brcmnand.c 89 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright © 2010-2015 Broadcom Corporation
  4. */
  5. #include <linux/clk.h>
  6. #include <linux/module.h>
  7. #include <linux/init.h>
  8. #include <linux/delay.h>
  9. #include <linux/device.h>
  10. #include <linux/platform_device.h>
  11. #include <linux/platform_data/brcmnand.h>
  12. #include <linux/err.h>
  13. #include <linux/completion.h>
  14. #include <linux/interrupt.h>
  15. #include <linux/spinlock.h>
  16. #include <linux/dma-mapping.h>
  17. #include <linux/ioport.h>
  18. #include <linux/bug.h>
  19. #include <linux/kernel.h>
  20. #include <linux/bitops.h>
  21. #include <linux/mm.h>
  22. #include <linux/mtd/mtd.h>
  23. #include <linux/mtd/rawnand.h>
  24. #include <linux/mtd/partitions.h>
  25. #include <linux/of.h>
  26. #include <linux/of_platform.h>
  27. #include <linux/slab.h>
  28. #include <linux/static_key.h>
  29. #include <linux/list.h>
  30. #include <linux/log2.h>
  31. #include "brcmnand.h"
  32. /*
  33. * This flag controls if WP stays on between erase/write commands to mitigate
  34. * flash corruption due to power glitches. Values:
  35. * 0: NAND_WP is not used or not available
  36. * 1: NAND_WP is set by default, cleared for erase/write operations
  37. * 2: NAND_WP is always cleared
  38. */
  39. static int wp_on = 1;
  40. module_param(wp_on, int, 0444);
  41. /***********************************************************************
  42. * Definitions
  43. ***********************************************************************/
  44. #define DRV_NAME "brcmnand"
  45. #define CMD_NULL 0x00
  46. #define CMD_PAGE_READ 0x01
  47. #define CMD_SPARE_AREA_READ 0x02
  48. #define CMD_STATUS_READ 0x03
  49. #define CMD_PROGRAM_PAGE 0x04
  50. #define CMD_PROGRAM_SPARE_AREA 0x05
  51. #define CMD_COPY_BACK 0x06
  52. #define CMD_DEVICE_ID_READ 0x07
  53. #define CMD_BLOCK_ERASE 0x08
  54. #define CMD_FLASH_RESET 0x09
  55. #define CMD_BLOCKS_LOCK 0x0a
  56. #define CMD_BLOCKS_LOCK_DOWN 0x0b
  57. #define CMD_BLOCKS_UNLOCK 0x0c
  58. #define CMD_READ_BLOCKS_LOCK_STATUS 0x0d
  59. #define CMD_PARAMETER_READ 0x0e
  60. #define CMD_PARAMETER_CHANGE_COL 0x0f
  61. #define CMD_LOW_LEVEL_OP 0x10
  62. struct brcm_nand_dma_desc {
  63. u32 next_desc;
  64. u32 next_desc_ext;
  65. u32 cmd_irq;
  66. u32 dram_addr;
  67. u32 dram_addr_ext;
  68. u32 tfr_len;
  69. u32 total_len;
  70. u32 flash_addr;
  71. u32 flash_addr_ext;
  72. u32 cs;
  73. u32 pad2[5];
  74. u32 status_valid;
  75. } __packed;
  76. /* Bitfields for brcm_nand_dma_desc::status_valid */
  77. #define FLASH_DMA_ECC_ERROR (1 << 8)
  78. #define FLASH_DMA_CORR_ERROR (1 << 9)
  79. /* Bitfields for DMA_MODE */
  80. #define FLASH_DMA_MODE_STOP_ON_ERROR BIT(1) /* stop in Uncorr ECC error */
  81. #define FLASH_DMA_MODE_MODE BIT(0) /* link list */
  82. #define FLASH_DMA_MODE_MASK (FLASH_DMA_MODE_STOP_ON_ERROR | \
  83. FLASH_DMA_MODE_MODE)
  84. /* 512B flash cache in the NAND controller HW */
  85. #define FC_SHIFT 9U
  86. #define FC_BYTES 512U
  87. #define FC_WORDS (FC_BYTES >> 2)
  88. #define BRCMNAND_MIN_PAGESIZE 512
  89. #define BRCMNAND_MIN_BLOCKSIZE (8 * 1024)
  90. #define BRCMNAND_MIN_DEVSIZE (4ULL * 1024 * 1024)
  91. #define NAND_CTRL_RDY (INTFC_CTLR_READY | INTFC_FLASH_READY)
  92. #define NAND_POLL_STATUS_TIMEOUT_MS 100
  93. #define EDU_CMD_WRITE 0x00
  94. #define EDU_CMD_READ 0x01
  95. #define EDU_STATUS_ACTIVE BIT(0)
  96. #define EDU_ERR_STATUS_ERRACK BIT(0)
  97. #define EDU_DONE_MASK GENMASK(1, 0)
  98. #define EDU_CONFIG_MODE_NAND BIT(0)
  99. #define EDU_CONFIG_SWAP_BYTE BIT(1)
  100. #ifdef CONFIG_CPU_BIG_ENDIAN
  101. #define EDU_CONFIG_SWAP_CFG EDU_CONFIG_SWAP_BYTE
  102. #else
  103. #define EDU_CONFIG_SWAP_CFG 0
  104. #endif
  105. /* edu registers */
  106. enum edu_reg {
  107. EDU_CONFIG = 0,
  108. EDU_DRAM_ADDR,
  109. EDU_EXT_ADDR,
  110. EDU_LENGTH,
  111. EDU_CMD,
  112. EDU_STOP,
  113. EDU_STATUS,
  114. EDU_DONE,
  115. EDU_ERR_STATUS,
  116. };
  117. static const u16 edu_regs[] = {
  118. [EDU_CONFIG] = 0x00,
  119. [EDU_DRAM_ADDR] = 0x04,
  120. [EDU_EXT_ADDR] = 0x08,
  121. [EDU_LENGTH] = 0x0c,
  122. [EDU_CMD] = 0x10,
  123. [EDU_STOP] = 0x14,
  124. [EDU_STATUS] = 0x18,
  125. [EDU_DONE] = 0x1c,
  126. [EDU_ERR_STATUS] = 0x20,
  127. };
  128. /* flash_dma registers */
  129. enum flash_dma_reg {
  130. FLASH_DMA_REVISION = 0,
  131. FLASH_DMA_FIRST_DESC,
  132. FLASH_DMA_FIRST_DESC_EXT,
  133. FLASH_DMA_CTRL,
  134. FLASH_DMA_MODE,
  135. FLASH_DMA_STATUS,
  136. FLASH_DMA_INTERRUPT_DESC,
  137. FLASH_DMA_INTERRUPT_DESC_EXT,
  138. FLASH_DMA_ERROR_STATUS,
  139. FLASH_DMA_CURRENT_DESC,
  140. FLASH_DMA_CURRENT_DESC_EXT,
  141. };
  142. /* flash_dma registers v0*/
  143. static const u16 flash_dma_regs_v0[] = {
  144. [FLASH_DMA_REVISION] = 0x00,
  145. [FLASH_DMA_FIRST_DESC] = 0x04,
  146. [FLASH_DMA_CTRL] = 0x08,
  147. [FLASH_DMA_MODE] = 0x0c,
  148. [FLASH_DMA_STATUS] = 0x10,
  149. [FLASH_DMA_INTERRUPT_DESC] = 0x14,
  150. [FLASH_DMA_ERROR_STATUS] = 0x18,
  151. [FLASH_DMA_CURRENT_DESC] = 0x1c,
  152. };
  153. /* flash_dma registers v1*/
  154. static const u16 flash_dma_regs_v1[] = {
  155. [FLASH_DMA_REVISION] = 0x00,
  156. [FLASH_DMA_FIRST_DESC] = 0x04,
  157. [FLASH_DMA_FIRST_DESC_EXT] = 0x08,
  158. [FLASH_DMA_CTRL] = 0x0c,
  159. [FLASH_DMA_MODE] = 0x10,
  160. [FLASH_DMA_STATUS] = 0x14,
  161. [FLASH_DMA_INTERRUPT_DESC] = 0x18,
  162. [FLASH_DMA_INTERRUPT_DESC_EXT] = 0x1c,
  163. [FLASH_DMA_ERROR_STATUS] = 0x20,
  164. [FLASH_DMA_CURRENT_DESC] = 0x24,
  165. [FLASH_DMA_CURRENT_DESC_EXT] = 0x28,
  166. };
  167. /* flash_dma registers v4 */
  168. static const u16 flash_dma_regs_v4[] = {
  169. [FLASH_DMA_REVISION] = 0x00,
  170. [FLASH_DMA_FIRST_DESC] = 0x08,
  171. [FLASH_DMA_FIRST_DESC_EXT] = 0x0c,
  172. [FLASH_DMA_CTRL] = 0x10,
  173. [FLASH_DMA_MODE] = 0x14,
  174. [FLASH_DMA_STATUS] = 0x18,
  175. [FLASH_DMA_INTERRUPT_DESC] = 0x20,
  176. [FLASH_DMA_INTERRUPT_DESC_EXT] = 0x24,
  177. [FLASH_DMA_ERROR_STATUS] = 0x28,
  178. [FLASH_DMA_CURRENT_DESC] = 0x30,
  179. [FLASH_DMA_CURRENT_DESC_EXT] = 0x34,
  180. };
  181. /* Controller feature flags */
  182. enum {
  183. BRCMNAND_HAS_1K_SECTORS = BIT(0),
  184. BRCMNAND_HAS_PREFETCH = BIT(1),
  185. BRCMNAND_HAS_CACHE_MODE = BIT(2),
  186. BRCMNAND_HAS_WP = BIT(3),
  187. };
  188. struct brcmnand_host;
  189. static DEFINE_STATIC_KEY_FALSE(brcmnand_soc_has_ops_key);
  190. struct brcmnand_controller {
  191. struct device *dev;
  192. struct nand_controller controller;
  193. void __iomem *nand_base;
  194. void __iomem *nand_fc; /* flash cache */
  195. void __iomem *flash_dma_base;
  196. int irq;
  197. unsigned int dma_irq;
  198. int nand_version;
  199. /* Some SoCs provide custom interrupt status register(s) */
  200. struct brcmnand_soc *soc;
  201. /* Some SoCs have a gateable clock for the controller */
  202. struct clk *clk;
  203. int cmd_pending;
  204. bool dma_pending;
  205. bool edu_pending;
  206. struct completion done;
  207. struct completion dma_done;
  208. struct completion edu_done;
  209. /* List of NAND hosts (one for each chip-select) */
  210. struct list_head host_list;
  211. /* EDU info, per-transaction */
  212. const u16 *edu_offsets;
  213. void __iomem *edu_base;
  214. int edu_irq;
  215. int edu_count;
  216. u64 edu_dram_addr;
  217. u32 edu_ext_addr;
  218. u32 edu_cmd;
  219. u32 edu_config;
  220. int sas; /* spare area size, per flash cache */
  221. int sector_size_1k;
  222. u8 *oob;
  223. /* flash_dma reg */
  224. const u16 *flash_dma_offsets;
  225. struct brcm_nand_dma_desc *dma_desc;
  226. dma_addr_t dma_pa;
  227. int (*dma_trans)(struct brcmnand_host *host, u64 addr, u32 *buf,
  228. u8 *oob, u32 len, u8 dma_cmd);
  229. /* in-memory cache of the FLASH_CACHE, used only for some commands */
  230. u8 flash_cache[FC_BYTES];
  231. /* Controller revision details */
  232. const u16 *reg_offsets;
  233. unsigned int reg_spacing; /* between CS1, CS2, ... regs */
  234. const u8 *cs_offsets; /* within each chip-select */
  235. const u8 *cs0_offsets; /* within CS0, if different */
  236. unsigned int max_block_size;
  237. const unsigned int *block_sizes;
  238. unsigned int max_page_size;
  239. const unsigned int *page_sizes;
  240. unsigned int page_size_shift;
  241. unsigned int max_oob;
  242. u32 ecc_level_shift;
  243. u32 features;
  244. /* for low-power standby/resume only */
  245. u32 nand_cs_nand_select;
  246. u32 nand_cs_nand_xor;
  247. u32 corr_stat_threshold;
  248. u32 flash_dma_mode;
  249. u32 flash_edu_mode;
  250. bool pio_poll_mode;
  251. };
  252. struct brcmnand_cfg {
  253. u64 device_size;
  254. unsigned int block_size;
  255. unsigned int page_size;
  256. unsigned int spare_area_size;
  257. unsigned int device_width;
  258. unsigned int col_adr_bytes;
  259. unsigned int blk_adr_bytes;
  260. unsigned int ful_adr_bytes;
  261. unsigned int sector_size_1k;
  262. unsigned int ecc_level;
  263. /* use for low-power standby/resume only */
  264. u32 acc_control;
  265. u32 config;
  266. u32 config_ext;
  267. u32 timing_1;
  268. u32 timing_2;
  269. };
  270. struct brcmnand_host {
  271. struct list_head node;
  272. struct nand_chip chip;
  273. struct platform_device *pdev;
  274. int cs;
  275. unsigned int last_cmd;
  276. unsigned int last_byte;
  277. u64 last_addr;
  278. struct brcmnand_cfg hwcfg;
  279. struct brcmnand_controller *ctrl;
  280. };
  281. enum brcmnand_reg {
  282. BRCMNAND_CMD_START = 0,
  283. BRCMNAND_CMD_EXT_ADDRESS,
  284. BRCMNAND_CMD_ADDRESS,
  285. BRCMNAND_INTFC_STATUS,
  286. BRCMNAND_CS_SELECT,
  287. BRCMNAND_CS_XOR,
  288. BRCMNAND_LL_OP,
  289. BRCMNAND_CS0_BASE,
  290. BRCMNAND_CS1_BASE, /* CS1 regs, if non-contiguous */
  291. BRCMNAND_CORR_THRESHOLD,
  292. BRCMNAND_CORR_THRESHOLD_EXT,
  293. BRCMNAND_UNCORR_COUNT,
  294. BRCMNAND_CORR_COUNT,
  295. BRCMNAND_CORR_EXT_ADDR,
  296. BRCMNAND_CORR_ADDR,
  297. BRCMNAND_UNCORR_EXT_ADDR,
  298. BRCMNAND_UNCORR_ADDR,
  299. BRCMNAND_SEMAPHORE,
  300. BRCMNAND_ID,
  301. BRCMNAND_ID_EXT,
  302. BRCMNAND_LL_RDATA,
  303. BRCMNAND_OOB_READ_BASE,
  304. BRCMNAND_OOB_READ_10_BASE, /* offset 0x10, if non-contiguous */
  305. BRCMNAND_OOB_WRITE_BASE,
  306. BRCMNAND_OOB_WRITE_10_BASE, /* offset 0x10, if non-contiguous */
  307. BRCMNAND_FC_BASE,
  308. };
  309. /* BRCMNAND v2.1-v2.2 */
  310. static const u16 brcmnand_regs_v21[] = {
  311. [BRCMNAND_CMD_START] = 0x04,
  312. [BRCMNAND_CMD_EXT_ADDRESS] = 0x08,
  313. [BRCMNAND_CMD_ADDRESS] = 0x0c,
  314. [BRCMNAND_INTFC_STATUS] = 0x5c,
  315. [BRCMNAND_CS_SELECT] = 0x14,
  316. [BRCMNAND_CS_XOR] = 0x18,
  317. [BRCMNAND_LL_OP] = 0,
  318. [BRCMNAND_CS0_BASE] = 0x40,
  319. [BRCMNAND_CS1_BASE] = 0,
  320. [BRCMNAND_CORR_THRESHOLD] = 0,
  321. [BRCMNAND_CORR_THRESHOLD_EXT] = 0,
  322. [BRCMNAND_UNCORR_COUNT] = 0,
  323. [BRCMNAND_CORR_COUNT] = 0,
  324. [BRCMNAND_CORR_EXT_ADDR] = 0x60,
  325. [BRCMNAND_CORR_ADDR] = 0x64,
  326. [BRCMNAND_UNCORR_EXT_ADDR] = 0x68,
  327. [BRCMNAND_UNCORR_ADDR] = 0x6c,
  328. [BRCMNAND_SEMAPHORE] = 0x50,
  329. [BRCMNAND_ID] = 0x54,
  330. [BRCMNAND_ID_EXT] = 0,
  331. [BRCMNAND_LL_RDATA] = 0,
  332. [BRCMNAND_OOB_READ_BASE] = 0x20,
  333. [BRCMNAND_OOB_READ_10_BASE] = 0,
  334. [BRCMNAND_OOB_WRITE_BASE] = 0x30,
  335. [BRCMNAND_OOB_WRITE_10_BASE] = 0,
  336. [BRCMNAND_FC_BASE] = 0x200,
  337. };
  338. /* BRCMNAND v3.3-v4.0 */
  339. static const u16 brcmnand_regs_v33[] = {
  340. [BRCMNAND_CMD_START] = 0x04,
  341. [BRCMNAND_CMD_EXT_ADDRESS] = 0x08,
  342. [BRCMNAND_CMD_ADDRESS] = 0x0c,
  343. [BRCMNAND_INTFC_STATUS] = 0x6c,
  344. [BRCMNAND_CS_SELECT] = 0x14,
  345. [BRCMNAND_CS_XOR] = 0x18,
  346. [BRCMNAND_LL_OP] = 0x178,
  347. [BRCMNAND_CS0_BASE] = 0x40,
  348. [BRCMNAND_CS1_BASE] = 0xd0,
  349. [BRCMNAND_CORR_THRESHOLD] = 0x84,
  350. [BRCMNAND_CORR_THRESHOLD_EXT] = 0,
  351. [BRCMNAND_UNCORR_COUNT] = 0,
  352. [BRCMNAND_CORR_COUNT] = 0,
  353. [BRCMNAND_CORR_EXT_ADDR] = 0x70,
  354. [BRCMNAND_CORR_ADDR] = 0x74,
  355. [BRCMNAND_UNCORR_EXT_ADDR] = 0x78,
  356. [BRCMNAND_UNCORR_ADDR] = 0x7c,
  357. [BRCMNAND_SEMAPHORE] = 0x58,
  358. [BRCMNAND_ID] = 0x60,
  359. [BRCMNAND_ID_EXT] = 0x64,
  360. [BRCMNAND_LL_RDATA] = 0x17c,
  361. [BRCMNAND_OOB_READ_BASE] = 0x20,
  362. [BRCMNAND_OOB_READ_10_BASE] = 0x130,
  363. [BRCMNAND_OOB_WRITE_BASE] = 0x30,
  364. [BRCMNAND_OOB_WRITE_10_BASE] = 0,
  365. [BRCMNAND_FC_BASE] = 0x200,
  366. };
  367. /* BRCMNAND v5.0 */
  368. static const u16 brcmnand_regs_v50[] = {
  369. [BRCMNAND_CMD_START] = 0x04,
  370. [BRCMNAND_CMD_EXT_ADDRESS] = 0x08,
  371. [BRCMNAND_CMD_ADDRESS] = 0x0c,
  372. [BRCMNAND_INTFC_STATUS] = 0x6c,
  373. [BRCMNAND_CS_SELECT] = 0x14,
  374. [BRCMNAND_CS_XOR] = 0x18,
  375. [BRCMNAND_LL_OP] = 0x178,
  376. [BRCMNAND_CS0_BASE] = 0x40,
  377. [BRCMNAND_CS1_BASE] = 0xd0,
  378. [BRCMNAND_CORR_THRESHOLD] = 0x84,
  379. [BRCMNAND_CORR_THRESHOLD_EXT] = 0,
  380. [BRCMNAND_UNCORR_COUNT] = 0,
  381. [BRCMNAND_CORR_COUNT] = 0,
  382. [BRCMNAND_CORR_EXT_ADDR] = 0x70,
  383. [BRCMNAND_CORR_ADDR] = 0x74,
  384. [BRCMNAND_UNCORR_EXT_ADDR] = 0x78,
  385. [BRCMNAND_UNCORR_ADDR] = 0x7c,
  386. [BRCMNAND_SEMAPHORE] = 0x58,
  387. [BRCMNAND_ID] = 0x60,
  388. [BRCMNAND_ID_EXT] = 0x64,
  389. [BRCMNAND_LL_RDATA] = 0x17c,
  390. [BRCMNAND_OOB_READ_BASE] = 0x20,
  391. [BRCMNAND_OOB_READ_10_BASE] = 0x130,
  392. [BRCMNAND_OOB_WRITE_BASE] = 0x30,
  393. [BRCMNAND_OOB_WRITE_10_BASE] = 0x140,
  394. [BRCMNAND_FC_BASE] = 0x200,
  395. };
  396. /* BRCMNAND v6.0 - v7.1 */
  397. static const u16 brcmnand_regs_v60[] = {
  398. [BRCMNAND_CMD_START] = 0x04,
  399. [BRCMNAND_CMD_EXT_ADDRESS] = 0x08,
  400. [BRCMNAND_CMD_ADDRESS] = 0x0c,
  401. [BRCMNAND_INTFC_STATUS] = 0x14,
  402. [BRCMNAND_CS_SELECT] = 0x18,
  403. [BRCMNAND_CS_XOR] = 0x1c,
  404. [BRCMNAND_LL_OP] = 0x20,
  405. [BRCMNAND_CS0_BASE] = 0x50,
  406. [BRCMNAND_CS1_BASE] = 0,
  407. [BRCMNAND_CORR_THRESHOLD] = 0xc0,
  408. [BRCMNAND_CORR_THRESHOLD_EXT] = 0xc4,
  409. [BRCMNAND_UNCORR_COUNT] = 0xfc,
  410. [BRCMNAND_CORR_COUNT] = 0x100,
  411. [BRCMNAND_CORR_EXT_ADDR] = 0x10c,
  412. [BRCMNAND_CORR_ADDR] = 0x110,
  413. [BRCMNAND_UNCORR_EXT_ADDR] = 0x114,
  414. [BRCMNAND_UNCORR_ADDR] = 0x118,
  415. [BRCMNAND_SEMAPHORE] = 0x150,
  416. [BRCMNAND_ID] = 0x194,
  417. [BRCMNAND_ID_EXT] = 0x198,
  418. [BRCMNAND_LL_RDATA] = 0x19c,
  419. [BRCMNAND_OOB_READ_BASE] = 0x200,
  420. [BRCMNAND_OOB_READ_10_BASE] = 0,
  421. [BRCMNAND_OOB_WRITE_BASE] = 0x280,
  422. [BRCMNAND_OOB_WRITE_10_BASE] = 0,
  423. [BRCMNAND_FC_BASE] = 0x400,
  424. };
  425. /* BRCMNAND v7.1 */
  426. static const u16 brcmnand_regs_v71[] = {
  427. [BRCMNAND_CMD_START] = 0x04,
  428. [BRCMNAND_CMD_EXT_ADDRESS] = 0x08,
  429. [BRCMNAND_CMD_ADDRESS] = 0x0c,
  430. [BRCMNAND_INTFC_STATUS] = 0x14,
  431. [BRCMNAND_CS_SELECT] = 0x18,
  432. [BRCMNAND_CS_XOR] = 0x1c,
  433. [BRCMNAND_LL_OP] = 0x20,
  434. [BRCMNAND_CS0_BASE] = 0x50,
  435. [BRCMNAND_CS1_BASE] = 0,
  436. [BRCMNAND_CORR_THRESHOLD] = 0xdc,
  437. [BRCMNAND_CORR_THRESHOLD_EXT] = 0xe0,
  438. [BRCMNAND_UNCORR_COUNT] = 0xfc,
  439. [BRCMNAND_CORR_COUNT] = 0x100,
  440. [BRCMNAND_CORR_EXT_ADDR] = 0x10c,
  441. [BRCMNAND_CORR_ADDR] = 0x110,
  442. [BRCMNAND_UNCORR_EXT_ADDR] = 0x114,
  443. [BRCMNAND_UNCORR_ADDR] = 0x118,
  444. [BRCMNAND_SEMAPHORE] = 0x150,
  445. [BRCMNAND_ID] = 0x194,
  446. [BRCMNAND_ID_EXT] = 0x198,
  447. [BRCMNAND_LL_RDATA] = 0x19c,
  448. [BRCMNAND_OOB_READ_BASE] = 0x200,
  449. [BRCMNAND_OOB_READ_10_BASE] = 0,
  450. [BRCMNAND_OOB_WRITE_BASE] = 0x280,
  451. [BRCMNAND_OOB_WRITE_10_BASE] = 0,
  452. [BRCMNAND_FC_BASE] = 0x400,
  453. };
  454. /* BRCMNAND v7.2 */
  455. static const u16 brcmnand_regs_v72[] = {
  456. [BRCMNAND_CMD_START] = 0x04,
  457. [BRCMNAND_CMD_EXT_ADDRESS] = 0x08,
  458. [BRCMNAND_CMD_ADDRESS] = 0x0c,
  459. [BRCMNAND_INTFC_STATUS] = 0x14,
  460. [BRCMNAND_CS_SELECT] = 0x18,
  461. [BRCMNAND_CS_XOR] = 0x1c,
  462. [BRCMNAND_LL_OP] = 0x20,
  463. [BRCMNAND_CS0_BASE] = 0x50,
  464. [BRCMNAND_CS1_BASE] = 0,
  465. [BRCMNAND_CORR_THRESHOLD] = 0xdc,
  466. [BRCMNAND_CORR_THRESHOLD_EXT] = 0xe0,
  467. [BRCMNAND_UNCORR_COUNT] = 0xfc,
  468. [BRCMNAND_CORR_COUNT] = 0x100,
  469. [BRCMNAND_CORR_EXT_ADDR] = 0x10c,
  470. [BRCMNAND_CORR_ADDR] = 0x110,
  471. [BRCMNAND_UNCORR_EXT_ADDR] = 0x114,
  472. [BRCMNAND_UNCORR_ADDR] = 0x118,
  473. [BRCMNAND_SEMAPHORE] = 0x150,
  474. [BRCMNAND_ID] = 0x194,
  475. [BRCMNAND_ID_EXT] = 0x198,
  476. [BRCMNAND_LL_RDATA] = 0x19c,
  477. [BRCMNAND_OOB_READ_BASE] = 0x200,
  478. [BRCMNAND_OOB_READ_10_BASE] = 0,
  479. [BRCMNAND_OOB_WRITE_BASE] = 0x400,
  480. [BRCMNAND_OOB_WRITE_10_BASE] = 0,
  481. [BRCMNAND_FC_BASE] = 0x600,
  482. };
  483. enum brcmnand_cs_reg {
  484. BRCMNAND_CS_CFG_EXT = 0,
  485. BRCMNAND_CS_CFG,
  486. BRCMNAND_CS_ACC_CONTROL,
  487. BRCMNAND_CS_TIMING1,
  488. BRCMNAND_CS_TIMING2,
  489. };
  490. /* Per chip-select offsets for v7.1 */
  491. static const u8 brcmnand_cs_offsets_v71[] = {
  492. [BRCMNAND_CS_ACC_CONTROL] = 0x00,
  493. [BRCMNAND_CS_CFG_EXT] = 0x04,
  494. [BRCMNAND_CS_CFG] = 0x08,
  495. [BRCMNAND_CS_TIMING1] = 0x0c,
  496. [BRCMNAND_CS_TIMING2] = 0x10,
  497. };
  498. /* Per chip-select offsets for pre v7.1, except CS0 on <= v5.0 */
  499. static const u8 brcmnand_cs_offsets[] = {
  500. [BRCMNAND_CS_ACC_CONTROL] = 0x00,
  501. [BRCMNAND_CS_CFG_EXT] = 0x04,
  502. [BRCMNAND_CS_CFG] = 0x04,
  503. [BRCMNAND_CS_TIMING1] = 0x08,
  504. [BRCMNAND_CS_TIMING2] = 0x0c,
  505. };
  506. /* Per chip-select offset for <= v5.0 on CS0 only */
  507. static const u8 brcmnand_cs_offsets_cs0[] = {
  508. [BRCMNAND_CS_ACC_CONTROL] = 0x00,
  509. [BRCMNAND_CS_CFG_EXT] = 0x08,
  510. [BRCMNAND_CS_CFG] = 0x08,
  511. [BRCMNAND_CS_TIMING1] = 0x10,
  512. [BRCMNAND_CS_TIMING2] = 0x14,
  513. };
  514. /*
  515. * Bitfields for the CFG and CFG_EXT registers. Pre-v7.1 controllers only had
  516. * one config register, but once the bitfields overflowed, newer controllers
  517. * (v7.1 and newer) added a CFG_EXT register and shuffled a few fields around.
  518. */
  519. enum {
  520. CFG_BLK_ADR_BYTES_SHIFT = 8,
  521. CFG_COL_ADR_BYTES_SHIFT = 12,
  522. CFG_FUL_ADR_BYTES_SHIFT = 16,
  523. CFG_BUS_WIDTH_SHIFT = 23,
  524. CFG_BUS_WIDTH = BIT(CFG_BUS_WIDTH_SHIFT),
  525. CFG_DEVICE_SIZE_SHIFT = 24,
  526. /* Only for v2.1 */
  527. CFG_PAGE_SIZE_SHIFT_v2_1 = 30,
  528. /* Only for pre-v7.1 (with no CFG_EXT register) */
  529. CFG_PAGE_SIZE_SHIFT = 20,
  530. CFG_BLK_SIZE_SHIFT = 28,
  531. /* Only for v7.1+ (with CFG_EXT register) */
  532. CFG_EXT_PAGE_SIZE_SHIFT = 0,
  533. CFG_EXT_BLK_SIZE_SHIFT = 4,
  534. };
  535. /* BRCMNAND_INTFC_STATUS */
  536. enum {
  537. INTFC_FLASH_STATUS = GENMASK(7, 0),
  538. INTFC_ERASED = BIT(27),
  539. INTFC_OOB_VALID = BIT(28),
  540. INTFC_CACHE_VALID = BIT(29),
  541. INTFC_FLASH_READY = BIT(30),
  542. INTFC_CTLR_READY = BIT(31),
  543. };
  544. /***********************************************************************
  545. * NAND ACC CONTROL bitfield
  546. *
  547. * Some bits have remained constant throughout hardware revision, while
  548. * others have shifted around.
  549. ***********************************************************************/
  550. /* Constant for all versions (where supported) */
  551. enum {
  552. /* See BRCMNAND_HAS_CACHE_MODE */
  553. ACC_CONTROL_CACHE_MODE = BIT(22),
  554. /* See BRCMNAND_HAS_PREFETCH */
  555. ACC_CONTROL_PREFETCH = BIT(23),
  556. ACC_CONTROL_PAGE_HIT = BIT(24),
  557. ACC_CONTROL_WR_PREEMPT = BIT(25),
  558. ACC_CONTROL_PARTIAL_PAGE = BIT(26),
  559. ACC_CONTROL_RD_ERASED = BIT(27),
  560. ACC_CONTROL_FAST_PGM_RDIN = BIT(28),
  561. ACC_CONTROL_WR_ECC = BIT(30),
  562. ACC_CONTROL_RD_ECC = BIT(31),
  563. };
  564. #define ACC_CONTROL_ECC_SHIFT 16
  565. /* Only for v7.2 */
  566. #define ACC_CONTROL_ECC_EXT_SHIFT 13
  567. static inline bool brcmnand_non_mmio_ops(struct brcmnand_controller *ctrl)
  568. {
  569. #if IS_ENABLED(CONFIG_MTD_NAND_BRCMNAND_BCMA)
  570. return static_branch_unlikely(&brcmnand_soc_has_ops_key);
  571. #else
  572. return false;
  573. #endif
  574. }
  575. static inline u32 nand_readreg(struct brcmnand_controller *ctrl, u32 offs)
  576. {
  577. if (brcmnand_non_mmio_ops(ctrl))
  578. return brcmnand_soc_read(ctrl->soc, offs);
  579. return brcmnand_readl(ctrl->nand_base + offs);
  580. }
  581. static inline void nand_writereg(struct brcmnand_controller *ctrl, u32 offs,
  582. u32 val)
  583. {
  584. if (brcmnand_non_mmio_ops(ctrl))
  585. brcmnand_soc_write(ctrl->soc, val, offs);
  586. else
  587. brcmnand_writel(val, ctrl->nand_base + offs);
  588. }
  589. static int brcmnand_revision_init(struct brcmnand_controller *ctrl)
  590. {
  591. static const unsigned int block_sizes_v6[] = { 8, 16, 128, 256, 512, 1024, 2048, 0 };
  592. static const unsigned int block_sizes_v4[] = { 16, 128, 8, 512, 256, 1024, 2048, 0 };
  593. static const unsigned int block_sizes_v2_2[] = { 16, 128, 8, 512, 256, 0 };
  594. static const unsigned int block_sizes_v2_1[] = { 16, 128, 8, 512, 0 };
  595. static const unsigned int page_sizes_v3_4[] = { 512, 2048, 4096, 8192, 0 };
  596. static const unsigned int page_sizes_v2_2[] = { 512, 2048, 4096, 0 };
  597. static const unsigned int page_sizes_v2_1[] = { 512, 2048, 0 };
  598. ctrl->nand_version = nand_readreg(ctrl, 0) & 0xffff;
  599. /* Only support v2.1+ */
  600. if (ctrl->nand_version < 0x0201) {
  601. dev_err(ctrl->dev, "version %#x not supported\n",
  602. ctrl->nand_version);
  603. return -ENODEV;
  604. }
  605. /* Register offsets */
  606. if (ctrl->nand_version >= 0x0702)
  607. ctrl->reg_offsets = brcmnand_regs_v72;
  608. else if (ctrl->nand_version == 0x0701)
  609. ctrl->reg_offsets = brcmnand_regs_v71;
  610. else if (ctrl->nand_version >= 0x0600)
  611. ctrl->reg_offsets = brcmnand_regs_v60;
  612. else if (ctrl->nand_version >= 0x0500)
  613. ctrl->reg_offsets = brcmnand_regs_v50;
  614. else if (ctrl->nand_version >= 0x0303)
  615. ctrl->reg_offsets = brcmnand_regs_v33;
  616. else if (ctrl->nand_version >= 0x0201)
  617. ctrl->reg_offsets = brcmnand_regs_v21;
  618. /* Chip-select stride */
  619. if (ctrl->nand_version >= 0x0701)
  620. ctrl->reg_spacing = 0x14;
  621. else
  622. ctrl->reg_spacing = 0x10;
  623. /* Per chip-select registers */
  624. if (ctrl->nand_version >= 0x0701) {
  625. ctrl->cs_offsets = brcmnand_cs_offsets_v71;
  626. } else {
  627. ctrl->cs_offsets = brcmnand_cs_offsets;
  628. /* v3.3-5.0 have a different CS0 offset layout */
  629. if (ctrl->nand_version >= 0x0303 &&
  630. ctrl->nand_version <= 0x0500)
  631. ctrl->cs0_offsets = brcmnand_cs_offsets_cs0;
  632. }
  633. /* Page / block sizes */
  634. if (ctrl->nand_version >= 0x0701) {
  635. /* >= v7.1 use nice power-of-2 values! */
  636. ctrl->max_page_size = 16 * 1024;
  637. ctrl->max_block_size = 2 * 1024 * 1024;
  638. } else {
  639. if (ctrl->nand_version >= 0x0304)
  640. ctrl->page_sizes = page_sizes_v3_4;
  641. else if (ctrl->nand_version >= 0x0202)
  642. ctrl->page_sizes = page_sizes_v2_2;
  643. else
  644. ctrl->page_sizes = page_sizes_v2_1;
  645. if (ctrl->nand_version >= 0x0202)
  646. ctrl->page_size_shift = CFG_PAGE_SIZE_SHIFT;
  647. else
  648. ctrl->page_size_shift = CFG_PAGE_SIZE_SHIFT_v2_1;
  649. if (ctrl->nand_version >= 0x0600)
  650. ctrl->block_sizes = block_sizes_v6;
  651. else if (ctrl->nand_version >= 0x0400)
  652. ctrl->block_sizes = block_sizes_v4;
  653. else if (ctrl->nand_version >= 0x0202)
  654. ctrl->block_sizes = block_sizes_v2_2;
  655. else
  656. ctrl->block_sizes = block_sizes_v2_1;
  657. if (ctrl->nand_version < 0x0400) {
  658. if (ctrl->nand_version < 0x0202)
  659. ctrl->max_page_size = 2048;
  660. else
  661. ctrl->max_page_size = 4096;
  662. ctrl->max_block_size = 512 * 1024;
  663. }
  664. }
  665. /* Maximum spare area sector size (per 512B) */
  666. if (ctrl->nand_version == 0x0702)
  667. ctrl->max_oob = 128;
  668. else if (ctrl->nand_version >= 0x0600)
  669. ctrl->max_oob = 64;
  670. else if (ctrl->nand_version >= 0x0500)
  671. ctrl->max_oob = 32;
  672. else
  673. ctrl->max_oob = 16;
  674. /* v6.0 and newer (except v6.1) have prefetch support */
  675. if (ctrl->nand_version >= 0x0600 && ctrl->nand_version != 0x0601)
  676. ctrl->features |= BRCMNAND_HAS_PREFETCH;
  677. /*
  678. * v6.x has cache mode, but it's implemented differently. Ignore it for
  679. * now.
  680. */
  681. if (ctrl->nand_version >= 0x0700)
  682. ctrl->features |= BRCMNAND_HAS_CACHE_MODE;
  683. if (ctrl->nand_version >= 0x0500)
  684. ctrl->features |= BRCMNAND_HAS_1K_SECTORS;
  685. if (ctrl->nand_version >= 0x0700)
  686. ctrl->features |= BRCMNAND_HAS_WP;
  687. else if (of_property_read_bool(ctrl->dev->of_node, "brcm,nand-has-wp"))
  688. ctrl->features |= BRCMNAND_HAS_WP;
  689. /* v7.2 has different ecc level shift in the acc register */
  690. if (ctrl->nand_version == 0x0702)
  691. ctrl->ecc_level_shift = ACC_CONTROL_ECC_EXT_SHIFT;
  692. else
  693. ctrl->ecc_level_shift = ACC_CONTROL_ECC_SHIFT;
  694. return 0;
  695. }
  696. static void brcmnand_flash_dma_revision_init(struct brcmnand_controller *ctrl)
  697. {
  698. /* flash_dma register offsets */
  699. if (ctrl->nand_version >= 0x0703)
  700. ctrl->flash_dma_offsets = flash_dma_regs_v4;
  701. else if (ctrl->nand_version == 0x0602)
  702. ctrl->flash_dma_offsets = flash_dma_regs_v0;
  703. else
  704. ctrl->flash_dma_offsets = flash_dma_regs_v1;
  705. }
  706. static inline u32 brcmnand_read_reg(struct brcmnand_controller *ctrl,
  707. enum brcmnand_reg reg)
  708. {
  709. u16 offs = ctrl->reg_offsets[reg];
  710. if (offs)
  711. return nand_readreg(ctrl, offs);
  712. else
  713. return 0;
  714. }
  715. static inline void brcmnand_write_reg(struct brcmnand_controller *ctrl,
  716. enum brcmnand_reg reg, u32 val)
  717. {
  718. u16 offs = ctrl->reg_offsets[reg];
  719. if (offs)
  720. nand_writereg(ctrl, offs, val);
  721. }
  722. static inline void brcmnand_rmw_reg(struct brcmnand_controller *ctrl,
  723. enum brcmnand_reg reg, u32 mask, unsigned
  724. int shift, u32 val)
  725. {
  726. u32 tmp = brcmnand_read_reg(ctrl, reg);
  727. tmp &= ~mask;
  728. tmp |= val << shift;
  729. brcmnand_write_reg(ctrl, reg, tmp);
  730. }
  731. static inline u32 brcmnand_read_fc(struct brcmnand_controller *ctrl, int word)
  732. {
  733. if (brcmnand_non_mmio_ops(ctrl))
  734. return brcmnand_soc_read(ctrl->soc, BRCMNAND_NON_MMIO_FC_ADDR);
  735. return __raw_readl(ctrl->nand_fc + word * 4);
  736. }
  737. static inline void brcmnand_write_fc(struct brcmnand_controller *ctrl,
  738. int word, u32 val)
  739. {
  740. if (brcmnand_non_mmio_ops(ctrl))
  741. brcmnand_soc_write(ctrl->soc, val, BRCMNAND_NON_MMIO_FC_ADDR);
  742. else
  743. __raw_writel(val, ctrl->nand_fc + word * 4);
  744. }
  745. static inline void edu_writel(struct brcmnand_controller *ctrl,
  746. enum edu_reg reg, u32 val)
  747. {
  748. u16 offs = ctrl->edu_offsets[reg];
  749. brcmnand_writel(val, ctrl->edu_base + offs);
  750. }
  751. static inline u32 edu_readl(struct brcmnand_controller *ctrl,
  752. enum edu_reg reg)
  753. {
  754. u16 offs = ctrl->edu_offsets[reg];
  755. return brcmnand_readl(ctrl->edu_base + offs);
  756. }
  757. static void brcmnand_clear_ecc_addr(struct brcmnand_controller *ctrl)
  758. {
  759. /* Clear error addresses */
  760. brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_ADDR, 0);
  761. brcmnand_write_reg(ctrl, BRCMNAND_CORR_ADDR, 0);
  762. brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_EXT_ADDR, 0);
  763. brcmnand_write_reg(ctrl, BRCMNAND_CORR_EXT_ADDR, 0);
  764. }
  765. static u64 brcmnand_get_uncorrecc_addr(struct brcmnand_controller *ctrl)
  766. {
  767. u64 err_addr;
  768. err_addr = brcmnand_read_reg(ctrl, BRCMNAND_UNCORR_ADDR);
  769. err_addr |= ((u64)(brcmnand_read_reg(ctrl,
  770. BRCMNAND_UNCORR_EXT_ADDR)
  771. & 0xffff) << 32);
  772. return err_addr;
  773. }
  774. static u64 brcmnand_get_correcc_addr(struct brcmnand_controller *ctrl)
  775. {
  776. u64 err_addr;
  777. err_addr = brcmnand_read_reg(ctrl, BRCMNAND_CORR_ADDR);
  778. err_addr |= ((u64)(brcmnand_read_reg(ctrl,
  779. BRCMNAND_CORR_EXT_ADDR)
  780. & 0xffff) << 32);
  781. return err_addr;
  782. }
  783. static void brcmnand_set_cmd_addr(struct mtd_info *mtd, u64 addr)
  784. {
  785. struct nand_chip *chip = mtd_to_nand(mtd);
  786. struct brcmnand_host *host = nand_get_controller_data(chip);
  787. struct brcmnand_controller *ctrl = host->ctrl;
  788. brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS,
  789. (host->cs << 16) | ((addr >> 32) & 0xffff));
  790. (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS);
  791. brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
  792. lower_32_bits(addr));
  793. (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
  794. }
  795. static inline u16 brcmnand_cs_offset(struct brcmnand_controller *ctrl, int cs,
  796. enum brcmnand_cs_reg reg)
  797. {
  798. u16 offs_cs0 = ctrl->reg_offsets[BRCMNAND_CS0_BASE];
  799. u16 offs_cs1 = ctrl->reg_offsets[BRCMNAND_CS1_BASE];
  800. u8 cs_offs;
  801. if (cs == 0 && ctrl->cs0_offsets)
  802. cs_offs = ctrl->cs0_offsets[reg];
  803. else
  804. cs_offs = ctrl->cs_offsets[reg];
  805. if (cs && offs_cs1)
  806. return offs_cs1 + (cs - 1) * ctrl->reg_spacing + cs_offs;
  807. return offs_cs0 + cs * ctrl->reg_spacing + cs_offs;
  808. }
  809. static inline u32 brcmnand_count_corrected(struct brcmnand_controller *ctrl)
  810. {
  811. if (ctrl->nand_version < 0x0600)
  812. return 1;
  813. return brcmnand_read_reg(ctrl, BRCMNAND_CORR_COUNT);
  814. }
  815. static void brcmnand_wr_corr_thresh(struct brcmnand_host *host, u8 val)
  816. {
  817. struct brcmnand_controller *ctrl = host->ctrl;
  818. unsigned int shift = 0, bits;
  819. enum brcmnand_reg reg = BRCMNAND_CORR_THRESHOLD;
  820. int cs = host->cs;
  821. if (!ctrl->reg_offsets[reg])
  822. return;
  823. if (ctrl->nand_version == 0x0702)
  824. bits = 7;
  825. else if (ctrl->nand_version >= 0x0600)
  826. bits = 6;
  827. else if (ctrl->nand_version >= 0x0500)
  828. bits = 5;
  829. else
  830. bits = 4;
  831. if (ctrl->nand_version >= 0x0702) {
  832. if (cs >= 4)
  833. reg = BRCMNAND_CORR_THRESHOLD_EXT;
  834. shift = (cs % 4) * bits;
  835. } else if (ctrl->nand_version >= 0x0600) {
  836. if (cs >= 5)
  837. reg = BRCMNAND_CORR_THRESHOLD_EXT;
  838. shift = (cs % 5) * bits;
  839. }
  840. brcmnand_rmw_reg(ctrl, reg, (bits - 1) << shift, shift, val);
  841. }
  842. static inline int brcmnand_cmd_shift(struct brcmnand_controller *ctrl)
  843. {
  844. /* Kludge for the BCMA-based NAND controller which does not actually
  845. * shift the command
  846. */
  847. if (ctrl->nand_version == 0x0304 && brcmnand_non_mmio_ops(ctrl))
  848. return 0;
  849. if (ctrl->nand_version < 0x0602)
  850. return 24;
  851. return 0;
  852. }
  853. static inline u32 brcmnand_spare_area_mask(struct brcmnand_controller *ctrl)
  854. {
  855. if (ctrl->nand_version == 0x0702)
  856. return GENMASK(7, 0);
  857. else if (ctrl->nand_version >= 0x0600)
  858. return GENMASK(6, 0);
  859. else if (ctrl->nand_version >= 0x0303)
  860. return GENMASK(5, 0);
  861. else
  862. return GENMASK(4, 0);
  863. }
  864. static inline u32 brcmnand_ecc_level_mask(struct brcmnand_controller *ctrl)
  865. {
  866. u32 mask = (ctrl->nand_version >= 0x0600) ? 0x1f : 0x0f;
  867. mask <<= ACC_CONTROL_ECC_SHIFT;
  868. /* v7.2 includes additional ECC levels */
  869. if (ctrl->nand_version == 0x0702)
  870. mask |= 0x7 << ACC_CONTROL_ECC_EXT_SHIFT;
  871. return mask;
  872. }
  873. static void brcmnand_set_ecc_enabled(struct brcmnand_host *host, int en)
  874. {
  875. struct brcmnand_controller *ctrl = host->ctrl;
  876. u16 offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL);
  877. u32 acc_control = nand_readreg(ctrl, offs);
  878. u32 ecc_flags = ACC_CONTROL_WR_ECC | ACC_CONTROL_RD_ECC;
  879. if (en) {
  880. acc_control |= ecc_flags; /* enable RD/WR ECC */
  881. acc_control &= ~brcmnand_ecc_level_mask(ctrl);
  882. acc_control |= host->hwcfg.ecc_level << ctrl->ecc_level_shift;
  883. } else {
  884. acc_control &= ~ecc_flags; /* disable RD/WR ECC */
  885. acc_control &= ~brcmnand_ecc_level_mask(ctrl);
  886. }
  887. nand_writereg(ctrl, offs, acc_control);
  888. }
  889. static inline int brcmnand_sector_1k_shift(struct brcmnand_controller *ctrl)
  890. {
  891. if (ctrl->nand_version >= 0x0702)
  892. return 9;
  893. else if (ctrl->nand_version >= 0x0600)
  894. return 7;
  895. else if (ctrl->nand_version >= 0x0500)
  896. return 6;
  897. else
  898. return -1;
  899. }
  900. static int brcmnand_get_sector_size_1k(struct brcmnand_host *host)
  901. {
  902. struct brcmnand_controller *ctrl = host->ctrl;
  903. int shift = brcmnand_sector_1k_shift(ctrl);
  904. u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
  905. BRCMNAND_CS_ACC_CONTROL);
  906. if (shift < 0)
  907. return 0;
  908. return (nand_readreg(ctrl, acc_control_offs) >> shift) & 0x1;
  909. }
  910. static void brcmnand_set_sector_size_1k(struct brcmnand_host *host, int val)
  911. {
  912. struct brcmnand_controller *ctrl = host->ctrl;
  913. int shift = brcmnand_sector_1k_shift(ctrl);
  914. u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
  915. BRCMNAND_CS_ACC_CONTROL);
  916. u32 tmp;
  917. if (shift < 0)
  918. return;
  919. tmp = nand_readreg(ctrl, acc_control_offs);
  920. tmp &= ~(1 << shift);
  921. tmp |= (!!val) << shift;
  922. nand_writereg(ctrl, acc_control_offs, tmp);
  923. }
  924. /***********************************************************************
  925. * CS_NAND_SELECT
  926. ***********************************************************************/
  927. enum {
  928. CS_SELECT_NAND_WP = BIT(29),
  929. CS_SELECT_AUTO_DEVICE_ID_CFG = BIT(30),
  930. };
  931. static int bcmnand_ctrl_poll_status(struct brcmnand_controller *ctrl,
  932. u32 mask, u32 expected_val,
  933. unsigned long timeout_ms)
  934. {
  935. unsigned long limit;
  936. u32 val;
  937. if (!timeout_ms)
  938. timeout_ms = NAND_POLL_STATUS_TIMEOUT_MS;
  939. limit = jiffies + msecs_to_jiffies(timeout_ms);
  940. do {
  941. val = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS);
  942. if ((val & mask) == expected_val)
  943. return 0;
  944. cpu_relax();
  945. } while (time_after(limit, jiffies));
  946. /*
  947. * do a final check after time out in case the CPU was busy and the driver
  948. * did not get enough time to perform the polling to avoid false alarms
  949. */
  950. val = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS);
  951. if ((val & mask) == expected_val)
  952. return 0;
  953. dev_warn(ctrl->dev, "timeout on status poll (expected %x got %x)\n",
  954. expected_val, val & mask);
  955. return -ETIMEDOUT;
  956. }
  957. static inline void brcmnand_set_wp(struct brcmnand_controller *ctrl, bool en)
  958. {
  959. u32 val = en ? CS_SELECT_NAND_WP : 0;
  960. brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT, CS_SELECT_NAND_WP, 0, val);
  961. }
  962. /***********************************************************************
  963. * Flash DMA
  964. ***********************************************************************/
  965. static inline bool has_flash_dma(struct brcmnand_controller *ctrl)
  966. {
  967. return ctrl->flash_dma_base;
  968. }
  969. static inline bool has_edu(struct brcmnand_controller *ctrl)
  970. {
  971. return ctrl->edu_base;
  972. }
  973. static inline bool use_dma(struct brcmnand_controller *ctrl)
  974. {
  975. return has_flash_dma(ctrl) || has_edu(ctrl);
  976. }
  977. static inline void disable_ctrl_irqs(struct brcmnand_controller *ctrl)
  978. {
  979. if (ctrl->pio_poll_mode)
  980. return;
  981. if (has_flash_dma(ctrl)) {
  982. ctrl->flash_dma_base = NULL;
  983. disable_irq(ctrl->dma_irq);
  984. }
  985. disable_irq(ctrl->irq);
  986. ctrl->pio_poll_mode = true;
  987. }
  988. static inline bool flash_dma_buf_ok(const void *buf)
  989. {
  990. return buf && !is_vmalloc_addr(buf) &&
  991. likely(IS_ALIGNED((uintptr_t)buf, 4));
  992. }
  993. static inline void flash_dma_writel(struct brcmnand_controller *ctrl,
  994. enum flash_dma_reg dma_reg, u32 val)
  995. {
  996. u16 offs = ctrl->flash_dma_offsets[dma_reg];
  997. brcmnand_writel(val, ctrl->flash_dma_base + offs);
  998. }
  999. static inline u32 flash_dma_readl(struct brcmnand_controller *ctrl,
  1000. enum flash_dma_reg dma_reg)
  1001. {
  1002. u16 offs = ctrl->flash_dma_offsets[dma_reg];
  1003. return brcmnand_readl(ctrl->flash_dma_base + offs);
  1004. }
  1005. /* Low-level operation types: command, address, write, or read */
  1006. enum brcmnand_llop_type {
  1007. LL_OP_CMD,
  1008. LL_OP_ADDR,
  1009. LL_OP_WR,
  1010. LL_OP_RD,
  1011. };
  1012. /***********************************************************************
  1013. * Internal support functions
  1014. ***********************************************************************/
  1015. static inline bool is_hamming_ecc(struct brcmnand_controller *ctrl,
  1016. struct brcmnand_cfg *cfg)
  1017. {
  1018. if (ctrl->nand_version <= 0x0701)
  1019. return cfg->sector_size_1k == 0 && cfg->spare_area_size == 16 &&
  1020. cfg->ecc_level == 15;
  1021. else
  1022. return cfg->sector_size_1k == 0 && ((cfg->spare_area_size == 16 &&
  1023. cfg->ecc_level == 15) ||
  1024. (cfg->spare_area_size == 28 && cfg->ecc_level == 16));
  1025. }
  1026. /*
  1027. * Set mtd->ooblayout to the appropriate mtd_ooblayout_ops given
  1028. * the layout/configuration.
  1029. * Returns -ERRCODE on failure.
  1030. */
  1031. static int brcmnand_hamming_ooblayout_ecc(struct mtd_info *mtd, int section,
  1032. struct mtd_oob_region *oobregion)
  1033. {
  1034. struct nand_chip *chip = mtd_to_nand(mtd);
  1035. struct brcmnand_host *host = nand_get_controller_data(chip);
  1036. struct brcmnand_cfg *cfg = &host->hwcfg;
  1037. int sas = cfg->spare_area_size << cfg->sector_size_1k;
  1038. int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
  1039. if (section >= sectors)
  1040. return -ERANGE;
  1041. oobregion->offset = (section * sas) + 6;
  1042. oobregion->length = 3;
  1043. return 0;
  1044. }
  1045. static int brcmnand_hamming_ooblayout_free(struct mtd_info *mtd, int section,
  1046. struct mtd_oob_region *oobregion)
  1047. {
  1048. struct nand_chip *chip = mtd_to_nand(mtd);
  1049. struct brcmnand_host *host = nand_get_controller_data(chip);
  1050. struct brcmnand_cfg *cfg = &host->hwcfg;
  1051. int sas = cfg->spare_area_size << cfg->sector_size_1k;
  1052. int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
  1053. u32 next;
  1054. if (section > sectors)
  1055. return -ERANGE;
  1056. next = (section * sas);
  1057. if (section < sectors)
  1058. next += 6;
  1059. if (section) {
  1060. oobregion->offset = ((section - 1) * sas) + 9;
  1061. } else {
  1062. if (cfg->page_size > 512) {
  1063. /* Large page NAND uses first 2 bytes for BBI */
  1064. oobregion->offset = 2;
  1065. } else {
  1066. /* Small page NAND uses last byte before ECC for BBI */
  1067. oobregion->offset = 0;
  1068. next--;
  1069. }
  1070. }
  1071. oobregion->length = next - oobregion->offset;
  1072. return 0;
  1073. }
  1074. static const struct mtd_ooblayout_ops brcmnand_hamming_ooblayout_ops = {
  1075. .ecc = brcmnand_hamming_ooblayout_ecc,
  1076. .free = brcmnand_hamming_ooblayout_free,
  1077. };
  1078. static int brcmnand_bch_ooblayout_ecc(struct mtd_info *mtd, int section,
  1079. struct mtd_oob_region *oobregion)
  1080. {
  1081. struct nand_chip *chip = mtd_to_nand(mtd);
  1082. struct brcmnand_host *host = nand_get_controller_data(chip);
  1083. struct brcmnand_cfg *cfg = &host->hwcfg;
  1084. int sas = cfg->spare_area_size << cfg->sector_size_1k;
  1085. int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
  1086. if (section >= sectors)
  1087. return -ERANGE;
  1088. oobregion->offset = ((section + 1) * sas) - chip->ecc.bytes;
  1089. oobregion->length = chip->ecc.bytes;
  1090. return 0;
  1091. }
  1092. static int brcmnand_bch_ooblayout_free_lp(struct mtd_info *mtd, int section,
  1093. struct mtd_oob_region *oobregion)
  1094. {
  1095. struct nand_chip *chip = mtd_to_nand(mtd);
  1096. struct brcmnand_host *host = nand_get_controller_data(chip);
  1097. struct brcmnand_cfg *cfg = &host->hwcfg;
  1098. int sas = cfg->spare_area_size << cfg->sector_size_1k;
  1099. int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
  1100. if (section >= sectors)
  1101. return -ERANGE;
  1102. if (sas <= chip->ecc.bytes)
  1103. return 0;
  1104. oobregion->offset = section * sas;
  1105. oobregion->length = sas - chip->ecc.bytes;
  1106. if (!section) {
  1107. oobregion->offset++;
  1108. oobregion->length--;
  1109. }
  1110. return 0;
  1111. }
  1112. static int brcmnand_bch_ooblayout_free_sp(struct mtd_info *mtd, int section,
  1113. struct mtd_oob_region *oobregion)
  1114. {
  1115. struct nand_chip *chip = mtd_to_nand(mtd);
  1116. struct brcmnand_host *host = nand_get_controller_data(chip);
  1117. struct brcmnand_cfg *cfg = &host->hwcfg;
  1118. int sas = cfg->spare_area_size << cfg->sector_size_1k;
  1119. if (section > 1 || sas - chip->ecc.bytes < 6 ||
  1120. (section && sas - chip->ecc.bytes == 6))
  1121. return -ERANGE;
  1122. if (!section) {
  1123. oobregion->offset = 0;
  1124. oobregion->length = 5;
  1125. } else {
  1126. oobregion->offset = 6;
  1127. oobregion->length = sas - chip->ecc.bytes - 6;
  1128. }
  1129. return 0;
  1130. }
  1131. static const struct mtd_ooblayout_ops brcmnand_bch_lp_ooblayout_ops = {
  1132. .ecc = brcmnand_bch_ooblayout_ecc,
  1133. .free = brcmnand_bch_ooblayout_free_lp,
  1134. };
  1135. static const struct mtd_ooblayout_ops brcmnand_bch_sp_ooblayout_ops = {
  1136. .ecc = brcmnand_bch_ooblayout_ecc,
  1137. .free = brcmnand_bch_ooblayout_free_sp,
  1138. };
  1139. static int brcmstb_choose_ecc_layout(struct brcmnand_host *host)
  1140. {
  1141. struct brcmnand_cfg *p = &host->hwcfg;
  1142. struct mtd_info *mtd = nand_to_mtd(&host->chip);
  1143. struct nand_ecc_ctrl *ecc = &host->chip.ecc;
  1144. unsigned int ecc_level = p->ecc_level;
  1145. int sas = p->spare_area_size << p->sector_size_1k;
  1146. int sectors = p->page_size / (512 << p->sector_size_1k);
  1147. if (p->sector_size_1k)
  1148. ecc_level <<= 1;
  1149. if (is_hamming_ecc(host->ctrl, p)) {
  1150. ecc->bytes = 3 * sectors;
  1151. mtd_set_ooblayout(mtd, &brcmnand_hamming_ooblayout_ops);
  1152. return 0;
  1153. }
  1154. /*
  1155. * CONTROLLER_VERSION:
  1156. * < v5.0: ECC_REQ = ceil(BCH_T * 13/8)
  1157. * >= v5.0: ECC_REQ = ceil(BCH_T * 14/8)
  1158. * But we will just be conservative.
  1159. */
  1160. ecc->bytes = DIV_ROUND_UP(ecc_level * 14, 8);
  1161. if (p->page_size == 512)
  1162. mtd_set_ooblayout(mtd, &brcmnand_bch_sp_ooblayout_ops);
  1163. else
  1164. mtd_set_ooblayout(mtd, &brcmnand_bch_lp_ooblayout_ops);
  1165. if (ecc->bytes >= sas) {
  1166. dev_err(&host->pdev->dev,
  1167. "error: ECC too large for OOB (ECC bytes %d, spare sector %d)\n",
  1168. ecc->bytes, sas);
  1169. return -EINVAL;
  1170. }
  1171. return 0;
  1172. }
  1173. static void brcmnand_wp(struct mtd_info *mtd, int wp)
  1174. {
  1175. struct nand_chip *chip = mtd_to_nand(mtd);
  1176. struct brcmnand_host *host = nand_get_controller_data(chip);
  1177. struct brcmnand_controller *ctrl = host->ctrl;
  1178. if ((ctrl->features & BRCMNAND_HAS_WP) && wp_on == 1) {
  1179. static int old_wp = -1;
  1180. int ret;
  1181. if (old_wp != wp) {
  1182. dev_dbg(ctrl->dev, "WP %s\n", wp ? "on" : "off");
  1183. old_wp = wp;
  1184. }
  1185. /*
  1186. * make sure ctrl/flash ready before and after
  1187. * changing state of #WP pin
  1188. */
  1189. ret = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY |
  1190. NAND_STATUS_READY,
  1191. NAND_CTRL_RDY |
  1192. NAND_STATUS_READY, 0);
  1193. if (ret)
  1194. return;
  1195. brcmnand_set_wp(ctrl, wp);
  1196. nand_status_op(chip, NULL);
  1197. /* NAND_STATUS_WP 0x00 = protected, 0x80 = not protected */
  1198. ret = bcmnand_ctrl_poll_status(ctrl,
  1199. NAND_CTRL_RDY |
  1200. NAND_STATUS_READY |
  1201. NAND_STATUS_WP,
  1202. NAND_CTRL_RDY |
  1203. NAND_STATUS_READY |
  1204. (wp ? 0 : NAND_STATUS_WP), 0);
  1205. if (ret)
  1206. dev_err_ratelimited(&host->pdev->dev,
  1207. "nand #WP expected %s\n",
  1208. wp ? "on" : "off");
  1209. }
  1210. }
  1211. /* Helper functions for reading and writing OOB registers */
  1212. static inline u8 oob_reg_read(struct brcmnand_controller *ctrl, u32 offs)
  1213. {
  1214. u16 offset0, offset10, reg_offs;
  1215. offset0 = ctrl->reg_offsets[BRCMNAND_OOB_READ_BASE];
  1216. offset10 = ctrl->reg_offsets[BRCMNAND_OOB_READ_10_BASE];
  1217. if (offs >= ctrl->max_oob)
  1218. return 0x77;
  1219. if (offs >= 16 && offset10)
  1220. reg_offs = offset10 + ((offs - 0x10) & ~0x03);
  1221. else
  1222. reg_offs = offset0 + (offs & ~0x03);
  1223. return nand_readreg(ctrl, reg_offs) >> (24 - ((offs & 0x03) << 3));
  1224. }
  1225. static inline void oob_reg_write(struct brcmnand_controller *ctrl, u32 offs,
  1226. u32 data)
  1227. {
  1228. u16 offset0, offset10, reg_offs;
  1229. offset0 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_BASE];
  1230. offset10 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_10_BASE];
  1231. if (offs >= ctrl->max_oob)
  1232. return;
  1233. if (offs >= 16 && offset10)
  1234. reg_offs = offset10 + ((offs - 0x10) & ~0x03);
  1235. else
  1236. reg_offs = offset0 + (offs & ~0x03);
  1237. nand_writereg(ctrl, reg_offs, data);
  1238. }
  1239. /*
  1240. * read_oob_from_regs - read data from OOB registers
  1241. * @ctrl: NAND controller
  1242. * @i: sub-page sector index
  1243. * @oob: buffer to read to
  1244. * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE)
  1245. * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal
  1246. */
  1247. static int read_oob_from_regs(struct brcmnand_controller *ctrl, int i, u8 *oob,
  1248. int sas, int sector_1k)
  1249. {
  1250. int tbytes = sas << sector_1k;
  1251. int j;
  1252. /* Adjust OOB values for 1K sector size */
  1253. if (sector_1k && (i & 0x01))
  1254. tbytes = max(0, tbytes - (int)ctrl->max_oob);
  1255. tbytes = min_t(int, tbytes, ctrl->max_oob);
  1256. for (j = 0; j < tbytes; j++)
  1257. oob[j] = oob_reg_read(ctrl, j);
  1258. return tbytes;
  1259. }
  1260. /*
  1261. * write_oob_to_regs - write data to OOB registers
  1262. * @i: sub-page sector index
  1263. * @oob: buffer to write from
  1264. * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE)
  1265. * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal
  1266. */
  1267. static int write_oob_to_regs(struct brcmnand_controller *ctrl, int i,
  1268. const u8 *oob, int sas, int sector_1k)
  1269. {
  1270. int tbytes = sas << sector_1k;
  1271. int j, k = 0;
  1272. u32 last = 0xffffffff;
  1273. u8 *plast = (u8 *)&last;
  1274. /* Adjust OOB values for 1K sector size */
  1275. if (sector_1k && (i & 0x01))
  1276. tbytes = max(0, tbytes - (int)ctrl->max_oob);
  1277. tbytes = min_t(int, tbytes, ctrl->max_oob);
  1278. /*
  1279. * tbytes may not be multiple of words. Make sure we don't read out of
  1280. * the boundary and stop at last word.
  1281. */
  1282. for (j = 0; (j + 3) < tbytes; j += 4)
  1283. oob_reg_write(ctrl, j,
  1284. (oob[j + 0] << 24) |
  1285. (oob[j + 1] << 16) |
  1286. (oob[j + 2] << 8) |
  1287. (oob[j + 3] << 0));
  1288. /* handle the remaing bytes */
  1289. while (j < tbytes)
  1290. plast[k++] = oob[j++];
  1291. if (tbytes & 0x3)
  1292. oob_reg_write(ctrl, (tbytes & ~0x3), (__force u32)cpu_to_be32(last));
  1293. return tbytes;
  1294. }
  1295. static void brcmnand_edu_init(struct brcmnand_controller *ctrl)
  1296. {
  1297. /* initialize edu */
  1298. edu_writel(ctrl, EDU_ERR_STATUS, 0);
  1299. edu_readl(ctrl, EDU_ERR_STATUS);
  1300. edu_writel(ctrl, EDU_DONE, 0);
  1301. edu_writel(ctrl, EDU_DONE, 0);
  1302. edu_writel(ctrl, EDU_DONE, 0);
  1303. edu_writel(ctrl, EDU_DONE, 0);
  1304. edu_readl(ctrl, EDU_DONE);
  1305. }
  1306. /* edu irq */
  1307. static irqreturn_t brcmnand_edu_irq(int irq, void *data)
  1308. {
  1309. struct brcmnand_controller *ctrl = data;
  1310. if (ctrl->edu_count) {
  1311. ctrl->edu_count--;
  1312. while (!(edu_readl(ctrl, EDU_DONE) & EDU_DONE_MASK))
  1313. udelay(1);
  1314. edu_writel(ctrl, EDU_DONE, 0);
  1315. edu_readl(ctrl, EDU_DONE);
  1316. }
  1317. if (ctrl->edu_count) {
  1318. ctrl->edu_dram_addr += FC_BYTES;
  1319. ctrl->edu_ext_addr += FC_BYTES;
  1320. edu_writel(ctrl, EDU_DRAM_ADDR, (u32)ctrl->edu_dram_addr);
  1321. edu_readl(ctrl, EDU_DRAM_ADDR);
  1322. edu_writel(ctrl, EDU_EXT_ADDR, ctrl->edu_ext_addr);
  1323. edu_readl(ctrl, EDU_EXT_ADDR);
  1324. if (ctrl->oob) {
  1325. if (ctrl->edu_cmd == EDU_CMD_READ) {
  1326. ctrl->oob += read_oob_from_regs(ctrl,
  1327. ctrl->edu_count + 1,
  1328. ctrl->oob, ctrl->sas,
  1329. ctrl->sector_size_1k);
  1330. } else {
  1331. brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
  1332. ctrl->edu_ext_addr);
  1333. brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
  1334. ctrl->oob += write_oob_to_regs(ctrl,
  1335. ctrl->edu_count,
  1336. ctrl->oob, ctrl->sas,
  1337. ctrl->sector_size_1k);
  1338. }
  1339. }
  1340. mb(); /* flush previous writes */
  1341. edu_writel(ctrl, EDU_CMD, ctrl->edu_cmd);
  1342. edu_readl(ctrl, EDU_CMD);
  1343. return IRQ_HANDLED;
  1344. }
  1345. complete(&ctrl->edu_done);
  1346. return IRQ_HANDLED;
  1347. }
  1348. static irqreturn_t brcmnand_ctlrdy_irq(int irq, void *data)
  1349. {
  1350. struct brcmnand_controller *ctrl = data;
  1351. /* Discard all NAND_CTLRDY interrupts during DMA */
  1352. if (ctrl->dma_pending)
  1353. return IRQ_HANDLED;
  1354. /* check if you need to piggy back on the ctrlrdy irq */
  1355. if (ctrl->edu_pending) {
  1356. if (irq == ctrl->irq && ((int)ctrl->edu_irq >= 0))
  1357. /* Discard interrupts while using dedicated edu irq */
  1358. return IRQ_HANDLED;
  1359. /* no registered edu irq, call handler */
  1360. return brcmnand_edu_irq(irq, data);
  1361. }
  1362. complete(&ctrl->done);
  1363. return IRQ_HANDLED;
  1364. }
  1365. /* Handle SoC-specific interrupt hardware */
  1366. static irqreturn_t brcmnand_irq(int irq, void *data)
  1367. {
  1368. struct brcmnand_controller *ctrl = data;
  1369. if (ctrl->soc->ctlrdy_ack(ctrl->soc))
  1370. return brcmnand_ctlrdy_irq(irq, data);
  1371. return IRQ_NONE;
  1372. }
  1373. static irqreturn_t brcmnand_dma_irq(int irq, void *data)
  1374. {
  1375. struct brcmnand_controller *ctrl = data;
  1376. complete(&ctrl->dma_done);
  1377. return IRQ_HANDLED;
  1378. }
  1379. static void brcmnand_send_cmd(struct brcmnand_host *host, int cmd)
  1380. {
  1381. struct brcmnand_controller *ctrl = host->ctrl;
  1382. int ret;
  1383. u64 cmd_addr;
  1384. cmd_addr = brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
  1385. dev_dbg(ctrl->dev, "send native cmd %d addr 0x%llx\n", cmd, cmd_addr);
  1386. /*
  1387. * If we came here through _panic_write and there is a pending
  1388. * command, try to wait for it. If it times out, rather than
  1389. * hitting BUG_ON, just return so we don't crash while crashing.
  1390. */
  1391. if (oops_in_progress) {
  1392. if (ctrl->cmd_pending &&
  1393. bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY, NAND_CTRL_RDY, 0))
  1394. return;
  1395. } else
  1396. BUG_ON(ctrl->cmd_pending != 0);
  1397. ctrl->cmd_pending = cmd;
  1398. ret = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY, NAND_CTRL_RDY, 0);
  1399. WARN_ON(ret);
  1400. mb(); /* flush previous writes */
  1401. brcmnand_write_reg(ctrl, BRCMNAND_CMD_START,
  1402. cmd << brcmnand_cmd_shift(ctrl));
  1403. }
  1404. /***********************************************************************
  1405. * NAND MTD API: read/program/erase
  1406. ***********************************************************************/
  1407. static void brcmnand_cmd_ctrl(struct nand_chip *chip, int dat,
  1408. unsigned int ctrl)
  1409. {
  1410. /* intentionally left blank */
  1411. }
  1412. static bool brcmstb_nand_wait_for_completion(struct nand_chip *chip)
  1413. {
  1414. struct brcmnand_host *host = nand_get_controller_data(chip);
  1415. struct brcmnand_controller *ctrl = host->ctrl;
  1416. struct mtd_info *mtd = nand_to_mtd(chip);
  1417. bool err = false;
  1418. int sts;
  1419. if (mtd->oops_panic_write || ctrl->irq < 0) {
  1420. /* switch to interrupt polling and PIO mode */
  1421. disable_ctrl_irqs(ctrl);
  1422. sts = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY,
  1423. NAND_CTRL_RDY, 0);
  1424. err = (sts < 0) ? true : false;
  1425. } else {
  1426. unsigned long timeo = msecs_to_jiffies(
  1427. NAND_POLL_STATUS_TIMEOUT_MS);
  1428. /* wait for completion interrupt */
  1429. sts = wait_for_completion_timeout(&ctrl->done, timeo);
  1430. err = (sts <= 0) ? true : false;
  1431. }
  1432. return err;
  1433. }
  1434. static int brcmnand_waitfunc(struct nand_chip *chip)
  1435. {
  1436. struct brcmnand_host *host = nand_get_controller_data(chip);
  1437. struct brcmnand_controller *ctrl = host->ctrl;
  1438. bool err = false;
  1439. dev_dbg(ctrl->dev, "wait on native cmd %d\n", ctrl->cmd_pending);
  1440. if (ctrl->cmd_pending)
  1441. err = brcmstb_nand_wait_for_completion(chip);
  1442. if (err) {
  1443. u32 cmd = brcmnand_read_reg(ctrl, BRCMNAND_CMD_START)
  1444. >> brcmnand_cmd_shift(ctrl);
  1445. dev_err_ratelimited(ctrl->dev,
  1446. "timeout waiting for command %#02x\n", cmd);
  1447. dev_err_ratelimited(ctrl->dev, "intfc status %08x\n",
  1448. brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS));
  1449. }
  1450. ctrl->cmd_pending = 0;
  1451. return brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
  1452. INTFC_FLASH_STATUS;
  1453. }
  1454. enum {
  1455. LLOP_RE = BIT(16),
  1456. LLOP_WE = BIT(17),
  1457. LLOP_ALE = BIT(18),
  1458. LLOP_CLE = BIT(19),
  1459. LLOP_RETURN_IDLE = BIT(31),
  1460. LLOP_DATA_MASK = GENMASK(15, 0),
  1461. };
  1462. static int brcmnand_low_level_op(struct brcmnand_host *host,
  1463. enum brcmnand_llop_type type, u32 data,
  1464. bool last_op)
  1465. {
  1466. struct nand_chip *chip = &host->chip;
  1467. struct brcmnand_controller *ctrl = host->ctrl;
  1468. u32 tmp;
  1469. tmp = data & LLOP_DATA_MASK;
  1470. switch (type) {
  1471. case LL_OP_CMD:
  1472. tmp |= LLOP_WE | LLOP_CLE;
  1473. break;
  1474. case LL_OP_ADDR:
  1475. /* WE | ALE */
  1476. tmp |= LLOP_WE | LLOP_ALE;
  1477. break;
  1478. case LL_OP_WR:
  1479. /* WE */
  1480. tmp |= LLOP_WE;
  1481. break;
  1482. case LL_OP_RD:
  1483. /* RE */
  1484. tmp |= LLOP_RE;
  1485. break;
  1486. }
  1487. if (last_op)
  1488. /* RETURN_IDLE */
  1489. tmp |= LLOP_RETURN_IDLE;
  1490. dev_dbg(ctrl->dev, "ll_op cmd %#x\n", tmp);
  1491. brcmnand_write_reg(ctrl, BRCMNAND_LL_OP, tmp);
  1492. (void)brcmnand_read_reg(ctrl, BRCMNAND_LL_OP);
  1493. brcmnand_send_cmd(host, CMD_LOW_LEVEL_OP);
  1494. return brcmnand_waitfunc(chip);
  1495. }
  1496. static void brcmnand_cmdfunc(struct nand_chip *chip, unsigned command,
  1497. int column, int page_addr)
  1498. {
  1499. struct mtd_info *mtd = nand_to_mtd(chip);
  1500. struct brcmnand_host *host = nand_get_controller_data(chip);
  1501. struct brcmnand_controller *ctrl = host->ctrl;
  1502. u64 addr = (u64)page_addr << chip->page_shift;
  1503. int native_cmd = 0;
  1504. if (command == NAND_CMD_READID || command == NAND_CMD_PARAM ||
  1505. command == NAND_CMD_RNDOUT)
  1506. addr = (u64)column;
  1507. /* Avoid propagating a negative, don't-care address */
  1508. else if (page_addr < 0)
  1509. addr = 0;
  1510. dev_dbg(ctrl->dev, "cmd 0x%x addr 0x%llx\n", command,
  1511. (unsigned long long)addr);
  1512. host->last_cmd = command;
  1513. host->last_byte = 0;
  1514. host->last_addr = addr;
  1515. switch (command) {
  1516. case NAND_CMD_RESET:
  1517. native_cmd = CMD_FLASH_RESET;
  1518. break;
  1519. case NAND_CMD_STATUS:
  1520. native_cmd = CMD_STATUS_READ;
  1521. break;
  1522. case NAND_CMD_READID:
  1523. native_cmd = CMD_DEVICE_ID_READ;
  1524. break;
  1525. case NAND_CMD_READOOB:
  1526. native_cmd = CMD_SPARE_AREA_READ;
  1527. break;
  1528. case NAND_CMD_ERASE1:
  1529. native_cmd = CMD_BLOCK_ERASE;
  1530. brcmnand_wp(mtd, 0);
  1531. break;
  1532. case NAND_CMD_PARAM:
  1533. native_cmd = CMD_PARAMETER_READ;
  1534. break;
  1535. case NAND_CMD_SET_FEATURES:
  1536. case NAND_CMD_GET_FEATURES:
  1537. brcmnand_low_level_op(host, LL_OP_CMD, command, false);
  1538. brcmnand_low_level_op(host, LL_OP_ADDR, column, false);
  1539. break;
  1540. case NAND_CMD_RNDOUT:
  1541. native_cmd = CMD_PARAMETER_CHANGE_COL;
  1542. addr &= ~((u64)(FC_BYTES - 1));
  1543. /*
  1544. * HW quirk: PARAMETER_CHANGE_COL requires SECTOR_SIZE_1K=0
  1545. * NB: hwcfg.sector_size_1k may not be initialized yet
  1546. */
  1547. if (brcmnand_get_sector_size_1k(host)) {
  1548. host->hwcfg.sector_size_1k =
  1549. brcmnand_get_sector_size_1k(host);
  1550. brcmnand_set_sector_size_1k(host, 0);
  1551. }
  1552. break;
  1553. }
  1554. if (!native_cmd)
  1555. return;
  1556. brcmnand_set_cmd_addr(mtd, addr);
  1557. brcmnand_send_cmd(host, native_cmd);
  1558. brcmnand_waitfunc(chip);
  1559. if (native_cmd == CMD_PARAMETER_READ ||
  1560. native_cmd == CMD_PARAMETER_CHANGE_COL) {
  1561. /* Copy flash cache word-wise */
  1562. u32 *flash_cache = (u32 *)ctrl->flash_cache;
  1563. int i;
  1564. brcmnand_soc_data_bus_prepare(ctrl->soc, true);
  1565. /*
  1566. * Must cache the FLASH_CACHE now, since changes in
  1567. * SECTOR_SIZE_1K may invalidate it
  1568. */
  1569. for (i = 0; i < FC_WORDS; i++)
  1570. /*
  1571. * Flash cache is big endian for parameter pages, at
  1572. * least on STB SoCs
  1573. */
  1574. flash_cache[i] = be32_to_cpu(brcmnand_read_fc(ctrl, i));
  1575. brcmnand_soc_data_bus_unprepare(ctrl->soc, true);
  1576. /* Cleanup from HW quirk: restore SECTOR_SIZE_1K */
  1577. if (host->hwcfg.sector_size_1k)
  1578. brcmnand_set_sector_size_1k(host,
  1579. host->hwcfg.sector_size_1k);
  1580. }
  1581. /* Re-enable protection is necessary only after erase */
  1582. if (command == NAND_CMD_ERASE1)
  1583. brcmnand_wp(mtd, 1);
  1584. }
  1585. static uint8_t brcmnand_read_byte(struct nand_chip *chip)
  1586. {
  1587. struct brcmnand_host *host = nand_get_controller_data(chip);
  1588. struct brcmnand_controller *ctrl = host->ctrl;
  1589. uint8_t ret = 0;
  1590. int addr, offs;
  1591. switch (host->last_cmd) {
  1592. case NAND_CMD_READID:
  1593. if (host->last_byte < 4)
  1594. ret = brcmnand_read_reg(ctrl, BRCMNAND_ID) >>
  1595. (24 - (host->last_byte << 3));
  1596. else if (host->last_byte < 8)
  1597. ret = brcmnand_read_reg(ctrl, BRCMNAND_ID_EXT) >>
  1598. (56 - (host->last_byte << 3));
  1599. break;
  1600. case NAND_CMD_READOOB:
  1601. ret = oob_reg_read(ctrl, host->last_byte);
  1602. break;
  1603. case NAND_CMD_STATUS:
  1604. ret = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
  1605. INTFC_FLASH_STATUS;
  1606. if (wp_on) /* hide WP status */
  1607. ret |= NAND_STATUS_WP;
  1608. break;
  1609. case NAND_CMD_PARAM:
  1610. case NAND_CMD_RNDOUT:
  1611. addr = host->last_addr + host->last_byte;
  1612. offs = addr & (FC_BYTES - 1);
  1613. /* At FC_BYTES boundary, switch to next column */
  1614. if (host->last_byte > 0 && offs == 0)
  1615. nand_change_read_column_op(chip, addr, NULL, 0, false);
  1616. ret = ctrl->flash_cache[offs];
  1617. break;
  1618. case NAND_CMD_GET_FEATURES:
  1619. if (host->last_byte >= ONFI_SUBFEATURE_PARAM_LEN) {
  1620. ret = 0;
  1621. } else {
  1622. bool last = host->last_byte ==
  1623. ONFI_SUBFEATURE_PARAM_LEN - 1;
  1624. brcmnand_low_level_op(host, LL_OP_RD, 0, last);
  1625. ret = brcmnand_read_reg(ctrl, BRCMNAND_LL_RDATA) & 0xff;
  1626. }
  1627. }
  1628. dev_dbg(ctrl->dev, "read byte = 0x%02x\n", ret);
  1629. host->last_byte++;
  1630. return ret;
  1631. }
  1632. static void brcmnand_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
  1633. {
  1634. int i;
  1635. for (i = 0; i < len; i++, buf++)
  1636. *buf = brcmnand_read_byte(chip);
  1637. }
  1638. static void brcmnand_write_buf(struct nand_chip *chip, const uint8_t *buf,
  1639. int len)
  1640. {
  1641. int i;
  1642. struct brcmnand_host *host = nand_get_controller_data(chip);
  1643. switch (host->last_cmd) {
  1644. case NAND_CMD_SET_FEATURES:
  1645. for (i = 0; i < len; i++)
  1646. brcmnand_low_level_op(host, LL_OP_WR, buf[i],
  1647. (i + 1) == len);
  1648. break;
  1649. default:
  1650. BUG();
  1651. break;
  1652. }
  1653. }
  1654. /*
  1655. * Kick EDU engine
  1656. */
  1657. static int brcmnand_edu_trans(struct brcmnand_host *host, u64 addr, u32 *buf,
  1658. u8 *oob, u32 len, u8 cmd)
  1659. {
  1660. struct brcmnand_controller *ctrl = host->ctrl;
  1661. struct brcmnand_cfg *cfg = &host->hwcfg;
  1662. unsigned long timeo = msecs_to_jiffies(200);
  1663. int ret = 0;
  1664. int dir = (cmd == CMD_PAGE_READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
  1665. u8 edu_cmd = (cmd == CMD_PAGE_READ ? EDU_CMD_READ : EDU_CMD_WRITE);
  1666. unsigned int trans = len >> FC_SHIFT;
  1667. dma_addr_t pa;
  1668. dev_dbg(ctrl->dev, "EDU %s %p:%p\n", ((edu_cmd == EDU_CMD_READ) ?
  1669. "read" : "write"), buf, oob);
  1670. pa = dma_map_single(ctrl->dev, buf, len, dir);
  1671. if (dma_mapping_error(ctrl->dev, pa)) {
  1672. dev_err(ctrl->dev, "unable to map buffer for EDU DMA\n");
  1673. return -ENOMEM;
  1674. }
  1675. ctrl->edu_pending = true;
  1676. ctrl->edu_dram_addr = pa;
  1677. ctrl->edu_ext_addr = addr;
  1678. ctrl->edu_cmd = edu_cmd;
  1679. ctrl->edu_count = trans;
  1680. ctrl->sas = cfg->spare_area_size;
  1681. ctrl->oob = oob;
  1682. edu_writel(ctrl, EDU_DRAM_ADDR, (u32)ctrl->edu_dram_addr);
  1683. edu_readl(ctrl, EDU_DRAM_ADDR);
  1684. edu_writel(ctrl, EDU_EXT_ADDR, ctrl->edu_ext_addr);
  1685. edu_readl(ctrl, EDU_EXT_ADDR);
  1686. edu_writel(ctrl, EDU_LENGTH, FC_BYTES);
  1687. edu_readl(ctrl, EDU_LENGTH);
  1688. if (ctrl->oob && (ctrl->edu_cmd == EDU_CMD_WRITE)) {
  1689. brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
  1690. ctrl->edu_ext_addr);
  1691. brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
  1692. ctrl->oob += write_oob_to_regs(ctrl,
  1693. 1,
  1694. ctrl->oob, ctrl->sas,
  1695. ctrl->sector_size_1k);
  1696. }
  1697. /* Start edu engine */
  1698. mb(); /* flush previous writes */
  1699. edu_writel(ctrl, EDU_CMD, ctrl->edu_cmd);
  1700. edu_readl(ctrl, EDU_CMD);
  1701. if (wait_for_completion_timeout(&ctrl->edu_done, timeo) <= 0) {
  1702. dev_err(ctrl->dev,
  1703. "timeout waiting for EDU; status %#x, error status %#x\n",
  1704. edu_readl(ctrl, EDU_STATUS),
  1705. edu_readl(ctrl, EDU_ERR_STATUS));
  1706. }
  1707. dma_unmap_single(ctrl->dev, pa, len, dir);
  1708. /* read last subpage oob */
  1709. if (ctrl->oob && (ctrl->edu_cmd == EDU_CMD_READ)) {
  1710. ctrl->oob += read_oob_from_regs(ctrl,
  1711. 1,
  1712. ctrl->oob, ctrl->sas,
  1713. ctrl->sector_size_1k);
  1714. }
  1715. /* for program page check NAND status */
  1716. if (((brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
  1717. INTFC_FLASH_STATUS) & NAND_STATUS_FAIL) &&
  1718. edu_cmd == EDU_CMD_WRITE) {
  1719. dev_info(ctrl->dev, "program failed at %llx\n",
  1720. (unsigned long long)addr);
  1721. ret = -EIO;
  1722. }
  1723. /* Make sure the EDU status is clean */
  1724. if (edu_readl(ctrl, EDU_STATUS) & EDU_STATUS_ACTIVE)
  1725. dev_warn(ctrl->dev, "EDU still active: %#x\n",
  1726. edu_readl(ctrl, EDU_STATUS));
  1727. if (unlikely(edu_readl(ctrl, EDU_ERR_STATUS) & EDU_ERR_STATUS_ERRACK)) {
  1728. dev_warn(ctrl->dev, "EDU RBUS error at addr %llx\n",
  1729. (unsigned long long)addr);
  1730. ret = -EIO;
  1731. }
  1732. ctrl->edu_pending = false;
  1733. brcmnand_edu_init(ctrl);
  1734. edu_writel(ctrl, EDU_STOP, 0); /* force stop */
  1735. edu_readl(ctrl, EDU_STOP);
  1736. if (!ret && edu_cmd == EDU_CMD_READ) {
  1737. u64 err_addr = 0;
  1738. /*
  1739. * check for ECC errors here, subpage ECC errors are
  1740. * retained in ECC error address register
  1741. */
  1742. err_addr = brcmnand_get_uncorrecc_addr(ctrl);
  1743. if (!err_addr) {
  1744. err_addr = brcmnand_get_correcc_addr(ctrl);
  1745. if (err_addr)
  1746. ret = -EUCLEAN;
  1747. } else
  1748. ret = -EBADMSG;
  1749. }
  1750. return ret;
  1751. }
  1752. /*
  1753. * Construct a FLASH_DMA descriptor as part of a linked list. You must know the
  1754. * following ahead of time:
  1755. * - Is this descriptor the beginning or end of a linked list?
  1756. * - What is the (DMA) address of the next descriptor in the linked list?
  1757. */
  1758. static int brcmnand_fill_dma_desc(struct brcmnand_host *host,
  1759. struct brcm_nand_dma_desc *desc, u64 addr,
  1760. dma_addr_t buf, u32 len, u8 dma_cmd,
  1761. bool begin, bool end,
  1762. dma_addr_t next_desc)
  1763. {
  1764. memset(desc, 0, sizeof(*desc));
  1765. /* Descriptors are written in native byte order (wordwise) */
  1766. desc->next_desc = lower_32_bits(next_desc);
  1767. desc->next_desc_ext = upper_32_bits(next_desc);
  1768. desc->cmd_irq = (dma_cmd << 24) |
  1769. (end ? (0x03 << 8) : 0) | /* IRQ | STOP */
  1770. (!!begin) | ((!!end) << 1); /* head, tail */
  1771. #ifdef CONFIG_CPU_BIG_ENDIAN
  1772. desc->cmd_irq |= 0x01 << 12;
  1773. #endif
  1774. desc->dram_addr = lower_32_bits(buf);
  1775. desc->dram_addr_ext = upper_32_bits(buf);
  1776. desc->tfr_len = len;
  1777. desc->total_len = len;
  1778. desc->flash_addr = lower_32_bits(addr);
  1779. desc->flash_addr_ext = upper_32_bits(addr);
  1780. desc->cs = host->cs;
  1781. desc->status_valid = 0x01;
  1782. return 0;
  1783. }
  1784. /*
  1785. * Kick the FLASH_DMA engine, with a given DMA descriptor
  1786. */
  1787. static void brcmnand_dma_run(struct brcmnand_host *host, dma_addr_t desc)
  1788. {
  1789. struct brcmnand_controller *ctrl = host->ctrl;
  1790. unsigned long timeo = msecs_to_jiffies(100);
  1791. flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC, lower_32_bits(desc));
  1792. (void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC);
  1793. if (ctrl->nand_version > 0x0602) {
  1794. flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC_EXT,
  1795. upper_32_bits(desc));
  1796. (void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC_EXT);
  1797. }
  1798. /* Start FLASH_DMA engine */
  1799. ctrl->dma_pending = true;
  1800. mb(); /* flush previous writes */
  1801. flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0x03); /* wake | run */
  1802. if (wait_for_completion_timeout(&ctrl->dma_done, timeo) <= 0) {
  1803. dev_err(ctrl->dev,
  1804. "timeout waiting for DMA; status %#x, error status %#x\n",
  1805. flash_dma_readl(ctrl, FLASH_DMA_STATUS),
  1806. flash_dma_readl(ctrl, FLASH_DMA_ERROR_STATUS));
  1807. }
  1808. ctrl->dma_pending = false;
  1809. flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0); /* force stop */
  1810. }
  1811. static int brcmnand_dma_trans(struct brcmnand_host *host, u64 addr, u32 *buf,
  1812. u8 *oob, u32 len, u8 dma_cmd)
  1813. {
  1814. struct brcmnand_controller *ctrl = host->ctrl;
  1815. dma_addr_t buf_pa;
  1816. int dir = dma_cmd == CMD_PAGE_READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
  1817. buf_pa = dma_map_single(ctrl->dev, buf, len, dir);
  1818. if (dma_mapping_error(ctrl->dev, buf_pa)) {
  1819. dev_err(ctrl->dev, "unable to map buffer for DMA\n");
  1820. return -ENOMEM;
  1821. }
  1822. brcmnand_fill_dma_desc(host, ctrl->dma_desc, addr, buf_pa, len,
  1823. dma_cmd, true, true, 0);
  1824. brcmnand_dma_run(host, ctrl->dma_pa);
  1825. dma_unmap_single(ctrl->dev, buf_pa, len, dir);
  1826. if (ctrl->dma_desc->status_valid & FLASH_DMA_ECC_ERROR)
  1827. return -EBADMSG;
  1828. else if (ctrl->dma_desc->status_valid & FLASH_DMA_CORR_ERROR)
  1829. return -EUCLEAN;
  1830. return 0;
  1831. }
  1832. /*
  1833. * Assumes proper CS is already set
  1834. */
  1835. static int brcmnand_read_by_pio(struct mtd_info *mtd, struct nand_chip *chip,
  1836. u64 addr, unsigned int trans, u32 *buf,
  1837. u8 *oob, u64 *err_addr)
  1838. {
  1839. struct brcmnand_host *host = nand_get_controller_data(chip);
  1840. struct brcmnand_controller *ctrl = host->ctrl;
  1841. int i, j, ret = 0;
  1842. brcmnand_clear_ecc_addr(ctrl);
  1843. for (i = 0; i < trans; i++, addr += FC_BYTES) {
  1844. brcmnand_set_cmd_addr(mtd, addr);
  1845. /* SPARE_AREA_READ does not use ECC, so just use PAGE_READ */
  1846. brcmnand_send_cmd(host, CMD_PAGE_READ);
  1847. brcmnand_waitfunc(chip);
  1848. if (likely(buf)) {
  1849. brcmnand_soc_data_bus_prepare(ctrl->soc, false);
  1850. for (j = 0; j < FC_WORDS; j++, buf++)
  1851. *buf = brcmnand_read_fc(ctrl, j);
  1852. brcmnand_soc_data_bus_unprepare(ctrl->soc, false);
  1853. }
  1854. if (oob)
  1855. oob += read_oob_from_regs(ctrl, i, oob,
  1856. mtd->oobsize / trans,
  1857. host->hwcfg.sector_size_1k);
  1858. if (ret != -EBADMSG) {
  1859. *err_addr = brcmnand_get_uncorrecc_addr(ctrl);
  1860. if (*err_addr)
  1861. ret = -EBADMSG;
  1862. }
  1863. if (!ret) {
  1864. *err_addr = brcmnand_get_correcc_addr(ctrl);
  1865. if (*err_addr)
  1866. ret = -EUCLEAN;
  1867. }
  1868. }
  1869. return ret;
  1870. }
  1871. /*
  1872. * Check a page to see if it is erased (w/ bitflips) after an uncorrectable ECC
  1873. * error
  1874. *
  1875. * Because the HW ECC signals an ECC error if an erase paged has even a single
  1876. * bitflip, we must check each ECC error to see if it is actually an erased
  1877. * page with bitflips, not a truly corrupted page.
  1878. *
  1879. * On a real error, return a negative error code (-EBADMSG for ECC error), and
  1880. * buf will contain raw data.
  1881. * Otherwise, buf gets filled with 0xffs and return the maximum number of
  1882. * bitflips-per-ECC-sector to the caller.
  1883. *
  1884. */
  1885. static int brcmstb_nand_verify_erased_page(struct mtd_info *mtd,
  1886. struct nand_chip *chip, void *buf, u64 addr)
  1887. {
  1888. struct mtd_oob_region ecc;
  1889. int i;
  1890. int bitflips = 0;
  1891. int page = addr >> chip->page_shift;
  1892. int ret;
  1893. void *ecc_bytes;
  1894. void *ecc_chunk;
  1895. if (!buf)
  1896. buf = nand_get_data_buf(chip);
  1897. /* read without ecc for verification */
  1898. ret = chip->ecc.read_page_raw(chip, buf, true, page);
  1899. if (ret)
  1900. return ret;
  1901. for (i = 0; i < chip->ecc.steps; i++) {
  1902. ecc_chunk = buf + chip->ecc.size * i;
  1903. mtd_ooblayout_ecc(mtd, i, &ecc);
  1904. ecc_bytes = chip->oob_poi + ecc.offset;
  1905. ret = nand_check_erased_ecc_chunk(ecc_chunk, chip->ecc.size,
  1906. ecc_bytes, ecc.length,
  1907. NULL, 0,
  1908. chip->ecc.strength);
  1909. if (ret < 0)
  1910. return ret;
  1911. bitflips = max(bitflips, ret);
  1912. }
  1913. return bitflips;
  1914. }
  1915. static int brcmnand_read(struct mtd_info *mtd, struct nand_chip *chip,
  1916. u64 addr, unsigned int trans, u32 *buf, u8 *oob)
  1917. {
  1918. struct brcmnand_host *host = nand_get_controller_data(chip);
  1919. struct brcmnand_controller *ctrl = host->ctrl;
  1920. u64 err_addr = 0;
  1921. int err;
  1922. bool retry = true;
  1923. bool edu_err = false;
  1924. dev_dbg(ctrl->dev, "read %llx -> %p\n", (unsigned long long)addr, buf);
  1925. try_dmaread:
  1926. brcmnand_clear_ecc_addr(ctrl);
  1927. if (ctrl->dma_trans && (has_edu(ctrl) || !oob) &&
  1928. flash_dma_buf_ok(buf)) {
  1929. err = ctrl->dma_trans(host, addr, buf, oob,
  1930. trans * FC_BYTES,
  1931. CMD_PAGE_READ);
  1932. if (err) {
  1933. if (mtd_is_bitflip_or_eccerr(err))
  1934. err_addr = addr;
  1935. else
  1936. return -EIO;
  1937. }
  1938. if (has_edu(ctrl) && err_addr)
  1939. edu_err = true;
  1940. } else {
  1941. if (oob)
  1942. memset(oob, 0x99, mtd->oobsize);
  1943. err = brcmnand_read_by_pio(mtd, chip, addr, trans, buf,
  1944. oob, &err_addr);
  1945. }
  1946. if (mtd_is_eccerr(err)) {
  1947. /*
  1948. * On controller version and 7.0, 7.1 , DMA read after a
  1949. * prior PIO read that reported uncorrectable error,
  1950. * the DMA engine captures this error following DMA read
  1951. * cleared only on subsequent DMA read, so just retry once
  1952. * to clear a possible false error reported for current DMA
  1953. * read
  1954. */
  1955. if ((ctrl->nand_version == 0x0700) ||
  1956. (ctrl->nand_version == 0x0701)) {
  1957. if (retry) {
  1958. retry = false;
  1959. goto try_dmaread;
  1960. }
  1961. }
  1962. /*
  1963. * Controller version 7.2 has hw encoder to detect erased page
  1964. * bitflips, apply sw verification for older controllers only
  1965. */
  1966. if (ctrl->nand_version < 0x0702) {
  1967. err = brcmstb_nand_verify_erased_page(mtd, chip, buf,
  1968. addr);
  1969. /* erased page bitflips corrected */
  1970. if (err >= 0)
  1971. return err;
  1972. }
  1973. dev_dbg(ctrl->dev, "uncorrectable error at 0x%llx\n",
  1974. (unsigned long long)err_addr);
  1975. mtd->ecc_stats.failed++;
  1976. /* NAND layer expects zero on ECC errors */
  1977. return 0;
  1978. }
  1979. if (mtd_is_bitflip(err)) {
  1980. unsigned int corrected = brcmnand_count_corrected(ctrl);
  1981. /* in case of EDU correctable error we read again using PIO */
  1982. if (edu_err)
  1983. err = brcmnand_read_by_pio(mtd, chip, addr, trans, buf,
  1984. oob, &err_addr);
  1985. dev_dbg(ctrl->dev, "corrected error at 0x%llx\n",
  1986. (unsigned long long)err_addr);
  1987. mtd->ecc_stats.corrected += corrected;
  1988. /* Always exceed the software-imposed threshold */
  1989. return max(mtd->bitflip_threshold, corrected);
  1990. }
  1991. return 0;
  1992. }
  1993. static int brcmnand_read_page(struct nand_chip *chip, uint8_t *buf,
  1994. int oob_required, int page)
  1995. {
  1996. struct mtd_info *mtd = nand_to_mtd(chip);
  1997. struct brcmnand_host *host = nand_get_controller_data(chip);
  1998. u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL;
  1999. nand_read_page_op(chip, page, 0, NULL, 0);
  2000. return brcmnand_read(mtd, chip, host->last_addr,
  2001. mtd->writesize >> FC_SHIFT, (u32 *)buf, oob);
  2002. }
  2003. static int brcmnand_read_page_raw(struct nand_chip *chip, uint8_t *buf,
  2004. int oob_required, int page)
  2005. {
  2006. struct brcmnand_host *host = nand_get_controller_data(chip);
  2007. struct mtd_info *mtd = nand_to_mtd(chip);
  2008. u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL;
  2009. int ret;
  2010. nand_read_page_op(chip, page, 0, NULL, 0);
  2011. brcmnand_set_ecc_enabled(host, 0);
  2012. ret = brcmnand_read(mtd, chip, host->last_addr,
  2013. mtd->writesize >> FC_SHIFT, (u32 *)buf, oob);
  2014. brcmnand_set_ecc_enabled(host, 1);
  2015. return ret;
  2016. }
  2017. static int brcmnand_read_oob(struct nand_chip *chip, int page)
  2018. {
  2019. struct mtd_info *mtd = nand_to_mtd(chip);
  2020. return brcmnand_read(mtd, chip, (u64)page << chip->page_shift,
  2021. mtd->writesize >> FC_SHIFT,
  2022. NULL, (u8 *)chip->oob_poi);
  2023. }
  2024. static int brcmnand_read_oob_raw(struct nand_chip *chip, int page)
  2025. {
  2026. struct mtd_info *mtd = nand_to_mtd(chip);
  2027. struct brcmnand_host *host = nand_get_controller_data(chip);
  2028. brcmnand_set_ecc_enabled(host, 0);
  2029. brcmnand_read(mtd, chip, (u64)page << chip->page_shift,
  2030. mtd->writesize >> FC_SHIFT,
  2031. NULL, (u8 *)chip->oob_poi);
  2032. brcmnand_set_ecc_enabled(host, 1);
  2033. return 0;
  2034. }
  2035. static int brcmnand_write(struct mtd_info *mtd, struct nand_chip *chip,
  2036. u64 addr, const u32 *buf, u8 *oob)
  2037. {
  2038. struct brcmnand_host *host = nand_get_controller_data(chip);
  2039. struct brcmnand_controller *ctrl = host->ctrl;
  2040. unsigned int i, j, trans = mtd->writesize >> FC_SHIFT;
  2041. int status, ret = 0;
  2042. dev_dbg(ctrl->dev, "write %llx <- %p\n", (unsigned long long)addr, buf);
  2043. if (unlikely((unsigned long)buf & 0x03)) {
  2044. dev_warn(ctrl->dev, "unaligned buffer: %p\n", buf);
  2045. buf = (u32 *)((unsigned long)buf & ~0x03);
  2046. }
  2047. brcmnand_wp(mtd, 0);
  2048. for (i = 0; i < ctrl->max_oob; i += 4)
  2049. oob_reg_write(ctrl, i, 0xffffffff);
  2050. if (mtd->oops_panic_write)
  2051. /* switch to interrupt polling and PIO mode */
  2052. disable_ctrl_irqs(ctrl);
  2053. if (use_dma(ctrl) && (has_edu(ctrl) || !oob) && flash_dma_buf_ok(buf)) {
  2054. if (ctrl->dma_trans(host, addr, (u32 *)buf, oob, mtd->writesize,
  2055. CMD_PROGRAM_PAGE))
  2056. ret = -EIO;
  2057. goto out;
  2058. }
  2059. for (i = 0; i < trans; i++, addr += FC_BYTES) {
  2060. /* full address MUST be set before populating FC */
  2061. brcmnand_set_cmd_addr(mtd, addr);
  2062. if (buf) {
  2063. brcmnand_soc_data_bus_prepare(ctrl->soc, false);
  2064. for (j = 0; j < FC_WORDS; j++, buf++)
  2065. brcmnand_write_fc(ctrl, j, *buf);
  2066. brcmnand_soc_data_bus_unprepare(ctrl->soc, false);
  2067. } else if (oob) {
  2068. for (j = 0; j < FC_WORDS; j++)
  2069. brcmnand_write_fc(ctrl, j, 0xffffffff);
  2070. }
  2071. if (oob) {
  2072. oob += write_oob_to_regs(ctrl, i, oob,
  2073. mtd->oobsize / trans,
  2074. host->hwcfg.sector_size_1k);
  2075. }
  2076. /* we cannot use SPARE_AREA_PROGRAM when PARTIAL_PAGE_EN=0 */
  2077. brcmnand_send_cmd(host, CMD_PROGRAM_PAGE);
  2078. status = brcmnand_waitfunc(chip);
  2079. if (status & NAND_STATUS_FAIL) {
  2080. dev_info(ctrl->dev, "program failed at %llx\n",
  2081. (unsigned long long)addr);
  2082. ret = -EIO;
  2083. goto out;
  2084. }
  2085. }
  2086. out:
  2087. brcmnand_wp(mtd, 1);
  2088. return ret;
  2089. }
  2090. static int brcmnand_write_page(struct nand_chip *chip, const uint8_t *buf,
  2091. int oob_required, int page)
  2092. {
  2093. struct mtd_info *mtd = nand_to_mtd(chip);
  2094. struct brcmnand_host *host = nand_get_controller_data(chip);
  2095. void *oob = oob_required ? chip->oob_poi : NULL;
  2096. nand_prog_page_begin_op(chip, page, 0, NULL, 0);
  2097. brcmnand_write(mtd, chip, host->last_addr, (const u32 *)buf, oob);
  2098. return nand_prog_page_end_op(chip);
  2099. }
  2100. static int brcmnand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
  2101. int oob_required, int page)
  2102. {
  2103. struct mtd_info *mtd = nand_to_mtd(chip);
  2104. struct brcmnand_host *host = nand_get_controller_data(chip);
  2105. void *oob = oob_required ? chip->oob_poi : NULL;
  2106. nand_prog_page_begin_op(chip, page, 0, NULL, 0);
  2107. brcmnand_set_ecc_enabled(host, 0);
  2108. brcmnand_write(mtd, chip, host->last_addr, (const u32 *)buf, oob);
  2109. brcmnand_set_ecc_enabled(host, 1);
  2110. return nand_prog_page_end_op(chip);
  2111. }
  2112. static int brcmnand_write_oob(struct nand_chip *chip, int page)
  2113. {
  2114. return brcmnand_write(nand_to_mtd(chip), chip,
  2115. (u64)page << chip->page_shift, NULL,
  2116. chip->oob_poi);
  2117. }
  2118. static int brcmnand_write_oob_raw(struct nand_chip *chip, int page)
  2119. {
  2120. struct mtd_info *mtd = nand_to_mtd(chip);
  2121. struct brcmnand_host *host = nand_get_controller_data(chip);
  2122. int ret;
  2123. brcmnand_set_ecc_enabled(host, 0);
  2124. ret = brcmnand_write(mtd, chip, (u64)page << chip->page_shift, NULL,
  2125. (u8 *)chip->oob_poi);
  2126. brcmnand_set_ecc_enabled(host, 1);
  2127. return ret;
  2128. }
  2129. /***********************************************************************
  2130. * Per-CS setup (1 NAND device)
  2131. ***********************************************************************/
  2132. static int brcmnand_set_cfg(struct brcmnand_host *host,
  2133. struct brcmnand_cfg *cfg)
  2134. {
  2135. struct brcmnand_controller *ctrl = host->ctrl;
  2136. struct nand_chip *chip = &host->chip;
  2137. u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
  2138. u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs,
  2139. BRCMNAND_CS_CFG_EXT);
  2140. u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
  2141. BRCMNAND_CS_ACC_CONTROL);
  2142. u8 block_size = 0, page_size = 0, device_size = 0;
  2143. u32 tmp;
  2144. if (ctrl->block_sizes) {
  2145. int i, found;
  2146. for (i = 0, found = 0; ctrl->block_sizes[i]; i++)
  2147. if (ctrl->block_sizes[i] * 1024 == cfg->block_size) {
  2148. block_size = i;
  2149. found = 1;
  2150. }
  2151. if (!found) {
  2152. dev_warn(ctrl->dev, "invalid block size %u\n",
  2153. cfg->block_size);
  2154. return -EINVAL;
  2155. }
  2156. } else {
  2157. block_size = ffs(cfg->block_size) - ffs(BRCMNAND_MIN_BLOCKSIZE);
  2158. }
  2159. if (cfg->block_size < BRCMNAND_MIN_BLOCKSIZE || (ctrl->max_block_size &&
  2160. cfg->block_size > ctrl->max_block_size)) {
  2161. dev_warn(ctrl->dev, "invalid block size %u\n",
  2162. cfg->block_size);
  2163. block_size = 0;
  2164. }
  2165. if (ctrl->page_sizes) {
  2166. int i, found;
  2167. for (i = 0, found = 0; ctrl->page_sizes[i]; i++)
  2168. if (ctrl->page_sizes[i] == cfg->page_size) {
  2169. page_size = i;
  2170. found = 1;
  2171. }
  2172. if (!found) {
  2173. dev_warn(ctrl->dev, "invalid page size %u\n",
  2174. cfg->page_size);
  2175. return -EINVAL;
  2176. }
  2177. } else {
  2178. page_size = ffs(cfg->page_size) - ffs(BRCMNAND_MIN_PAGESIZE);
  2179. }
  2180. if (cfg->page_size < BRCMNAND_MIN_PAGESIZE || (ctrl->max_page_size &&
  2181. cfg->page_size > ctrl->max_page_size)) {
  2182. dev_warn(ctrl->dev, "invalid page size %u\n", cfg->page_size);
  2183. return -EINVAL;
  2184. }
  2185. if (fls64(cfg->device_size) < fls64(BRCMNAND_MIN_DEVSIZE)) {
  2186. dev_warn(ctrl->dev, "invalid device size 0x%llx\n",
  2187. (unsigned long long)cfg->device_size);
  2188. return -EINVAL;
  2189. }
  2190. device_size = fls64(cfg->device_size) - fls64(BRCMNAND_MIN_DEVSIZE);
  2191. tmp = (cfg->blk_adr_bytes << CFG_BLK_ADR_BYTES_SHIFT) |
  2192. (cfg->col_adr_bytes << CFG_COL_ADR_BYTES_SHIFT) |
  2193. (cfg->ful_adr_bytes << CFG_FUL_ADR_BYTES_SHIFT) |
  2194. (!!(cfg->device_width == 16) << CFG_BUS_WIDTH_SHIFT) |
  2195. (device_size << CFG_DEVICE_SIZE_SHIFT);
  2196. if (cfg_offs == cfg_ext_offs) {
  2197. tmp |= (page_size << ctrl->page_size_shift) |
  2198. (block_size << CFG_BLK_SIZE_SHIFT);
  2199. nand_writereg(ctrl, cfg_offs, tmp);
  2200. } else {
  2201. nand_writereg(ctrl, cfg_offs, tmp);
  2202. tmp = (page_size << CFG_EXT_PAGE_SIZE_SHIFT) |
  2203. (block_size << CFG_EXT_BLK_SIZE_SHIFT);
  2204. nand_writereg(ctrl, cfg_ext_offs, tmp);
  2205. }
  2206. tmp = nand_readreg(ctrl, acc_control_offs);
  2207. tmp &= ~brcmnand_ecc_level_mask(ctrl);
  2208. tmp &= ~brcmnand_spare_area_mask(ctrl);
  2209. if (ctrl->nand_version >= 0x0302) {
  2210. tmp |= cfg->ecc_level << ctrl->ecc_level_shift;
  2211. tmp |= cfg->spare_area_size;
  2212. }
  2213. nand_writereg(ctrl, acc_control_offs, tmp);
  2214. brcmnand_set_sector_size_1k(host, cfg->sector_size_1k);
  2215. /* threshold = ceil(BCH-level * 0.75) */
  2216. brcmnand_wr_corr_thresh(host, DIV_ROUND_UP(chip->ecc.strength * 3, 4));
  2217. return 0;
  2218. }
  2219. static void brcmnand_print_cfg(struct brcmnand_host *host,
  2220. char *buf, struct brcmnand_cfg *cfg)
  2221. {
  2222. buf += sprintf(buf,
  2223. "%lluMiB total, %uKiB blocks, %u%s pages, %uB OOB, %u-bit",
  2224. (unsigned long long)cfg->device_size >> 20,
  2225. cfg->block_size >> 10,
  2226. cfg->page_size >= 1024 ? cfg->page_size >> 10 : cfg->page_size,
  2227. cfg->page_size >= 1024 ? "KiB" : "B",
  2228. cfg->spare_area_size, cfg->device_width);
  2229. /* Account for Hamming ECC and for BCH 512B vs 1KiB sectors */
  2230. if (is_hamming_ecc(host->ctrl, cfg))
  2231. sprintf(buf, ", Hamming ECC");
  2232. else if (cfg->sector_size_1k)
  2233. sprintf(buf, ", BCH-%u (1KiB sector)", cfg->ecc_level << 1);
  2234. else
  2235. sprintf(buf, ", BCH-%u", cfg->ecc_level);
  2236. }
  2237. /*
  2238. * Minimum number of bytes to address a page. Calculated as:
  2239. * roundup(log2(size / page-size) / 8)
  2240. *
  2241. * NB: the following does not "round up" for non-power-of-2 'size'; but this is
  2242. * OK because many other things will break if 'size' is irregular...
  2243. */
  2244. static inline int get_blk_adr_bytes(u64 size, u32 writesize)
  2245. {
  2246. return ALIGN(ilog2(size) - ilog2(writesize), 8) >> 3;
  2247. }
  2248. static int brcmnand_setup_dev(struct brcmnand_host *host)
  2249. {
  2250. struct mtd_info *mtd = nand_to_mtd(&host->chip);
  2251. struct nand_chip *chip = &host->chip;
  2252. const struct nand_ecc_props *requirements =
  2253. nanddev_get_ecc_requirements(&chip->base);
  2254. struct nand_memory_organization *memorg =
  2255. nanddev_get_memorg(&chip->base);
  2256. struct brcmnand_controller *ctrl = host->ctrl;
  2257. struct brcmnand_cfg *cfg = &host->hwcfg;
  2258. char msg[128];
  2259. u32 offs, tmp, oob_sector;
  2260. int ret;
  2261. memset(cfg, 0, sizeof(*cfg));
  2262. ret = of_property_read_u32(nand_get_flash_node(chip),
  2263. "brcm,nand-oob-sector-size",
  2264. &oob_sector);
  2265. if (ret) {
  2266. /* Use detected size */
  2267. cfg->spare_area_size = mtd->oobsize /
  2268. (mtd->writesize >> FC_SHIFT);
  2269. } else {
  2270. cfg->spare_area_size = oob_sector;
  2271. }
  2272. if (cfg->spare_area_size > ctrl->max_oob)
  2273. cfg->spare_area_size = ctrl->max_oob;
  2274. /*
  2275. * Set mtd and memorg oobsize to be consistent with controller's
  2276. * spare_area_size, as the rest is inaccessible.
  2277. */
  2278. mtd->oobsize = cfg->spare_area_size * (mtd->writesize >> FC_SHIFT);
  2279. memorg->oobsize = mtd->oobsize;
  2280. cfg->device_size = mtd->size;
  2281. cfg->block_size = mtd->erasesize;
  2282. cfg->page_size = mtd->writesize;
  2283. cfg->device_width = (chip->options & NAND_BUSWIDTH_16) ? 16 : 8;
  2284. cfg->col_adr_bytes = 2;
  2285. cfg->blk_adr_bytes = get_blk_adr_bytes(mtd->size, mtd->writesize);
  2286. if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) {
  2287. dev_err(ctrl->dev, "only HW ECC supported; selected: %d\n",
  2288. chip->ecc.engine_type);
  2289. return -EINVAL;
  2290. }
  2291. if (chip->ecc.algo == NAND_ECC_ALGO_UNKNOWN) {
  2292. if (chip->ecc.strength == 1 && chip->ecc.size == 512)
  2293. /* Default to Hamming for 1-bit ECC, if unspecified */
  2294. chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
  2295. else
  2296. /* Otherwise, BCH */
  2297. chip->ecc.algo = NAND_ECC_ALGO_BCH;
  2298. }
  2299. if (chip->ecc.algo == NAND_ECC_ALGO_HAMMING &&
  2300. (chip->ecc.strength != 1 || chip->ecc.size != 512)) {
  2301. dev_err(ctrl->dev, "invalid Hamming params: %d bits per %d bytes\n",
  2302. chip->ecc.strength, chip->ecc.size);
  2303. return -EINVAL;
  2304. }
  2305. if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_NONE &&
  2306. (!chip->ecc.size || !chip->ecc.strength)) {
  2307. if (requirements->step_size && requirements->strength) {
  2308. /* use detected ECC parameters */
  2309. chip->ecc.size = requirements->step_size;
  2310. chip->ecc.strength = requirements->strength;
  2311. dev_info(ctrl->dev, "Using ECC step-size %d, strength %d\n",
  2312. chip->ecc.size, chip->ecc.strength);
  2313. }
  2314. }
  2315. switch (chip->ecc.size) {
  2316. case 512:
  2317. if (chip->ecc.algo == NAND_ECC_ALGO_HAMMING)
  2318. cfg->ecc_level = 15;
  2319. else
  2320. cfg->ecc_level = chip->ecc.strength;
  2321. cfg->sector_size_1k = 0;
  2322. break;
  2323. case 1024:
  2324. if (!(ctrl->features & BRCMNAND_HAS_1K_SECTORS)) {
  2325. dev_err(ctrl->dev, "1KB sectors not supported\n");
  2326. return -EINVAL;
  2327. }
  2328. if (chip->ecc.strength & 0x1) {
  2329. dev_err(ctrl->dev,
  2330. "odd ECC not supported with 1KB sectors\n");
  2331. return -EINVAL;
  2332. }
  2333. cfg->ecc_level = chip->ecc.strength >> 1;
  2334. cfg->sector_size_1k = 1;
  2335. break;
  2336. default:
  2337. dev_err(ctrl->dev, "unsupported ECC size: %d\n",
  2338. chip->ecc.size);
  2339. return -EINVAL;
  2340. }
  2341. cfg->ful_adr_bytes = cfg->blk_adr_bytes;
  2342. if (mtd->writesize > 512)
  2343. cfg->ful_adr_bytes += cfg->col_adr_bytes;
  2344. else
  2345. cfg->ful_adr_bytes += 1;
  2346. ret = brcmnand_set_cfg(host, cfg);
  2347. if (ret)
  2348. return ret;
  2349. brcmnand_set_ecc_enabled(host, 1);
  2350. brcmnand_print_cfg(host, msg, cfg);
  2351. dev_info(ctrl->dev, "detected %s\n", msg);
  2352. /* Configure ACC_CONTROL */
  2353. offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL);
  2354. tmp = nand_readreg(ctrl, offs);
  2355. tmp &= ~ACC_CONTROL_PARTIAL_PAGE;
  2356. tmp &= ~ACC_CONTROL_RD_ERASED;
  2357. /* We need to turn on Read from erased paged protected by ECC */
  2358. if (ctrl->nand_version >= 0x0702)
  2359. tmp |= ACC_CONTROL_RD_ERASED;
  2360. tmp &= ~ACC_CONTROL_FAST_PGM_RDIN;
  2361. if (ctrl->features & BRCMNAND_HAS_PREFETCH)
  2362. tmp &= ~ACC_CONTROL_PREFETCH;
  2363. nand_writereg(ctrl, offs, tmp);
  2364. return 0;
  2365. }
  2366. static int brcmnand_attach_chip(struct nand_chip *chip)
  2367. {
  2368. struct mtd_info *mtd = nand_to_mtd(chip);
  2369. struct brcmnand_host *host = nand_get_controller_data(chip);
  2370. int ret;
  2371. chip->options |= NAND_NO_SUBPAGE_WRITE;
  2372. /*
  2373. * Avoid (for instance) kmap()'d buffers from JFFS2, which we can't DMA
  2374. * to/from, and have nand_base pass us a bounce buffer instead, as
  2375. * needed.
  2376. */
  2377. chip->options |= NAND_USES_DMA;
  2378. if (chip->bbt_options & NAND_BBT_USE_FLASH)
  2379. chip->bbt_options |= NAND_BBT_NO_OOB;
  2380. if (brcmnand_setup_dev(host))
  2381. return -ENXIO;
  2382. chip->ecc.size = host->hwcfg.sector_size_1k ? 1024 : 512;
  2383. /* only use our internal HW threshold */
  2384. mtd->bitflip_threshold = 1;
  2385. ret = brcmstb_choose_ecc_layout(host);
  2386. /* If OOB is written with ECC enabled it will cause ECC errors */
  2387. if (is_hamming_ecc(host->ctrl, &host->hwcfg)) {
  2388. chip->ecc.write_oob = brcmnand_write_oob_raw;
  2389. chip->ecc.read_oob = brcmnand_read_oob_raw;
  2390. }
  2391. return ret;
  2392. }
  2393. static const struct nand_controller_ops brcmnand_controller_ops = {
  2394. .attach_chip = brcmnand_attach_chip,
  2395. };
  2396. static int brcmnand_init_cs(struct brcmnand_host *host,
  2397. const char * const *part_probe_types)
  2398. {
  2399. struct brcmnand_controller *ctrl = host->ctrl;
  2400. struct device *dev = ctrl->dev;
  2401. struct mtd_info *mtd;
  2402. struct nand_chip *chip;
  2403. int ret;
  2404. u16 cfg_offs;
  2405. mtd = nand_to_mtd(&host->chip);
  2406. chip = &host->chip;
  2407. nand_set_controller_data(chip, host);
  2408. mtd->name = devm_kasprintf(dev, GFP_KERNEL, "brcmnand.%d",
  2409. host->cs);
  2410. if (!mtd->name)
  2411. return -ENOMEM;
  2412. mtd->owner = THIS_MODULE;
  2413. mtd->dev.parent = dev;
  2414. chip->legacy.cmd_ctrl = brcmnand_cmd_ctrl;
  2415. chip->legacy.cmdfunc = brcmnand_cmdfunc;
  2416. chip->legacy.waitfunc = brcmnand_waitfunc;
  2417. chip->legacy.read_byte = brcmnand_read_byte;
  2418. chip->legacy.read_buf = brcmnand_read_buf;
  2419. chip->legacy.write_buf = brcmnand_write_buf;
  2420. chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
  2421. chip->ecc.read_page = brcmnand_read_page;
  2422. chip->ecc.write_page = brcmnand_write_page;
  2423. chip->ecc.read_page_raw = brcmnand_read_page_raw;
  2424. chip->ecc.write_page_raw = brcmnand_write_page_raw;
  2425. chip->ecc.write_oob_raw = brcmnand_write_oob_raw;
  2426. chip->ecc.read_oob_raw = brcmnand_read_oob_raw;
  2427. chip->ecc.read_oob = brcmnand_read_oob;
  2428. chip->ecc.write_oob = brcmnand_write_oob;
  2429. chip->controller = &ctrl->controller;
  2430. /*
  2431. * The bootloader might have configured 16bit mode but
  2432. * NAND READID command only works in 8bit mode. We force
  2433. * 8bit mode here to ensure that NAND READID commands works.
  2434. */
  2435. cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
  2436. nand_writereg(ctrl, cfg_offs,
  2437. nand_readreg(ctrl, cfg_offs) & ~CFG_BUS_WIDTH);
  2438. ret = nand_scan(chip, 1);
  2439. if (ret)
  2440. return ret;
  2441. ret = mtd_device_parse_register(mtd, part_probe_types, NULL, NULL, 0);
  2442. if (ret)
  2443. nand_cleanup(chip);
  2444. return ret;
  2445. }
  2446. static void brcmnand_save_restore_cs_config(struct brcmnand_host *host,
  2447. int restore)
  2448. {
  2449. struct brcmnand_controller *ctrl = host->ctrl;
  2450. u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
  2451. u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs,
  2452. BRCMNAND_CS_CFG_EXT);
  2453. u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
  2454. BRCMNAND_CS_ACC_CONTROL);
  2455. u16 t1_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING1);
  2456. u16 t2_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING2);
  2457. if (restore) {
  2458. nand_writereg(ctrl, cfg_offs, host->hwcfg.config);
  2459. if (cfg_offs != cfg_ext_offs)
  2460. nand_writereg(ctrl, cfg_ext_offs,
  2461. host->hwcfg.config_ext);
  2462. nand_writereg(ctrl, acc_control_offs, host->hwcfg.acc_control);
  2463. nand_writereg(ctrl, t1_offs, host->hwcfg.timing_1);
  2464. nand_writereg(ctrl, t2_offs, host->hwcfg.timing_2);
  2465. } else {
  2466. host->hwcfg.config = nand_readreg(ctrl, cfg_offs);
  2467. if (cfg_offs != cfg_ext_offs)
  2468. host->hwcfg.config_ext =
  2469. nand_readreg(ctrl, cfg_ext_offs);
  2470. host->hwcfg.acc_control = nand_readreg(ctrl, acc_control_offs);
  2471. host->hwcfg.timing_1 = nand_readreg(ctrl, t1_offs);
  2472. host->hwcfg.timing_2 = nand_readreg(ctrl, t2_offs);
  2473. }
  2474. }
  2475. static int brcmnand_suspend(struct device *dev)
  2476. {
  2477. struct brcmnand_controller *ctrl = dev_get_drvdata(dev);
  2478. struct brcmnand_host *host;
  2479. list_for_each_entry(host, &ctrl->host_list, node)
  2480. brcmnand_save_restore_cs_config(host, 0);
  2481. ctrl->nand_cs_nand_select = brcmnand_read_reg(ctrl, BRCMNAND_CS_SELECT);
  2482. ctrl->nand_cs_nand_xor = brcmnand_read_reg(ctrl, BRCMNAND_CS_XOR);
  2483. ctrl->corr_stat_threshold =
  2484. brcmnand_read_reg(ctrl, BRCMNAND_CORR_THRESHOLD);
  2485. if (has_flash_dma(ctrl))
  2486. ctrl->flash_dma_mode = flash_dma_readl(ctrl, FLASH_DMA_MODE);
  2487. else if (has_edu(ctrl))
  2488. ctrl->edu_config = edu_readl(ctrl, EDU_CONFIG);
  2489. return 0;
  2490. }
  2491. static int brcmnand_resume(struct device *dev)
  2492. {
  2493. struct brcmnand_controller *ctrl = dev_get_drvdata(dev);
  2494. struct brcmnand_host *host;
  2495. if (has_flash_dma(ctrl)) {
  2496. flash_dma_writel(ctrl, FLASH_DMA_MODE, ctrl->flash_dma_mode);
  2497. flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0);
  2498. }
  2499. if (has_edu(ctrl)) {
  2500. ctrl->edu_config = edu_readl(ctrl, EDU_CONFIG);
  2501. edu_writel(ctrl, EDU_CONFIG, ctrl->edu_config);
  2502. edu_readl(ctrl, EDU_CONFIG);
  2503. brcmnand_edu_init(ctrl);
  2504. }
  2505. brcmnand_write_reg(ctrl, BRCMNAND_CS_SELECT, ctrl->nand_cs_nand_select);
  2506. brcmnand_write_reg(ctrl, BRCMNAND_CS_XOR, ctrl->nand_cs_nand_xor);
  2507. brcmnand_write_reg(ctrl, BRCMNAND_CORR_THRESHOLD,
  2508. ctrl->corr_stat_threshold);
  2509. if (ctrl->soc) {
  2510. /* Clear/re-enable interrupt */
  2511. ctrl->soc->ctlrdy_ack(ctrl->soc);
  2512. ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true);
  2513. }
  2514. list_for_each_entry(host, &ctrl->host_list, node) {
  2515. struct nand_chip *chip = &host->chip;
  2516. brcmnand_save_restore_cs_config(host, 1);
  2517. /* Reset the chip, required by some chips after power-up */
  2518. nand_reset_op(chip);
  2519. }
  2520. return 0;
  2521. }
  2522. const struct dev_pm_ops brcmnand_pm_ops = {
  2523. .suspend = brcmnand_suspend,
  2524. .resume = brcmnand_resume,
  2525. };
  2526. EXPORT_SYMBOL_GPL(brcmnand_pm_ops);
  2527. static const struct of_device_id __maybe_unused brcmnand_of_match[] = {
  2528. { .compatible = "brcm,brcmnand-v2.1" },
  2529. { .compatible = "brcm,brcmnand-v2.2" },
  2530. { .compatible = "brcm,brcmnand-v4.0" },
  2531. { .compatible = "brcm,brcmnand-v5.0" },
  2532. { .compatible = "brcm,brcmnand-v6.0" },
  2533. { .compatible = "brcm,brcmnand-v6.1" },
  2534. { .compatible = "brcm,brcmnand-v6.2" },
  2535. { .compatible = "brcm,brcmnand-v7.0" },
  2536. { .compatible = "brcm,brcmnand-v7.1" },
  2537. { .compatible = "brcm,brcmnand-v7.2" },
  2538. { .compatible = "brcm,brcmnand-v7.3" },
  2539. {},
  2540. };
  2541. MODULE_DEVICE_TABLE(of, brcmnand_of_match);
  2542. /***********************************************************************
  2543. * Platform driver setup (per controller)
  2544. ***********************************************************************/
  2545. static int brcmnand_edu_setup(struct platform_device *pdev)
  2546. {
  2547. struct device *dev = &pdev->dev;
  2548. struct brcmnand_controller *ctrl = dev_get_drvdata(&pdev->dev);
  2549. struct resource *res;
  2550. int ret;
  2551. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "flash-edu");
  2552. if (res) {
  2553. ctrl->edu_base = devm_ioremap_resource(dev, res);
  2554. if (IS_ERR(ctrl->edu_base))
  2555. return PTR_ERR(ctrl->edu_base);
  2556. ctrl->edu_offsets = edu_regs;
  2557. edu_writel(ctrl, EDU_CONFIG, EDU_CONFIG_MODE_NAND |
  2558. EDU_CONFIG_SWAP_CFG);
  2559. edu_readl(ctrl, EDU_CONFIG);
  2560. /* initialize edu */
  2561. brcmnand_edu_init(ctrl);
  2562. ctrl->edu_irq = platform_get_irq_optional(pdev, 1);
  2563. if (ctrl->edu_irq < 0) {
  2564. dev_warn(dev,
  2565. "FLASH EDU enabled, using ctlrdy irq\n");
  2566. } else {
  2567. ret = devm_request_irq(dev, ctrl->edu_irq,
  2568. brcmnand_edu_irq, 0,
  2569. "brcmnand-edu", ctrl);
  2570. if (ret < 0) {
  2571. dev_err(ctrl->dev, "can't allocate IRQ %d: error %d\n",
  2572. ctrl->edu_irq, ret);
  2573. return ret;
  2574. }
  2575. dev_info(dev, "FLASH EDU enabled using irq %u\n",
  2576. ctrl->edu_irq);
  2577. }
  2578. }
  2579. return 0;
  2580. }
  2581. int brcmnand_probe(struct platform_device *pdev, struct brcmnand_soc *soc)
  2582. {
  2583. struct brcmnand_platform_data *pd = dev_get_platdata(&pdev->dev);
  2584. struct device *dev = &pdev->dev;
  2585. struct device_node *dn = dev->of_node, *child;
  2586. struct brcmnand_controller *ctrl;
  2587. struct brcmnand_host *host;
  2588. struct resource *res;
  2589. int ret;
  2590. if (dn && !of_match_node(brcmnand_of_match, dn))
  2591. return -ENODEV;
  2592. ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL);
  2593. if (!ctrl)
  2594. return -ENOMEM;
  2595. dev_set_drvdata(dev, ctrl);
  2596. ctrl->dev = dev;
  2597. ctrl->soc = soc;
  2598. /* Enable the static key if the soc provides I/O operations indicating
  2599. * that a non-memory mapped IO access path must be used
  2600. */
  2601. if (brcmnand_soc_has_ops(ctrl->soc))
  2602. static_branch_enable(&brcmnand_soc_has_ops_key);
  2603. init_completion(&ctrl->done);
  2604. init_completion(&ctrl->dma_done);
  2605. init_completion(&ctrl->edu_done);
  2606. nand_controller_init(&ctrl->controller);
  2607. ctrl->controller.ops = &brcmnand_controller_ops;
  2608. INIT_LIST_HEAD(&ctrl->host_list);
  2609. /* NAND register range */
  2610. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  2611. ctrl->nand_base = devm_ioremap_resource(dev, res);
  2612. if (IS_ERR(ctrl->nand_base) && !brcmnand_soc_has_ops(soc))
  2613. return PTR_ERR(ctrl->nand_base);
  2614. /* Enable clock before using NAND registers */
  2615. ctrl->clk = devm_clk_get(dev, "nand");
  2616. if (!IS_ERR(ctrl->clk)) {
  2617. ret = clk_prepare_enable(ctrl->clk);
  2618. if (ret)
  2619. return ret;
  2620. } else {
  2621. ret = PTR_ERR(ctrl->clk);
  2622. if (ret == -EPROBE_DEFER)
  2623. return ret;
  2624. ctrl->clk = NULL;
  2625. }
  2626. /* Initialize NAND revision */
  2627. ret = brcmnand_revision_init(ctrl);
  2628. if (ret)
  2629. goto err;
  2630. /*
  2631. * Most chips have this cache at a fixed offset within 'nand' block.
  2632. * Some must specify this region separately.
  2633. */
  2634. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand-cache");
  2635. if (res) {
  2636. ctrl->nand_fc = devm_ioremap_resource(dev, res);
  2637. if (IS_ERR(ctrl->nand_fc)) {
  2638. ret = PTR_ERR(ctrl->nand_fc);
  2639. goto err;
  2640. }
  2641. } else {
  2642. ctrl->nand_fc = ctrl->nand_base +
  2643. ctrl->reg_offsets[BRCMNAND_FC_BASE];
  2644. }
  2645. /* FLASH_DMA */
  2646. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "flash-dma");
  2647. if (res) {
  2648. ctrl->flash_dma_base = devm_ioremap_resource(dev, res);
  2649. if (IS_ERR(ctrl->flash_dma_base)) {
  2650. ret = PTR_ERR(ctrl->flash_dma_base);
  2651. goto err;
  2652. }
  2653. /* initialize the dma version */
  2654. brcmnand_flash_dma_revision_init(ctrl);
  2655. ret = -EIO;
  2656. if (ctrl->nand_version >= 0x0700)
  2657. ret = dma_set_mask_and_coherent(&pdev->dev,
  2658. DMA_BIT_MASK(40));
  2659. if (ret)
  2660. ret = dma_set_mask_and_coherent(&pdev->dev,
  2661. DMA_BIT_MASK(32));
  2662. if (ret)
  2663. goto err;
  2664. /* linked-list and stop on error */
  2665. flash_dma_writel(ctrl, FLASH_DMA_MODE, FLASH_DMA_MODE_MASK);
  2666. flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0);
  2667. /* Allocate descriptor(s) */
  2668. ctrl->dma_desc = dmam_alloc_coherent(dev,
  2669. sizeof(*ctrl->dma_desc),
  2670. &ctrl->dma_pa, GFP_KERNEL);
  2671. if (!ctrl->dma_desc) {
  2672. ret = -ENOMEM;
  2673. goto err;
  2674. }
  2675. ctrl->dma_irq = platform_get_irq(pdev, 1);
  2676. if ((int)ctrl->dma_irq < 0) {
  2677. dev_err(dev, "missing FLASH_DMA IRQ\n");
  2678. ret = -ENODEV;
  2679. goto err;
  2680. }
  2681. ret = devm_request_irq(dev, ctrl->dma_irq,
  2682. brcmnand_dma_irq, 0, DRV_NAME,
  2683. ctrl);
  2684. if (ret < 0) {
  2685. dev_err(dev, "can't allocate IRQ %d: error %d\n",
  2686. ctrl->dma_irq, ret);
  2687. goto err;
  2688. }
  2689. dev_info(dev, "enabling FLASH_DMA\n");
  2690. /* set flash dma transfer function to call */
  2691. ctrl->dma_trans = brcmnand_dma_trans;
  2692. } else {
  2693. ret = brcmnand_edu_setup(pdev);
  2694. if (ret < 0)
  2695. goto err;
  2696. if (has_edu(ctrl))
  2697. /* set edu transfer function to call */
  2698. ctrl->dma_trans = brcmnand_edu_trans;
  2699. }
  2700. /* Disable automatic device ID config, direct addressing */
  2701. brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT,
  2702. CS_SELECT_AUTO_DEVICE_ID_CFG | 0xff, 0, 0);
  2703. /* Disable XOR addressing */
  2704. brcmnand_rmw_reg(ctrl, BRCMNAND_CS_XOR, 0xff, 0, 0);
  2705. if (ctrl->features & BRCMNAND_HAS_WP) {
  2706. /* Permanently disable write protection */
  2707. if (wp_on == 2)
  2708. brcmnand_set_wp(ctrl, false);
  2709. } else {
  2710. wp_on = 0;
  2711. }
  2712. /* IRQ */
  2713. ctrl->irq = platform_get_irq_optional(pdev, 0);
  2714. if (ctrl->irq > 0) {
  2715. /*
  2716. * Some SoCs integrate this controller (e.g., its interrupt bits) in
  2717. * interesting ways
  2718. */
  2719. if (soc) {
  2720. ret = devm_request_irq(dev, ctrl->irq, brcmnand_irq, 0,
  2721. DRV_NAME, ctrl);
  2722. /* Enable interrupt */
  2723. ctrl->soc->ctlrdy_ack(ctrl->soc);
  2724. ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true);
  2725. } else {
  2726. /* Use standard interrupt infrastructure */
  2727. ret = devm_request_irq(dev, ctrl->irq, brcmnand_ctlrdy_irq, 0,
  2728. DRV_NAME, ctrl);
  2729. }
  2730. if (ret < 0) {
  2731. dev_err(dev, "can't allocate IRQ %d: error %d\n",
  2732. ctrl->irq, ret);
  2733. goto err;
  2734. }
  2735. }
  2736. for_each_available_child_of_node(dn, child) {
  2737. if (of_device_is_compatible(child, "brcm,nandcs")) {
  2738. host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
  2739. if (!host) {
  2740. of_node_put(child);
  2741. ret = -ENOMEM;
  2742. goto err;
  2743. }
  2744. host->pdev = pdev;
  2745. host->ctrl = ctrl;
  2746. ret = of_property_read_u32(child, "reg", &host->cs);
  2747. if (ret) {
  2748. dev_err(dev, "can't get chip-select\n");
  2749. devm_kfree(dev, host);
  2750. continue;
  2751. }
  2752. nand_set_flash_node(&host->chip, child);
  2753. ret = brcmnand_init_cs(host, NULL);
  2754. if (ret) {
  2755. devm_kfree(dev, host);
  2756. continue; /* Try all chip-selects */
  2757. }
  2758. list_add_tail(&host->node, &ctrl->host_list);
  2759. }
  2760. }
  2761. if (!list_empty(&ctrl->host_list))
  2762. return 0;
  2763. if (!pd) {
  2764. ret = -ENODEV;
  2765. goto err;
  2766. }
  2767. /* If we got there we must have been probing via platform data */
  2768. host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
  2769. if (!host) {
  2770. ret = -ENOMEM;
  2771. goto err;
  2772. }
  2773. host->pdev = pdev;
  2774. host->ctrl = ctrl;
  2775. host->cs = pd->chip_select;
  2776. host->chip.ecc.size = pd->ecc_stepsize;
  2777. host->chip.ecc.strength = pd->ecc_strength;
  2778. ret = brcmnand_init_cs(host, pd->part_probe_types);
  2779. if (ret)
  2780. goto err;
  2781. list_add_tail(&host->node, &ctrl->host_list);
  2782. /* No chip-selects could initialize properly */
  2783. if (list_empty(&ctrl->host_list)) {
  2784. ret = -ENODEV;
  2785. goto err;
  2786. }
  2787. return 0;
  2788. err:
  2789. clk_disable_unprepare(ctrl->clk);
  2790. return ret;
  2791. }
  2792. EXPORT_SYMBOL_GPL(brcmnand_probe);
  2793. int brcmnand_remove(struct platform_device *pdev)
  2794. {
  2795. struct brcmnand_controller *ctrl = dev_get_drvdata(&pdev->dev);
  2796. struct brcmnand_host *host;
  2797. struct nand_chip *chip;
  2798. int ret;
  2799. list_for_each_entry(host, &ctrl->host_list, node) {
  2800. chip = &host->chip;
  2801. ret = mtd_device_unregister(nand_to_mtd(chip));
  2802. WARN_ON(ret);
  2803. nand_cleanup(chip);
  2804. }
  2805. clk_disable_unprepare(ctrl->clk);
  2806. dev_set_drvdata(&pdev->dev, NULL);
  2807. return 0;
  2808. }
  2809. EXPORT_SYMBOL_GPL(brcmnand_remove);
  2810. MODULE_LICENSE("GPL v2");
  2811. MODULE_AUTHOR("Kevin Cernekee");
  2812. MODULE_AUTHOR("Brian Norris");
  2813. MODULE_DESCRIPTION("NAND driver for Broadcom chips");
  2814. MODULE_ALIAS("platform:brcmnand");