12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176 |
- // SPDX-License-Identifier: GPL-2.0
- /*
- * Marvell NAND flash controller driver
- *
- * Copyright (C) 2017 Marvell
- * Author: Miquel RAYNAL <[email protected]>
- *
- *
- * This NAND controller driver handles two versions of the hardware,
- * one is called NFCv1 and is available on PXA SoCs and the other is
- * called NFCv2 and is available on Armada SoCs.
- *
- * The main visible difference is that NFCv1 only has Hamming ECC
- * capabilities, while NFCv2 also embeds a BCH ECC engine. Also, DMA
- * is not used with NFCv2.
- *
- * The ECC layouts are depicted in details in Marvell AN-379, but here
- * is a brief description.
- *
- * When using Hamming, the data is split in 512B chunks (either 1, 2
- * or 4) and each chunk will have its own ECC "digest" of 6B at the
- * beginning of the OOB area and eventually the remaining free OOB
- * bytes (also called "spare" bytes in the driver). This engine
- * corrects up to 1 bit per chunk and detects reliably an error if
- * there are at most 2 bitflips. Here is the page layout used by the
- * controller when Hamming is chosen:
- *
- * +-------------------------------------------------------------+
- * | Data 1 | ... | Data N | ECC 1 | ... | ECCN | Free OOB bytes |
- * +-------------------------------------------------------------+
- *
- * When using the BCH engine, there are N identical (data + free OOB +
- * ECC) sections and potentially an extra one to deal with
- * configurations where the chosen (data + free OOB + ECC) sizes do
- * not align with the page (data + OOB) size. ECC bytes are always
- * 30B per ECC chunk. Here is the page layout used by the controller
- * when BCH is chosen:
- *
- * +-----------------------------------------
- * | Data 1 | Free OOB bytes 1 | ECC 1 | ...
- * +-----------------------------------------
- *
- * -------------------------------------------
- * ... | Data N | Free OOB bytes N | ECC N |
- * -------------------------------------------
- *
- * --------------------------------------------+
- * Last Data | Last Free OOB bytes | Last ECC |
- * --------------------------------------------+
- *
- * In both cases, the layout seen by the user is always: all data
- * first, then all free OOB bytes and finally all ECC bytes. With BCH,
- * ECC bytes are 30B long and are padded with 0xFF to align on 32
- * bytes.
- *
- * The controller has certain limitations that are handled by the
- * driver:
- * - It can only read 2k at a time. To overcome this limitation, the
- * driver issues data cycles on the bus, without issuing new
- * CMD + ADDR cycles. The Marvell term is "naked" operations.
- * - The ECC strength in BCH mode cannot be tuned. It is fixed 16
- * bits. What can be tuned is the ECC block size as long as it
- * stays between 512B and 2kiB. It's usually chosen based on the
- * chip ECC requirements. For instance, using 2kiB ECC chunks
- * provides 4b/512B correctability.
- * - The controller will always treat data bytes, free OOB bytes
- * and ECC bytes in that order, no matter what the real layout is
- * (which is usually all data then all OOB bytes). The
- * marvell_nfc_layouts array below contains the currently
- * supported layouts.
- * - Because of these weird layouts, the Bad Block Markers can be
- * located in data section. In this case, the NAND_BBT_NO_OOB_BBM
- * option must be set to prevent scanning/writing bad block
- * markers.
- */
- #include <linux/module.h>
- #include <linux/clk.h>
- #include <linux/mtd/rawnand.h>
- #include <linux/of_platform.h>
- #include <linux/iopoll.h>
- #include <linux/interrupt.h>
- #include <linux/slab.h>
- #include <linux/mfd/syscon.h>
- #include <linux/regmap.h>
- #include <asm/unaligned.h>
- #include <linux/dmaengine.h>
- #include <linux/dma-mapping.h>
- #include <linux/dma/pxa-dma.h>
- #include <linux/platform_data/mtd-nand-pxa3xx.h>
- /* Data FIFO granularity, FIFO reads/writes must be a multiple of this length */
- #define FIFO_DEPTH 8
- #define FIFO_REP(x) (x / sizeof(u32))
- #define BCH_SEQ_READS (32 / FIFO_DEPTH)
- /* NFC does not support transfers of larger chunks at a time */
- #define MAX_CHUNK_SIZE 2112
- /* NFCv1 cannot read more that 7 bytes of ID */
- #define NFCV1_READID_LEN 7
- /* Polling is done at a pace of POLL_PERIOD us until POLL_TIMEOUT is reached */
- #define POLL_PERIOD 0
- #define POLL_TIMEOUT 100000
- /* Interrupt maximum wait period in ms */
- #define IRQ_TIMEOUT 1000
- /* Latency in clock cycles between SoC pins and NFC logic */
- #define MIN_RD_DEL_CNT 3
- /* Maximum number of contiguous address cycles */
- #define MAX_ADDRESS_CYC_NFCV1 5
- #define MAX_ADDRESS_CYC_NFCV2 7
- /* System control registers/bits to enable the NAND controller on some SoCs */
- #define GENCONF_SOC_DEVICE_MUX 0x208
- #define GENCONF_SOC_DEVICE_MUX_NFC_EN BIT(0)
- #define GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST BIT(20)
- #define GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST BIT(21)
- #define GENCONF_SOC_DEVICE_MUX_NFC_INT_EN BIT(25)
- #define GENCONF_CLK_GATING_CTRL 0x220
- #define GENCONF_CLK_GATING_CTRL_ND_GATE BIT(2)
- #define GENCONF_ND_CLK_CTRL 0x700
- #define GENCONF_ND_CLK_CTRL_EN BIT(0)
- /* NAND controller data flash control register */
- #define NDCR 0x00
- #define NDCR_ALL_INT GENMASK(11, 0)
- #define NDCR_CS1_CMDDM BIT(7)
- #define NDCR_CS0_CMDDM BIT(8)
- #define NDCR_RDYM BIT(11)
- #define NDCR_ND_ARB_EN BIT(12)
- #define NDCR_RA_START BIT(15)
- #define NDCR_RD_ID_CNT(x) (min_t(unsigned int, x, 0x7) << 16)
- #define NDCR_PAGE_SZ(x) (x >= 2048 ? BIT(24) : 0)
- #define NDCR_DWIDTH_M BIT(26)
- #define NDCR_DWIDTH_C BIT(27)
- #define NDCR_ND_RUN BIT(28)
- #define NDCR_DMA_EN BIT(29)
- #define NDCR_ECC_EN BIT(30)
- #define NDCR_SPARE_EN BIT(31)
- #define NDCR_GENERIC_FIELDS_MASK (~(NDCR_RA_START | NDCR_PAGE_SZ(2048) | \
- NDCR_DWIDTH_M | NDCR_DWIDTH_C))
- /* NAND interface timing parameter 0 register */
- #define NDTR0 0x04
- #define NDTR0_TRP(x) ((min_t(unsigned int, x, 0xF) & 0x7) << 0)
- #define NDTR0_TRH(x) (min_t(unsigned int, x, 0x7) << 3)
- #define NDTR0_ETRP(x) ((min_t(unsigned int, x, 0xF) & 0x8) << 3)
- #define NDTR0_SEL_NRE_EDGE BIT(7)
- #define NDTR0_TWP(x) (min_t(unsigned int, x, 0x7) << 8)
- #define NDTR0_TWH(x) (min_t(unsigned int, x, 0x7) << 11)
- #define NDTR0_TCS(x) (min_t(unsigned int, x, 0x7) << 16)
- #define NDTR0_TCH(x) (min_t(unsigned int, x, 0x7) << 19)
- #define NDTR0_RD_CNT_DEL(x) (min_t(unsigned int, x, 0xF) << 22)
- #define NDTR0_SELCNTR BIT(26)
- #define NDTR0_TADL(x) (min_t(unsigned int, x, 0x1F) << 27)
- /* NAND interface timing parameter 1 register */
- #define NDTR1 0x0C
- #define NDTR1_TAR(x) (min_t(unsigned int, x, 0xF) << 0)
- #define NDTR1_TWHR(x) (min_t(unsigned int, x, 0xF) << 4)
- #define NDTR1_TRHW(x) (min_t(unsigned int, x / 16, 0x3) << 8)
- #define NDTR1_PRESCALE BIT(14)
- #define NDTR1_WAIT_MODE BIT(15)
- #define NDTR1_TR(x) (min_t(unsigned int, x, 0xFFFF) << 16)
- /* NAND controller status register */
- #define NDSR 0x14
- #define NDSR_WRCMDREQ BIT(0)
- #define NDSR_RDDREQ BIT(1)
- #define NDSR_WRDREQ BIT(2)
- #define NDSR_CORERR BIT(3)
- #define NDSR_UNCERR BIT(4)
- #define NDSR_CMDD(cs) BIT(8 - cs)
- #define NDSR_RDY(rb) BIT(11 + rb)
- #define NDSR_ERRCNT(x) ((x >> 16) & 0x1F)
- /* NAND ECC control register */
- #define NDECCCTRL 0x28
- #define NDECCCTRL_BCH_EN BIT(0)
- /* NAND controller data buffer register */
- #define NDDB 0x40
- /* NAND controller command buffer 0 register */
- #define NDCB0 0x48
- #define NDCB0_CMD1(x) ((x & 0xFF) << 0)
- #define NDCB0_CMD2(x) ((x & 0xFF) << 8)
- #define NDCB0_ADDR_CYC(x) ((x & 0x7) << 16)
- #define NDCB0_ADDR_GET_NUM_CYC(x) (((x) >> 16) & 0x7)
- #define NDCB0_DBC BIT(19)
- #define NDCB0_CMD_TYPE(x) ((x & 0x7) << 21)
- #define NDCB0_CSEL BIT(24)
- #define NDCB0_RDY_BYP BIT(27)
- #define NDCB0_LEN_OVRD BIT(28)
- #define NDCB0_CMD_XTYPE(x) ((x & 0x7) << 29)
- /* NAND controller command buffer 1 register */
- #define NDCB1 0x4C
- #define NDCB1_COLS(x) ((x & 0xFFFF) << 0)
- #define NDCB1_ADDRS_PAGE(x) (x << 16)
- /* NAND controller command buffer 2 register */
- #define NDCB2 0x50
- #define NDCB2_ADDR5_PAGE(x) (((x >> 16) & 0xFF) << 0)
- #define NDCB2_ADDR5_CYC(x) ((x & 0xFF) << 0)
- /* NAND controller command buffer 3 register */
- #define NDCB3 0x54
- #define NDCB3_ADDR6_CYC(x) ((x & 0xFF) << 16)
- #define NDCB3_ADDR7_CYC(x) ((x & 0xFF) << 24)
- /* NAND controller command buffer 0 register 'type' and 'xtype' fields */
- #define TYPE_READ 0
- #define TYPE_WRITE 1
- #define TYPE_ERASE 2
- #define TYPE_READ_ID 3
- #define TYPE_STATUS 4
- #define TYPE_RESET 5
- #define TYPE_NAKED_CMD 6
- #define TYPE_NAKED_ADDR 7
- #define TYPE_MASK 7
- #define XTYPE_MONOLITHIC_RW 0
- #define XTYPE_LAST_NAKED_RW 1
- #define XTYPE_FINAL_COMMAND 3
- #define XTYPE_READ 4
- #define XTYPE_WRITE_DISPATCH 4
- #define XTYPE_NAKED_RW 5
- #define XTYPE_COMMAND_DISPATCH 6
- #define XTYPE_MASK 7
- /**
- * struct marvell_hw_ecc_layout - layout of Marvell ECC
- *
- * Marvell ECC engine works differently than the others, in order to limit the
- * size of the IP, hardware engineers chose to set a fixed strength at 16 bits
- * per subpage, and depending on a the desired strength needed by the NAND chip,
- * a particular layout mixing data/spare/ecc is defined, with a possible last
- * chunk smaller that the others.
- *
- * @writesize: Full page size on which the layout applies
- * @chunk: Desired ECC chunk size on which the layout applies
- * @strength: Desired ECC strength (per chunk size bytes) on which the
- * layout applies
- * @nchunks: Total number of chunks
- * @full_chunk_cnt: Number of full-sized chunks, which is the number of
- * repetitions of the pattern:
- * (data_bytes + spare_bytes + ecc_bytes).
- * @data_bytes: Number of data bytes per chunk
- * @spare_bytes: Number of spare bytes per chunk
- * @ecc_bytes: Number of ecc bytes per chunk
- * @last_data_bytes: Number of data bytes in the last chunk
- * @last_spare_bytes: Number of spare bytes in the last chunk
- * @last_ecc_bytes: Number of ecc bytes in the last chunk
- */
- struct marvell_hw_ecc_layout {
- /* Constraints */
- int writesize;
- int chunk;
- int strength;
- /* Corresponding layout */
- int nchunks;
- int full_chunk_cnt;
- int data_bytes;
- int spare_bytes;
- int ecc_bytes;
- int last_data_bytes;
- int last_spare_bytes;
- int last_ecc_bytes;
- };
- #define MARVELL_LAYOUT(ws, dc, ds, nc, fcc, db, sb, eb, ldb, lsb, leb) \
- { \
- .writesize = ws, \
- .chunk = dc, \
- .strength = ds, \
- .nchunks = nc, \
- .full_chunk_cnt = fcc, \
- .data_bytes = db, \
- .spare_bytes = sb, \
- .ecc_bytes = eb, \
- .last_data_bytes = ldb, \
- .last_spare_bytes = lsb, \
- .last_ecc_bytes = leb, \
- }
- /* Layouts explained in AN-379_Marvell_SoC_NFC_ECC */
- static const struct marvell_hw_ecc_layout marvell_nfc_layouts[] = {
- MARVELL_LAYOUT( 512, 512, 1, 1, 1, 512, 8, 8, 0, 0, 0),
- MARVELL_LAYOUT( 2048, 512, 1, 1, 1, 2048, 40, 24, 0, 0, 0),
- MARVELL_LAYOUT( 2048, 512, 4, 1, 1, 2048, 32, 30, 0, 0, 0),
- MARVELL_LAYOUT( 2048, 512, 8, 2, 1, 1024, 0, 30,1024,32, 30),
- MARVELL_LAYOUT( 4096, 512, 4, 2, 2, 2048, 32, 30, 0, 0, 0),
- MARVELL_LAYOUT( 4096, 512, 8, 5, 4, 1024, 0, 30, 0, 64, 30),
- MARVELL_LAYOUT( 8192, 512, 4, 4, 4, 2048, 0, 30, 0, 0, 0),
- MARVELL_LAYOUT( 8192, 512, 8, 9, 8, 1024, 0, 30, 0, 160, 30),
- };
- /**
- * struct marvell_nand_chip_sel - CS line description
- *
- * The Nand Flash Controller has up to 4 CE and 2 RB pins. The CE selection
- * is made by a field in NDCB0 register, and in another field in NDCB2 register.
- * The datasheet describes the logic with an error: ADDR5 field is once
- * declared at the beginning of NDCB2, and another time at its end. Because the
- * ADDR5 field of NDCB2 may be used by other bytes, it would be more logical
- * to use the last bit of this field instead of the first ones.
- *
- * @cs: Wanted CE lane.
- * @ndcb0_csel: Value of the NDCB0 register with or without the flag
- * selecting the wanted CE lane. This is set once when
- * the Device Tree is probed.
- * @rb: Ready/Busy pin for the flash chip
- */
- struct marvell_nand_chip_sel {
- unsigned int cs;
- u32 ndcb0_csel;
- unsigned int rb;
- };
- /**
- * struct marvell_nand_chip - stores NAND chip device related information
- *
- * @chip: Base NAND chip structure
- * @node: Used to store NAND chips into a list
- * @layout: NAND layout when using hardware ECC
- * @ndcr: Controller register value for this NAND chip
- * @ndtr0: Timing registers 0 value for this NAND chip
- * @ndtr1: Timing registers 1 value for this NAND chip
- * @addr_cyc: Amount of cycles needed to pass column address
- * @selected_die: Current active CS
- * @nsels: Number of CS lines required by the NAND chip
- * @sels: Array of CS lines descriptions
- */
- struct marvell_nand_chip {
- struct nand_chip chip;
- struct list_head node;
- const struct marvell_hw_ecc_layout *layout;
- u32 ndcr;
- u32 ndtr0;
- u32 ndtr1;
- int addr_cyc;
- int selected_die;
- unsigned int nsels;
- struct marvell_nand_chip_sel sels[];
- };
- static inline struct marvell_nand_chip *to_marvell_nand(struct nand_chip *chip)
- {
- return container_of(chip, struct marvell_nand_chip, chip);
- }
- static inline struct marvell_nand_chip_sel *to_nand_sel(struct marvell_nand_chip
- *nand)
- {
- return &nand->sels[nand->selected_die];
- }
- /**
- * struct marvell_nfc_caps - NAND controller capabilities for distinction
- * between compatible strings
- *
- * @max_cs_nb: Number of Chip Select lines available
- * @max_rb_nb: Number of Ready/Busy lines available
- * @need_system_controller: Indicates if the SoC needs to have access to the
- * system controller (ie. to enable the NAND controller)
- * @legacy_of_bindings: Indicates if DT parsing must be done using the old
- * fashion way
- * @is_nfcv2: NFCv2 has numerous enhancements compared to NFCv1, ie.
- * BCH error detection and correction algorithm,
- * NDCB3 register has been added
- * @use_dma: Use dma for data transfers
- */
- struct marvell_nfc_caps {
- unsigned int max_cs_nb;
- unsigned int max_rb_nb;
- bool need_system_controller;
- bool legacy_of_bindings;
- bool is_nfcv2;
- bool use_dma;
- };
- /**
- * struct marvell_nfc - stores Marvell NAND controller information
- *
- * @controller: Base controller structure
- * @dev: Parent device (used to print error messages)
- * @regs: NAND controller registers
- * @core_clk: Core clock
- * @reg_clk: Registers clock
- * @complete: Completion object to wait for NAND controller events
- * @assigned_cs: Bitmask describing already assigned CS lines
- * @chips: List containing all the NAND chips attached to
- * this NAND controller
- * @selected_chip: Currently selected target chip
- * @caps: NAND controller capabilities for each compatible string
- * @use_dma: Whetner DMA is used
- * @dma_chan: DMA channel (NFCv1 only)
- * @dma_buf: 32-bit aligned buffer for DMA transfers (NFCv1 only)
- */
- struct marvell_nfc {
- struct nand_controller controller;
- struct device *dev;
- void __iomem *regs;
- struct clk *core_clk;
- struct clk *reg_clk;
- struct completion complete;
- unsigned long assigned_cs;
- struct list_head chips;
- struct nand_chip *selected_chip;
- const struct marvell_nfc_caps *caps;
- /* DMA (NFCv1 only) */
- bool use_dma;
- struct dma_chan *dma_chan;
- u8 *dma_buf;
- };
- static inline struct marvell_nfc *to_marvell_nfc(struct nand_controller *ctrl)
- {
- return container_of(ctrl, struct marvell_nfc, controller);
- }
- /**
- * struct marvell_nfc_timings - NAND controller timings expressed in NAND
- * Controller clock cycles
- *
- * @tRP: ND_nRE pulse width
- * @tRH: ND_nRE high duration
- * @tWP: ND_nWE pulse time
- * @tWH: ND_nWE high duration
- * @tCS: Enable signal setup time
- * @tCH: Enable signal hold time
- * @tADL: Address to write data delay
- * @tAR: ND_ALE low to ND_nRE low delay
- * @tWHR: ND_nWE high to ND_nRE low for status read
- * @tRHW: ND_nRE high duration, read to write delay
- * @tR: ND_nWE high to ND_nRE low for read
- */
- struct marvell_nfc_timings {
- /* NDTR0 fields */
- unsigned int tRP;
- unsigned int tRH;
- unsigned int tWP;
- unsigned int tWH;
- unsigned int tCS;
- unsigned int tCH;
- unsigned int tADL;
- /* NDTR1 fields */
- unsigned int tAR;
- unsigned int tWHR;
- unsigned int tRHW;
- unsigned int tR;
- };
- /**
- * TO_CYCLES() - Derives a duration in numbers of clock cycles.
- *
- * @ps: Duration in pico-seconds
- * @period_ns: Clock period in nano-seconds
- *
- * Convert the duration in nano-seconds, then divide by the period and
- * return the number of clock periods.
- */
- #define TO_CYCLES(ps, period_ns) (DIV_ROUND_UP(ps / 1000, period_ns))
- #define TO_CYCLES64(ps, period_ns) (DIV_ROUND_UP_ULL(div_u64(ps, 1000), \
- period_ns))
- /**
- * struct marvell_nfc_op - filled during the parsing of the ->exec_op()
- * subop subset of instructions.
- *
- * @ndcb: Array of values written to NDCBx registers
- * @cle_ale_delay_ns: Optional delay after the last CMD or ADDR cycle
- * @rdy_timeout_ms: Timeout for waits on Ready/Busy pin
- * @rdy_delay_ns: Optional delay after waiting for the RB pin
- * @data_delay_ns: Optional delay after the data xfer
- * @data_instr_idx: Index of the data instruction in the subop
- * @data_instr: Pointer to the data instruction in the subop
- */
- struct marvell_nfc_op {
- u32 ndcb[4];
- unsigned int cle_ale_delay_ns;
- unsigned int rdy_timeout_ms;
- unsigned int rdy_delay_ns;
- unsigned int data_delay_ns;
- unsigned int data_instr_idx;
- const struct nand_op_instr *data_instr;
- };
- /*
- * Internal helper to conditionnally apply a delay (from the above structure,
- * most of the time).
- */
- static void cond_delay(unsigned int ns)
- {
- if (!ns)
- return;
- if (ns < 10000)
- ndelay(ns);
- else
- udelay(DIV_ROUND_UP(ns, 1000));
- }
- /*
- * The controller has many flags that could generate interrupts, most of them
- * are disabled and polling is used. For the very slow signals, using interrupts
- * may relax the CPU charge.
- */
- static void marvell_nfc_disable_int(struct marvell_nfc *nfc, u32 int_mask)
- {
- u32 reg;
- /* Writing 1 disables the interrupt */
- reg = readl_relaxed(nfc->regs + NDCR);
- writel_relaxed(reg | int_mask, nfc->regs + NDCR);
- }
- static void marvell_nfc_enable_int(struct marvell_nfc *nfc, u32 int_mask)
- {
- u32 reg;
- /* Writing 0 enables the interrupt */
- reg = readl_relaxed(nfc->regs + NDCR);
- writel_relaxed(reg & ~int_mask, nfc->regs + NDCR);
- }
- static u32 marvell_nfc_clear_int(struct marvell_nfc *nfc, u32 int_mask)
- {
- u32 reg;
- reg = readl_relaxed(nfc->regs + NDSR);
- writel_relaxed(int_mask, nfc->regs + NDSR);
- return reg & int_mask;
- }
- static void marvell_nfc_force_byte_access(struct nand_chip *chip,
- bool force_8bit)
- {
- struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
- u32 ndcr;
- /*
- * Callers of this function do not verify if the NAND is using a 16-bit
- * an 8-bit bus for normal operations, so we need to take care of that
- * here by leaving the configuration unchanged if the NAND does not have
- * the NAND_BUSWIDTH_16 flag set.
- */
- if (!(chip->options & NAND_BUSWIDTH_16))
- return;
- ndcr = readl_relaxed(nfc->regs + NDCR);
- if (force_8bit)
- ndcr &= ~(NDCR_DWIDTH_M | NDCR_DWIDTH_C);
- else
- ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C;
- writel_relaxed(ndcr, nfc->regs + NDCR);
- }
- static int marvell_nfc_wait_ndrun(struct nand_chip *chip)
- {
- struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
- u32 val;
- int ret;
- /*
- * The command is being processed, wait for the ND_RUN bit to be
- * cleared by the NFC. If not, we must clear it by hand.
- */
- ret = readl_relaxed_poll_timeout(nfc->regs + NDCR, val,
- (val & NDCR_ND_RUN) == 0,
- POLL_PERIOD, POLL_TIMEOUT);
- if (ret) {
- dev_err(nfc->dev, "Timeout on NAND controller run mode\n");
- writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
- nfc->regs + NDCR);
- return ret;
- }
- return 0;
- }
- /*
- * Any time a command has to be sent to the controller, the following sequence
- * has to be followed:
- * - call marvell_nfc_prepare_cmd()
- * -> activate the ND_RUN bit that will kind of 'start a job'
- * -> wait the signal indicating the NFC is waiting for a command
- * - send the command (cmd and address cycles)
- * - enventually send or receive the data
- * - call marvell_nfc_end_cmd() with the corresponding flag
- * -> wait the flag to be triggered or cancel the job with a timeout
- *
- * The following helpers are here to factorize the code a bit so that
- * specialized functions responsible for executing the actual NAND
- * operations do not have to replicate the same code blocks.
- */
- static int marvell_nfc_prepare_cmd(struct nand_chip *chip)
- {
- struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
- u32 ndcr, val;
- int ret;
- /* Poll ND_RUN and clear NDSR before issuing any command */
- ret = marvell_nfc_wait_ndrun(chip);
- if (ret) {
- dev_err(nfc->dev, "Last operation did not succeed\n");
- return ret;
- }
- ndcr = readl_relaxed(nfc->regs + NDCR);
- writel_relaxed(readl(nfc->regs + NDSR), nfc->regs + NDSR);
- /* Assert ND_RUN bit and wait the NFC to be ready */
- writel_relaxed(ndcr | NDCR_ND_RUN, nfc->regs + NDCR);
- ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val,
- val & NDSR_WRCMDREQ,
- POLL_PERIOD, POLL_TIMEOUT);
- if (ret) {
- dev_err(nfc->dev, "Timeout on WRCMDRE\n");
- return -ETIMEDOUT;
- }
- /* Command may be written, clear WRCMDREQ status bit */
- writel_relaxed(NDSR_WRCMDREQ, nfc->regs + NDSR);
- return 0;
- }
- static void marvell_nfc_send_cmd(struct nand_chip *chip,
- struct marvell_nfc_op *nfc_op)
- {
- struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
- struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
- dev_dbg(nfc->dev, "\nNDCR: 0x%08x\n"
- "NDCB0: 0x%08x\nNDCB1: 0x%08x\nNDCB2: 0x%08x\nNDCB3: 0x%08x\n",
- (u32)readl_relaxed(nfc->regs + NDCR), nfc_op->ndcb[0],
- nfc_op->ndcb[1], nfc_op->ndcb[2], nfc_op->ndcb[3]);
- writel_relaxed(to_nand_sel(marvell_nand)->ndcb0_csel | nfc_op->ndcb[0],
- nfc->regs + NDCB0);
- writel_relaxed(nfc_op->ndcb[1], nfc->regs + NDCB0);
- writel(nfc_op->ndcb[2], nfc->regs + NDCB0);
- /*
- * Write NDCB0 four times only if LEN_OVRD is set or if ADDR6 or ADDR7
- * fields are used (only available on NFCv2).
- */
- if (nfc_op->ndcb[0] & NDCB0_LEN_OVRD ||
- NDCB0_ADDR_GET_NUM_CYC(nfc_op->ndcb[0]) >= 6) {
- if (!WARN_ON_ONCE(!nfc->caps->is_nfcv2))
- writel(nfc_op->ndcb[3], nfc->regs + NDCB0);
- }
- }
- static int marvell_nfc_end_cmd(struct nand_chip *chip, int flag,
- const char *label)
- {
- struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
- u32 val;
- int ret;
- ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val,
- val & flag,
- POLL_PERIOD, POLL_TIMEOUT);
- if (ret) {
- dev_err(nfc->dev, "Timeout on %s (NDSR: 0x%08x)\n",
- label, val);
- if (nfc->dma_chan)
- dmaengine_terminate_all(nfc->dma_chan);
- return ret;
- }
- /*
- * DMA function uses this helper to poll on CMDD bits without wanting
- * them to be cleared.
- */
- if (nfc->use_dma && (readl_relaxed(nfc->regs + NDCR) & NDCR_DMA_EN))
- return 0;
- writel_relaxed(flag, nfc->regs + NDSR);
- return 0;
- }
- static int marvell_nfc_wait_cmdd(struct nand_chip *chip)
- {
- struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
- int cs_flag = NDSR_CMDD(to_nand_sel(marvell_nand)->ndcb0_csel);
- return marvell_nfc_end_cmd(chip, cs_flag, "CMDD");
- }
- static int marvell_nfc_poll_status(struct marvell_nfc *nfc, u32 mask,
- u32 expected_val, unsigned long timeout_ms)
- {
- unsigned long limit;
- u32 st;
- limit = jiffies + msecs_to_jiffies(timeout_ms);
- do {
- st = readl_relaxed(nfc->regs + NDSR);
- if (st & NDSR_RDY(1))
- st |= NDSR_RDY(0);
- if ((st & mask) == expected_val)
- return 0;
- cpu_relax();
- } while (time_after(limit, jiffies));
- return -ETIMEDOUT;
- }
- static int marvell_nfc_wait_op(struct nand_chip *chip, unsigned int timeout_ms)
- {
- struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
- struct mtd_info *mtd = nand_to_mtd(chip);
- u32 pending;
- int ret;
- /* Timeout is expressed in ms */
- if (!timeout_ms)
- timeout_ms = IRQ_TIMEOUT;
- if (mtd->oops_panic_write) {
- ret = marvell_nfc_poll_status(nfc, NDSR_RDY(0),
- NDSR_RDY(0),
- timeout_ms);
- } else {
- init_completion(&nfc->complete);
- marvell_nfc_enable_int(nfc, NDCR_RDYM);
- ret = wait_for_completion_timeout(&nfc->complete,
- msecs_to_jiffies(timeout_ms));
- marvell_nfc_disable_int(nfc, NDCR_RDYM);
- }
- pending = marvell_nfc_clear_int(nfc, NDSR_RDY(0) | NDSR_RDY(1));
- /*
- * In case the interrupt was not served in the required time frame,
- * check if the ISR was not served or if something went actually wrong.
- */
- if (!ret && !pending) {
- dev_err(nfc->dev, "Timeout waiting for RB signal\n");
- return -ETIMEDOUT;
- }
- return 0;
- }
- static void marvell_nfc_select_target(struct nand_chip *chip,
- unsigned int die_nr)
- {
- struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
- struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
- u32 ndcr_generic;
- /*
- * Reset the NDCR register to a clean state for this particular chip,
- * also clear ND_RUN bit.
- */
- ndcr_generic = readl_relaxed(nfc->regs + NDCR) &
- NDCR_GENERIC_FIELDS_MASK & ~NDCR_ND_RUN;
- writel_relaxed(ndcr_generic | marvell_nand->ndcr, nfc->regs + NDCR);
- /* Also reset the interrupt status register */
- marvell_nfc_clear_int(nfc, NDCR_ALL_INT);
- if (chip == nfc->selected_chip && die_nr == marvell_nand->selected_die)
- return;
- writel_relaxed(marvell_nand->ndtr0, nfc->regs + NDTR0);
- writel_relaxed(marvell_nand->ndtr1, nfc->regs + NDTR1);
- nfc->selected_chip = chip;
- marvell_nand->selected_die = die_nr;
- }
- static irqreturn_t marvell_nfc_isr(int irq, void *dev_id)
- {
- struct marvell_nfc *nfc = dev_id;
- u32 st = readl_relaxed(nfc->regs + NDSR);
- u32 ien = (~readl_relaxed(nfc->regs + NDCR)) & NDCR_ALL_INT;
- /*
- * RDY interrupt mask is one bit in NDCR while there are two status
- * bit in NDSR (RDY[cs0/cs2] and RDY[cs1/cs3]).
- */
- if (st & NDSR_RDY(1))
- st |= NDSR_RDY(0);
- if (!(st & ien))
- return IRQ_NONE;
- marvell_nfc_disable_int(nfc, st & NDCR_ALL_INT);
- if (st & (NDSR_RDY(0) | NDSR_RDY(1)))
- complete(&nfc->complete);
- return IRQ_HANDLED;
- }
- /* HW ECC related functions */
- static void marvell_nfc_enable_hw_ecc(struct nand_chip *chip)
- {
- struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
- u32 ndcr = readl_relaxed(nfc->regs + NDCR);
- if (!(ndcr & NDCR_ECC_EN)) {
- writel_relaxed(ndcr | NDCR_ECC_EN, nfc->regs + NDCR);
- /*
- * When enabling BCH, set threshold to 0 to always know the
- * number of corrected bitflips.
- */
- if (chip->ecc.algo == NAND_ECC_ALGO_BCH)
- writel_relaxed(NDECCCTRL_BCH_EN, nfc->regs + NDECCCTRL);
- }
- }
- static void marvell_nfc_disable_hw_ecc(struct nand_chip *chip)
- {
- struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
- u32 ndcr = readl_relaxed(nfc->regs + NDCR);
- if (ndcr & NDCR_ECC_EN) {
- writel_relaxed(ndcr & ~NDCR_ECC_EN, nfc->regs + NDCR);
- if (chip->ecc.algo == NAND_ECC_ALGO_BCH)
- writel_relaxed(0, nfc->regs + NDECCCTRL);
- }
- }
- /* DMA related helpers */
- static void marvell_nfc_enable_dma(struct marvell_nfc *nfc)
- {
- u32 reg;
- reg = readl_relaxed(nfc->regs + NDCR);
- writel_relaxed(reg | NDCR_DMA_EN, nfc->regs + NDCR);
- }
- static void marvell_nfc_disable_dma(struct marvell_nfc *nfc)
- {
- u32 reg;
- reg = readl_relaxed(nfc->regs + NDCR);
- writel_relaxed(reg & ~NDCR_DMA_EN, nfc->regs + NDCR);
- }
- /* Read/write PIO/DMA accessors */
- static int marvell_nfc_xfer_data_dma(struct marvell_nfc *nfc,
- enum dma_data_direction direction,
- unsigned int len)
- {
- unsigned int dma_len = min_t(int, ALIGN(len, 32), MAX_CHUNK_SIZE);
- struct dma_async_tx_descriptor *tx;
- struct scatterlist sg;
- dma_cookie_t cookie;
- int ret;
- marvell_nfc_enable_dma(nfc);
- /* Prepare the DMA transfer */
- sg_init_one(&sg, nfc->dma_buf, dma_len);
- ret = dma_map_sg(nfc->dma_chan->device->dev, &sg, 1, direction);
- if (!ret) {
- dev_err(nfc->dev, "Could not map DMA S/G list\n");
- return -ENXIO;
- }
- tx = dmaengine_prep_slave_sg(nfc->dma_chan, &sg, 1,
- direction == DMA_FROM_DEVICE ?
- DMA_DEV_TO_MEM : DMA_MEM_TO_DEV,
- DMA_PREP_INTERRUPT);
- if (!tx) {
- dev_err(nfc->dev, "Could not prepare DMA S/G list\n");
- dma_unmap_sg(nfc->dma_chan->device->dev, &sg, 1, direction);
- return -ENXIO;
- }
- /* Do the task and wait for it to finish */
- cookie = dmaengine_submit(tx);
- ret = dma_submit_error(cookie);
- if (ret)
- return -EIO;
- dma_async_issue_pending(nfc->dma_chan);
- ret = marvell_nfc_wait_cmdd(nfc->selected_chip);
- dma_unmap_sg(nfc->dma_chan->device->dev, &sg, 1, direction);
- marvell_nfc_disable_dma(nfc);
- if (ret) {
- dev_err(nfc->dev, "Timeout waiting for DMA (status: %d)\n",
- dmaengine_tx_status(nfc->dma_chan, cookie, NULL));
- dmaengine_terminate_all(nfc->dma_chan);
- return -ETIMEDOUT;
- }
- return 0;
- }
- static int marvell_nfc_xfer_data_in_pio(struct marvell_nfc *nfc, u8 *in,
- unsigned int len)
- {
- unsigned int last_len = len % FIFO_DEPTH;
- unsigned int last_full_offset = round_down(len, FIFO_DEPTH);
- int i;
- for (i = 0; i < last_full_offset; i += FIFO_DEPTH)
- ioread32_rep(nfc->regs + NDDB, in + i, FIFO_REP(FIFO_DEPTH));
- if (last_len) {
- u8 tmp_buf[FIFO_DEPTH];
- ioread32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH));
- memcpy(in + last_full_offset, tmp_buf, last_len);
- }
- return 0;
- }
- static int marvell_nfc_xfer_data_out_pio(struct marvell_nfc *nfc, const u8 *out,
- unsigned int len)
- {
- unsigned int last_len = len % FIFO_DEPTH;
- unsigned int last_full_offset = round_down(len, FIFO_DEPTH);
- int i;
- for (i = 0; i < last_full_offset; i += FIFO_DEPTH)
- iowrite32_rep(nfc->regs + NDDB, out + i, FIFO_REP(FIFO_DEPTH));
- if (last_len) {
- u8 tmp_buf[FIFO_DEPTH];
- memcpy(tmp_buf, out + last_full_offset, last_len);
- iowrite32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH));
- }
- return 0;
- }
- static void marvell_nfc_check_empty_chunk(struct nand_chip *chip,
- u8 *data, int data_len,
- u8 *spare, int spare_len,
- u8 *ecc, int ecc_len,
- unsigned int *max_bitflips)
- {
- struct mtd_info *mtd = nand_to_mtd(chip);
- int bf;
- /*
- * Blank pages (all 0xFF) that have not been written may be recognized
- * as bad if bitflips occur, so whenever an uncorrectable error occurs,
- * check if the entire page (with ECC bytes) is actually blank or not.
- */
- if (!data)
- data_len = 0;
- if (!spare)
- spare_len = 0;
- if (!ecc)
- ecc_len = 0;
- bf = nand_check_erased_ecc_chunk(data, data_len, ecc, ecc_len,
- spare, spare_len, chip->ecc.strength);
- if (bf < 0) {
- mtd->ecc_stats.failed++;
- return;
- }
- /* Update the stats and max_bitflips */
- mtd->ecc_stats.corrected += bf;
- *max_bitflips = max_t(unsigned int, *max_bitflips, bf);
- }
- /*
- * Check if a chunk is correct or not according to the hardware ECC engine.
- * mtd->ecc_stats.corrected is updated, as well as max_bitflips, however
- * mtd->ecc_stats.failure is not, the function will instead return a non-zero
- * value indicating that a check on the emptyness of the subpage must be
- * performed before actually declaring the subpage as "corrupted".
- */
- static int marvell_nfc_hw_ecc_check_bitflips(struct nand_chip *chip,
- unsigned int *max_bitflips)
- {
- struct mtd_info *mtd = nand_to_mtd(chip);
- struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
- int bf = 0;
- u32 ndsr;
- ndsr = readl_relaxed(nfc->regs + NDSR);
- /* Check uncorrectable error flag */
- if (ndsr & NDSR_UNCERR) {
- writel_relaxed(ndsr, nfc->regs + NDSR);
- /*
- * Do not increment ->ecc_stats.failed now, instead, return a
- * non-zero value to indicate that this chunk was apparently
- * bad, and it should be check to see if it empty or not. If
- * the chunk (with ECC bytes) is not declared empty, the calling
- * function must increment the failure count.
- */
- return -EBADMSG;
- }
- /* Check correctable error flag */
- if (ndsr & NDSR_CORERR) {
- writel_relaxed(ndsr, nfc->regs + NDSR);
- if (chip->ecc.algo == NAND_ECC_ALGO_BCH)
- bf = NDSR_ERRCNT(ndsr);
- else
- bf = 1;
- }
- /* Update the stats and max_bitflips */
- mtd->ecc_stats.corrected += bf;
- *max_bitflips = max_t(unsigned int, *max_bitflips, bf);
- return 0;
- }
- /* Hamming read helpers */
- static int marvell_nfc_hw_ecc_hmg_do_read_page(struct nand_chip *chip,
- u8 *data_buf, u8 *oob_buf,
- bool raw, int page)
- {
- struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
- struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
- const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
- struct marvell_nfc_op nfc_op = {
- .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) |
- NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
- NDCB0_DBC |
- NDCB0_CMD1(NAND_CMD_READ0) |
- NDCB0_CMD2(NAND_CMD_READSTART),
- .ndcb[1] = NDCB1_ADDRS_PAGE(page),
- .ndcb[2] = NDCB2_ADDR5_PAGE(page),
- };
- unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0);
- int ret;
- /* NFCv2 needs more information about the operation being executed */
- if (nfc->caps->is_nfcv2)
- nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
- ret = marvell_nfc_prepare_cmd(chip);
- if (ret)
- return ret;
- marvell_nfc_send_cmd(chip, &nfc_op);
- ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
- "RDDREQ while draining FIFO (data/oob)");
- if (ret)
- return ret;
- /*
- * Read the page then the OOB area. Unlike what is shown in current
- * documentation, spare bytes are protected by the ECC engine, and must
- * be at the beginning of the OOB area or running this driver on legacy
- * systems will prevent the discovery of the BBM/BBT.
- */
- if (nfc->use_dma) {
- marvell_nfc_xfer_data_dma(nfc, DMA_FROM_DEVICE,
- lt->data_bytes + oob_bytes);
- memcpy(data_buf, nfc->dma_buf, lt->data_bytes);
- memcpy(oob_buf, nfc->dma_buf + lt->data_bytes, oob_bytes);
- } else {
- marvell_nfc_xfer_data_in_pio(nfc, data_buf, lt->data_bytes);
- marvell_nfc_xfer_data_in_pio(nfc, oob_buf, oob_bytes);
- }
- ret = marvell_nfc_wait_cmdd(chip);
- return ret;
- }
- static int marvell_nfc_hw_ecc_hmg_read_page_raw(struct nand_chip *chip, u8 *buf,
- int oob_required, int page)
- {
- marvell_nfc_select_target(chip, chip->cur_cs);
- return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi,
- true, page);
- }
- static int marvell_nfc_hw_ecc_hmg_read_page(struct nand_chip *chip, u8 *buf,
- int oob_required, int page)
- {
- const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
- unsigned int full_sz = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
- int max_bitflips = 0, ret;
- u8 *raw_buf;
- marvell_nfc_select_target(chip, chip->cur_cs);
- marvell_nfc_enable_hw_ecc(chip);
- marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, false,
- page);
- ret = marvell_nfc_hw_ecc_check_bitflips(chip, &max_bitflips);
- marvell_nfc_disable_hw_ecc(chip);
- if (!ret)
- return max_bitflips;
- /*
- * When ECC failures are detected, check if the full page has been
- * written or not. Ignore the failure if it is actually empty.
- */
- raw_buf = kmalloc(full_sz, GFP_KERNEL);
- if (!raw_buf)
- return -ENOMEM;
- marvell_nfc_hw_ecc_hmg_do_read_page(chip, raw_buf, raw_buf +
- lt->data_bytes, true, page);
- marvell_nfc_check_empty_chunk(chip, raw_buf, full_sz, NULL, 0, NULL, 0,
- &max_bitflips);
- kfree(raw_buf);
- return max_bitflips;
- }
- /*
- * Spare area in Hamming layouts is not protected by the ECC engine (even if
- * it appears before the ECC bytes when reading), the ->read_oob_raw() function
- * also stands for ->read_oob().
- */
- static int marvell_nfc_hw_ecc_hmg_read_oob_raw(struct nand_chip *chip, int page)
- {
- u8 *buf = nand_get_data_buf(chip);
- marvell_nfc_select_target(chip, chip->cur_cs);
- return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi,
- true, page);
- }
- /* Hamming write helpers */
- static int marvell_nfc_hw_ecc_hmg_do_write_page(struct nand_chip *chip,
- const u8 *data_buf,
- const u8 *oob_buf, bool raw,
- int page)
- {
- const struct nand_sdr_timings *sdr =
- nand_get_sdr_timings(nand_get_interface_config(chip));
- struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
- struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
- const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
- struct marvell_nfc_op nfc_op = {
- .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) |
- NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
- NDCB0_CMD1(NAND_CMD_SEQIN) |
- NDCB0_CMD2(NAND_CMD_PAGEPROG) |
- NDCB0_DBC,
- .ndcb[1] = NDCB1_ADDRS_PAGE(page),
- .ndcb[2] = NDCB2_ADDR5_PAGE(page),
- };
- unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0);
- u8 status;
- int ret;
- /* NFCv2 needs more information about the operation being executed */
- if (nfc->caps->is_nfcv2)
- nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
- ret = marvell_nfc_prepare_cmd(chip);
- if (ret)
- return ret;
- marvell_nfc_send_cmd(chip, &nfc_op);
- ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ,
- "WRDREQ while loading FIFO (data)");
- if (ret)
- return ret;
- /* Write the page then the OOB area */
- if (nfc->use_dma) {
- memcpy(nfc->dma_buf, data_buf, lt->data_bytes);
- memcpy(nfc->dma_buf + lt->data_bytes, oob_buf, oob_bytes);
- marvell_nfc_xfer_data_dma(nfc, DMA_TO_DEVICE, lt->data_bytes +
- lt->ecc_bytes + lt->spare_bytes);
- } else {
- marvell_nfc_xfer_data_out_pio(nfc, data_buf, lt->data_bytes);
- marvell_nfc_xfer_data_out_pio(nfc, oob_buf, oob_bytes);
- }
- ret = marvell_nfc_wait_cmdd(chip);
- if (ret)
- return ret;
- ret = marvell_nfc_wait_op(chip,
- PSEC_TO_MSEC(sdr->tPROG_max));
- if (ret)
- return ret;
- /* Check write status on the chip side */
- ret = nand_status_op(chip, &status);
- if (ret)
- return ret;
- if (status & NAND_STATUS_FAIL)
- return -EIO;
- return 0;
- }
- static int marvell_nfc_hw_ecc_hmg_write_page_raw(struct nand_chip *chip,
- const u8 *buf,
- int oob_required, int page)
- {
- marvell_nfc_select_target(chip, chip->cur_cs);
- return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
- true, page);
- }
- static int marvell_nfc_hw_ecc_hmg_write_page(struct nand_chip *chip,
- const u8 *buf,
- int oob_required, int page)
- {
- int ret;
- marvell_nfc_select_target(chip, chip->cur_cs);
- marvell_nfc_enable_hw_ecc(chip);
- ret = marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
- false, page);
- marvell_nfc_disable_hw_ecc(chip);
- return ret;
- }
- /*
- * Spare area in Hamming layouts is not protected by the ECC engine (even if
- * it appears before the ECC bytes when reading), the ->write_oob_raw() function
- * also stands for ->write_oob().
- */
- static int marvell_nfc_hw_ecc_hmg_write_oob_raw(struct nand_chip *chip,
- int page)
- {
- struct mtd_info *mtd = nand_to_mtd(chip);
- u8 *buf = nand_get_data_buf(chip);
- memset(buf, 0xFF, mtd->writesize);
- marvell_nfc_select_target(chip, chip->cur_cs);
- return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
- true, page);
- }
- /* BCH read helpers */
- static int marvell_nfc_hw_ecc_bch_read_page_raw(struct nand_chip *chip, u8 *buf,
- int oob_required, int page)
- {
- struct mtd_info *mtd = nand_to_mtd(chip);
- const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
- u8 *oob = chip->oob_poi;
- int chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
- int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) +
- lt->last_spare_bytes;
- int data_len = lt->data_bytes;
- int spare_len = lt->spare_bytes;
- int ecc_len = lt->ecc_bytes;
- int chunk;
- marvell_nfc_select_target(chip, chip->cur_cs);
- if (oob_required)
- memset(chip->oob_poi, 0xFF, mtd->oobsize);
- nand_read_page_op(chip, page, 0, NULL, 0);
- for (chunk = 0; chunk < lt->nchunks; chunk++) {
- /* Update last chunk length */
- if (chunk >= lt->full_chunk_cnt) {
- data_len = lt->last_data_bytes;
- spare_len = lt->last_spare_bytes;
- ecc_len = lt->last_ecc_bytes;
- }
- /* Read data bytes*/
- nand_change_read_column_op(chip, chunk * chunk_size,
- buf + (lt->data_bytes * chunk),
- data_len, false);
- /* Read spare bytes */
- nand_read_data_op(chip, oob + (lt->spare_bytes * chunk),
- spare_len, false, false);
- /* Read ECC bytes */
- nand_read_data_op(chip, oob + ecc_offset +
- (ALIGN(lt->ecc_bytes, 32) * chunk),
- ecc_len, false, false);
- }
- return 0;
- }
- static void marvell_nfc_hw_ecc_bch_read_chunk(struct nand_chip *chip, int chunk,
- u8 *data, unsigned int data_len,
- u8 *spare, unsigned int spare_len,
- int page)
- {
- struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
- struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
- const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
- int i, ret;
- struct marvell_nfc_op nfc_op = {
- .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) |
- NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
- NDCB0_LEN_OVRD,
- .ndcb[1] = NDCB1_ADDRS_PAGE(page),
- .ndcb[2] = NDCB2_ADDR5_PAGE(page),
- .ndcb[3] = data_len + spare_len,
- };
- ret = marvell_nfc_prepare_cmd(chip);
- if (ret)
- return;
- if (chunk == 0)
- nfc_op.ndcb[0] |= NDCB0_DBC |
- NDCB0_CMD1(NAND_CMD_READ0) |
- NDCB0_CMD2(NAND_CMD_READSTART);
- /*
- * Trigger the monolithic read on the first chunk, then naked read on
- * intermediate chunks and finally a last naked read on the last chunk.
- */
- if (chunk == 0)
- nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
- else if (chunk < lt->nchunks - 1)
- nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW);
- else
- nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
- marvell_nfc_send_cmd(chip, &nfc_op);
- /*
- * According to the datasheet, when reading from NDDB
- * with BCH enabled, after each 32 bytes reads, we
- * have to make sure that the NDSR.RDDREQ bit is set.
- *
- * Drain the FIFO, 8 32-bit reads at a time, and skip
- * the polling on the last read.
- *
- * Length is a multiple of 32 bytes, hence it is a multiple of 8 too.
- */
- for (i = 0; i < data_len; i += FIFO_DEPTH * BCH_SEQ_READS) {
- marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
- "RDDREQ while draining FIFO (data)");
- marvell_nfc_xfer_data_in_pio(nfc, data,
- FIFO_DEPTH * BCH_SEQ_READS);
- data += FIFO_DEPTH * BCH_SEQ_READS;
- }
- for (i = 0; i < spare_len; i += FIFO_DEPTH * BCH_SEQ_READS) {
- marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
- "RDDREQ while draining FIFO (OOB)");
- marvell_nfc_xfer_data_in_pio(nfc, spare,
- FIFO_DEPTH * BCH_SEQ_READS);
- spare += FIFO_DEPTH * BCH_SEQ_READS;
- }
- }
- static int marvell_nfc_hw_ecc_bch_read_page(struct nand_chip *chip,
- u8 *buf, int oob_required,
- int page)
- {
- struct mtd_info *mtd = nand_to_mtd(chip);
- const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
- int data_len = lt->data_bytes, spare_len = lt->spare_bytes;
- u8 *data = buf, *spare = chip->oob_poi;
- int max_bitflips = 0;
- u32 failure_mask = 0;
- int chunk, ret;
- marvell_nfc_select_target(chip, chip->cur_cs);
- /*
- * With BCH, OOB is not fully used (and thus not read entirely), not
- * expected bytes could show up at the end of the OOB buffer if not
- * explicitly erased.
- */
- if (oob_required)
- memset(chip->oob_poi, 0xFF, mtd->oobsize);
- marvell_nfc_enable_hw_ecc(chip);
- for (chunk = 0; chunk < lt->nchunks; chunk++) {
- /* Update length for the last chunk */
- if (chunk >= lt->full_chunk_cnt) {
- data_len = lt->last_data_bytes;
- spare_len = lt->last_spare_bytes;
- }
- /* Read the chunk and detect number of bitflips */
- marvell_nfc_hw_ecc_bch_read_chunk(chip, chunk, data, data_len,
- spare, spare_len, page);
- ret = marvell_nfc_hw_ecc_check_bitflips(chip, &max_bitflips);
- if (ret)
- failure_mask |= BIT(chunk);
- data += data_len;
- spare += spare_len;
- }
- marvell_nfc_disable_hw_ecc(chip);
- if (!failure_mask)
- return max_bitflips;
- /*
- * Please note that dumping the ECC bytes during a normal read with OOB
- * area would add a significant overhead as ECC bytes are "consumed" by
- * the controller in normal mode and must be re-read in raw mode. To
- * avoid dropping the performances, we prefer not to include them. The
- * user should re-read the page in raw mode if ECC bytes are required.
- */
- /*
- * In case there is any subpage read error, we usually re-read only ECC
- * bytes in raw mode and check if the whole page is empty. In this case,
- * it is normal that the ECC check failed and we just ignore the error.
- *
- * However, it has been empirically observed that for some layouts (e.g
- * 2k page, 8b strength per 512B chunk), the controller tries to correct
- * bits and may create itself bitflips in the erased area. To overcome
- * this strange behavior, the whole page is re-read in raw mode, not
- * only the ECC bytes.
- */
- for (chunk = 0; chunk < lt->nchunks; chunk++) {
- int data_off_in_page, spare_off_in_page, ecc_off_in_page;
- int data_off, spare_off, ecc_off;
- int data_len, spare_len, ecc_len;
- /* No failure reported for this chunk, move to the next one */
- if (!(failure_mask & BIT(chunk)))
- continue;
- data_off_in_page = chunk * (lt->data_bytes + lt->spare_bytes +
- lt->ecc_bytes);
- spare_off_in_page = data_off_in_page +
- (chunk < lt->full_chunk_cnt ? lt->data_bytes :
- lt->last_data_bytes);
- ecc_off_in_page = spare_off_in_page +
- (chunk < lt->full_chunk_cnt ? lt->spare_bytes :
- lt->last_spare_bytes);
- data_off = chunk * lt->data_bytes;
- spare_off = chunk * lt->spare_bytes;
- ecc_off = (lt->full_chunk_cnt * lt->spare_bytes) +
- lt->last_spare_bytes +
- (chunk * (lt->ecc_bytes + 2));
- data_len = chunk < lt->full_chunk_cnt ? lt->data_bytes :
- lt->last_data_bytes;
- spare_len = chunk < lt->full_chunk_cnt ? lt->spare_bytes :
- lt->last_spare_bytes;
- ecc_len = chunk < lt->full_chunk_cnt ? lt->ecc_bytes :
- lt->last_ecc_bytes;
- /*
- * Only re-read the ECC bytes, unless we are using the 2k/8b
- * layout which is buggy in the sense that the ECC engine will
- * try to correct data bytes anyway, creating bitflips. In this
- * case, re-read the entire page.
- */
- if (lt->writesize == 2048 && lt->strength == 8) {
- nand_change_read_column_op(chip, data_off_in_page,
- buf + data_off, data_len,
- false);
- nand_change_read_column_op(chip, spare_off_in_page,
- chip->oob_poi + spare_off, spare_len,
- false);
- }
- nand_change_read_column_op(chip, ecc_off_in_page,
- chip->oob_poi + ecc_off, ecc_len,
- false);
- /* Check the entire chunk (data + spare + ecc) for emptyness */
- marvell_nfc_check_empty_chunk(chip, buf + data_off, data_len,
- chip->oob_poi + spare_off, spare_len,
- chip->oob_poi + ecc_off, ecc_len,
- &max_bitflips);
- }
- return max_bitflips;
- }
- static int marvell_nfc_hw_ecc_bch_read_oob_raw(struct nand_chip *chip, int page)
- {
- u8 *buf = nand_get_data_buf(chip);
- return chip->ecc.read_page_raw(chip, buf, true, page);
- }
- static int marvell_nfc_hw_ecc_bch_read_oob(struct nand_chip *chip, int page)
- {
- u8 *buf = nand_get_data_buf(chip);
- return chip->ecc.read_page(chip, buf, true, page);
- }
- /* BCH write helpers */
- static int marvell_nfc_hw_ecc_bch_write_page_raw(struct nand_chip *chip,
- const u8 *buf,
- int oob_required, int page)
- {
- const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
- int full_chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
- int data_len = lt->data_bytes;
- int spare_len = lt->spare_bytes;
- int ecc_len = lt->ecc_bytes;
- int spare_offset = 0;
- int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) +
- lt->last_spare_bytes;
- int chunk;
- marvell_nfc_select_target(chip, chip->cur_cs);
- nand_prog_page_begin_op(chip, page, 0, NULL, 0);
- for (chunk = 0; chunk < lt->nchunks; chunk++) {
- if (chunk >= lt->full_chunk_cnt) {
- data_len = lt->last_data_bytes;
- spare_len = lt->last_spare_bytes;
- ecc_len = lt->last_ecc_bytes;
- }
- /* Point to the column of the next chunk */
- nand_change_write_column_op(chip, chunk * full_chunk_size,
- NULL, 0, false);
- /* Write the data */
- nand_write_data_op(chip, buf + (chunk * lt->data_bytes),
- data_len, false);
- if (!oob_required)
- continue;
- /* Write the spare bytes */
- if (spare_len)
- nand_write_data_op(chip, chip->oob_poi + spare_offset,
- spare_len, false);
- /* Write the ECC bytes */
- if (ecc_len)
- nand_write_data_op(chip, chip->oob_poi + ecc_offset,
- ecc_len, false);
- spare_offset += spare_len;
- ecc_offset += ALIGN(ecc_len, 32);
- }
- return nand_prog_page_end_op(chip);
- }
- static int
- marvell_nfc_hw_ecc_bch_write_chunk(struct nand_chip *chip, int chunk,
- const u8 *data, unsigned int data_len,
- const u8 *spare, unsigned int spare_len,
- int page)
- {
- struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
- struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
- const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
- u32 xtype;
- int ret;
- struct marvell_nfc_op nfc_op = {
- .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | NDCB0_LEN_OVRD,
- .ndcb[3] = data_len + spare_len,
- };
- /*
- * First operation dispatches the CMD_SEQIN command, issue the address
- * cycles and asks for the first chunk of data.
- * All operations in the middle (if any) will issue a naked write and
- * also ask for data.
- * Last operation (if any) asks for the last chunk of data through a
- * last naked write.
- */
- if (chunk == 0) {
- if (lt->nchunks == 1)
- xtype = XTYPE_MONOLITHIC_RW;
- else
- xtype = XTYPE_WRITE_DISPATCH;
- nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(xtype) |
- NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
- NDCB0_CMD1(NAND_CMD_SEQIN);
- nfc_op.ndcb[1] |= NDCB1_ADDRS_PAGE(page);
- nfc_op.ndcb[2] |= NDCB2_ADDR5_PAGE(page);
- } else if (chunk < lt->nchunks - 1) {
- nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW);
- } else {
- nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
- }
- /* Always dispatch the PAGEPROG command on the last chunk */
- if (chunk == lt->nchunks - 1)
- nfc_op.ndcb[0] |= NDCB0_CMD2(NAND_CMD_PAGEPROG) | NDCB0_DBC;
- ret = marvell_nfc_prepare_cmd(chip);
- if (ret)
- return ret;
- marvell_nfc_send_cmd(chip, &nfc_op);
- ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ,
- "WRDREQ while loading FIFO (data)");
- if (ret)
- return ret;
- /* Transfer the contents */
- iowrite32_rep(nfc->regs + NDDB, data, FIFO_REP(data_len));
- iowrite32_rep(nfc->regs + NDDB, spare, FIFO_REP(spare_len));
- return 0;
- }
- static int marvell_nfc_hw_ecc_bch_write_page(struct nand_chip *chip,
- const u8 *buf,
- int oob_required, int page)
- {
- const struct nand_sdr_timings *sdr =
- nand_get_sdr_timings(nand_get_interface_config(chip));
- struct mtd_info *mtd = nand_to_mtd(chip);
- const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
- const u8 *data = buf;
- const u8 *spare = chip->oob_poi;
- int data_len = lt->data_bytes;
- int spare_len = lt->spare_bytes;
- int chunk, ret;
- u8 status;
- marvell_nfc_select_target(chip, chip->cur_cs);
- /* Spare data will be written anyway, so clear it to avoid garbage */
- if (!oob_required)
- memset(chip->oob_poi, 0xFF, mtd->oobsize);
- marvell_nfc_enable_hw_ecc(chip);
- for (chunk = 0; chunk < lt->nchunks; chunk++) {
- if (chunk >= lt->full_chunk_cnt) {
- data_len = lt->last_data_bytes;
- spare_len = lt->last_spare_bytes;
- }
- marvell_nfc_hw_ecc_bch_write_chunk(chip, chunk, data, data_len,
- spare, spare_len, page);
- data += data_len;
- spare += spare_len;
- /*
- * Waiting only for CMDD or PAGED is not enough, ECC are
- * partially written. No flag is set once the operation is
- * really finished but the ND_RUN bit is cleared, so wait for it
- * before stepping into the next command.
- */
- marvell_nfc_wait_ndrun(chip);
- }
- ret = marvell_nfc_wait_op(chip, PSEC_TO_MSEC(sdr->tPROG_max));
- marvell_nfc_disable_hw_ecc(chip);
- if (ret)
- return ret;
- /* Check write status on the chip side */
- ret = nand_status_op(chip, &status);
- if (ret)
- return ret;
- if (status & NAND_STATUS_FAIL)
- return -EIO;
- return 0;
- }
- static int marvell_nfc_hw_ecc_bch_write_oob_raw(struct nand_chip *chip,
- int page)
- {
- struct mtd_info *mtd = nand_to_mtd(chip);
- u8 *buf = nand_get_data_buf(chip);
- memset(buf, 0xFF, mtd->writesize);
- return chip->ecc.write_page_raw(chip, buf, true, page);
- }
- static int marvell_nfc_hw_ecc_bch_write_oob(struct nand_chip *chip, int page)
- {
- struct mtd_info *mtd = nand_to_mtd(chip);
- u8 *buf = nand_get_data_buf(chip);
- memset(buf, 0xFF, mtd->writesize);
- return chip->ecc.write_page(chip, buf, true, page);
- }
- /* NAND framework ->exec_op() hooks and related helpers */
- static void marvell_nfc_parse_instructions(struct nand_chip *chip,
- const struct nand_subop *subop,
- struct marvell_nfc_op *nfc_op)
- {
- const struct nand_op_instr *instr = NULL;
- struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
- bool first_cmd = true;
- unsigned int op_id;
- int i;
- /* Reset the input structure as most of its fields will be OR'ed */
- memset(nfc_op, 0, sizeof(struct marvell_nfc_op));
- for (op_id = 0; op_id < subop->ninstrs; op_id++) {
- unsigned int offset, naddrs;
- const u8 *addrs;
- int len;
- instr = &subop->instrs[op_id];
- switch (instr->type) {
- case NAND_OP_CMD_INSTR:
- if (first_cmd)
- nfc_op->ndcb[0] |=
- NDCB0_CMD1(instr->ctx.cmd.opcode);
- else
- nfc_op->ndcb[0] |=
- NDCB0_CMD2(instr->ctx.cmd.opcode) |
- NDCB0_DBC;
- nfc_op->cle_ale_delay_ns = instr->delay_ns;
- first_cmd = false;
- break;
- case NAND_OP_ADDR_INSTR:
- offset = nand_subop_get_addr_start_off(subop, op_id);
- naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
- addrs = &instr->ctx.addr.addrs[offset];
- nfc_op->ndcb[0] |= NDCB0_ADDR_CYC(naddrs);
- for (i = 0; i < min_t(unsigned int, 4, naddrs); i++)
- nfc_op->ndcb[1] |= addrs[i] << (8 * i);
- if (naddrs >= 5)
- nfc_op->ndcb[2] |= NDCB2_ADDR5_CYC(addrs[4]);
- if (naddrs >= 6)
- nfc_op->ndcb[3] |= NDCB3_ADDR6_CYC(addrs[5]);
- if (naddrs == 7)
- nfc_op->ndcb[3] |= NDCB3_ADDR7_CYC(addrs[6]);
- nfc_op->cle_ale_delay_ns = instr->delay_ns;
- break;
- case NAND_OP_DATA_IN_INSTR:
- nfc_op->data_instr = instr;
- nfc_op->data_instr_idx = op_id;
- nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ);
- if (nfc->caps->is_nfcv2) {
- nfc_op->ndcb[0] |=
- NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) |
- NDCB0_LEN_OVRD;
- len = nand_subop_get_data_len(subop, op_id);
- nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH);
- }
- nfc_op->data_delay_ns = instr->delay_ns;
- break;
- case NAND_OP_DATA_OUT_INSTR:
- nfc_op->data_instr = instr;
- nfc_op->data_instr_idx = op_id;
- nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE);
- if (nfc->caps->is_nfcv2) {
- nfc_op->ndcb[0] |=
- NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) |
- NDCB0_LEN_OVRD;
- len = nand_subop_get_data_len(subop, op_id);
- nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH);
- }
- nfc_op->data_delay_ns = instr->delay_ns;
- break;
- case NAND_OP_WAITRDY_INSTR:
- nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms;
- nfc_op->rdy_delay_ns = instr->delay_ns;
- break;
- }
- }
- }
- static int marvell_nfc_xfer_data_pio(struct nand_chip *chip,
- const struct nand_subop *subop,
- struct marvell_nfc_op *nfc_op)
- {
- struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
- const struct nand_op_instr *instr = nfc_op->data_instr;
- unsigned int op_id = nfc_op->data_instr_idx;
- unsigned int len = nand_subop_get_data_len(subop, op_id);
- unsigned int offset = nand_subop_get_data_start_off(subop, op_id);
- bool reading = (instr->type == NAND_OP_DATA_IN_INSTR);
- int ret;
- if (instr->ctx.data.force_8bit)
- marvell_nfc_force_byte_access(chip, true);
- if (reading) {
- u8 *in = instr->ctx.data.buf.in + offset;
- ret = marvell_nfc_xfer_data_in_pio(nfc, in, len);
- } else {
- const u8 *out = instr->ctx.data.buf.out + offset;
- ret = marvell_nfc_xfer_data_out_pio(nfc, out, len);
- }
- if (instr->ctx.data.force_8bit)
- marvell_nfc_force_byte_access(chip, false);
- return ret;
- }
- static int marvell_nfc_monolithic_access_exec(struct nand_chip *chip,
- const struct nand_subop *subop)
- {
- struct marvell_nfc_op nfc_op;
- bool reading;
- int ret;
- marvell_nfc_parse_instructions(chip, subop, &nfc_op);
- reading = (nfc_op.data_instr->type == NAND_OP_DATA_IN_INSTR);
- ret = marvell_nfc_prepare_cmd(chip);
- if (ret)
- return ret;
- marvell_nfc_send_cmd(chip, &nfc_op);
- ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ,
- "RDDREQ/WRDREQ while draining raw data");
- if (ret)
- return ret;
- cond_delay(nfc_op.cle_ale_delay_ns);
- if (reading) {
- if (nfc_op.rdy_timeout_ms) {
- ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
- if (ret)
- return ret;
- }
- cond_delay(nfc_op.rdy_delay_ns);
- }
- marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
- ret = marvell_nfc_wait_cmdd(chip);
- if (ret)
- return ret;
- cond_delay(nfc_op.data_delay_ns);
- if (!reading) {
- if (nfc_op.rdy_timeout_ms) {
- ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
- if (ret)
- return ret;
- }
- cond_delay(nfc_op.rdy_delay_ns);
- }
- /*
- * NDCR ND_RUN bit should be cleared automatically at the end of each
- * operation but experience shows that the behavior is buggy when it
- * comes to writes (with LEN_OVRD). Clear it by hand in this case.
- */
- if (!reading) {
- struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
- writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
- nfc->regs + NDCR);
- }
- return 0;
- }
- static int marvell_nfc_naked_access_exec(struct nand_chip *chip,
- const struct nand_subop *subop)
- {
- struct marvell_nfc_op nfc_op;
- int ret;
- marvell_nfc_parse_instructions(chip, subop, &nfc_op);
- /*
- * Naked access are different in that they need to be flagged as naked
- * by the controller. Reset the controller registers fields that inform
- * on the type and refill them according to the ongoing operation.
- */
- nfc_op.ndcb[0] &= ~(NDCB0_CMD_TYPE(TYPE_MASK) |
- NDCB0_CMD_XTYPE(XTYPE_MASK));
- switch (subop->instrs[0].type) {
- case NAND_OP_CMD_INSTR:
- nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_CMD);
- break;
- case NAND_OP_ADDR_INSTR:
- nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_ADDR);
- break;
- case NAND_OP_DATA_IN_INSTR:
- nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ) |
- NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
- break;
- case NAND_OP_DATA_OUT_INSTR:
- nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE) |
- NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
- break;
- default:
- /* This should never happen */
- break;
- }
- ret = marvell_nfc_prepare_cmd(chip);
- if (ret)
- return ret;
- marvell_nfc_send_cmd(chip, &nfc_op);
- if (!nfc_op.data_instr) {
- ret = marvell_nfc_wait_cmdd(chip);
- cond_delay(nfc_op.cle_ale_delay_ns);
- return ret;
- }
- ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ,
- "RDDREQ/WRDREQ while draining raw data");
- if (ret)
- return ret;
- marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
- ret = marvell_nfc_wait_cmdd(chip);
- if (ret)
- return ret;
- /*
- * NDCR ND_RUN bit should be cleared automatically at the end of each
- * operation but experience shows that the behavior is buggy when it
- * comes to writes (with LEN_OVRD). Clear it by hand in this case.
- */
- if (subop->instrs[0].type == NAND_OP_DATA_OUT_INSTR) {
- struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
- writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
- nfc->regs + NDCR);
- }
- return 0;
- }
- static int marvell_nfc_naked_waitrdy_exec(struct nand_chip *chip,
- const struct nand_subop *subop)
- {
- struct marvell_nfc_op nfc_op;
- int ret;
- marvell_nfc_parse_instructions(chip, subop, &nfc_op);
- ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
- cond_delay(nfc_op.rdy_delay_ns);
- return ret;
- }
- static int marvell_nfc_read_id_type_exec(struct nand_chip *chip,
- const struct nand_subop *subop)
- {
- struct marvell_nfc_op nfc_op;
- int ret;
- marvell_nfc_parse_instructions(chip, subop, &nfc_op);
- nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ);
- nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ_ID);
- ret = marvell_nfc_prepare_cmd(chip);
- if (ret)
- return ret;
- marvell_nfc_send_cmd(chip, &nfc_op);
- ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
- "RDDREQ while reading ID");
- if (ret)
- return ret;
- cond_delay(nfc_op.cle_ale_delay_ns);
- if (nfc_op.rdy_timeout_ms) {
- ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
- if (ret)
- return ret;
- }
- cond_delay(nfc_op.rdy_delay_ns);
- marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
- ret = marvell_nfc_wait_cmdd(chip);
- if (ret)
- return ret;
- cond_delay(nfc_op.data_delay_ns);
- return 0;
- }
- static int marvell_nfc_read_status_exec(struct nand_chip *chip,
- const struct nand_subop *subop)
- {
- struct marvell_nfc_op nfc_op;
- int ret;
- marvell_nfc_parse_instructions(chip, subop, &nfc_op);
- nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ);
- nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_STATUS);
- ret = marvell_nfc_prepare_cmd(chip);
- if (ret)
- return ret;
- marvell_nfc_send_cmd(chip, &nfc_op);
- ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
- "RDDREQ while reading status");
- if (ret)
- return ret;
- cond_delay(nfc_op.cle_ale_delay_ns);
- if (nfc_op.rdy_timeout_ms) {
- ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
- if (ret)
- return ret;
- }
- cond_delay(nfc_op.rdy_delay_ns);
- marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
- ret = marvell_nfc_wait_cmdd(chip);
- if (ret)
- return ret;
- cond_delay(nfc_op.data_delay_ns);
- return 0;
- }
- static int marvell_nfc_reset_cmd_type_exec(struct nand_chip *chip,
- const struct nand_subop *subop)
- {
- struct marvell_nfc_op nfc_op;
- int ret;
- marvell_nfc_parse_instructions(chip, subop, &nfc_op);
- nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_RESET);
- ret = marvell_nfc_prepare_cmd(chip);
- if (ret)
- return ret;
- marvell_nfc_send_cmd(chip, &nfc_op);
- ret = marvell_nfc_wait_cmdd(chip);
- if (ret)
- return ret;
- cond_delay(nfc_op.cle_ale_delay_ns);
- ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
- if (ret)
- return ret;
- cond_delay(nfc_op.rdy_delay_ns);
- return 0;
- }
- static int marvell_nfc_erase_cmd_type_exec(struct nand_chip *chip,
- const struct nand_subop *subop)
- {
- struct marvell_nfc_op nfc_op;
- int ret;
- marvell_nfc_parse_instructions(chip, subop, &nfc_op);
- nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_ERASE);
- ret = marvell_nfc_prepare_cmd(chip);
- if (ret)
- return ret;
- marvell_nfc_send_cmd(chip, &nfc_op);
- ret = marvell_nfc_wait_cmdd(chip);
- if (ret)
- return ret;
- cond_delay(nfc_op.cle_ale_delay_ns);
- ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
- if (ret)
- return ret;
- cond_delay(nfc_op.rdy_delay_ns);
- return 0;
- }
- static const struct nand_op_parser marvell_nfcv2_op_parser = NAND_OP_PARSER(
- /* Monolithic reads/writes */
- NAND_OP_PARSER_PATTERN(
- marvell_nfc_monolithic_access_exec,
- NAND_OP_PARSER_PAT_CMD_ELEM(false),
- NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC_NFCV2),
- NAND_OP_PARSER_PAT_CMD_ELEM(true),
- NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
- NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)),
- NAND_OP_PARSER_PATTERN(
- marvell_nfc_monolithic_access_exec,
- NAND_OP_PARSER_PAT_CMD_ELEM(false),
- NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2),
- NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE),
- NAND_OP_PARSER_PAT_CMD_ELEM(true),
- NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
- /* Naked commands */
- NAND_OP_PARSER_PATTERN(
- marvell_nfc_naked_access_exec,
- NAND_OP_PARSER_PAT_CMD_ELEM(false)),
- NAND_OP_PARSER_PATTERN(
- marvell_nfc_naked_access_exec,
- NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2)),
- NAND_OP_PARSER_PATTERN(
- marvell_nfc_naked_access_exec,
- NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)),
- NAND_OP_PARSER_PATTERN(
- marvell_nfc_naked_access_exec,
- NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE)),
- NAND_OP_PARSER_PATTERN(
- marvell_nfc_naked_waitrdy_exec,
- NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
- );
- static const struct nand_op_parser marvell_nfcv1_op_parser = NAND_OP_PARSER(
- /* Naked commands not supported, use a function for each pattern */
- NAND_OP_PARSER_PATTERN(
- marvell_nfc_read_id_type_exec,
- NAND_OP_PARSER_PAT_CMD_ELEM(false),
- NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1),
- NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)),
- NAND_OP_PARSER_PATTERN(
- marvell_nfc_erase_cmd_type_exec,
- NAND_OP_PARSER_PAT_CMD_ELEM(false),
- NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1),
- NAND_OP_PARSER_PAT_CMD_ELEM(false),
- NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
- NAND_OP_PARSER_PATTERN(
- marvell_nfc_read_status_exec,
- NAND_OP_PARSER_PAT_CMD_ELEM(false),
- NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)),
- NAND_OP_PARSER_PATTERN(
- marvell_nfc_reset_cmd_type_exec,
- NAND_OP_PARSER_PAT_CMD_ELEM(false),
- NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
- NAND_OP_PARSER_PATTERN(
- marvell_nfc_naked_waitrdy_exec,
- NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
- );
- static int marvell_nfc_exec_op(struct nand_chip *chip,
- const struct nand_operation *op,
- bool check_only)
- {
- struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
- if (!check_only)
- marvell_nfc_select_target(chip, op->cs);
- if (nfc->caps->is_nfcv2)
- return nand_op_parser_exec_op(chip, &marvell_nfcv2_op_parser,
- op, check_only);
- else
- return nand_op_parser_exec_op(chip, &marvell_nfcv1_op_parser,
- op, check_only);
- }
- /*
- * Layouts were broken in old pxa3xx_nand driver, these are supposed to be
- * usable.
- */
- static int marvell_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
- struct mtd_oob_region *oobregion)
- {
- struct nand_chip *chip = mtd_to_nand(mtd);
- const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
- if (section)
- return -ERANGE;
- oobregion->length = (lt->full_chunk_cnt * lt->ecc_bytes) +
- lt->last_ecc_bytes;
- oobregion->offset = mtd->oobsize - oobregion->length;
- return 0;
- }
- static int marvell_nand_ooblayout_free(struct mtd_info *mtd, int section,
- struct mtd_oob_region *oobregion)
- {
- struct nand_chip *chip = mtd_to_nand(mtd);
- const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
- if (section)
- return -ERANGE;
- /*
- * Bootrom looks in bytes 0 & 5 for bad blocks for the
- * 4KB page / 4bit BCH combination.
- */
- if (mtd->writesize == SZ_4K && lt->data_bytes == SZ_2K)
- oobregion->offset = 6;
- else
- oobregion->offset = 2;
- oobregion->length = (lt->full_chunk_cnt * lt->spare_bytes) +
- lt->last_spare_bytes - oobregion->offset;
- return 0;
- }
- static const struct mtd_ooblayout_ops marvell_nand_ooblayout_ops = {
- .ecc = marvell_nand_ooblayout_ecc,
- .free = marvell_nand_ooblayout_free,
- };
- static int marvell_nand_hw_ecc_controller_init(struct mtd_info *mtd,
- struct nand_ecc_ctrl *ecc)
- {
- struct nand_chip *chip = mtd_to_nand(mtd);
- struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
- const struct marvell_hw_ecc_layout *l;
- int i;
- if (!nfc->caps->is_nfcv2 &&
- (mtd->writesize + mtd->oobsize > MAX_CHUNK_SIZE)) {
- dev_err(nfc->dev,
- "NFCv1: writesize (%d) cannot be bigger than a chunk (%d)\n",
- mtd->writesize, MAX_CHUNK_SIZE - mtd->oobsize);
- return -ENOTSUPP;
- }
- to_marvell_nand(chip)->layout = NULL;
- for (i = 0; i < ARRAY_SIZE(marvell_nfc_layouts); i++) {
- l = &marvell_nfc_layouts[i];
- if (mtd->writesize == l->writesize &&
- ecc->size == l->chunk && ecc->strength == l->strength) {
- to_marvell_nand(chip)->layout = l;
- break;
- }
- }
- if (!to_marvell_nand(chip)->layout ||
- (!nfc->caps->is_nfcv2 && ecc->strength > 1)) {
- dev_err(nfc->dev,
- "ECC strength %d at page size %d is not supported\n",
- ecc->strength, mtd->writesize);
- return -ENOTSUPP;
- }
- /* Special care for the layout 2k/8-bit/512B */
- if (l->writesize == 2048 && l->strength == 8) {
- if (mtd->oobsize < 128) {
- dev_err(nfc->dev, "Requested layout needs at least 128 OOB bytes\n");
- return -ENOTSUPP;
- } else {
- chip->bbt_options |= NAND_BBT_NO_OOB_BBM;
- }
- }
- mtd_set_ooblayout(mtd, &marvell_nand_ooblayout_ops);
- ecc->steps = l->nchunks;
- ecc->size = l->data_bytes;
- if (ecc->strength == 1) {
- chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
- ecc->read_page_raw = marvell_nfc_hw_ecc_hmg_read_page_raw;
- ecc->read_page = marvell_nfc_hw_ecc_hmg_read_page;
- ecc->read_oob_raw = marvell_nfc_hw_ecc_hmg_read_oob_raw;
- ecc->read_oob = ecc->read_oob_raw;
- ecc->write_page_raw = marvell_nfc_hw_ecc_hmg_write_page_raw;
- ecc->write_page = marvell_nfc_hw_ecc_hmg_write_page;
- ecc->write_oob_raw = marvell_nfc_hw_ecc_hmg_write_oob_raw;
- ecc->write_oob = ecc->write_oob_raw;
- } else {
- chip->ecc.algo = NAND_ECC_ALGO_BCH;
- ecc->strength = 16;
- ecc->read_page_raw = marvell_nfc_hw_ecc_bch_read_page_raw;
- ecc->read_page = marvell_nfc_hw_ecc_bch_read_page;
- ecc->read_oob_raw = marvell_nfc_hw_ecc_bch_read_oob_raw;
- ecc->read_oob = marvell_nfc_hw_ecc_bch_read_oob;
- ecc->write_page_raw = marvell_nfc_hw_ecc_bch_write_page_raw;
- ecc->write_page = marvell_nfc_hw_ecc_bch_write_page;
- ecc->write_oob_raw = marvell_nfc_hw_ecc_bch_write_oob_raw;
- ecc->write_oob = marvell_nfc_hw_ecc_bch_write_oob;
- }
- return 0;
- }
- static int marvell_nand_ecc_init(struct mtd_info *mtd,
- struct nand_ecc_ctrl *ecc)
- {
- struct nand_chip *chip = mtd_to_nand(mtd);
- const struct nand_ecc_props *requirements =
- nanddev_get_ecc_requirements(&chip->base);
- struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
- int ret;
- if (ecc->engine_type != NAND_ECC_ENGINE_TYPE_NONE &&
- (!ecc->size || !ecc->strength)) {
- if (requirements->step_size && requirements->strength) {
- ecc->size = requirements->step_size;
- ecc->strength = requirements->strength;
- } else {
- dev_info(nfc->dev,
- "No minimum ECC strength, using 1b/512B\n");
- ecc->size = 512;
- ecc->strength = 1;
- }
- }
- switch (ecc->engine_type) {
- case NAND_ECC_ENGINE_TYPE_ON_HOST:
- ret = marvell_nand_hw_ecc_controller_init(mtd, ecc);
- if (ret)
- return ret;
- break;
- case NAND_ECC_ENGINE_TYPE_NONE:
- case NAND_ECC_ENGINE_TYPE_SOFT:
- case NAND_ECC_ENGINE_TYPE_ON_DIE:
- if (!nfc->caps->is_nfcv2 && mtd->writesize != SZ_512 &&
- mtd->writesize != SZ_2K) {
- dev_err(nfc->dev, "NFCv1 cannot write %d bytes pages\n",
- mtd->writesize);
- return -EINVAL;
- }
- break;
- default:
- return -EINVAL;
- }
- return 0;
- }
- static u8 bbt_pattern[] = {'M', 'V', 'B', 'b', 't', '0' };
- static u8 bbt_mirror_pattern[] = {'1', 't', 'b', 'B', 'V', 'M' };
- static struct nand_bbt_descr bbt_main_descr = {
- .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
- NAND_BBT_2BIT | NAND_BBT_VERSION,
- .offs = 8,
- .len = 6,
- .veroffs = 14,
- .maxblocks = 8, /* Last 8 blocks in each chip */
- .pattern = bbt_pattern
- };
- static struct nand_bbt_descr bbt_mirror_descr = {
- .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
- NAND_BBT_2BIT | NAND_BBT_VERSION,
- .offs = 8,
- .len = 6,
- .veroffs = 14,
- .maxblocks = 8, /* Last 8 blocks in each chip */
- .pattern = bbt_mirror_pattern
- };
- static int marvell_nfc_setup_interface(struct nand_chip *chip, int chipnr,
- const struct nand_interface_config *conf)
- {
- struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
- struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
- unsigned int period_ns = 1000000000 / clk_get_rate(nfc->core_clk) * 2;
- const struct nand_sdr_timings *sdr;
- struct marvell_nfc_timings nfc_tmg;
- int read_delay;
- sdr = nand_get_sdr_timings(conf);
- if (IS_ERR(sdr))
- return PTR_ERR(sdr);
- /*
- * SDR timings are given in pico-seconds while NFC timings must be
- * expressed in NAND controller clock cycles, which is half of the
- * frequency of the accessible ECC clock retrieved by clk_get_rate().
- * This is not written anywhere in the datasheet but was observed
- * with an oscilloscope.
- *
- * NFC datasheet gives equations from which thoses calculations
- * are derived, they tend to be slightly more restrictives than the
- * given core timings and may improve the overall speed.
- */
- nfc_tmg.tRP = TO_CYCLES(DIV_ROUND_UP(sdr->tRC_min, 2), period_ns) - 1;
- nfc_tmg.tRH = nfc_tmg.tRP;
- nfc_tmg.tWP = TO_CYCLES(DIV_ROUND_UP(sdr->tWC_min, 2), period_ns) - 1;
- nfc_tmg.tWH = nfc_tmg.tWP;
- nfc_tmg.tCS = TO_CYCLES(sdr->tCS_min, period_ns);
- nfc_tmg.tCH = TO_CYCLES(sdr->tCH_min, period_ns) - 1;
- nfc_tmg.tADL = TO_CYCLES(sdr->tADL_min, period_ns);
- /*
- * Read delay is the time of propagation from SoC pins to NFC internal
- * logic. With non-EDO timings, this is MIN_RD_DEL_CNT clock cycles. In
- * EDO mode, an additional delay of tRH must be taken into account so
- * the data is sampled on the falling edge instead of the rising edge.
- */
- read_delay = sdr->tRC_min >= 30000 ?
- MIN_RD_DEL_CNT : MIN_RD_DEL_CNT + nfc_tmg.tRH;
- nfc_tmg.tAR = TO_CYCLES(sdr->tAR_min, period_ns);
- /*
- * tWHR and tRHW are supposed to be read to write delays (and vice
- * versa) but in some cases, ie. when doing a change column, they must
- * be greater than that to be sure tCCS delay is respected.
- */
- nfc_tmg.tWHR = TO_CYCLES(max_t(int, sdr->tWHR_min, sdr->tCCS_min),
- period_ns) - 2;
- nfc_tmg.tRHW = TO_CYCLES(max_t(int, sdr->tRHW_min, sdr->tCCS_min),
- period_ns);
- /*
- * NFCv2: Use WAIT_MODE (wait for RB line), do not rely only on delays.
- * NFCv1: No WAIT_MODE, tR must be maximal.
- */
- if (nfc->caps->is_nfcv2) {
- nfc_tmg.tR = TO_CYCLES(sdr->tWB_max, period_ns);
- } else {
- nfc_tmg.tR = TO_CYCLES64(sdr->tWB_max + sdr->tR_max,
- period_ns);
- if (nfc_tmg.tR + 3 > nfc_tmg.tCH)
- nfc_tmg.tR = nfc_tmg.tCH - 3;
- else
- nfc_tmg.tR = 0;
- }
- if (chipnr < 0)
- return 0;
- marvell_nand->ndtr0 =
- NDTR0_TRP(nfc_tmg.tRP) |
- NDTR0_TRH(nfc_tmg.tRH) |
- NDTR0_ETRP(nfc_tmg.tRP) |
- NDTR0_TWP(nfc_tmg.tWP) |
- NDTR0_TWH(nfc_tmg.tWH) |
- NDTR0_TCS(nfc_tmg.tCS) |
- NDTR0_TCH(nfc_tmg.tCH);
- marvell_nand->ndtr1 =
- NDTR1_TAR(nfc_tmg.tAR) |
- NDTR1_TWHR(nfc_tmg.tWHR) |
- NDTR1_TR(nfc_tmg.tR);
- if (nfc->caps->is_nfcv2) {
- marvell_nand->ndtr0 |=
- NDTR0_RD_CNT_DEL(read_delay) |
- NDTR0_SELCNTR |
- NDTR0_TADL(nfc_tmg.tADL);
- marvell_nand->ndtr1 |=
- NDTR1_TRHW(nfc_tmg.tRHW) |
- NDTR1_WAIT_MODE;
- }
- /*
- * Reset nfc->selected_chip so the next command will cause the timing
- * registers to be updated in marvell_nfc_select_target().
- */
- nfc->selected_chip = NULL;
- return 0;
- }
- static int marvell_nand_attach_chip(struct nand_chip *chip)
- {
- struct mtd_info *mtd = nand_to_mtd(chip);
- struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
- struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
- struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(nfc->dev);
- int ret;
- if (pdata && pdata->flash_bbt)
- chip->bbt_options |= NAND_BBT_USE_FLASH;
- if (chip->bbt_options & NAND_BBT_USE_FLASH) {
- /*
- * We'll use a bad block table stored in-flash and don't
- * allow writing the bad block marker to the flash.
- */
- chip->bbt_options |= NAND_BBT_NO_OOB_BBM;
- chip->bbt_td = &bbt_main_descr;
- chip->bbt_md = &bbt_mirror_descr;
- }
- /* Save the chip-specific fields of NDCR */
- marvell_nand->ndcr = NDCR_PAGE_SZ(mtd->writesize);
- if (chip->options & NAND_BUSWIDTH_16)
- marvell_nand->ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C;
- /*
- * On small page NANDs, only one cycle is needed to pass the
- * column address.
- */
- if (mtd->writesize <= 512) {
- marvell_nand->addr_cyc = 1;
- } else {
- marvell_nand->addr_cyc = 2;
- marvell_nand->ndcr |= NDCR_RA_START;
- }
- /*
- * Now add the number of cycles needed to pass the row
- * address.
- *
- * Addressing a chip using CS 2 or 3 should also need the third row
- * cycle but due to inconsistance in the documentation and lack of
- * hardware to test this situation, this case is not supported.
- */
- if (chip->options & NAND_ROW_ADDR_3)
- marvell_nand->addr_cyc += 3;
- else
- marvell_nand->addr_cyc += 2;
- if (pdata) {
- chip->ecc.size = pdata->ecc_step_size;
- chip->ecc.strength = pdata->ecc_strength;
- }
- ret = marvell_nand_ecc_init(mtd, &chip->ecc);
- if (ret) {
- dev_err(nfc->dev, "ECC init failed: %d\n", ret);
- return ret;
- }
- if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) {
- /*
- * Subpage write not available with hardware ECC, prohibit also
- * subpage read as in userspace subpage access would still be
- * allowed and subpage write, if used, would lead to numerous
- * uncorrectable ECC errors.
- */
- chip->options |= NAND_NO_SUBPAGE_WRITE;
- }
- if (pdata || nfc->caps->legacy_of_bindings) {
- /*
- * We keep the MTD name unchanged to avoid breaking platforms
- * where the MTD cmdline parser is used and the bootloader
- * has not been updated to use the new naming scheme.
- */
- mtd->name = "pxa3xx_nand-0";
- } else if (!mtd->name) {
- /*
- * If the new bindings are used and the bootloader has not been
- * updated to pass a new mtdparts parameter on the cmdline, you
- * should define the following property in your NAND node, ie:
- *
- * label = "main-storage";
- *
- * This way, mtd->name will be set by the core when
- * nand_set_flash_node() is called.
- */
- mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL,
- "%s:nand.%d", dev_name(nfc->dev),
- marvell_nand->sels[0].cs);
- if (!mtd->name) {
- dev_err(nfc->dev, "Failed to allocate mtd->name\n");
- return -ENOMEM;
- }
- }
- return 0;
- }
- static const struct nand_controller_ops marvell_nand_controller_ops = {
- .attach_chip = marvell_nand_attach_chip,
- .exec_op = marvell_nfc_exec_op,
- .setup_interface = marvell_nfc_setup_interface,
- };
- static int marvell_nand_chip_init(struct device *dev, struct marvell_nfc *nfc,
- struct device_node *np)
- {
- struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(dev);
- struct marvell_nand_chip *marvell_nand;
- struct mtd_info *mtd;
- struct nand_chip *chip;
- int nsels, ret, i;
- u32 cs, rb;
- /*
- * The legacy "num-cs" property indicates the number of CS on the only
- * chip connected to the controller (legacy bindings does not support
- * more than one chip). The CS and RB pins are always the #0.
- *
- * When not using legacy bindings, a couple of "reg" and "nand-rb"
- * properties must be filled. For each chip, expressed as a subnode,
- * "reg" points to the CS lines and "nand-rb" to the RB line.
- */
- if (pdata || nfc->caps->legacy_of_bindings) {
- nsels = 1;
- } else {
- nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32));
- if (nsels <= 0) {
- dev_err(dev, "missing/invalid reg property\n");
- return -EINVAL;
- }
- }
- /* Alloc the nand chip structure */
- marvell_nand = devm_kzalloc(dev,
- struct_size(marvell_nand, sels, nsels),
- GFP_KERNEL);
- if (!marvell_nand) {
- dev_err(dev, "could not allocate chip structure\n");
- return -ENOMEM;
- }
- marvell_nand->nsels = nsels;
- marvell_nand->selected_die = -1;
- for (i = 0; i < nsels; i++) {
- if (pdata || nfc->caps->legacy_of_bindings) {
- /*
- * Legacy bindings use the CS lines in natural
- * order (0, 1, ...)
- */
- cs = i;
- } else {
- /* Retrieve CS id */
- ret = of_property_read_u32_index(np, "reg", i, &cs);
- if (ret) {
- dev_err(dev, "could not retrieve reg property: %d\n",
- ret);
- return ret;
- }
- }
- if (cs >= nfc->caps->max_cs_nb) {
- dev_err(dev, "invalid reg value: %u (max CS = %d)\n",
- cs, nfc->caps->max_cs_nb);
- return -EINVAL;
- }
- if (test_and_set_bit(cs, &nfc->assigned_cs)) {
- dev_err(dev, "CS %d already assigned\n", cs);
- return -EINVAL;
- }
- /*
- * The cs variable represents the chip select id, which must be
- * converted in bit fields for NDCB0 and NDCB2 to select the
- * right chip. Unfortunately, due to a lack of information on
- * the subject and incoherent documentation, the user should not
- * use CS1 and CS3 at all as asserting them is not supported in
- * a reliable way (due to multiplexing inside ADDR5 field).
- */
- marvell_nand->sels[i].cs = cs;
- switch (cs) {
- case 0:
- case 2:
- marvell_nand->sels[i].ndcb0_csel = 0;
- break;
- case 1:
- case 3:
- marvell_nand->sels[i].ndcb0_csel = NDCB0_CSEL;
- break;
- default:
- return -EINVAL;
- }
- /* Retrieve RB id */
- if (pdata || nfc->caps->legacy_of_bindings) {
- /* Legacy bindings always use RB #0 */
- rb = 0;
- } else {
- ret = of_property_read_u32_index(np, "nand-rb", i,
- &rb);
- if (ret) {
- dev_err(dev,
- "could not retrieve RB property: %d\n",
- ret);
- return ret;
- }
- }
- if (rb >= nfc->caps->max_rb_nb) {
- dev_err(dev, "invalid reg value: %u (max RB = %d)\n",
- rb, nfc->caps->max_rb_nb);
- return -EINVAL;
- }
- marvell_nand->sels[i].rb = rb;
- }
- chip = &marvell_nand->chip;
- chip->controller = &nfc->controller;
- nand_set_flash_node(chip, np);
- if (of_property_read_bool(np, "marvell,nand-keep-config"))
- chip->options |= NAND_KEEP_TIMINGS;
- mtd = nand_to_mtd(chip);
- mtd->dev.parent = dev;
- /*
- * Save a reference value for timing registers before
- * ->setup_interface() is called.
- */
- marvell_nand->ndtr0 = readl_relaxed(nfc->regs + NDTR0);
- marvell_nand->ndtr1 = readl_relaxed(nfc->regs + NDTR1);
- chip->options |= NAND_BUSWIDTH_AUTO;
- ret = nand_scan(chip, marvell_nand->nsels);
- if (ret) {
- dev_err(dev, "could not scan the nand chip\n");
- return ret;
- }
- if (pdata)
- /* Legacy bindings support only one chip */
- ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts);
- else
- ret = mtd_device_register(mtd, NULL, 0);
- if (ret) {
- dev_err(dev, "failed to register mtd device: %d\n", ret);
- nand_cleanup(chip);
- return ret;
- }
- list_add_tail(&marvell_nand->node, &nfc->chips);
- return 0;
- }
- static void marvell_nand_chips_cleanup(struct marvell_nfc *nfc)
- {
- struct marvell_nand_chip *entry, *temp;
- struct nand_chip *chip;
- int ret;
- list_for_each_entry_safe(entry, temp, &nfc->chips, node) {
- chip = &entry->chip;
- ret = mtd_device_unregister(nand_to_mtd(chip));
- WARN_ON(ret);
- nand_cleanup(chip);
- list_del(&entry->node);
- }
- }
- static int marvell_nand_chips_init(struct device *dev, struct marvell_nfc *nfc)
- {
- struct device_node *np = dev->of_node;
- struct device_node *nand_np;
- int max_cs = nfc->caps->max_cs_nb;
- int nchips;
- int ret;
- if (!np)
- nchips = 1;
- else
- nchips = of_get_child_count(np);
- if (nchips > max_cs) {
- dev_err(dev, "too many NAND chips: %d (max = %d CS)\n", nchips,
- max_cs);
- return -EINVAL;
- }
- /*
- * Legacy bindings do not use child nodes to exhibit NAND chip
- * properties and layout. Instead, NAND properties are mixed with the
- * controller ones, and partitions are defined as direct subnodes of the
- * NAND controller node.
- */
- if (nfc->caps->legacy_of_bindings) {
- ret = marvell_nand_chip_init(dev, nfc, np);
- return ret;
- }
- for_each_child_of_node(np, nand_np) {
- ret = marvell_nand_chip_init(dev, nfc, nand_np);
- if (ret) {
- of_node_put(nand_np);
- goto cleanup_chips;
- }
- }
- return 0;
- cleanup_chips:
- marvell_nand_chips_cleanup(nfc);
- return ret;
- }
- static int marvell_nfc_init_dma(struct marvell_nfc *nfc)
- {
- struct platform_device *pdev = container_of(nfc->dev,
- struct platform_device,
- dev);
- struct dma_slave_config config = {};
- struct resource *r;
- int ret;
- if (!IS_ENABLED(CONFIG_PXA_DMA)) {
- dev_warn(nfc->dev,
- "DMA not enabled in configuration\n");
- return -ENOTSUPP;
- }
- ret = dma_set_mask_and_coherent(nfc->dev, DMA_BIT_MASK(32));
- if (ret)
- return ret;
- nfc->dma_chan = dma_request_chan(nfc->dev, "data");
- if (IS_ERR(nfc->dma_chan)) {
- ret = PTR_ERR(nfc->dma_chan);
- nfc->dma_chan = NULL;
- return dev_err_probe(nfc->dev, ret, "DMA channel request failed\n");
- }
- r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
- if (!r) {
- ret = -ENXIO;
- goto release_channel;
- }
- config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
- config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
- config.src_addr = r->start + NDDB;
- config.dst_addr = r->start + NDDB;
- config.src_maxburst = 32;
- config.dst_maxburst = 32;
- ret = dmaengine_slave_config(nfc->dma_chan, &config);
- if (ret < 0) {
- dev_err(nfc->dev, "Failed to configure DMA channel\n");
- goto release_channel;
- }
- /*
- * DMA must act on length multiple of 32 and this length may be
- * bigger than the destination buffer. Use this buffer instead
- * for DMA transfers and then copy the desired amount of data to
- * the provided buffer.
- */
- nfc->dma_buf = kmalloc(MAX_CHUNK_SIZE, GFP_KERNEL | GFP_DMA);
- if (!nfc->dma_buf) {
- ret = -ENOMEM;
- goto release_channel;
- }
- nfc->use_dma = true;
- return 0;
- release_channel:
- dma_release_channel(nfc->dma_chan);
- nfc->dma_chan = NULL;
- return ret;
- }
- static void marvell_nfc_reset(struct marvell_nfc *nfc)
- {
- /*
- * ECC operations and interruptions are only enabled when specifically
- * needed. ECC shall not be activated in the early stages (fails probe).
- * Arbiter flag, even if marked as "reserved", must be set (empirical).
- * SPARE_EN bit must always be set or ECC bytes will not be at the same
- * offset in the read page and this will fail the protection.
- */
- writel_relaxed(NDCR_ALL_INT | NDCR_ND_ARB_EN | NDCR_SPARE_EN |
- NDCR_RD_ID_CNT(NFCV1_READID_LEN), nfc->regs + NDCR);
- writel_relaxed(0xFFFFFFFF, nfc->regs + NDSR);
- writel_relaxed(0, nfc->regs + NDECCCTRL);
- }
- static int marvell_nfc_init(struct marvell_nfc *nfc)
- {
- struct device_node *np = nfc->dev->of_node;
- /*
- * Some SoCs like A7k/A8k need to enable manually the NAND
- * controller, gated clocks and reset bits to avoid being bootloader
- * dependent. This is done through the use of the System Functions
- * registers.
- */
- if (nfc->caps->need_system_controller) {
- struct regmap *sysctrl_base =
- syscon_regmap_lookup_by_phandle(np,
- "marvell,system-controller");
- if (IS_ERR(sysctrl_base))
- return PTR_ERR(sysctrl_base);
- regmap_write(sysctrl_base, GENCONF_SOC_DEVICE_MUX,
- GENCONF_SOC_DEVICE_MUX_NFC_EN |
- GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST |
- GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST |
- GENCONF_SOC_DEVICE_MUX_NFC_INT_EN);
- regmap_update_bits(sysctrl_base, GENCONF_CLK_GATING_CTRL,
- GENCONF_CLK_GATING_CTRL_ND_GATE,
- GENCONF_CLK_GATING_CTRL_ND_GATE);
- }
- /* Configure the DMA if appropriate */
- if (!nfc->caps->is_nfcv2)
- marvell_nfc_init_dma(nfc);
- marvell_nfc_reset(nfc);
- return 0;
- }
- static int marvell_nfc_probe(struct platform_device *pdev)
- {
- struct device *dev = &pdev->dev;
- struct marvell_nfc *nfc;
- int ret;
- int irq;
- nfc = devm_kzalloc(&pdev->dev, sizeof(struct marvell_nfc),
- GFP_KERNEL);
- if (!nfc)
- return -ENOMEM;
- nfc->dev = dev;
- nand_controller_init(&nfc->controller);
- nfc->controller.ops = &marvell_nand_controller_ops;
- INIT_LIST_HEAD(&nfc->chips);
- nfc->regs = devm_platform_ioremap_resource(pdev, 0);
- if (IS_ERR(nfc->regs))
- return PTR_ERR(nfc->regs);
- irq = platform_get_irq(pdev, 0);
- if (irq < 0)
- return irq;
- nfc->core_clk = devm_clk_get(&pdev->dev, "core");
- /* Managed the legacy case (when the first clock was not named) */
- if (nfc->core_clk == ERR_PTR(-ENOENT))
- nfc->core_clk = devm_clk_get(&pdev->dev, NULL);
- if (IS_ERR(nfc->core_clk))
- return PTR_ERR(nfc->core_clk);
- ret = clk_prepare_enable(nfc->core_clk);
- if (ret)
- return ret;
- nfc->reg_clk = devm_clk_get(&pdev->dev, "reg");
- if (IS_ERR(nfc->reg_clk)) {
- if (PTR_ERR(nfc->reg_clk) != -ENOENT) {
- ret = PTR_ERR(nfc->reg_clk);
- goto unprepare_core_clk;
- }
- nfc->reg_clk = NULL;
- }
- ret = clk_prepare_enable(nfc->reg_clk);
- if (ret)
- goto unprepare_core_clk;
- marvell_nfc_disable_int(nfc, NDCR_ALL_INT);
- marvell_nfc_clear_int(nfc, NDCR_ALL_INT);
- ret = devm_request_irq(dev, irq, marvell_nfc_isr,
- 0, "marvell-nfc", nfc);
- if (ret)
- goto unprepare_reg_clk;
- /* Get NAND controller capabilities */
- if (pdev->id_entry)
- nfc->caps = (void *)pdev->id_entry->driver_data;
- else
- nfc->caps = of_device_get_match_data(&pdev->dev);
- if (!nfc->caps) {
- dev_err(dev, "Could not retrieve NFC caps\n");
- ret = -EINVAL;
- goto unprepare_reg_clk;
- }
- /* Init the controller and then probe the chips */
- ret = marvell_nfc_init(nfc);
- if (ret)
- goto unprepare_reg_clk;
- platform_set_drvdata(pdev, nfc);
- ret = marvell_nand_chips_init(dev, nfc);
- if (ret)
- goto release_dma;
- return 0;
- release_dma:
- if (nfc->use_dma)
- dma_release_channel(nfc->dma_chan);
- unprepare_reg_clk:
- clk_disable_unprepare(nfc->reg_clk);
- unprepare_core_clk:
- clk_disable_unprepare(nfc->core_clk);
- return ret;
- }
- static int marvell_nfc_remove(struct platform_device *pdev)
- {
- struct marvell_nfc *nfc = platform_get_drvdata(pdev);
- marvell_nand_chips_cleanup(nfc);
- if (nfc->use_dma) {
- dmaengine_terminate_all(nfc->dma_chan);
- dma_release_channel(nfc->dma_chan);
- }
- clk_disable_unprepare(nfc->reg_clk);
- clk_disable_unprepare(nfc->core_clk);
- return 0;
- }
- static int __maybe_unused marvell_nfc_suspend(struct device *dev)
- {
- struct marvell_nfc *nfc = dev_get_drvdata(dev);
- struct marvell_nand_chip *chip;
- list_for_each_entry(chip, &nfc->chips, node)
- marvell_nfc_wait_ndrun(&chip->chip);
- clk_disable_unprepare(nfc->reg_clk);
- clk_disable_unprepare(nfc->core_clk);
- return 0;
- }
- static int __maybe_unused marvell_nfc_resume(struct device *dev)
- {
- struct marvell_nfc *nfc = dev_get_drvdata(dev);
- int ret;
- ret = clk_prepare_enable(nfc->core_clk);
- if (ret < 0)
- return ret;
- ret = clk_prepare_enable(nfc->reg_clk);
- if (ret < 0) {
- clk_disable_unprepare(nfc->core_clk);
- return ret;
- }
- /*
- * Reset nfc->selected_chip so the next command will cause the timing
- * registers to be restored in marvell_nfc_select_target().
- */
- nfc->selected_chip = NULL;
- /* Reset registers that have lost their contents */
- marvell_nfc_reset(nfc);
- return 0;
- }
- static const struct dev_pm_ops marvell_nfc_pm_ops = {
- SET_SYSTEM_SLEEP_PM_OPS(marvell_nfc_suspend, marvell_nfc_resume)
- };
- static const struct marvell_nfc_caps marvell_armada_8k_nfc_caps = {
- .max_cs_nb = 4,
- .max_rb_nb = 2,
- .need_system_controller = true,
- .is_nfcv2 = true,
- };
- static const struct marvell_nfc_caps marvell_armada370_nfc_caps = {
- .max_cs_nb = 4,
- .max_rb_nb = 2,
- .is_nfcv2 = true,
- };
- static const struct marvell_nfc_caps marvell_pxa3xx_nfc_caps = {
- .max_cs_nb = 2,
- .max_rb_nb = 1,
- .use_dma = true,
- };
- static const struct marvell_nfc_caps marvell_armada_8k_nfc_legacy_caps = {
- .max_cs_nb = 4,
- .max_rb_nb = 2,
- .need_system_controller = true,
- .legacy_of_bindings = true,
- .is_nfcv2 = true,
- };
- static const struct marvell_nfc_caps marvell_armada370_nfc_legacy_caps = {
- .max_cs_nb = 4,
- .max_rb_nb = 2,
- .legacy_of_bindings = true,
- .is_nfcv2 = true,
- };
- static const struct marvell_nfc_caps marvell_pxa3xx_nfc_legacy_caps = {
- .max_cs_nb = 2,
- .max_rb_nb = 1,
- .legacy_of_bindings = true,
- .use_dma = true,
- };
- static const struct platform_device_id marvell_nfc_platform_ids[] = {
- {
- .name = "pxa3xx-nand",
- .driver_data = (kernel_ulong_t)&marvell_pxa3xx_nfc_legacy_caps,
- },
- { /* sentinel */ },
- };
- MODULE_DEVICE_TABLE(platform, marvell_nfc_platform_ids);
- static const struct of_device_id marvell_nfc_of_ids[] = {
- {
- .compatible = "marvell,armada-8k-nand-controller",
- .data = &marvell_armada_8k_nfc_caps,
- },
- {
- .compatible = "marvell,armada370-nand-controller",
- .data = &marvell_armada370_nfc_caps,
- },
- {
- .compatible = "marvell,pxa3xx-nand-controller",
- .data = &marvell_pxa3xx_nfc_caps,
- },
- /* Support for old/deprecated bindings: */
- {
- .compatible = "marvell,armada-8k-nand",
- .data = &marvell_armada_8k_nfc_legacy_caps,
- },
- {
- .compatible = "marvell,armada370-nand",
- .data = &marvell_armada370_nfc_legacy_caps,
- },
- {
- .compatible = "marvell,pxa3xx-nand",
- .data = &marvell_pxa3xx_nfc_legacy_caps,
- },
- { /* sentinel */ },
- };
- MODULE_DEVICE_TABLE(of, marvell_nfc_of_ids);
- static struct platform_driver marvell_nfc_driver = {
- .driver = {
- .name = "marvell-nfc",
- .of_match_table = marvell_nfc_of_ids,
- .pm = &marvell_nfc_pm_ops,
- },
- .id_table = marvell_nfc_platform_ids,
- .probe = marvell_nfc_probe,
- .remove = marvell_nfc_remove,
- };
- module_platform_driver(marvell_nfc_driver);
- MODULE_LICENSE("GPL");
- MODULE_DESCRIPTION("Marvell NAND controller driver");
|