(nand);
  570. struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
  571. u8 *oob_buf = nand->oob_poi;
  572. memcpy(meson_chip->data_buf, buf, mtd->writesize);
  573. memset(meson_chip->info_buf, 0, nand->ecc.steps * PER_INFO_BYTE);
  574. meson_nfc_set_user_byte(nand, oob_buf);
  575. return meson_nfc_write_page_sub(nand, page, 0);
  576. }
  577. static void meson_nfc_check_ecc_pages_valid(struct meson_nfc *nfc,
  578. struct nand_chip *nand, int raw)
  579. {
  580. struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
  581. __le64 *info;
  582. u32 neccpages;
  583. int ret;
  584. neccpages = raw ? 1 : nand->ecc.steps;
  585. info = &meson_chip->info_buf[neccpages - 1];
  586. do {
  587. usleep_range(10, 15);
  588. /* info is updated by nfc dma engine*/
  589. smp_rmb();
  590. dma_sync_single_for_cpu(nfc->dev, nfc->iaddr, nfc->info_bytes,
  591. DMA_FROM_DEVICE);
  592. ret = *info & ECC_COMPLETE;
  593. } while (!ret);
  594. }
  595. static int meson_nfc_read_page_sub(struct nand_chip *nand,
  596. int page, int raw)
  597. {
  598. struct mtd_info *mtd = nand_to_mtd(nand);
  599. struct meson_nfc *nfc = nand_get_controller_data(nand);
  600. struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
  601. int data_len, info_len;
  602. int ret;
  603. meson_nfc_select_chip(nand, nand->cur_cs);
  604. data_len = mtd->writesize + mtd->oobsize;
  605. info_len = nand->ecc.steps * PER_INFO_BYTE;
  606. ret = meson_nfc_rw_cmd_prepare_and_execute(nand, page, DIRREAD);
  607. if (ret)
  608. return ret;
  609. ret = meson_nfc_dma_buffer_setup(nand, meson_chip->data_buf,
  610. data_len, meson_chip->info_buf,
  611. info_len, DMA_FROM_DEVICE);
  612. if (ret)
  613. return ret;
  614. if (nand->options & NAND_NEED_SCRAMBLING) {
  615. meson_nfc_cmd_seed(nfc, page);
  616. meson_nfc_cmd_access(nand, raw, DIRREAD,
  617. NFC_CMD_SCRAMBLER_ENABLE);
  618. } else {
  619. meson_nfc_cmd_access(nand, raw, DIRREAD,
  620. NFC_CMD_SCRAMBLER_DISABLE);
  621. }
  622. ret = meson_nfc_wait_dma_finish(nfc);
  623. meson_nfc_check_ecc_pages_valid(nfc, nand, raw);
  624. meson_nfc_dma_buffer_release(nand, data_len, info_len, DMA_FROM_DEVICE);
  625. return ret;
  626. }
  627. static int meson_nfc_read_page_raw(struct nand_chip *nand, u8 *buf,
  628. int oob_required, int page)
  629. {
  630. u8 *oob_buf = nand->oob_poi;
  631. int ret;
  632. ret = meson_nfc_read_page_sub(nand, page, 1);
  633. if (ret)
  634. return ret;
  635. meson_nfc_get_data_oob(nand, buf, oob_buf);
  636. return 0;
  637. }
  638. static int meson_nfc_read_page_hwecc(struct nand_chip *nand, u8 *buf,
  639. int oob_required, int page)
  640. {
  641. struct mtd_info *mtd = nand_to_mtd(nand);
  642. struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
  643. struct nand_ecc_ctrl *ecc = &nand->ecc;
  644. u64 correct_bitmap = 0;
  645. u32 bitflips = 0;
  646. u8 *oob_buf = nand->oob_poi;
  647. int ret, i;
  648. ret = meson_nfc_read_page_sub(nand, page, 0);
  649. if (ret)
  650. return ret;
  651. meson_nfc_get_user_byte(nand, oob_buf);
  652. ret = meson_nfc_ecc_correct(nand, &bitflips, &correct_bitmap);
  653. if (ret == ECC_CHECK_RETURN_FF) {
  654. if (buf)
  655. memset(buf, 0xff, mtd->writesize);
  656. memset(oob_buf, 0xff, mtd->oobsize);
  657. } else if (ret < 0) {
  658. if ((nand->options & NAND_NEED_SCRAMBLING) || !buf) {
  659. mtd->ecc_stats.failed++;
  660. return bitflips;
  661. }
  662. ret = meson_nfc_read_page_raw(nand, buf, 0, page);
  663. if (ret)
  664. return ret;
  665. for (i = 0; i < nand->ecc.steps ; i++) {
  666. u8 *data = buf + i * ecc->size;
  667. u8 *oob = nand->oob_poi + i * (ecc->bytes + 2);
  668. if (correct_bitmap & BIT_ULL(i))
  669. continue;
  670. ret = nand_check_erased_ecc_chunk(data, ecc->size,
  671. oob, ecc->bytes + 2,
  672. NULL, 0,
  673. ecc->strength);
  674. if (ret < 0) {
  675. mtd->ecc_stats.failed++;
  676. } else {
  677. mtd->ecc_stats.corrected += ret;
  678. bitflips = max_t(u32, bitflips, ret);
  679. }
  680. }
  681. } else if (buf && buf != meson_chip->data_buf) {
  682. memcpy(buf, meson_chip->data_buf, mtd->writesize);
  683. }
  684. return bitflips;
  685. }
  686. static int meson_nfc_read_oob_raw(struct nand_chip *nand, int page)
  687. {
  688. return meson_nfc_read_page_raw(nand, NULL, 1, page);
  689. }
  690. static int meson_nfc_read_oob(struct nand_chip *nand, int page)
  691. {
  692. return meson_nfc_read_page_hwecc(nand, NULL, 1, page);
  693. }
  694. static bool meson_nfc_is_buffer_dma_safe(const void *buffer)
  695. {
  696. if ((uintptr_t)buffer % DMA_ADDR_ALIGN)
  697. return false;
  698. if (virt_addr_valid(buffer) && (!object_is_on_stack(buffer)))
  699. return true;
  700. return false;
  701. }
  702. static void *
  703. meson_nand_op_get_dma_safe_input_buf(const struct nand_op_instr *instr)
  704. {
  705. if (WARN_ON(instr->type != NAND_OP_DATA_IN_INSTR))
  706. return NULL;
  707. if (meson_nfc_is_buffer_dma_safe(instr->ctx.data.buf.in))
  708. return instr->ctx.data.buf.in;
  709. return kzalloc(instr->ctx.data.len, GFP_KERNEL);
  710. }
  711. static void
  712. meson_nand_op_put_dma_safe_input_buf(const struct nand_op_instr *instr,
  713. void *buf)
  714. {
  715. if (WARN_ON(instr->type != NAND_OP_DATA_IN_INSTR) ||
  716. WARN_ON(!buf))
  717. return;
  718. if (buf == instr->ctx.data.buf.in)
  719. return;
  720. memcpy(instr->ctx.data.buf.in, buf, instr->ctx.data.len);
  721. kfree(buf);
  722. }
  723. static void *
  724. meson_nand_op_get_dma_safe_output_buf(const struct nand_op_instr *instr)
  725. {
  726. if (WARN_ON(instr->type != NAND_OP_DATA_OUT_INSTR))
  727. return NULL;
  728. if (meson_nfc_is_buffer_dma_safe(instr->ctx.data.buf.out))
  729. return (void *)instr->ctx.data.buf.out;
  730. return kmemdup(instr->ctx.data.buf.out,
  731. instr->ctx.data.len, GFP_KERNEL);
  732. }
  733. static void
  734. meson_nand_op_put_dma_safe_output_buf(const struct nand_op_instr *instr,
  735. const void *buf)
  736. {
  737. if (WARN_ON(instr->type != NAND_OP_DATA_OUT_INSTR) ||
  738. WARN_ON(!buf))
  739. return;
  740. if (buf != instr->ctx.data.buf.out)
  741. kfree(buf);
  742. }
  743. static int meson_nfc_exec_op(struct nand_chip *nand,
  744. const struct nand_operation *op, bool check_only)
  745. {
  746. struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
  747. struct meson_nfc *nfc = nand_get_controller_data(nand);
  748. const struct nand_op_instr *instr = NULL;
  749. void *buf;
  750. u32 op_id, delay_idle, cmd;
  751. int i;
  752. if (check_only)
  753. return 0;
  754. meson_nfc_select_chip(nand, op->cs);
  755. for (op_id = 0; op_id < op->ninstrs; op_id++) {
  756. instr = &op->instrs[op_id];
  757. delay_idle = DIV_ROUND_UP(PSEC_TO_NSEC(instr->delay_ns),
  758. meson_chip->level1_divider *
  759. NFC_CLK_CYCLE);
  760. switch (instr->type) {
  761. case NAND_OP_CMD_INSTR:
  762. cmd = nfc->param.chip_select | NFC_CMD_CLE;
  763. cmd |= instr->ctx.cmd.opcode & 0xff;
  764. writel(cmd, nfc->reg_base + NFC_REG_CMD);
  765. meson_nfc_cmd_idle(nfc, delay_idle);
  766. break;
  767. case NAND_OP_ADDR_INSTR:
  768. for (i = 0; i < instr->ctx.addr.naddrs; i++) {
  769. cmd = nfc->param.chip_select | NFC_CMD_ALE;
  770. cmd |= instr->ctx.addr.addrs[i] & 0xff;
  771. writel(cmd, nfc->reg_base + NFC_REG_CMD);
  772. }
  773. meson_nfc_cmd_idle(nfc, delay_idle);
  774. break;
  775. case NAND_OP_DATA_IN_INSTR:
  776. buf = meson_nand_op_get_dma_safe_input_buf(instr);
  777. if (!buf)
  778. return -ENOMEM;
  779. meson_nfc_read_buf(nand, buf, instr->ctx.data.len);
  780. meson_nand_op_put_dma_safe_input_buf(instr, buf);
  781. break;
  782. case NAND_OP_DATA_OUT_INSTR:
  783. buf = meson_nand_op_get_dma_safe_output_buf(instr);
  784. if (!buf)
  785. return -ENOMEM;
  786. meson_nfc_write_buf(nand, buf, instr->ctx.data.len);
  787. meson_nand_op_put_dma_safe_output_buf(instr, buf);
  788. break;
  789. case NAND_OP_WAITRDY_INSTR:
  790. meson_nfc_queue_rb(nfc, instr->ctx.waitrdy.timeout_ms);
  791. if (instr->delay_ns)
  792. meson_nfc_cmd_idle(nfc, delay_idle);
  793. break;
  794. }
  795. }
  796. meson_nfc_wait_cmd_finish(nfc, 1000);
  797. return 0;
  798. }
  799. static int meson_ooblayout_ecc(struct mtd_info *mtd, int section,
  800. struct mtd_oob_region *oobregion)
  801. {
  802. struct nand_chip *nand = mtd_to_nand(mtd);
  803. if (section >= nand->ecc.steps)
  804. return -ERANGE;
  805. oobregion->offset = 2 + (section * (2 + nand->ecc.bytes));
  806. oobregion->length = nand->ecc.bytes;
  807. return 0;
  808. }
  809. static int meson_ooblayout_free(struct mtd_info *mtd, int section,
  810. struct mtd_oob_region *oobregion)
  811. {
  812. struct nand_chip *nand = mtd_to_nand(mtd);
  813. if (section >= nand->ecc.steps)
  814. return -ERANGE;
  815. oobregion->offset = section * (2 + nand->ecc.bytes);
  816. oobregion->length = 2;
  817. return 0;
  818. }
  819. static const struct mtd_ooblayout_ops meson_ooblayout_ops = {
  820. .ecc = meson_ooblayout_ecc,
  821. .free = meson_ooblayout_free,
  822. };
  823. static int meson_nfc_clk_init(struct meson_nfc *nfc)
  824. {
  825. struct clk_parent_data nfc_divider_parent_data[1] = {0};
  826. struct clk_init_data init = {0};
  827. int ret;
  828. /* request core clock */
  829. nfc->core_clk = devm_clk_get(nfc->dev, "core");
  830. if (IS_ERR(nfc->core_clk)) {
  831. dev_err(nfc->dev, "failed to get core clock\n");
  832. return PTR_ERR(nfc->core_clk);
  833. }
  834. nfc->device_clk = devm_clk_get(nfc->dev, "device");
  835. if (IS_ERR(nfc->device_clk)) {
  836. dev_err(nfc->dev, "failed to get device clock\n");
  837. return PTR_ERR(nfc->device_clk);
  838. }
  839. init.name = devm_kasprintf(nfc->dev,
  840. GFP_KERNEL, "%s#div",
  841. dev_name(nfc->dev));
  842. if (!init.name)
  843. return -ENOMEM;
  844. init.ops = &clk_divider_ops;
  845. nfc_divider_parent_data[0].fw_name = "device";
  846. init.parent_data = nfc_divider_parent_data;
  847. init.num_parents = 1;
  848. nfc->nand_divider.reg = nfc->reg_clk;
  849. nfc->nand_divider.shift = CLK_DIV_SHIFT;
  850. nfc->nand_divider.width = CLK_DIV_WIDTH;
  851. nfc->nand_divider.hw.init = &init;
  852. nfc->nand_divider.flags = CLK_DIVIDER_ONE_BASED |
  853. CLK_DIVIDER_ROUND_CLOSEST |
  854. CLK_DIVIDER_ALLOW_ZERO;
  855. nfc->nand_clk = devm_clk_register(nfc->dev, &nfc->nand_divider.hw);
  856. if (IS_ERR(nfc->nand_clk))
  857. return PTR_ERR(nfc->nand_clk);
  858. /* init SD_EMMC_CLOCK to sane defaults w/min clock rate */
  859. writel(CLK_SELECT_NAND | readl(nfc->reg_clk),
  860. nfc->reg_clk);
  861. ret = clk_prepare_enable(nfc->core_clk);
  862. if (ret) {
  863. dev_err(nfc->dev, "failed to enable core clock\n");
  864. return ret;
  865. }
  866. ret = clk_prepare_enable(nfc->device_clk);
  867. if (ret) {
  868. dev_err(nfc->dev, "failed to enable device clock\n");
  869. goto err_device_clk;
  870. }
  871. ret = clk_prepare_enable(nfc->nand_clk);
  872. if (ret) {
  873. dev_err(nfc->dev, "pre enable NFC divider fail\n");
  874. goto err_nand_clk;
  875. }
  876. ret = clk_set_rate(nfc->nand_clk, 24000000);
  877. if (ret)
  878. goto err_disable_clk;
  879. return 0;
  880. err_disable_clk:
  881. clk_disable_unprepare(nfc->nand_clk);
  882. err_nand_clk:
  883. clk_disable_unprepare(nfc->device_clk);
  884. err_device_clk:
  885. clk_disable_unprepare(nfc->core_clk);
  886. return ret;
  887. }
  888. static void meson_nfc_disable_clk(struct meson_nfc *nfc)
  889. {
  890. clk_disable_unprepare(nfc->nand_clk);
  891. clk_disable_unprepare(nfc->device_clk);
  892. clk_disable_unprepare(nfc->core_clk);
  893. }
  894. static void meson_nfc_free_buffer(struct nand_chip *nand)
  895. {
  896. struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
  897. kfree(meson_chip->info_buf);
  898. kfree(meson_chip->data_buf);
  899. }
  900. static int meson_chip_buffer_init(struct nand_chip *nand)
  901. {
  902. struct mtd_info *mtd = nand_to_mtd(nand);
  903. struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
  904. u32 page_bytes, info_bytes, nsectors;
  905. nsectors = mtd->writesize / nand->ecc.size;
  906. page_bytes = mtd->writesize + mtd->oobsize;
  907. info_bytes = nsectors * PER_INFO_BYTE;
  908. meson_chip->data_buf = kmalloc(page_bytes, GFP_KERNEL);
  909. if (!meson_chip->data_buf)
  910. return -ENOMEM;
  911. meson_chip->info_buf = kmalloc(info_bytes, GFP_KERNEL);
  912. if (!meson_chip->info_buf) {
  913. kfree(meson_chip->data_buf);
  914. return -ENOMEM;
  915. }
  916. return 0;
  917. }
  918. static
  919. int meson_nfc_setup_interface(struct nand_chip *nand, int csline,
  920. const struct nand_interface_config *conf)
  921. {
  922. struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
  923. const struct nand_sdr_timings *timings;
  924. u32 div, bt_min, bt_max, tbers_clocks;
  925. timings = nand_get_sdr_timings(conf);
  926. if (IS_ERR(timings))
  927. return -ENOTSUPP;
  928. if (csline == NAND_DATA_IFACE_CHECK_ONLY)
  929. return 0;
  930. div = DIV_ROUND_UP((timings->tRC_min / 1000), NFC_CLK_CYCLE);
  931. bt_min = (timings->tREA_max + NFC_DEFAULT_DELAY) / div;
  932. bt_max = (NFC_DEFAULT_DELAY + timings->tRHOH_min +
  933. timings->tRC_min / 2) / div;
  934. meson_chip->twb = DIV_ROUND_UP(PSEC_TO_NSEC(timings->tWB_max),
  935. div * NFC_CLK_CYCLE);
  936. meson_chip->tadl = DIV_ROUND_UP(PSEC_TO_NSEC(timings->tADL_min),
  937. div * NFC_CLK_CYCLE);
  938. tbers_clocks = DIV_ROUND_UP_ULL(PSEC_TO_NSEC(timings->tBERS_max),
  939. div * NFC_CLK_CYCLE);
  940. meson_chip->tbers_max = ilog2(tbers_clocks);
  941. if (!is_power_of_2(tbers_clocks))
  942. meson_chip->tbers_max++;
  943. bt_min = DIV_ROUND_UP(bt_min, 1000);
  944. bt_max = DIV_ROUND_UP(bt_max, 1000);
  945. if (bt_max < bt_min)
  946. return -EINVAL;
  947. meson_chip->level1_divider = div;
  948. meson_chip->clk_rate = 1000000000 / meson_chip->level1_divider;
  949. meson_chip->bus_timing = (bt_min + bt_max) / 2 + 1;
  950. return 0;
  951. }
  952. static int meson_nand_bch_mode(struct nand_chip *nand)
  953. {
  954. struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
  955. int i;
  956. if (nand->ecc.strength > 60 || nand->ecc.strength < 8)
  957. return -EINVAL;
  958. for (i = 0; i < ARRAY_SIZE(meson_ecc); i++) {
  959. if (meson_ecc[i].strength == nand->ecc.strength) {
  960. meson_chip->bch_mode = meson_ecc[i].bch;
  961. return 0;
  962. }
  963. }
  964. return -EINVAL;
  965. }
  966. static void meson_nand_detach_chip(struct nand_chip *nand)
  967. {
  968. meson_nfc_free_buffer(nand);
  969. }
  970. static int meson_nand_attach_chip(struct nand_chip *nand)
  971. {
  972. struct meson_nfc *nfc = nand_get_controller_data(nand);
  973. struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
  974. struct mtd_info *mtd = nand_to_mtd(nand);
  975. int ret;
  976. if (!mtd->name) {
  977. mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL,
  978. "%s:nand%d",
  979. dev_name(nfc->dev),
  980. meson_chip->sels[0]);
  981. if (!mtd->name)
  982. return -ENOMEM;
  983. }
  984. if (nand->bbt_options & NAND_BBT_USE_FLASH)
  985. nand->bbt_options |= NAND_BBT_NO_OOB;
  986. nand->options |= NAND_NO_SUBPAGE_WRITE;
  987. ret = nand_ecc_choose_conf(nand, nfc->data->ecc_caps,
  988. mtd->oobsize - 2);
  989. if (ret) {
  990. dev_err(nfc->dev, "failed to ECC init\n");
  991. return -EINVAL;
  992. }
  993. mtd_set_ooblayout(mtd, &meson_ooblayout_ops);
  994. ret = meson_nand_bch_mode(nand);
  995. if (ret)
  996. return -EINVAL;
  997. nand->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
  998. nand->ecc.write_page_raw = meson_nfc_write_page_raw;
  999. nand->ecc.write_page = meson_nfc_write_page_hwecc;
  1000. nand->ecc.write_oob_raw = nand_write_oob_std;
  1001. nand->ecc.write_oob = nand_write_oob_std;
  1002. nand->ecc.read_page_raw = meson_nfc_read_page_raw;
  1003. nand->ecc.read_page = meson_nfc_read_page_hwecc;
  1004. nand->ecc.read_oob_raw = meson_nfc_read_oob_raw;
  1005. nand->ecc.read_oob = meson_nfc_read_oob;
  1006. if (nand->options & NAND_BUSWIDTH_16) {
  1007. dev_err(nfc->dev, "16bits bus width not supported");
  1008. return -EINVAL;
  1009. }
  1010. ret = meson_chip_buffer_init(nand);
  1011. if (ret)
  1012. return -ENOMEM;
  1013. return ret;
  1014. }
  1015. static const struct nand_controller_ops meson_nand_controller_ops = {
  1016. .attach_chip = meson_nand_attach_chip,
  1017. .detach_chip = meson_nand_detach_chip,
  1018. .setup_interface = meson_nfc_setup_interface,
  1019. .exec_op = meson_nfc_exec_op,
  1020. };
  1021. static int
  1022. meson_nfc_nand_chip_init(struct device *dev,
  1023. struct meson_nfc *nfc, struct device_node *np)
  1024. {
  1025. struct meson_nfc_nand_chip *meson_chip;
  1026. struct nand_chip *nand;
  1027. struct mtd_info *mtd;
  1028. int ret, i;
  1029. u32 tmp, nsels;
  1030. nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32));
  1031. if (!nsels || nsels > MAX_CE_NUM) {
  1032. dev_err(dev, "invalid register property size\n");
  1033. return -EINVAL;
  1034. }
  1035. meson_chip = devm_kzalloc(dev, struct_size(meson_chip, sels, nsels),
  1036. GFP_KERNEL);
  1037. if (!meson_chip)
  1038. return -ENOMEM;
  1039. meson_chip->nsels = nsels;
  1040. for (i = 0; i < nsels; i++) {
  1041. ret = of_property_read_u32_index(np, "reg", i, &tmp);
  1042. if (ret) {
  1043. dev_err(dev, "could not retrieve register property: %d\n",
  1044. ret);
  1045. return ret;
  1046. }
  1047. if (test_and_set_bit(tmp, &nfc->assigned_cs)) {
  1048. dev_err(dev, "CS %d already assigned\n", tmp);
  1049. return -EINVAL;
  1050. }
  1051. }
  1052. nand = &meson_chip->nand;
  1053. nand->controller = &nfc->controller;
  1054. nand->controller->ops = &meson_nand_controller_ops;
  1055. nand_set_flash_node(nand, np);
  1056. nand_set_controller_data(nand, nfc);
  1057. nand->options |= NAND_USES_DMA;
  1058. mtd = nand_to_mtd(nand);
  1059. mtd->owner = THIS_MODULE;
  1060. mtd->dev.parent = dev;
  1061. ret = nand_scan(nand, nsels);
  1062. if (ret)
  1063. return ret;
  1064. ret = mtd_device_register(mtd, NULL, 0);
  1065. if (ret) {
  1066. dev_err(dev, "failed to register MTD device: %d\n", ret);
  1067. nand_cleanup(nand);
  1068. return ret;
  1069. }
  1070. list_add_tail(&meson_chip->node, &nfc->chips);
  1071. return 0;
  1072. }
  1073. static void meson_nfc_nand_chip_cleanup(struct meson_nfc *nfc)
  1074. {
  1075. struct meson_nfc_nand_chip *meson_chip;
  1076. struct mtd_info *mtd;
  1077. while (!list_empty(&nfc->chips)) {
  1078. meson_chip = list_first_entry(&nfc->chips,
  1079. struct meson_nfc_nand_chip, node);
  1080. mtd = nand_to_mtd(&meson_chip->nand);
  1081. WARN_ON(mtd_device_unregister(mtd));
  1082. nand_cleanup(&meson_chip->nand);
  1083. list_del(&meson_chip->node);
  1084. }
  1085. }
  1086. static int meson_nfc_nand_chips_init(struct device *dev,
  1087. struct meson_nfc *nfc)
  1088. {
  1089. struct device_node *np = dev->of_node;
  1090. struct device_node *nand_np;
  1091. int ret;
  1092. for_each_child_of_node(np, nand_np) {
  1093. ret = meson_nfc_nand_chip_init(dev, nfc, nand_np);
  1094. if (ret) {
  1095. meson_nfc_nand_chip_cleanup(nfc);
  1096. of_node_put(nand_np);
  1097. return ret;
  1098. }
  1099. }
  1100. return 0;
  1101. }
  1102. static irqreturn_t meson_nfc_irq(int irq, void *id)
  1103. {
  1104. struct meson_nfc *nfc = id;
  1105. u32 cfg;
  1106. cfg = readl(nfc->reg_base + NFC_REG_CFG);
  1107. if (!(cfg & NFC_RB_IRQ_EN))
  1108. return IRQ_NONE;
  1109. cfg &= ~(NFC_RB_IRQ_EN);
  1110. writel(cfg, nfc->reg_base + NFC_REG_CFG);
  1111. complete(&nfc->completion);
  1112. return IRQ_HANDLED;
  1113. }
  1114. static const struct meson_nfc_data meson_gxl_data = {
  1115. .ecc_caps = &meson_gxl_ecc_caps,
  1116. };
  1117. static const struct meson_nfc_data meson_axg_data = {
  1118. .ecc_caps = &meson_axg_ecc_caps,
  1119. };
  1120. static const struct of_device_id meson_nfc_id_table[] = {
  1121. {
  1122. .compatible = "amlogic,meson-gxl-nfc",
  1123. .data = &meson_gxl_data,
  1124. }, {
  1125. .compatible = "amlogic,meson-axg-nfc",
  1126. .data = &meson_axg_data,
  1127. },
  1128. {}
  1129. };
  1130. MODULE_DEVICE_TABLE(of, meson_nfc_id_table);
  1131. static int meson_nfc_probe(struct platform_device *pdev)
  1132. {
  1133. struct device *dev = &pdev->dev;
  1134. struct meson_nfc *nfc;
  1135. int ret, irq;
  1136. nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
  1137. if (!nfc)
  1138. return -ENOMEM;
  1139. nfc->data = of_device_get_match_data(&pdev->dev);
  1140. if (!nfc->data)
  1141. return -ENODEV;
  1142. nand_controller_init(&nfc->controller);
  1143. INIT_LIST_HEAD(&nfc->chips);
  1144. init_completion(&nfc->completion);
  1145. nfc->dev = dev;
  1146. nfc->reg_base = devm_platform_ioremap_resource_byname(pdev, "nfc");
  1147. if (IS_ERR(nfc->reg_base))
  1148. return PTR_ERR(nfc->reg_base);
  1149. nfc->reg_clk = devm_platform_ioremap_resource_byname(pdev, "emmc");
  1150. if (IS_ERR(nfc->reg_clk))
  1151. return PTR_ERR(nfc->reg_clk);
  1152. irq = platform_get_irq(pdev, 0);
  1153. if (irq < 0)
  1154. return -EINVAL;
  1155. ret = meson_nfc_clk_init(nfc);
  1156. if (ret) {
  1157. dev_err(dev, "failed to initialize NAND clock\n");
  1158. return ret;
  1159. }
  1160. writel(0, nfc->reg_base + NFC_REG_CFG);
  1161. ret = devm_request_irq(dev, irq, meson_nfc_irq, 0, dev_name(dev), nfc);
  1162. if (ret) {
  1163. dev_err(dev, "failed to request NFC IRQ\n");
  1164. ret = -EINVAL;
  1165. goto err_clk;
  1166. }
  1167. ret = dma_set_mask(dev, DMA_BIT_MASK(32));
  1168. if (ret) {
  1169. dev_err(dev, "failed to set DMA mask\n");
  1170. goto err_clk;
  1171. }
  1172. platform_set_drvdata(pdev, nfc);
  1173. ret = meson_nfc_nand_chips_init(dev, nfc);
  1174. if (ret) {
  1175. dev_err(dev, "failed to init NAND chips\n");
  1176. goto err_clk;
  1177. }
  1178. return 0;
  1179. err_clk:
  1180. meson_nfc_disable_clk(nfc);
  1181. return ret;
  1182. }
  1183. static int meson_nfc_remove(struct platform_device *pdev)
  1184. {
  1185. struct meson_nfc *nfc = platform_get_drvdata(pdev);
  1186. meson_nfc_nand_chip_cleanup(nfc);
  1187. meson_nfc_disable_clk(nfc);
  1188. return 0;
  1189. }
  1190. static struct platform_driver meson_nfc_driver = {
  1191. .probe = meson_nfc_probe,
  1192. .remove = meson_nfc_remove,
  1193. .driver = {
  1194. .name = "meson-nand",
  1195. .of_match_table = meson_nfc_id_table,
  1196. },
  1197. };
  1198. module_platform_driver(meson_nfc_driver);
  1199. MODULE_LICENSE("Dual MIT/GPL");
  1200. MODULE_AUTHOR("Liang Yang <[email protected]>");
  1201. MODULE_DESCRIPTION("Amlogic's Meson NAND Flash Controller driver");