nand-controller.c 67 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Copyright 2017 ATMEL
  4. * Copyright 2017 Free Electrons
  5. *
  6. * Author: Boris Brezillon <[email protected]>
  7. *
  8. * Derived from the atmel_nand.c driver which contained the following
  9. * copyrights:
  10. *
  11. * Copyright 2003 Rick Bronson
  12. *
  13. * Derived from drivers/mtd/nand/autcpu12.c (removed in v3.8)
  14. * Copyright 2001 Thomas Gleixner ([email protected])
  15. *
  16. * Derived from drivers/mtd/spia.c (removed in v3.8)
  17. * Copyright 2000 Steven J. Hill ([email protected])
  18. *
  19. *
  20. * Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
  21. * Richard Genoud ([email protected]), Adeneo Copyright 2007
  22. *
  23. * Derived from Das U-Boot source code
  24. * (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
  25. * Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
  26. *
  27. * Add Programmable Multibit ECC support for various AT91 SoC
  28. * Copyright 2012 ATMEL, Hong Xu
  29. *
  30. * Add Nand Flash Controller support for SAMA5 SoC
  31. * Copyright 2013 ATMEL, Josh Wu ([email protected])
  32. *
  33. * A few words about the naming convention in this file. This convention
  34. * applies to structure and function names.
  35. *
  36. * Prefixes:
  37. *
  38. * - atmel_nand_: all generic structures/functions
  39. * - atmel_smc_nand_: all structures/functions specific to the SMC interface
  40. * (at91sam9 and avr32 SoCs)
  41. * - atmel_hsmc_nand_: all structures/functions specific to the HSMC interface
  42. * (sama5 SoCs and later)
  43. * - atmel_nfc_: all structures/functions used to manipulate the NFC sub-block
  44. * that is available in the HSMC block
  45. * - <soc>_nand_: all SoC specific structures/functions
  46. */
  47. #include <linux/clk.h>
  48. #include <linux/dma-mapping.h>
  49. #include <linux/dmaengine.h>
  50. #include <linux/genalloc.h>
  51. #include <linux/gpio/consumer.h>
  52. #include <linux/interrupt.h>
  53. #include <linux/mfd/syscon.h>
  54. #include <linux/mfd/syscon/atmel-matrix.h>
  55. #include <linux/mfd/syscon/atmel-smc.h>
  56. #include <linux/module.h>
  57. #include <linux/mtd/rawnand.h>
  58. #include <linux/of_address.h>
  59. #include <linux/of_irq.h>
  60. #include <linux/of_platform.h>
  61. #include <linux/iopoll.h>
  62. #include <linux/platform_device.h>
  63. #include <linux/regmap.h>
  64. #include <soc/at91/atmel-sfr.h>
  65. #include "pmecc.h"
  66. #define ATMEL_HSMC_NFC_CFG 0x0
  67. #define ATMEL_HSMC_NFC_CFG_SPARESIZE(x) (((x) / 4) << 24)
  68. #define ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK GENMASK(30, 24)
  69. #define ATMEL_HSMC_NFC_CFG_DTO(cyc, mul) (((cyc) << 16) | ((mul) << 20))
  70. #define ATMEL_HSMC_NFC_CFG_DTO_MAX GENMASK(22, 16)
  71. #define ATMEL_HSMC_NFC_CFG_RBEDGE BIT(13)
  72. #define ATMEL_HSMC_NFC_CFG_FALLING_EDGE BIT(12)
  73. #define ATMEL_HSMC_NFC_CFG_RSPARE BIT(9)
  74. #define ATMEL_HSMC_NFC_CFG_WSPARE BIT(8)
  75. #define ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK GENMASK(2, 0)
  76. #define ATMEL_HSMC_NFC_CFG_PAGESIZE(x) (fls((x) / 512) - 1)
  77. #define ATMEL_HSMC_NFC_CTRL 0x4
  78. #define ATMEL_HSMC_NFC_CTRL_EN BIT(0)
  79. #define ATMEL_HSMC_NFC_CTRL_DIS BIT(1)
  80. #define ATMEL_HSMC_NFC_SR 0x8
  81. #define ATMEL_HSMC_NFC_IER 0xc
  82. #define ATMEL_HSMC_NFC_IDR 0x10
  83. #define ATMEL_HSMC_NFC_IMR 0x14
  84. #define ATMEL_HSMC_NFC_SR_ENABLED BIT(1)
  85. #define ATMEL_HSMC_NFC_SR_RB_RISE BIT(4)
  86. #define ATMEL_HSMC_NFC_SR_RB_FALL BIT(5)
  87. #define ATMEL_HSMC_NFC_SR_BUSY BIT(8)
  88. #define ATMEL_HSMC_NFC_SR_WR BIT(11)
  89. #define ATMEL_HSMC_NFC_SR_CSID GENMASK(14, 12)
  90. #define ATMEL_HSMC_NFC_SR_XFRDONE BIT(16)
  91. #define ATMEL_HSMC_NFC_SR_CMDDONE BIT(17)
  92. #define ATMEL_HSMC_NFC_SR_DTOE BIT(20)
  93. #define ATMEL_HSMC_NFC_SR_UNDEF BIT(21)
  94. #define ATMEL_HSMC_NFC_SR_AWB BIT(22)
  95. #define ATMEL_HSMC_NFC_SR_NFCASE BIT(23)
  96. #define ATMEL_HSMC_NFC_SR_ERRORS (ATMEL_HSMC_NFC_SR_DTOE | \
  97. ATMEL_HSMC_NFC_SR_UNDEF | \
  98. ATMEL_HSMC_NFC_SR_AWB | \
  99. ATMEL_HSMC_NFC_SR_NFCASE)
  100. #define ATMEL_HSMC_NFC_SR_RBEDGE(x) BIT((x) + 24)
  101. #define ATMEL_HSMC_NFC_ADDR 0x18
  102. #define ATMEL_HSMC_NFC_BANK 0x1c
  103. #define ATMEL_NFC_MAX_RB_ID 7
  104. #define ATMEL_NFC_SRAM_SIZE 0x2400
  105. #define ATMEL_NFC_CMD(pos, cmd) ((cmd) << (((pos) * 8) + 2))
  106. #define ATMEL_NFC_VCMD2 BIT(18)
  107. #define ATMEL_NFC_ACYCLE(naddrs) ((naddrs) << 19)
  108. #define ATMEL_NFC_CSID(cs) ((cs) << 22)
  109. #define ATMEL_NFC_DATAEN BIT(25)
  110. #define ATMEL_NFC_NFCWR BIT(26)
  111. #define ATMEL_NFC_MAX_ADDR_CYCLES 5
  112. #define ATMEL_NAND_ALE_OFFSET BIT(21)
  113. #define ATMEL_NAND_CLE_OFFSET BIT(22)
  114. #define DEFAULT_TIMEOUT_MS 1000
  115. #define MIN_DMA_LEN 128
  116. static bool atmel_nand_avoid_dma __read_mostly;
  117. MODULE_PARM_DESC(avoiddma, "Avoid using DMA");
  118. module_param_named(avoiddma, atmel_nand_avoid_dma, bool, 0400);
  119. enum atmel_nand_rb_type {
  120. ATMEL_NAND_NO_RB,
  121. ATMEL_NAND_NATIVE_RB,
  122. ATMEL_NAND_GPIO_RB,
  123. };
  124. struct atmel_nand_rb {
  125. enum atmel_nand_rb_type type;
  126. union {
  127. struct gpio_desc *gpio;
  128. int id;
  129. };
  130. };
  131. struct atmel_nand_cs {
  132. int id;
  133. struct atmel_nand_rb rb;
  134. struct gpio_desc *csgpio;
  135. struct {
  136. void __iomem *virt;
  137. dma_addr_t dma;
  138. } io;
  139. struct atmel_smc_cs_conf smcconf;
  140. };
  141. struct atmel_nand {
  142. struct list_head node;
  143. struct device *dev;
  144. struct nand_chip base;
  145. struct atmel_nand_cs *activecs;
  146. struct atmel_pmecc_user *pmecc;
  147. struct gpio_desc *cdgpio;
  148. int numcs;
  149. struct atmel_nand_cs cs[];
  150. };
  151. static inline struct atmel_nand *to_atmel_nand(struct nand_chip *chip)
  152. {
  153. return container_of(chip, struct atmel_nand, base);
  154. }
  155. enum atmel_nfc_data_xfer {
  156. ATMEL_NFC_NO_DATA,
  157. ATMEL_NFC_READ_DATA,
  158. ATMEL_NFC_WRITE_DATA,
  159. };
  160. struct atmel_nfc_op {
  161. u8 cs;
  162. u8 ncmds;
  163. u8 cmds[2];
  164. u8 naddrs;
  165. u8 addrs[5];
  166. enum atmel_nfc_data_xfer data;
  167. u32 wait;
  168. u32 errors;
  169. };
  170. struct atmel_nand_controller;
  171. struct atmel_nand_controller_caps;
  172. struct atmel_nand_controller_ops {
  173. int (*probe)(struct platform_device *pdev,
  174. const struct atmel_nand_controller_caps *caps);
  175. int (*remove)(struct atmel_nand_controller *nc);
  176. void (*nand_init)(struct atmel_nand_controller *nc,
  177. struct atmel_nand *nand);
  178. int (*ecc_init)(struct nand_chip *chip);
  179. int (*setup_interface)(struct atmel_nand *nand, int csline,
  180. const struct nand_interface_config *conf);
  181. int (*exec_op)(struct atmel_nand *nand,
  182. const struct nand_operation *op, bool check_only);
  183. };
  184. struct atmel_nand_controller_caps {
  185. bool has_dma;
  186. bool legacy_of_bindings;
  187. u32 ale_offs;
  188. u32 cle_offs;
  189. const char *ebi_csa_regmap_name;
  190. const struct atmel_nand_controller_ops *ops;
  191. };
  192. struct atmel_nand_controller {
  193. struct nand_controller base;
  194. const struct atmel_nand_controller_caps *caps;
  195. struct device *dev;
  196. struct regmap *smc;
  197. struct dma_chan *dmac;
  198. struct atmel_pmecc *pmecc;
  199. struct list_head chips;
  200. struct clk *mck;
  201. };
  202. static inline struct atmel_nand_controller *
  203. to_nand_controller(struct nand_controller *ctl)
  204. {
  205. return container_of(ctl, struct atmel_nand_controller, base);
  206. }
  207. struct atmel_smc_nand_ebi_csa_cfg {
  208. u32 offs;
  209. u32 nfd0_on_d16;
  210. };
  211. struct atmel_smc_nand_controller {
  212. struct atmel_nand_controller base;
  213. struct regmap *ebi_csa_regmap;
  214. struct atmel_smc_nand_ebi_csa_cfg *ebi_csa;
  215. };
  216. static inline struct atmel_smc_nand_controller *
  217. to_smc_nand_controller(struct nand_controller *ctl)
  218. {
  219. return container_of(to_nand_controller(ctl),
  220. struct atmel_smc_nand_controller, base);
  221. }
  222. struct atmel_hsmc_nand_controller {
  223. struct atmel_nand_controller base;
  224. struct {
  225. struct gen_pool *pool;
  226. void __iomem *virt;
  227. dma_addr_t dma;
  228. } sram;
  229. const struct atmel_hsmc_reg_layout *hsmc_layout;
  230. struct regmap *io;
  231. struct atmel_nfc_op op;
  232. struct completion complete;
  233. u32 cfg;
  234. int irq;
  235. /* Only used when instantiating from legacy DT bindings. */
  236. struct clk *clk;
  237. };
  238. static inline struct atmel_hsmc_nand_controller *
  239. to_hsmc_nand_controller(struct nand_controller *ctl)
  240. {
  241. return container_of(to_nand_controller(ctl),
  242. struct atmel_hsmc_nand_controller, base);
  243. }
  244. static bool atmel_nfc_op_done(struct atmel_nfc_op *op, u32 status)
  245. {
  246. op->errors |= status & ATMEL_HSMC_NFC_SR_ERRORS;
  247. op->wait ^= status & op->wait;
  248. return !op->wait || op->errors;
  249. }
  250. static irqreturn_t atmel_nfc_interrupt(int irq, void *data)
  251. {
  252. struct atmel_hsmc_nand_controller *nc = data;
  253. u32 sr, rcvd;
  254. bool done;
  255. regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &sr);
  256. rcvd = sr & (nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS);
  257. done = atmel_nfc_op_done(&nc->op, sr);
  258. if (rcvd)
  259. regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, rcvd);
  260. if (done)
  261. complete(&nc->complete);
  262. return rcvd ? IRQ_HANDLED : IRQ_NONE;
  263. }
  264. static int atmel_nfc_wait(struct atmel_hsmc_nand_controller *nc, bool poll,
  265. unsigned int timeout_ms)
  266. {
  267. int ret;
  268. if (!timeout_ms)
  269. timeout_ms = DEFAULT_TIMEOUT_MS;
  270. if (poll) {
  271. u32 status;
  272. ret = regmap_read_poll_timeout(nc->base.smc,
  273. ATMEL_HSMC_NFC_SR, status,
  274. atmel_nfc_op_done(&nc->op,
  275. status),
  276. 0, timeout_ms * 1000);
  277. } else {
  278. init_completion(&nc->complete);
  279. regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IER,
  280. nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS);
  281. ret = wait_for_completion_timeout(&nc->complete,
  282. msecs_to_jiffies(timeout_ms));
  283. if (!ret)
  284. ret = -ETIMEDOUT;
  285. else
  286. ret = 0;
  287. regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff);
  288. }
  289. if (nc->op.errors & ATMEL_HSMC_NFC_SR_DTOE) {
  290. dev_err(nc->base.dev, "Waiting NAND R/B Timeout\n");
  291. ret = -ETIMEDOUT;
  292. }
  293. if (nc->op.errors & ATMEL_HSMC_NFC_SR_UNDEF) {
  294. dev_err(nc->base.dev, "Access to an undefined area\n");
  295. ret = -EIO;
  296. }
  297. if (nc->op.errors & ATMEL_HSMC_NFC_SR_AWB) {
  298. dev_err(nc->base.dev, "Access while busy\n");
  299. ret = -EIO;
  300. }
  301. if (nc->op.errors & ATMEL_HSMC_NFC_SR_NFCASE) {
  302. dev_err(nc->base.dev, "Wrong access size\n");
  303. ret = -EIO;
  304. }
  305. return ret;
  306. }
  307. static void atmel_nand_dma_transfer_finished(void *data)
  308. {
  309. struct completion *finished = data;
  310. complete(finished);
  311. }
  312. static int atmel_nand_dma_transfer(struct atmel_nand_controller *nc,
  313. void *buf, dma_addr_t dev_dma, size_t len,
  314. enum dma_data_direction dir)
  315. {
  316. DECLARE_COMPLETION_ONSTACK(finished);
  317. dma_addr_t src_dma, dst_dma, buf_dma;
  318. struct dma_async_tx_descriptor *tx;
  319. dma_cookie_t cookie;
  320. buf_dma = dma_map_single(nc->dev, buf, len, dir);
  321. if (dma_mapping_error(nc->dev, dev_dma)) {
  322. dev_err(nc->dev,
  323. "Failed to prepare a buffer for DMA access\n");
  324. goto err;
  325. }
  326. if (dir == DMA_FROM_DEVICE) {
  327. src_dma = dev_dma;
  328. dst_dma = buf_dma;
  329. } else {
  330. src_dma = buf_dma;
  331. dst_dma = dev_dma;
  332. }
  333. tx = dmaengine_prep_dma_memcpy(nc->dmac, dst_dma, src_dma, len,
  334. DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
  335. if (!tx) {
  336. dev_err(nc->dev, "Failed to prepare DMA memcpy\n");
  337. goto err_unmap;
  338. }
  339. tx->callback = atmel_nand_dma_transfer_finished;
  340. tx->callback_param = &finished;
  341. cookie = dmaengine_submit(tx);
  342. if (dma_submit_error(cookie)) {
  343. dev_err(nc->dev, "Failed to do DMA tx_submit\n");
  344. goto err_unmap;
  345. }
  346. dma_async_issue_pending(nc->dmac);
  347. wait_for_completion(&finished);
  348. dma_unmap_single(nc->dev, buf_dma, len, dir);
  349. return 0;
  350. err_unmap:
  351. dma_unmap_single(nc->dev, buf_dma, len, dir);
  352. err:
  353. dev_dbg(nc->dev, "Fall back to CPU I/O\n");
  354. return -EIO;
  355. }
  356. static int atmel_nfc_exec_op(struct atmel_hsmc_nand_controller *nc, bool poll)
  357. {
  358. u8 *addrs = nc->op.addrs;
  359. unsigned int op = 0;
  360. u32 addr, val;
  361. int i, ret;
  362. nc->op.wait = ATMEL_HSMC_NFC_SR_CMDDONE;
  363. for (i = 0; i < nc->op.ncmds; i++)
  364. op |= ATMEL_NFC_CMD(i, nc->op.cmds[i]);
  365. if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES)
  366. regmap_write(nc->base.smc, ATMEL_HSMC_NFC_ADDR, *addrs++);
  367. op |= ATMEL_NFC_CSID(nc->op.cs) |
  368. ATMEL_NFC_ACYCLE(nc->op.naddrs);
  369. if (nc->op.ncmds > 1)
  370. op |= ATMEL_NFC_VCMD2;
  371. addr = addrs[0] | (addrs[1] << 8) | (addrs[2] << 16) |
  372. (addrs[3] << 24);
  373. if (nc->op.data != ATMEL_NFC_NO_DATA) {
  374. op |= ATMEL_NFC_DATAEN;
  375. nc->op.wait |= ATMEL_HSMC_NFC_SR_XFRDONE;
  376. if (nc->op.data == ATMEL_NFC_WRITE_DATA)
  377. op |= ATMEL_NFC_NFCWR;
  378. }
  379. /* Clear all flags. */
  380. regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &val);
  381. /* Send the command. */
  382. regmap_write(nc->io, op, addr);
  383. ret = atmel_nfc_wait(nc, poll, 0);
  384. if (ret)
  385. dev_err(nc->base.dev,
  386. "Failed to send NAND command (err = %d)!",
  387. ret);
  388. /* Reset the op state. */
  389. memset(&nc->op, 0, sizeof(nc->op));
  390. return ret;
  391. }
  392. static void atmel_nand_data_in(struct atmel_nand *nand, void *buf,
  393. unsigned int len, bool force_8bit)
  394. {
  395. struct atmel_nand_controller *nc;
  396. nc = to_nand_controller(nand->base.controller);
  397. /*
  398. * If the controller supports DMA, the buffer address is DMA-able and
  399. * len is long enough to make DMA transfers profitable, let's trigger
  400. * a DMA transfer. If it fails, fallback to PIO mode.
  401. */
  402. if (nc->dmac && virt_addr_valid(buf) &&
  403. len >= MIN_DMA_LEN && !force_8bit &&
  404. !atmel_nand_dma_transfer(nc, buf, nand->activecs->io.dma, len,
  405. DMA_FROM_DEVICE))
  406. return;
  407. if ((nand->base.options & NAND_BUSWIDTH_16) && !force_8bit)
  408. ioread16_rep(nand->activecs->io.virt, buf, len / 2);
  409. else
  410. ioread8_rep(nand->activecs->io.virt, buf, len);
  411. }
  412. static void atmel_nand_data_out(struct atmel_nand *nand, const void *buf,
  413. unsigned int len, bool force_8bit)
  414. {
  415. struct atmel_nand_controller *nc;
  416. nc = to_nand_controller(nand->base.controller);
  417. /*
  418. * If the controller supports DMA, the buffer address is DMA-able and
  419. * len is long enough to make DMA transfers profitable, let's trigger
  420. * a DMA transfer. If it fails, fallback to PIO mode.
  421. */
  422. if (nc->dmac && virt_addr_valid(buf) &&
  423. len >= MIN_DMA_LEN && !force_8bit &&
  424. !atmel_nand_dma_transfer(nc, (void *)buf, nand->activecs->io.dma,
  425. len, DMA_TO_DEVICE))
  426. return;
  427. if ((nand->base.options & NAND_BUSWIDTH_16) && !force_8bit)
  428. iowrite16_rep(nand->activecs->io.virt, buf, len / 2);
  429. else
  430. iowrite8_rep(nand->activecs->io.virt, buf, len);
  431. }
  432. static int atmel_nand_waitrdy(struct atmel_nand *nand, unsigned int timeout_ms)
  433. {
  434. if (nand->activecs->rb.type == ATMEL_NAND_NO_RB)
  435. return nand_soft_waitrdy(&nand->base, timeout_ms);
  436. return nand_gpio_waitrdy(&nand->base, nand->activecs->rb.gpio,
  437. timeout_ms);
  438. }
  439. static int atmel_hsmc_nand_waitrdy(struct atmel_nand *nand,
  440. unsigned int timeout_ms)
  441. {
  442. struct atmel_hsmc_nand_controller *nc;
  443. u32 status, mask;
  444. if (nand->activecs->rb.type != ATMEL_NAND_NATIVE_RB)
  445. return atmel_nand_waitrdy(nand, timeout_ms);
  446. nc = to_hsmc_nand_controller(nand->base.controller);
  447. mask = ATMEL_HSMC_NFC_SR_RBEDGE(nand->activecs->rb.id);
  448. return regmap_read_poll_timeout_atomic(nc->base.smc, ATMEL_HSMC_NFC_SR,
  449. status, status & mask,
  450. 10, timeout_ms * 1000);
  451. }
  452. static void atmel_nand_select_target(struct atmel_nand *nand,
  453. unsigned int cs)
  454. {
  455. nand->activecs = &nand->cs[cs];
  456. }
  457. static void atmel_hsmc_nand_select_target(struct atmel_nand *nand,
  458. unsigned int cs)
  459. {
  460. struct mtd_info *mtd = nand_to_mtd(&nand->base);
  461. struct atmel_hsmc_nand_controller *nc;
  462. u32 cfg = ATMEL_HSMC_NFC_CFG_PAGESIZE(mtd->writesize) |
  463. ATMEL_HSMC_NFC_CFG_SPARESIZE(mtd->oobsize) |
  464. ATMEL_HSMC_NFC_CFG_RSPARE;
  465. nand->activecs = &nand->cs[cs];
  466. nc = to_hsmc_nand_controller(nand->base.controller);
  467. if (nc->cfg == cfg)
  468. return;
  469. regmap_update_bits(nc->base.smc, ATMEL_HSMC_NFC_CFG,
  470. ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK |
  471. ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK |
  472. ATMEL_HSMC_NFC_CFG_RSPARE |
  473. ATMEL_HSMC_NFC_CFG_WSPARE,
  474. cfg);
  475. nc->cfg = cfg;
  476. }
  477. static int atmel_smc_nand_exec_instr(struct atmel_nand *nand,
  478. const struct nand_op_instr *instr)
  479. {
  480. struct atmel_nand_controller *nc;
  481. unsigned int i;
  482. nc = to_nand_controller(nand->base.controller);
  483. switch (instr->type) {
  484. case NAND_OP_CMD_INSTR:
  485. writeb(instr->ctx.cmd.opcode,
  486. nand->activecs->io.virt + nc->caps->cle_offs);
  487. return 0;
  488. case NAND_OP_ADDR_INSTR:
  489. for (i = 0; i < instr->ctx.addr.naddrs; i++)
  490. writeb(instr->ctx.addr.addrs[i],
  491. nand->activecs->io.virt + nc->caps->ale_offs);
  492. return 0;
  493. case NAND_OP_DATA_IN_INSTR:
  494. atmel_nand_data_in(nand, instr->ctx.data.buf.in,
  495. instr->ctx.data.len,
  496. instr->ctx.data.force_8bit);
  497. return 0;
  498. case NAND_OP_DATA_OUT_INSTR:
  499. atmel_nand_data_out(nand, instr->ctx.data.buf.out,
  500. instr->ctx.data.len,
  501. instr->ctx.data.force_8bit);
  502. return 0;
  503. case NAND_OP_WAITRDY_INSTR:
  504. return atmel_nand_waitrdy(nand,
  505. instr->ctx.waitrdy.timeout_ms);
  506. default:
  507. break;
  508. }
  509. return -EINVAL;
  510. }
  511. static int atmel_smc_nand_exec_op(struct atmel_nand *nand,
  512. const struct nand_operation *op,
  513. bool check_only)
  514. {
  515. unsigned int i;
  516. int ret = 0;
  517. if (check_only)
  518. return 0;
  519. atmel_nand_select_target(nand, op->cs);
  520. gpiod_set_value(nand->activecs->csgpio, 0);
  521. for (i = 0; i < op->ninstrs; i++) {
  522. ret = atmel_smc_nand_exec_instr(nand, &op->instrs[i]);
  523. if (ret)
  524. break;
  525. }
  526. gpiod_set_value(nand->activecs->csgpio, 1);
  527. return ret;
  528. }
  529. static int atmel_hsmc_exec_cmd_addr(struct nand_chip *chip,
  530. const struct nand_subop *subop)
  531. {
  532. struct atmel_nand *nand = to_atmel_nand(chip);
  533. struct atmel_hsmc_nand_controller *nc;
  534. unsigned int i, j;
  535. nc = to_hsmc_nand_controller(chip->controller);
  536. nc->op.cs = nand->activecs->id;
  537. for (i = 0; i < subop->ninstrs; i++) {
  538. const struct nand_op_instr *instr = &subop->instrs[i];
  539. if (instr->type == NAND_OP_CMD_INSTR) {
  540. nc->op.cmds[nc->op.ncmds++] = instr->ctx.cmd.opcode;
  541. continue;
  542. }
  543. for (j = nand_subop_get_addr_start_off(subop, i);
  544. j < nand_subop_get_num_addr_cyc(subop, i); j++) {
  545. nc->op.addrs[nc->op.naddrs] = instr->ctx.addr.addrs[j];
  546. nc->op.naddrs++;
  547. }
  548. }
  549. return atmel_nfc_exec_op(nc, true);
  550. }
  551. static int atmel_hsmc_exec_rw(struct nand_chip *chip,
  552. const struct nand_subop *subop)
  553. {
  554. const struct nand_op_instr *instr = subop->instrs;
  555. struct atmel_nand *nand = to_atmel_nand(chip);
  556. if (instr->type == NAND_OP_DATA_IN_INSTR)
  557. atmel_nand_data_in(nand, instr->ctx.data.buf.in,
  558. instr->ctx.data.len,
  559. instr->ctx.data.force_8bit);
  560. else
  561. atmel_nand_data_out(nand, instr->ctx.data.buf.out,
  562. instr->ctx.data.len,
  563. instr->ctx.data.force_8bit);
  564. return 0;
  565. }
  566. static int atmel_hsmc_exec_waitrdy(struct nand_chip *chip,
  567. const struct nand_subop *subop)
  568. {
  569. const struct nand_op_instr *instr = subop->instrs;
  570. struct atmel_nand *nand = to_atmel_nand(chip);
  571. return atmel_hsmc_nand_waitrdy(nand, instr->ctx.waitrdy.timeout_ms);
  572. }
  573. static const struct nand_op_parser atmel_hsmc_op_parser = NAND_OP_PARSER(
  574. NAND_OP_PARSER_PATTERN(atmel_hsmc_exec_cmd_addr,
  575. NAND_OP_PARSER_PAT_CMD_ELEM(true),
  576. NAND_OP_PARSER_PAT_ADDR_ELEM(true, 5),
  577. NAND_OP_PARSER_PAT_CMD_ELEM(true)),
  578. NAND_OP_PARSER_PATTERN(atmel_hsmc_exec_rw,
  579. NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 0)),
  580. NAND_OP_PARSER_PATTERN(atmel_hsmc_exec_rw,
  581. NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 0)),
  582. NAND_OP_PARSER_PATTERN(atmel_hsmc_exec_waitrdy,
  583. NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
  584. );
  585. static int atmel_hsmc_nand_exec_op(struct atmel_nand *nand,
  586. const struct nand_operation *op,
  587. bool check_only)
  588. {
  589. int ret;
  590. if (check_only)
  591. return nand_op_parser_exec_op(&nand->base,
  592. &atmel_hsmc_op_parser, op, true);
  593. atmel_hsmc_nand_select_target(nand, op->cs);
  594. ret = nand_op_parser_exec_op(&nand->base, &atmel_hsmc_op_parser, op,
  595. false);
  596. return ret;
  597. }
  598. static void atmel_nfc_copy_to_sram(struct nand_chip *chip, const u8 *buf,
  599. bool oob_required)
  600. {
  601. struct mtd_info *mtd = nand_to_mtd(chip);
  602. struct atmel_hsmc_nand_controller *nc;
  603. int ret = -EIO;
  604. nc = to_hsmc_nand_controller(chip->controller);
  605. if (nc->base.dmac)
  606. ret = atmel_nand_dma_transfer(&nc->base, (void *)buf,
  607. nc->sram.dma, mtd->writesize,
  608. DMA_TO_DEVICE);
  609. /* Falling back to CPU copy. */
  610. if (ret)
  611. memcpy_toio(nc->sram.virt, buf, mtd->writesize);
  612. if (oob_required)
  613. memcpy_toio(nc->sram.virt + mtd->writesize, chip->oob_poi,
  614. mtd->oobsize);
  615. }
  616. static void atmel_nfc_copy_from_sram(struct nand_chip *chip, u8 *buf,
  617. bool oob_required)
  618. {
  619. struct mtd_info *mtd = nand_to_mtd(chip);
  620. struct atmel_hsmc_nand_controller *nc;
  621. int ret = -EIO;
  622. nc = to_hsmc_nand_controller(chip->controller);
  623. if (nc->base.dmac)
  624. ret = atmel_nand_dma_transfer(&nc->base, buf, nc->sram.dma,
  625. mtd->writesize, DMA_FROM_DEVICE);
  626. /* Falling back to CPU copy. */
  627. if (ret)
  628. memcpy_fromio(buf, nc->sram.virt, mtd->writesize);
  629. if (oob_required)
  630. memcpy_fromio(chip->oob_poi, nc->sram.virt + mtd->writesize,
  631. mtd->oobsize);
  632. }
  633. static void atmel_nfc_set_op_addr(struct nand_chip *chip, int page, int column)
  634. {
  635. struct mtd_info *mtd = nand_to_mtd(chip);
  636. struct atmel_hsmc_nand_controller *nc;
  637. nc = to_hsmc_nand_controller(chip->controller);
  638. if (column >= 0) {
  639. nc->op.addrs[nc->op.naddrs++] = column;
  640. /*
  641. * 2 address cycles for the column offset on large page NANDs.
  642. */
  643. if (mtd->writesize > 512)
  644. nc->op.addrs[nc->op.naddrs++] = column >> 8;
  645. }
  646. if (page >= 0) {
  647. nc->op.addrs[nc->op.naddrs++] = page;
  648. nc->op.addrs[nc->op.naddrs++] = page >> 8;
  649. if (chip->options & NAND_ROW_ADDR_3)
  650. nc->op.addrs[nc->op.naddrs++] = page >> 16;
  651. }
  652. }
  653. static int atmel_nand_pmecc_enable(struct nand_chip *chip, int op, bool raw)
  654. {
  655. struct atmel_nand *nand = to_atmel_nand(chip);
  656. struct atmel_nand_controller *nc;
  657. int ret;
  658. nc = to_nand_controller(chip->controller);
  659. if (raw)
  660. return 0;
  661. ret = atmel_pmecc_enable(nand->pmecc, op);
  662. if (ret)
  663. dev_err(nc->dev,
  664. "Failed to enable ECC engine (err = %d)\n", ret);
  665. return ret;
  666. }
  667. static void atmel_nand_pmecc_disable(struct nand_chip *chip, bool raw)
  668. {
  669. struct atmel_nand *nand = to_atmel_nand(chip);
  670. if (!raw)
  671. atmel_pmecc_disable(nand->pmecc);
  672. }
  673. static int atmel_nand_pmecc_generate_eccbytes(struct nand_chip *chip, bool raw)
  674. {
  675. struct atmel_nand *nand = to_atmel_nand(chip);
  676. struct mtd_info *mtd = nand_to_mtd(chip);
  677. struct atmel_nand_controller *nc;
  678. struct mtd_oob_region oobregion;
  679. void *eccbuf;
  680. int ret, i;
  681. nc = to_nand_controller(chip->controller);
  682. if (raw)
  683. return 0;
  684. ret = atmel_pmecc_wait_rdy(nand->pmecc);
  685. if (ret) {
  686. dev_err(nc->dev,
  687. "Failed to transfer NAND page data (err = %d)\n",
  688. ret);
  689. return ret;
  690. }
  691. mtd_ooblayout_ecc(mtd, 0, &oobregion);
  692. eccbuf = chip->oob_poi + oobregion.offset;
  693. for (i = 0; i < chip->ecc.steps; i++) {
  694. atmel_pmecc_get_generated_eccbytes(nand->pmecc, i,
  695. eccbuf);
  696. eccbuf += chip->ecc.bytes;
  697. }
  698. return 0;
  699. }
  700. static int atmel_nand_pmecc_correct_data(struct nand_chip *chip, void *buf,
  701. bool raw)
  702. {
  703. struct atmel_nand *nand = to_atmel_nand(chip);
  704. struct mtd_info *mtd = nand_to_mtd(chip);
  705. struct atmel_nand_controller *nc;
  706. struct mtd_oob_region oobregion;
  707. int ret, i, max_bitflips = 0;
  708. void *databuf, *eccbuf;
  709. nc = to_nand_controller(chip->controller);
  710. if (raw)
  711. return 0;
  712. ret = atmel_pmecc_wait_rdy(nand->pmecc);
  713. if (ret) {
  714. dev_err(nc->dev,
  715. "Failed to read NAND page data (err = %d)\n",
  716. ret);
  717. return ret;
  718. }
  719. mtd_ooblayout_ecc(mtd, 0, &oobregion);
  720. eccbuf = chip->oob_poi + oobregion.offset;
  721. databuf = buf;
  722. for (i = 0; i < chip->ecc.steps; i++) {
  723. ret = atmel_pmecc_correct_sector(nand->pmecc, i, databuf,
  724. eccbuf);
  725. if (ret < 0 && !atmel_pmecc_correct_erased_chunks(nand->pmecc))
  726. ret = nand_check_erased_ecc_chunk(databuf,
  727. chip->ecc.size,
  728. eccbuf,
  729. chip->ecc.bytes,
  730. NULL, 0,
  731. chip->ecc.strength);
  732. if (ret >= 0) {
  733. mtd->ecc_stats.corrected += ret;
  734. max_bitflips = max(ret, max_bitflips);
  735. } else {
  736. mtd->ecc_stats.failed++;
  737. }
  738. databuf += chip->ecc.size;
  739. eccbuf += chip->ecc.bytes;
  740. }
  741. return max_bitflips;
  742. }
  743. static int atmel_nand_pmecc_write_pg(struct nand_chip *chip, const u8 *buf,
  744. bool oob_required, int page, bool raw)
  745. {
  746. struct mtd_info *mtd = nand_to_mtd(chip);
  747. struct atmel_nand *nand = to_atmel_nand(chip);
  748. int ret;
  749. nand_prog_page_begin_op(chip, page, 0, NULL, 0);
  750. ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw);
  751. if (ret)
  752. return ret;
  753. nand_write_data_op(chip, buf, mtd->writesize, false);
  754. ret = atmel_nand_pmecc_generate_eccbytes(chip, raw);
  755. if (ret) {
  756. atmel_pmecc_disable(nand->pmecc);
  757. return ret;
  758. }
  759. atmel_nand_pmecc_disable(chip, raw);
  760. nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
  761. return nand_prog_page_end_op(chip);
  762. }
  763. static int atmel_nand_pmecc_write_page(struct nand_chip *chip, const u8 *buf,
  764. int oob_required, int page)
  765. {
  766. return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, false);
  767. }
  768. static int atmel_nand_pmecc_write_page_raw(struct nand_chip *chip,
  769. const u8 *buf, int oob_required,
  770. int page)
  771. {
  772. return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, true);
  773. }
  774. static int atmel_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf,
  775. bool oob_required, int page, bool raw)
  776. {
  777. struct mtd_info *mtd = nand_to_mtd(chip);
  778. int ret;
  779. nand_read_page_op(chip, page, 0, NULL, 0);
  780. ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw);
  781. if (ret)
  782. return ret;
  783. ret = nand_read_data_op(chip, buf, mtd->writesize, false, false);
  784. if (ret)
  785. goto out_disable;
  786. ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false, false);
  787. if (ret)
  788. goto out_disable;
  789. ret = atmel_nand_pmecc_correct_data(chip, buf, raw);
  790. out_disable:
  791. atmel_nand_pmecc_disable(chip, raw);
  792. return ret;
  793. }
  794. static int atmel_nand_pmecc_read_page(struct nand_chip *chip, u8 *buf,
  795. int oob_required, int page)
  796. {
  797. return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, false);
  798. }
  799. static int atmel_nand_pmecc_read_page_raw(struct nand_chip *chip, u8 *buf,
  800. int oob_required, int page)
  801. {
  802. return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, true);
  803. }
  804. static int atmel_hsmc_nand_pmecc_write_pg(struct nand_chip *chip,
  805. const u8 *buf, bool oob_required,
  806. int page, bool raw)
  807. {
  808. struct mtd_info *mtd = nand_to_mtd(chip);
  809. struct atmel_nand *nand = to_atmel_nand(chip);
  810. struct atmel_hsmc_nand_controller *nc;
  811. int ret;
  812. atmel_hsmc_nand_select_target(nand, chip->cur_cs);
  813. nc = to_hsmc_nand_controller(chip->controller);
  814. atmel_nfc_copy_to_sram(chip, buf, false);
  815. nc->op.cmds[0] = NAND_CMD_SEQIN;
  816. nc->op.ncmds = 1;
  817. atmel_nfc_set_op_addr(chip, page, 0x0);
  818. nc->op.cs = nand->activecs->id;
  819. nc->op.data = ATMEL_NFC_WRITE_DATA;
  820. ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw);
  821. if (ret)
  822. return ret;
  823. ret = atmel_nfc_exec_op(nc, false);
  824. if (ret) {
  825. atmel_nand_pmecc_disable(chip, raw);
  826. dev_err(nc->base.dev,
  827. "Failed to transfer NAND page data (err = %d)\n",
  828. ret);
  829. return ret;
  830. }
  831. ret = atmel_nand_pmecc_generate_eccbytes(chip, raw);
  832. atmel_nand_pmecc_disable(chip, raw);
  833. if (ret)
  834. return ret;
  835. nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
  836. return nand_prog_page_end_op(chip);
  837. }
  838. static int atmel_hsmc_nand_pmecc_write_page(struct nand_chip *chip,
  839. const u8 *buf, int oob_required,
  840. int page)
  841. {
  842. return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page,
  843. false);
  844. }
  845. static int atmel_hsmc_nand_pmecc_write_page_raw(struct nand_chip *chip,
  846. const u8 *buf,
  847. int oob_required, int page)
  848. {
  849. return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page,
  850. true);
  851. }
  852. static int atmel_hsmc_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf,
  853. bool oob_required, int page,
  854. bool raw)
  855. {
  856. struct mtd_info *mtd = nand_to_mtd(chip);
  857. struct atmel_nand *nand = to_atmel_nand(chip);
  858. struct atmel_hsmc_nand_controller *nc;
  859. int ret;
  860. atmel_hsmc_nand_select_target(nand, chip->cur_cs);
  861. nc = to_hsmc_nand_controller(chip->controller);
  862. /*
  863. * Optimized read page accessors only work when the NAND R/B pin is
  864. * connected to a native SoC R/B pin. If that's not the case, fallback
  865. * to the non-optimized one.
  866. */
  867. if (nand->activecs->rb.type != ATMEL_NAND_NATIVE_RB)
  868. return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page,
  869. raw);
  870. nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READ0;
  871. if (mtd->writesize > 512)
  872. nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READSTART;
  873. atmel_nfc_set_op_addr(chip, page, 0x0);
  874. nc->op.cs = nand->activecs->id;
  875. nc->op.data = ATMEL_NFC_READ_DATA;
  876. ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw);
  877. if (ret)
  878. return ret;
  879. ret = atmel_nfc_exec_op(nc, false);
  880. if (ret) {
  881. atmel_nand_pmecc_disable(chip, raw);
  882. dev_err(nc->base.dev,
  883. "Failed to load NAND page data (err = %d)\n",
  884. ret);
  885. return ret;
  886. }
  887. atmel_nfc_copy_from_sram(chip, buf, true);
  888. ret = atmel_nand_pmecc_correct_data(chip, buf, raw);
  889. atmel_nand_pmecc_disable(chip, raw);
  890. return ret;
  891. }
  892. static int atmel_hsmc_nand_pmecc_read_page(struct nand_chip *chip, u8 *buf,
  893. int oob_required, int page)
  894. {
  895. return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page,
  896. false);
  897. }
  898. static int atmel_hsmc_nand_pmecc_read_page_raw(struct nand_chip *chip,
  899. u8 *buf, int oob_required,
  900. int page)
  901. {
  902. return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page,
  903. true);
  904. }
  905. static int atmel_nand_pmecc_init(struct nand_chip *chip)
  906. {
  907. const struct nand_ecc_props *requirements =
  908. nanddev_get_ecc_requirements(&chip->base);
  909. struct mtd_info *mtd = nand_to_mtd(chip);
  910. struct nand_device *nanddev = mtd_to_nanddev(mtd);
  911. struct atmel_nand *nand = to_atmel_nand(chip);
  912. struct atmel_nand_controller *nc;
  913. struct atmel_pmecc_user_req req;
  914. nc = to_nand_controller(chip->controller);
  915. if (!nc->pmecc) {
  916. dev_err(nc->dev, "HW ECC not supported\n");
  917. return -ENOTSUPP;
  918. }
  919. if (nc->caps->legacy_of_bindings) {
  920. u32 val;
  921. if (!of_property_read_u32(nc->dev->of_node, "atmel,pmecc-cap",
  922. &val))
  923. chip->ecc.strength = val;
  924. if (!of_property_read_u32(nc->dev->of_node,
  925. "atmel,pmecc-sector-size",
  926. &val))
  927. chip->ecc.size = val;
  928. }
  929. if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH)
  930. req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
  931. else if (chip->ecc.strength)
  932. req.ecc.strength = chip->ecc.strength;
  933. else if (requirements->strength)
  934. req.ecc.strength = requirements->strength;
  935. else
  936. req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
  937. if (chip->ecc.size)
  938. req.ecc.sectorsize = chip->ecc.size;
  939. else if (requirements->step_size)
  940. req.ecc.sectorsize = requirements->step_size;
  941. else
  942. req.ecc.sectorsize = ATMEL_PMECC_SECTOR_SIZE_AUTO;
  943. req.pagesize = mtd->writesize;
  944. req.oobsize = mtd->oobsize;
  945. if (mtd->writesize <= 512) {
  946. req.ecc.bytes = 4;
  947. req.ecc.ooboffset = 0;
  948. } else {
  949. req.ecc.bytes = mtd->oobsize - 2;
  950. req.ecc.ooboffset = ATMEL_PMECC_OOBOFFSET_AUTO;
  951. }
  952. nand->pmecc = atmel_pmecc_create_user(nc->pmecc, &req);
  953. if (IS_ERR(nand->pmecc))
  954. return PTR_ERR(nand->pmecc);
  955. chip->ecc.algo = NAND_ECC_ALGO_BCH;
  956. chip->ecc.size = req.ecc.sectorsize;
  957. chip->ecc.bytes = req.ecc.bytes / req.ecc.nsectors;
  958. chip->ecc.strength = req.ecc.strength;
  959. chip->options |= NAND_NO_SUBPAGE_WRITE;
  960. mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout());
  961. return 0;
  962. }
  963. static int atmel_nand_ecc_init(struct nand_chip *chip)
  964. {
  965. struct atmel_nand_controller *nc;
  966. int ret;
  967. nc = to_nand_controller(chip->controller);
  968. switch (chip->ecc.engine_type) {
  969. case NAND_ECC_ENGINE_TYPE_NONE:
  970. case NAND_ECC_ENGINE_TYPE_SOFT:
  971. /*
  972. * Nothing to do, the core will initialize everything for us.
  973. */
  974. break;
  975. case NAND_ECC_ENGINE_TYPE_ON_HOST:
  976. ret = atmel_nand_pmecc_init(chip);
  977. if (ret)
  978. return ret;
  979. chip->ecc.read_page = atmel_nand_pmecc_read_page;
  980. chip->ecc.write_page = atmel_nand_pmecc_write_page;
  981. chip->ecc.read_page_raw = atmel_nand_pmecc_read_page_raw;
  982. chip->ecc.write_page_raw = atmel_nand_pmecc_write_page_raw;
  983. break;
  984. default:
  985. /* Other modes are not supported. */
  986. dev_err(nc->dev, "Unsupported ECC mode: %d\n",
  987. chip->ecc.engine_type);
  988. return -ENOTSUPP;
  989. }
  990. return 0;
  991. }
  992. static int atmel_hsmc_nand_ecc_init(struct nand_chip *chip)
  993. {
  994. int ret;
  995. ret = atmel_nand_ecc_init(chip);
  996. if (ret)
  997. return ret;
  998. if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
  999. return 0;
  1000. /* Adjust the ECC operations for the HSMC IP. */
  1001. chip->ecc.read_page = atmel_hsmc_nand_pmecc_read_page;
  1002. chip->ecc.write_page = atmel_hsmc_nand_pmecc_write_page;
  1003. chip->ecc.read_page_raw = atmel_hsmc_nand_pmecc_read_page_raw;
  1004. chip->ecc.write_page_raw = atmel_hsmc_nand_pmecc_write_page_raw;
  1005. return 0;
  1006. }
  1007. static int atmel_smc_nand_prepare_smcconf(struct atmel_nand *nand,
  1008. const struct nand_interface_config *conf,
  1009. struct atmel_smc_cs_conf *smcconf)
  1010. {
  1011. u32 ncycles, totalcycles, timeps, mckperiodps;
  1012. struct atmel_nand_controller *nc;
  1013. int ret;
  1014. nc = to_nand_controller(nand->base.controller);
  1015. /* DDR interface not supported. */
  1016. if (!nand_interface_is_sdr(conf))
  1017. return -ENOTSUPP;
  1018. /*
  1019. * tRC < 30ns implies EDO mode. This controller does not support this
  1020. * mode.
  1021. */
  1022. if (conf->timings.sdr.tRC_min < 30000)
  1023. return -ENOTSUPP;
  1024. atmel_smc_cs_conf_init(smcconf);
  1025. mckperiodps = NSEC_PER_SEC / clk_get_rate(nc->mck);
  1026. mckperiodps *= 1000;
  1027. /*
  1028. * Set write pulse timing. This one is easy to extract:
  1029. *
  1030. * NWE_PULSE = tWP
  1031. */
  1032. ncycles = DIV_ROUND_UP(conf->timings.sdr.tWP_min, mckperiodps);
  1033. totalcycles = ncycles;
  1034. ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NWE_SHIFT,
  1035. ncycles);
  1036. if (ret)
  1037. return ret;
  1038. /*
  1039. * The write setup timing depends on the operation done on the NAND.
  1040. * All operations goes through the same data bus, but the operation
  1041. * type depends on the address we are writing to (ALE/CLE address
  1042. * lines).
  1043. * Since we have no way to differentiate the different operations at
  1044. * the SMC level, we must consider the worst case (the biggest setup
  1045. * time among all operation types):
  1046. *
  1047. * NWE_SETUP = max(tCLS, tCS, tALS, tDS) - NWE_PULSE
  1048. */
  1049. timeps = max3(conf->timings.sdr.tCLS_min, conf->timings.sdr.tCS_min,
  1050. conf->timings.sdr.tALS_min);
  1051. timeps = max(timeps, conf->timings.sdr.tDS_min);
  1052. ncycles = DIV_ROUND_UP(timeps, mckperiodps);
  1053. ncycles = ncycles > totalcycles ? ncycles - totalcycles : 0;
  1054. totalcycles += ncycles;
  1055. ret = atmel_smc_cs_conf_set_setup(smcconf, ATMEL_SMC_NWE_SHIFT,
  1056. ncycles);
  1057. if (ret)
  1058. return ret;
  1059. /*
  1060. * As for the write setup timing, the write hold timing depends on the
  1061. * operation done on the NAND:
  1062. *
  1063. * NWE_HOLD = max(tCLH, tCH, tALH, tDH, tWH)
  1064. */
  1065. timeps = max3(conf->timings.sdr.tCLH_min, conf->timings.sdr.tCH_min,
  1066. conf->timings.sdr.tALH_min);
  1067. timeps = max3(timeps, conf->timings.sdr.tDH_min,
  1068. conf->timings.sdr.tWH_min);
  1069. ncycles = DIV_ROUND_UP(timeps, mckperiodps);
  1070. totalcycles += ncycles;
  1071. /*
  1072. * The write cycle timing is directly matching tWC, but is also
  1073. * dependent on the other timings on the setup and hold timings we
  1074. * calculated earlier, which gives:
  1075. *
  1076. * NWE_CYCLE = max(tWC, NWE_SETUP + NWE_PULSE + NWE_HOLD)
  1077. */
  1078. ncycles = DIV_ROUND_UP(conf->timings.sdr.tWC_min, mckperiodps);
  1079. ncycles = max(totalcycles, ncycles);
  1080. ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NWE_SHIFT,
  1081. ncycles);
  1082. if (ret)
  1083. return ret;
  1084. /*
  1085. * We don't want the CS line to be toggled between each byte/word
  1086. * transfer to the NAND. The only way to guarantee that is to have the
  1087. * NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means:
  1088. *
  1089. * NCS_WR_PULSE = NWE_CYCLE
  1090. */
  1091. ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_WR_SHIFT,
  1092. ncycles);
  1093. if (ret)
  1094. return ret;
  1095. /*
  1096. * As for the write setup timing, the read hold timing depends on the
  1097. * operation done on the NAND:
  1098. *
  1099. * NRD_HOLD = max(tREH, tRHOH)
  1100. */
  1101. timeps = max(conf->timings.sdr.tREH_min, conf->timings.sdr.tRHOH_min);
  1102. ncycles = DIV_ROUND_UP(timeps, mckperiodps);
  1103. totalcycles = ncycles;
  1104. /*
  1105. * TDF = tRHZ - NRD_HOLD
  1106. */
  1107. ncycles = DIV_ROUND_UP(conf->timings.sdr.tRHZ_max, mckperiodps);
  1108. ncycles -= totalcycles;
  1109. /*
  1110. * In ONFI 4.0 specs, tRHZ has been increased to support EDO NANDs and
  1111. * we might end up with a config that does not fit in the TDF field.
  1112. * Just take the max value in this case and hope that the NAND is more
  1113. * tolerant than advertised.
  1114. */
  1115. if (ncycles > ATMEL_SMC_MODE_TDF_MAX)
  1116. ncycles = ATMEL_SMC_MODE_TDF_MAX;
  1117. else if (ncycles < ATMEL_SMC_MODE_TDF_MIN)
  1118. ncycles = ATMEL_SMC_MODE_TDF_MIN;
  1119. smcconf->mode |= ATMEL_SMC_MODE_TDF(ncycles) |
  1120. ATMEL_SMC_MODE_TDFMODE_OPTIMIZED;
  1121. /*
  1122. * Read pulse timing directly matches tRP:
  1123. *
  1124. * NRD_PULSE = tRP
  1125. */
  1126. ncycles = DIV_ROUND_UP(conf->timings.sdr.tRP_min, mckperiodps);
  1127. totalcycles += ncycles;
  1128. ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NRD_SHIFT,
  1129. ncycles);
  1130. if (ret)
  1131. return ret;
  1132. /*
  1133. * The write cycle timing is directly matching tWC, but is also
  1134. * dependent on the setup and hold timings we calculated earlier,
  1135. * which gives:
  1136. *
  1137. * NRD_CYCLE = max(tRC, NRD_PULSE + NRD_HOLD)
  1138. *
  1139. * NRD_SETUP is always 0.
  1140. */
  1141. ncycles = DIV_ROUND_UP(conf->timings.sdr.tRC_min, mckperiodps);
  1142. ncycles = max(totalcycles, ncycles);
  1143. ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NRD_SHIFT,
  1144. ncycles);
  1145. if (ret)
  1146. return ret;
  1147. /*
  1148. * We don't want the CS line to be toggled between each byte/word
  1149. * transfer from the NAND. The only way to guarantee that is to have
  1150. * the NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means:
  1151. *
  1152. * NCS_RD_PULSE = NRD_CYCLE
  1153. */
  1154. ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_RD_SHIFT,
  1155. ncycles);
  1156. if (ret)
  1157. return ret;
  1158. /* Txxx timings are directly matching tXXX ones. */
  1159. ncycles = DIV_ROUND_UP(conf->timings.sdr.tCLR_min, mckperiodps);
  1160. ret = atmel_smc_cs_conf_set_timing(smcconf,
  1161. ATMEL_HSMC_TIMINGS_TCLR_SHIFT,
  1162. ncycles);
  1163. if (ret)
  1164. return ret;
  1165. ncycles = DIV_ROUND_UP(conf->timings.sdr.tADL_min, mckperiodps);
  1166. ret = atmel_smc_cs_conf_set_timing(smcconf,
  1167. ATMEL_HSMC_TIMINGS_TADL_SHIFT,
  1168. ncycles);
  1169. /*
  1170. * Version 4 of the ONFI spec mandates that tADL be at least 400
  1171. * nanoseconds, but, depending on the master clock rate, 400 ns may not
  1172. * fit in the tADL field of the SMC reg. We need to relax the check and
  1173. * accept the -ERANGE return code.
  1174. *
  1175. * Note that previous versions of the ONFI spec had a lower tADL_min
  1176. * (100 or 200 ns). It's not clear why this timing constraint got
  1177. * increased but it seems most NANDs are fine with values lower than
  1178. * 400ns, so we should be safe.
  1179. */
  1180. if (ret && ret != -ERANGE)
  1181. return ret;
  1182. ncycles = DIV_ROUND_UP(conf->timings.sdr.tAR_min, mckperiodps);
  1183. ret = atmel_smc_cs_conf_set_timing(smcconf,
  1184. ATMEL_HSMC_TIMINGS_TAR_SHIFT,
  1185. ncycles);
  1186. if (ret)
  1187. return ret;
  1188. ncycles = DIV_ROUND_UP(conf->timings.sdr.tRR_min, mckperiodps);
  1189. ret = atmel_smc_cs_conf_set_timing(smcconf,
  1190. ATMEL_HSMC_TIMINGS_TRR_SHIFT,
  1191. ncycles);
  1192. if (ret)
  1193. return ret;
  1194. ncycles = DIV_ROUND_UP(conf->timings.sdr.tWB_max, mckperiodps);
  1195. ret = atmel_smc_cs_conf_set_timing(smcconf,
  1196. ATMEL_HSMC_TIMINGS_TWB_SHIFT,
  1197. ncycles);
  1198. if (ret)
  1199. return ret;
  1200. /* Attach the CS line to the NFC logic. */
  1201. smcconf->timings |= ATMEL_HSMC_TIMINGS_NFSEL;
  1202. /* Set the appropriate data bus width. */
  1203. if (nand->base.options & NAND_BUSWIDTH_16)
  1204. smcconf->mode |= ATMEL_SMC_MODE_DBW_16;
  1205. /* Operate in NRD/NWE READ/WRITEMODE. */
  1206. smcconf->mode |= ATMEL_SMC_MODE_READMODE_NRD |
  1207. ATMEL_SMC_MODE_WRITEMODE_NWE;
  1208. return 0;
  1209. }
  1210. static int atmel_smc_nand_setup_interface(struct atmel_nand *nand,
  1211. int csline,
  1212. const struct nand_interface_config *conf)
  1213. {
  1214. struct atmel_nand_controller *nc;
  1215. struct atmel_smc_cs_conf smcconf;
  1216. struct atmel_nand_cs *cs;
  1217. int ret;
  1218. nc = to_nand_controller(nand->base.controller);
  1219. ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf);
  1220. if (ret)
  1221. return ret;
  1222. if (csline == NAND_DATA_IFACE_CHECK_ONLY)
  1223. return 0;
  1224. cs = &nand->cs[csline];
  1225. cs->smcconf = smcconf;
  1226. atmel_smc_cs_conf_apply(nc->smc, cs->id, &cs->smcconf);
  1227. return 0;
  1228. }
  1229. static int atmel_hsmc_nand_setup_interface(struct atmel_nand *nand,
  1230. int csline,
  1231. const struct nand_interface_config *conf)
  1232. {
  1233. struct atmel_hsmc_nand_controller *nc;
  1234. struct atmel_smc_cs_conf smcconf;
  1235. struct atmel_nand_cs *cs;
  1236. int ret;
  1237. nc = to_hsmc_nand_controller(nand->base.controller);
  1238. ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf);
  1239. if (ret)
  1240. return ret;
  1241. if (csline == NAND_DATA_IFACE_CHECK_ONLY)
  1242. return 0;
  1243. cs = &nand->cs[csline];
  1244. cs->smcconf = smcconf;
  1245. if (cs->rb.type == ATMEL_NAND_NATIVE_RB)
  1246. cs->smcconf.timings |= ATMEL_HSMC_TIMINGS_RBNSEL(cs->rb.id);
  1247. atmel_hsmc_cs_conf_apply(nc->base.smc, nc->hsmc_layout, cs->id,
  1248. &cs->smcconf);
  1249. return 0;
  1250. }
  1251. static int atmel_nand_setup_interface(struct nand_chip *chip, int csline,
  1252. const struct nand_interface_config *conf)
  1253. {
  1254. struct atmel_nand *nand = to_atmel_nand(chip);
  1255. const struct nand_sdr_timings *sdr;
  1256. struct atmel_nand_controller *nc;
  1257. sdr = nand_get_sdr_timings(conf);
  1258. if (IS_ERR(sdr))
  1259. return PTR_ERR(sdr);
  1260. nc = to_nand_controller(nand->base.controller);
  1261. if (csline >= nand->numcs ||
  1262. (csline < 0 && csline != NAND_DATA_IFACE_CHECK_ONLY))
  1263. return -EINVAL;
  1264. return nc->caps->ops->setup_interface(nand, csline, conf);
  1265. }
  1266. static int atmel_nand_exec_op(struct nand_chip *chip,
  1267. const struct nand_operation *op,
  1268. bool check_only)
  1269. {
  1270. struct atmel_nand *nand = to_atmel_nand(chip);
  1271. struct atmel_nand_controller *nc;
  1272. nc = to_nand_controller(nand->base.controller);
  1273. return nc->caps->ops->exec_op(nand, op, check_only);
  1274. }
  1275. static void atmel_nand_init(struct atmel_nand_controller *nc,
  1276. struct atmel_nand *nand)
  1277. {
  1278. struct nand_chip *chip = &nand->base;
  1279. struct mtd_info *mtd = nand_to_mtd(chip);
  1280. mtd->dev.parent = nc->dev;
  1281. nand->base.controller = &nc->base;
  1282. if (!nc->mck || !nc->caps->ops->setup_interface)
  1283. chip->options |= NAND_KEEP_TIMINGS;
  1284. /*
  1285. * Use a bounce buffer when the buffer passed by the MTD user is not
  1286. * suitable for DMA.
  1287. */
  1288. if (nc->dmac)
  1289. chip->options |= NAND_USES_DMA;
  1290. /* Default to HW ECC if pmecc is available. */
  1291. if (nc->pmecc)
  1292. chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
  1293. }
  1294. static void atmel_smc_nand_init(struct atmel_nand_controller *nc,
  1295. struct atmel_nand *nand)
  1296. {
  1297. struct nand_chip *chip = &nand->base;
  1298. struct atmel_smc_nand_controller *smc_nc;
  1299. int i;
  1300. atmel_nand_init(nc, nand);
  1301. smc_nc = to_smc_nand_controller(chip->controller);
  1302. if (!smc_nc->ebi_csa_regmap)
  1303. return;
  1304. /* Attach the CS to the NAND Flash logic. */
  1305. for (i = 0; i < nand->numcs; i++)
  1306. regmap_update_bits(smc_nc->ebi_csa_regmap,
  1307. smc_nc->ebi_csa->offs,
  1308. BIT(nand->cs[i].id), BIT(nand->cs[i].id));
  1309. if (smc_nc->ebi_csa->nfd0_on_d16)
  1310. regmap_update_bits(smc_nc->ebi_csa_regmap,
  1311. smc_nc->ebi_csa->offs,
  1312. smc_nc->ebi_csa->nfd0_on_d16,
  1313. smc_nc->ebi_csa->nfd0_on_d16);
  1314. }
  1315. static int atmel_nand_controller_remove_nand(struct atmel_nand *nand)
  1316. {
  1317. struct nand_chip *chip = &nand->base;
  1318. struct mtd_info *mtd = nand_to_mtd(chip);
  1319. int ret;
  1320. ret = mtd_device_unregister(mtd);
  1321. if (ret)
  1322. return ret;
  1323. nand_cleanup(chip);
  1324. list_del(&nand->node);
  1325. return 0;
  1326. }
  1327. static struct atmel_nand *atmel_nand_create(struct atmel_nand_controller *nc,
  1328. struct device_node *np,
  1329. int reg_cells)
  1330. {
  1331. struct atmel_nand *nand;
  1332. struct gpio_desc *gpio;
  1333. int numcs, ret, i;
  1334. numcs = of_property_count_elems_of_size(np, "reg",
  1335. reg_cells * sizeof(u32));
  1336. if (numcs < 1) {
  1337. dev_err(nc->dev, "Missing or invalid reg property\n");
  1338. return ERR_PTR(-EINVAL);
  1339. }
  1340. nand = devm_kzalloc(nc->dev, struct_size(nand, cs, numcs), GFP_KERNEL);
  1341. if (!nand)
  1342. return ERR_PTR(-ENOMEM);
  1343. nand->numcs = numcs;
  1344. gpio = devm_fwnode_gpiod_get(nc->dev, of_fwnode_handle(np),
  1345. "det", GPIOD_IN, "nand-det");
  1346. if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
  1347. dev_err(nc->dev,
  1348. "Failed to get detect gpio (err = %ld)\n",
  1349. PTR_ERR(gpio));
  1350. return ERR_CAST(gpio);
  1351. }
  1352. if (!IS_ERR(gpio))
  1353. nand->cdgpio = gpio;
  1354. for (i = 0; i < numcs; i++) {
  1355. struct resource res;
  1356. u32 val;
  1357. ret = of_address_to_resource(np, 0, &res);
  1358. if (ret) {
  1359. dev_err(nc->dev, "Invalid reg property (err = %d)\n",
  1360. ret);
  1361. return ERR_PTR(ret);
  1362. }
  1363. ret = of_property_read_u32_index(np, "reg", i * reg_cells,
  1364. &val);
  1365. if (ret) {
  1366. dev_err(nc->dev, "Invalid reg property (err = %d)\n",
  1367. ret);
  1368. return ERR_PTR(ret);
  1369. }
  1370. nand->cs[i].id = val;
  1371. nand->cs[i].io.dma = res.start;
  1372. nand->cs[i].io.virt = devm_ioremap_resource(nc->dev, &res);
  1373. if (IS_ERR(nand->cs[i].io.virt))
  1374. return ERR_CAST(nand->cs[i].io.virt);
  1375. if (!of_property_read_u32(np, "atmel,rb", &val)) {
  1376. if (val > ATMEL_NFC_MAX_RB_ID)
  1377. return ERR_PTR(-EINVAL);
  1378. nand->cs[i].rb.type = ATMEL_NAND_NATIVE_RB;
  1379. nand->cs[i].rb.id = val;
  1380. } else {
  1381. gpio = devm_fwnode_gpiod_get_index(nc->dev,
  1382. of_fwnode_handle(np),
  1383. "rb", i, GPIOD_IN,
  1384. "nand-rb");
  1385. if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
  1386. dev_err(nc->dev,
  1387. "Failed to get R/B gpio (err = %ld)\n",
  1388. PTR_ERR(gpio));
  1389. return ERR_CAST(gpio);
  1390. }
  1391. if (!IS_ERR(gpio)) {
  1392. nand->cs[i].rb.type = ATMEL_NAND_GPIO_RB;
  1393. nand->cs[i].rb.gpio = gpio;
  1394. }
  1395. }
  1396. gpio = devm_fwnode_gpiod_get_index(nc->dev,
  1397. of_fwnode_handle(np),
  1398. "cs", i, GPIOD_OUT_HIGH,
  1399. "nand-cs");
  1400. if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
  1401. dev_err(nc->dev,
  1402. "Failed to get CS gpio (err = %ld)\n",
  1403. PTR_ERR(gpio));
  1404. return ERR_CAST(gpio);
  1405. }
  1406. if (!IS_ERR(gpio))
  1407. nand->cs[i].csgpio = gpio;
  1408. }
  1409. nand_set_flash_node(&nand->base, np);
  1410. return nand;
  1411. }
  1412. static int
  1413. atmel_nand_controller_add_nand(struct atmel_nand_controller *nc,
  1414. struct atmel_nand *nand)
  1415. {
  1416. struct nand_chip *chip = &nand->base;
  1417. struct mtd_info *mtd = nand_to_mtd(chip);
  1418. int ret;
  1419. /* No card inserted, skip this NAND. */
  1420. if (nand->cdgpio && gpiod_get_value(nand->cdgpio)) {
  1421. dev_info(nc->dev, "No SmartMedia card inserted.\n");
  1422. return 0;
  1423. }
  1424. nc->caps->ops->nand_init(nc, nand);
  1425. ret = nand_scan(chip, nand->numcs);
  1426. if (ret) {
  1427. dev_err(nc->dev, "NAND scan failed: %d\n", ret);
  1428. return ret;
  1429. }
  1430. ret = mtd_device_register(mtd, NULL, 0);
  1431. if (ret) {
  1432. dev_err(nc->dev, "Failed to register mtd device: %d\n", ret);
  1433. nand_cleanup(chip);
  1434. return ret;
  1435. }
  1436. list_add_tail(&nand->node, &nc->chips);
  1437. return 0;
  1438. }
  1439. static int
  1440. atmel_nand_controller_remove_nands(struct atmel_nand_controller *nc)
  1441. {
  1442. struct atmel_nand *nand, *tmp;
  1443. int ret;
  1444. list_for_each_entry_safe(nand, tmp, &nc->chips, node) {
  1445. ret = atmel_nand_controller_remove_nand(nand);
  1446. if (ret)
  1447. return ret;
  1448. }
  1449. return 0;
  1450. }
  1451. static int
  1452. atmel_nand_controller_legacy_add_nands(struct atmel_nand_controller *nc)
  1453. {
  1454. struct device *dev = nc->dev;
  1455. struct platform_device *pdev = to_platform_device(dev);
  1456. struct atmel_nand *nand;
  1457. struct gpio_desc *gpio;
  1458. struct resource *res;
  1459. /*
  1460. * Legacy bindings only allow connecting a single NAND with a unique CS
  1461. * line to the controller.
  1462. */
  1463. nand = devm_kzalloc(nc->dev, sizeof(*nand) + sizeof(*nand->cs),
  1464. GFP_KERNEL);
  1465. if (!nand)
  1466. return -ENOMEM;
  1467. nand->numcs = 1;
  1468. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1469. nand->cs[0].io.virt = devm_ioremap_resource(dev, res);
  1470. if (IS_ERR(nand->cs[0].io.virt))
  1471. return PTR_ERR(nand->cs[0].io.virt);
  1472. nand->cs[0].io.dma = res->start;
  1473. /*
  1474. * The old driver was hardcoding the CS id to 3 for all sama5
  1475. * controllers. Since this id is only meaningful for the sama5
  1476. * controller we can safely assign this id to 3 no matter the
  1477. * controller.
  1478. * If one wants to connect a NAND to a different CS line, he will
  1479. * have to use the new bindings.
  1480. */
  1481. nand->cs[0].id = 3;
  1482. /* R/B GPIO. */
  1483. gpio = devm_gpiod_get_index_optional(dev, NULL, 0, GPIOD_IN);
  1484. if (IS_ERR(gpio)) {
  1485. dev_err(dev, "Failed to get R/B gpio (err = %ld)\n",
  1486. PTR_ERR(gpio));
  1487. return PTR_ERR(gpio);
  1488. }
  1489. if (gpio) {
  1490. nand->cs[0].rb.type = ATMEL_NAND_GPIO_RB;
  1491. nand->cs[0].rb.gpio = gpio;
  1492. }
  1493. /* CS GPIO. */
  1494. gpio = devm_gpiod_get_index_optional(dev, NULL, 1, GPIOD_OUT_HIGH);
  1495. if (IS_ERR(gpio)) {
  1496. dev_err(dev, "Failed to get CS gpio (err = %ld)\n",
  1497. PTR_ERR(gpio));
  1498. return PTR_ERR(gpio);
  1499. }
  1500. nand->cs[0].csgpio = gpio;
  1501. /* Card detect GPIO. */
  1502. gpio = devm_gpiod_get_index_optional(nc->dev, NULL, 2, GPIOD_IN);
  1503. if (IS_ERR(gpio)) {
  1504. dev_err(dev,
  1505. "Failed to get detect gpio (err = %ld)\n",
  1506. PTR_ERR(gpio));
  1507. return PTR_ERR(gpio);
  1508. }
  1509. nand->cdgpio = gpio;
  1510. nand_set_flash_node(&nand->base, nc->dev->of_node);
  1511. return atmel_nand_controller_add_nand(nc, nand);
  1512. }
  1513. static int atmel_nand_controller_add_nands(struct atmel_nand_controller *nc)
  1514. {
  1515. struct device_node *np, *nand_np;
  1516. struct device *dev = nc->dev;
  1517. int ret, reg_cells;
  1518. u32 val;
  1519. /* We do not retrieve the SMC syscon when parsing old DTs. */
  1520. if (nc->caps->legacy_of_bindings)
  1521. return atmel_nand_controller_legacy_add_nands(nc);
  1522. np = dev->of_node;
  1523. ret = of_property_read_u32(np, "#address-cells", &val);
  1524. if (ret) {
  1525. dev_err(dev, "missing #address-cells property\n");
  1526. return ret;
  1527. }
  1528. reg_cells = val;
  1529. ret = of_property_read_u32(np, "#size-cells", &val);
  1530. if (ret) {
  1531. dev_err(dev, "missing #size-cells property\n");
  1532. return ret;
  1533. }
  1534. reg_cells += val;
  1535. for_each_child_of_node(np, nand_np) {
  1536. struct atmel_nand *nand;
  1537. nand = atmel_nand_create(nc, nand_np, reg_cells);
  1538. if (IS_ERR(nand)) {
  1539. ret = PTR_ERR(nand);
  1540. goto err;
  1541. }
  1542. ret = atmel_nand_controller_add_nand(nc, nand);
  1543. if (ret)
  1544. goto err;
  1545. }
  1546. return 0;
  1547. err:
  1548. atmel_nand_controller_remove_nands(nc);
  1549. return ret;
  1550. }
  1551. static void atmel_nand_controller_cleanup(struct atmel_nand_controller *nc)
  1552. {
  1553. if (nc->dmac)
  1554. dma_release_channel(nc->dmac);
  1555. clk_put(nc->mck);
  1556. }
  1557. static const struct atmel_smc_nand_ebi_csa_cfg at91sam9260_ebi_csa = {
  1558. .offs = AT91SAM9260_MATRIX_EBICSA,
  1559. };
  1560. static const struct atmel_smc_nand_ebi_csa_cfg at91sam9261_ebi_csa = {
  1561. .offs = AT91SAM9261_MATRIX_EBICSA,
  1562. };
  1563. static const struct atmel_smc_nand_ebi_csa_cfg at91sam9263_ebi_csa = {
  1564. .offs = AT91SAM9263_MATRIX_EBI0CSA,
  1565. };
  1566. static const struct atmel_smc_nand_ebi_csa_cfg at91sam9rl_ebi_csa = {
  1567. .offs = AT91SAM9RL_MATRIX_EBICSA,
  1568. };
  1569. static const struct atmel_smc_nand_ebi_csa_cfg at91sam9g45_ebi_csa = {
  1570. .offs = AT91SAM9G45_MATRIX_EBICSA,
  1571. };
  1572. static const struct atmel_smc_nand_ebi_csa_cfg at91sam9n12_ebi_csa = {
  1573. .offs = AT91SAM9N12_MATRIX_EBICSA,
  1574. };
  1575. static const struct atmel_smc_nand_ebi_csa_cfg at91sam9x5_ebi_csa = {
  1576. .offs = AT91SAM9X5_MATRIX_EBICSA,
  1577. };
  1578. static const struct atmel_smc_nand_ebi_csa_cfg sam9x60_ebi_csa = {
  1579. .offs = AT91_SFR_CCFG_EBICSA,
  1580. .nfd0_on_d16 = AT91_SFR_CCFG_NFD0_ON_D16,
  1581. };
  1582. static const struct of_device_id __maybe_unused atmel_ebi_csa_regmap_of_ids[] = {
  1583. {
  1584. .compatible = "atmel,at91sam9260-matrix",
  1585. .data = &at91sam9260_ebi_csa,
  1586. },
  1587. {
  1588. .compatible = "atmel,at91sam9261-matrix",
  1589. .data = &at91sam9261_ebi_csa,
  1590. },
  1591. {
  1592. .compatible = "atmel,at91sam9263-matrix",
  1593. .data = &at91sam9263_ebi_csa,
  1594. },
  1595. {
  1596. .compatible = "atmel,at91sam9rl-matrix",
  1597. .data = &at91sam9rl_ebi_csa,
  1598. },
  1599. {
  1600. .compatible = "atmel,at91sam9g45-matrix",
  1601. .data = &at91sam9g45_ebi_csa,
  1602. },
  1603. {
  1604. .compatible = "atmel,at91sam9n12-matrix",
  1605. .data = &at91sam9n12_ebi_csa,
  1606. },
  1607. {
  1608. .compatible = "atmel,at91sam9x5-matrix",
  1609. .data = &at91sam9x5_ebi_csa,
  1610. },
  1611. {
  1612. .compatible = "microchip,sam9x60-sfr",
  1613. .data = &sam9x60_ebi_csa,
  1614. },
  1615. { /* sentinel */ },
  1616. };
  1617. static int atmel_nand_attach_chip(struct nand_chip *chip)
  1618. {
  1619. struct atmel_nand_controller *nc = to_nand_controller(chip->controller);
  1620. struct atmel_nand *nand = to_atmel_nand(chip);
  1621. struct mtd_info *mtd = nand_to_mtd(chip);
  1622. int ret;
  1623. ret = nc->caps->ops->ecc_init(chip);
  1624. if (ret)
  1625. return ret;
  1626. if (nc->caps->legacy_of_bindings || !nc->dev->of_node) {
  1627. /*
  1628. * We keep the MTD name unchanged to avoid breaking platforms
  1629. * where the MTD cmdline parser is used and the bootloader
  1630. * has not been updated to use the new naming scheme.
  1631. */
  1632. mtd->name = "atmel_nand";
  1633. } else if (!mtd->name) {
  1634. /*
  1635. * If the new bindings are used and the bootloader has not been
  1636. * updated to pass a new mtdparts parameter on the cmdline, you
  1637. * should define the following property in your nand node:
  1638. *
  1639. * label = "atmel_nand";
  1640. *
  1641. * This way, mtd->name will be set by the core when
  1642. * nand_set_flash_node() is called.
  1643. */
  1644. mtd->name = devm_kasprintf(nc->dev, GFP_KERNEL,
  1645. "%s:nand.%d", dev_name(nc->dev),
  1646. nand->cs[0].id);
  1647. if (!mtd->name) {
  1648. dev_err(nc->dev, "Failed to allocate mtd->name\n");
  1649. return -ENOMEM;
  1650. }
  1651. }
  1652. return 0;
  1653. }
  1654. static const struct nand_controller_ops atmel_nand_controller_ops = {
  1655. .attach_chip = atmel_nand_attach_chip,
  1656. .setup_interface = atmel_nand_setup_interface,
  1657. .exec_op = atmel_nand_exec_op,
  1658. };
  1659. static int atmel_nand_controller_init(struct atmel_nand_controller *nc,
  1660. struct platform_device *pdev,
  1661. const struct atmel_nand_controller_caps *caps)
  1662. {
  1663. struct device *dev = &pdev->dev;
  1664. struct device_node *np = dev->of_node;
  1665. int ret;
  1666. nand_controller_init(&nc->base);
  1667. nc->base.ops = &atmel_nand_controller_ops;
  1668. INIT_LIST_HEAD(&nc->chips);
  1669. nc->dev = dev;
  1670. nc->caps = caps;
  1671. platform_set_drvdata(pdev, nc);
  1672. nc->pmecc = devm_atmel_pmecc_get(dev);
  1673. if (IS_ERR(nc->pmecc))
  1674. return dev_err_probe(dev, PTR_ERR(nc->pmecc),
  1675. "Could not get PMECC object\n");
  1676. if (nc->caps->has_dma && !atmel_nand_avoid_dma) {
  1677. dma_cap_mask_t mask;
  1678. dma_cap_zero(mask);
  1679. dma_cap_set(DMA_MEMCPY, mask);
  1680. nc->dmac = dma_request_channel(mask, NULL, NULL);
  1681. if (!nc->dmac)
  1682. dev_err(nc->dev, "Failed to request DMA channel\n");
  1683. }
  1684. /* We do not retrieve the SMC syscon when parsing old DTs. */
  1685. if (nc->caps->legacy_of_bindings)
  1686. return 0;
  1687. nc->mck = of_clk_get(dev->parent->of_node, 0);
  1688. if (IS_ERR(nc->mck)) {
  1689. dev_err(dev, "Failed to retrieve MCK clk\n");
  1690. ret = PTR_ERR(nc->mck);
  1691. goto out_release_dma;
  1692. }
  1693. np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0);
  1694. if (!np) {
  1695. dev_err(dev, "Missing or invalid atmel,smc property\n");
  1696. ret = -EINVAL;
  1697. goto out_release_dma;
  1698. }
  1699. nc->smc = syscon_node_to_regmap(np);
  1700. of_node_put(np);
  1701. if (IS_ERR(nc->smc)) {
  1702. ret = PTR_ERR(nc->smc);
  1703. dev_err(dev, "Could not get SMC regmap (err = %d)\n", ret);
  1704. goto out_release_dma;
  1705. }
  1706. return 0;
  1707. out_release_dma:
  1708. if (nc->dmac)
  1709. dma_release_channel(nc->dmac);
  1710. return ret;
  1711. }
  1712. static int
  1713. atmel_smc_nand_controller_init(struct atmel_smc_nand_controller *nc)
  1714. {
  1715. struct device *dev = nc->base.dev;
  1716. const struct of_device_id *match;
  1717. struct device_node *np;
  1718. int ret;
  1719. /* We do not retrieve the EBICSA regmap when parsing old DTs. */
  1720. if (nc->base.caps->legacy_of_bindings)
  1721. return 0;
  1722. np = of_parse_phandle(dev->parent->of_node,
  1723. nc->base.caps->ebi_csa_regmap_name, 0);
  1724. if (!np)
  1725. return 0;
  1726. match = of_match_node(atmel_ebi_csa_regmap_of_ids, np);
  1727. if (!match) {
  1728. of_node_put(np);
  1729. return 0;
  1730. }
  1731. nc->ebi_csa_regmap = syscon_node_to_regmap(np);
  1732. of_node_put(np);
  1733. if (IS_ERR(nc->ebi_csa_regmap)) {
  1734. ret = PTR_ERR(nc->ebi_csa_regmap);
  1735. dev_err(dev, "Could not get EBICSA regmap (err = %d)\n", ret);
  1736. return ret;
  1737. }
  1738. nc->ebi_csa = (struct atmel_smc_nand_ebi_csa_cfg *)match->data;
  1739. /*
  1740. * The at91sam9263 has 2 EBIs, if the NAND controller is under EBI1
  1741. * add 4 to ->ebi_csa->offs.
  1742. */
  1743. if (of_device_is_compatible(dev->parent->of_node,
  1744. "atmel,at91sam9263-ebi1"))
  1745. nc->ebi_csa->offs += 4;
  1746. return 0;
  1747. }
  1748. static int
  1749. atmel_hsmc_nand_controller_legacy_init(struct atmel_hsmc_nand_controller *nc)
  1750. {
  1751. struct regmap_config regmap_conf = {
  1752. .reg_bits = 32,
  1753. .val_bits = 32,
  1754. .reg_stride = 4,
  1755. };
  1756. struct device *dev = nc->base.dev;
  1757. struct device_node *nand_np, *nfc_np;
  1758. void __iomem *iomem;
  1759. struct resource res;
  1760. int ret;
  1761. nand_np = dev->of_node;
  1762. nfc_np = of_get_compatible_child(dev->of_node, "atmel,sama5d3-nfc");
  1763. if (!nfc_np) {
  1764. dev_err(dev, "Could not find device node for sama5d3-nfc\n");
  1765. return -ENODEV;
  1766. }
  1767. nc->clk = of_clk_get(nfc_np, 0);
  1768. if (IS_ERR(nc->clk)) {
  1769. ret = PTR_ERR(nc->clk);
  1770. dev_err(dev, "Failed to retrieve HSMC clock (err = %d)\n",
  1771. ret);
  1772. goto out;
  1773. }
  1774. ret = clk_prepare_enable(nc->clk);
  1775. if (ret) {
  1776. dev_err(dev, "Failed to enable the HSMC clock (err = %d)\n",
  1777. ret);
  1778. goto out;
  1779. }
  1780. nc->irq = of_irq_get(nand_np, 0);
  1781. if (nc->irq <= 0) {
  1782. ret = nc->irq ?: -ENXIO;
  1783. if (ret != -EPROBE_DEFER)
  1784. dev_err(dev, "Failed to get IRQ number (err = %d)\n",
  1785. ret);
  1786. goto out;
  1787. }
  1788. ret = of_address_to_resource(nfc_np, 0, &res);
  1789. if (ret) {
  1790. dev_err(dev, "Invalid or missing NFC IO resource (err = %d)\n",
  1791. ret);
  1792. goto out;
  1793. }
  1794. iomem = devm_ioremap_resource(dev, &res);
  1795. if (IS_ERR(iomem)) {
  1796. ret = PTR_ERR(iomem);
  1797. goto out;
  1798. }
  1799. regmap_conf.name = "nfc-io";
  1800. regmap_conf.max_register = resource_size(&res) - 4;
  1801. nc->io = devm_regmap_init_mmio(dev, iomem, &regmap_conf);
  1802. if (IS_ERR(nc->io)) {
  1803. ret = PTR_ERR(nc->io);
  1804. dev_err(dev, "Could not create NFC IO regmap (err = %d)\n",
  1805. ret);
  1806. goto out;
  1807. }
  1808. ret = of_address_to_resource(nfc_np, 1, &res);
  1809. if (ret) {
  1810. dev_err(dev, "Invalid or missing HSMC resource (err = %d)\n",
  1811. ret);
  1812. goto out;
  1813. }
  1814. iomem = devm_ioremap_resource(dev, &res);
  1815. if (IS_ERR(iomem)) {
  1816. ret = PTR_ERR(iomem);
  1817. goto out;
  1818. }
  1819. regmap_conf.name = "smc";
  1820. regmap_conf.max_register = resource_size(&res) - 4;
  1821. nc->base.smc = devm_regmap_init_mmio(dev, iomem, &regmap_conf);
  1822. if (IS_ERR(nc->base.smc)) {
  1823. ret = PTR_ERR(nc->base.smc);
  1824. dev_err(dev, "Could not create NFC IO regmap (err = %d)\n",
  1825. ret);
  1826. goto out;
  1827. }
  1828. ret = of_address_to_resource(nfc_np, 2, &res);
  1829. if (ret) {
  1830. dev_err(dev, "Invalid or missing SRAM resource (err = %d)\n",
  1831. ret);
  1832. goto out;
  1833. }
  1834. nc->sram.virt = devm_ioremap_resource(dev, &res);
  1835. if (IS_ERR(nc->sram.virt)) {
  1836. ret = PTR_ERR(nc->sram.virt);
  1837. goto out;
  1838. }
  1839. nc->sram.dma = res.start;
  1840. out:
  1841. of_node_put(nfc_np);
  1842. return ret;
  1843. }
  1844. static int
  1845. atmel_hsmc_nand_controller_init(struct atmel_hsmc_nand_controller *nc)
  1846. {
  1847. struct device *dev = nc->base.dev;
  1848. struct device_node *np;
  1849. int ret;
  1850. np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0);
  1851. if (!np) {
  1852. dev_err(dev, "Missing or invalid atmel,smc property\n");
  1853. return -EINVAL;
  1854. }
  1855. nc->hsmc_layout = atmel_hsmc_get_reg_layout(np);
  1856. nc->irq = of_irq_get(np, 0);
  1857. of_node_put(np);
  1858. if (nc->irq <= 0) {
  1859. ret = nc->irq ?: -ENXIO;
  1860. if (ret != -EPROBE_DEFER)
  1861. dev_err(dev, "Failed to get IRQ number (err = %d)\n",
  1862. ret);
  1863. return ret;
  1864. }
  1865. np = of_parse_phandle(dev->of_node, "atmel,nfc-io", 0);
  1866. if (!np) {
  1867. dev_err(dev, "Missing or invalid atmel,nfc-io property\n");
  1868. return -EINVAL;
  1869. }
  1870. nc->io = syscon_node_to_regmap(np);
  1871. of_node_put(np);
  1872. if (IS_ERR(nc->io)) {
  1873. ret = PTR_ERR(nc->io);
  1874. dev_err(dev, "Could not get NFC IO regmap (err = %d)\n", ret);
  1875. return ret;
  1876. }
  1877. nc->sram.pool = of_gen_pool_get(nc->base.dev->of_node,
  1878. "atmel,nfc-sram", 0);
  1879. if (!nc->sram.pool) {
  1880. dev_err(nc->base.dev, "Missing SRAM\n");
  1881. return -ENOMEM;
  1882. }
  1883. nc->sram.virt = (void __iomem *)gen_pool_dma_alloc(nc->sram.pool,
  1884. ATMEL_NFC_SRAM_SIZE,
  1885. &nc->sram.dma);
  1886. if (!nc->sram.virt) {
  1887. dev_err(nc->base.dev,
  1888. "Could not allocate memory from the NFC SRAM pool\n");
  1889. return -ENOMEM;
  1890. }
  1891. return 0;
  1892. }
  1893. static int
  1894. atmel_hsmc_nand_controller_remove(struct atmel_nand_controller *nc)
  1895. {
  1896. struct atmel_hsmc_nand_controller *hsmc_nc;
  1897. int ret;
  1898. ret = atmel_nand_controller_remove_nands(nc);
  1899. if (ret)
  1900. return ret;
  1901. hsmc_nc = container_of(nc, struct atmel_hsmc_nand_controller, base);
  1902. regmap_write(hsmc_nc->base.smc, ATMEL_HSMC_NFC_CTRL,
  1903. ATMEL_HSMC_NFC_CTRL_DIS);
  1904. if (hsmc_nc->sram.pool)
  1905. gen_pool_free(hsmc_nc->sram.pool,
  1906. (unsigned long)hsmc_nc->sram.virt,
  1907. ATMEL_NFC_SRAM_SIZE);
  1908. if (hsmc_nc->clk) {
  1909. clk_disable_unprepare(hsmc_nc->clk);
  1910. clk_put(hsmc_nc->clk);
  1911. }
  1912. atmel_nand_controller_cleanup(nc);
  1913. return 0;
  1914. }
  1915. static int atmel_hsmc_nand_controller_probe(struct platform_device *pdev,
  1916. const struct atmel_nand_controller_caps *caps)
  1917. {
  1918. struct device *dev = &pdev->dev;
  1919. struct atmel_hsmc_nand_controller *nc;
  1920. int ret;
  1921. nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL);
  1922. if (!nc)
  1923. return -ENOMEM;
  1924. ret = atmel_nand_controller_init(&nc->base, pdev, caps);
  1925. if (ret)
  1926. return ret;
  1927. if (caps->legacy_of_bindings)
  1928. ret = atmel_hsmc_nand_controller_legacy_init(nc);
  1929. else
  1930. ret = atmel_hsmc_nand_controller_init(nc);
  1931. if (ret)
  1932. return ret;
  1933. /* Make sure all irqs are masked before registering our IRQ handler. */
  1934. regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff);
  1935. ret = devm_request_irq(dev, nc->irq, atmel_nfc_interrupt,
  1936. IRQF_SHARED, "nfc", nc);
  1937. if (ret) {
  1938. dev_err(dev,
  1939. "Could not get register NFC interrupt handler (err = %d)\n",
  1940. ret);
  1941. goto err;
  1942. }
  1943. /* Initial NFC configuration. */
  1944. regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CFG,
  1945. ATMEL_HSMC_NFC_CFG_DTO_MAX);
  1946. regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL,
  1947. ATMEL_HSMC_NFC_CTRL_EN);
  1948. ret = atmel_nand_controller_add_nands(&nc->base);
  1949. if (ret)
  1950. goto err;
  1951. return 0;
  1952. err:
  1953. atmel_hsmc_nand_controller_remove(&nc->base);
  1954. return ret;
  1955. }
  1956. static const struct atmel_nand_controller_ops atmel_hsmc_nc_ops = {
  1957. .probe = atmel_hsmc_nand_controller_probe,
  1958. .remove = atmel_hsmc_nand_controller_remove,
  1959. .ecc_init = atmel_hsmc_nand_ecc_init,
  1960. .nand_init = atmel_nand_init,
  1961. .setup_interface = atmel_hsmc_nand_setup_interface,
  1962. .exec_op = atmel_hsmc_nand_exec_op,
  1963. };
  1964. static const struct atmel_nand_controller_caps atmel_sama5_nc_caps = {
  1965. .has_dma = true,
  1966. .ale_offs = BIT(21),
  1967. .cle_offs = BIT(22),
  1968. .ops = &atmel_hsmc_nc_ops,
  1969. };
  1970. /* Only used to parse old bindings. */
  1971. static const struct atmel_nand_controller_caps atmel_sama5_nand_caps = {
  1972. .has_dma = true,
  1973. .ale_offs = BIT(21),
  1974. .cle_offs = BIT(22),
  1975. .ops = &atmel_hsmc_nc_ops,
  1976. .legacy_of_bindings = true,
  1977. };
  1978. static int atmel_smc_nand_controller_probe(struct platform_device *pdev,
  1979. const struct atmel_nand_controller_caps *caps)
  1980. {
  1981. struct device *dev = &pdev->dev;
  1982. struct atmel_smc_nand_controller *nc;
  1983. int ret;
  1984. nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL);
  1985. if (!nc)
  1986. return -ENOMEM;
  1987. ret = atmel_nand_controller_init(&nc->base, pdev, caps);
  1988. if (ret)
  1989. return ret;
  1990. ret = atmel_smc_nand_controller_init(nc);
  1991. if (ret)
  1992. return ret;
  1993. return atmel_nand_controller_add_nands(&nc->base);
  1994. }
  1995. static int
  1996. atmel_smc_nand_controller_remove(struct atmel_nand_controller *nc)
  1997. {
  1998. int ret;
  1999. ret = atmel_nand_controller_remove_nands(nc);
  2000. if (ret)
  2001. return ret;
  2002. atmel_nand_controller_cleanup(nc);
  2003. return 0;
  2004. }
  2005. /*
  2006. * The SMC reg layout of at91rm9200 is completely different which prevents us
  2007. * from re-using atmel_smc_nand_setup_interface() for the
  2008. * ->setup_interface() hook.
  2009. * At this point, there's no support for the at91rm9200 SMC IP, so we leave
  2010. * ->setup_interface() unassigned.
  2011. */
  2012. static const struct atmel_nand_controller_ops at91rm9200_nc_ops = {
  2013. .probe = atmel_smc_nand_controller_probe,
  2014. .remove = atmel_smc_nand_controller_remove,
  2015. .ecc_init = atmel_nand_ecc_init,
  2016. .nand_init = atmel_smc_nand_init,
  2017. .exec_op = atmel_smc_nand_exec_op,
  2018. };
  2019. static const struct atmel_nand_controller_caps atmel_rm9200_nc_caps = {
  2020. .ale_offs = BIT(21),
  2021. .cle_offs = BIT(22),
  2022. .ebi_csa_regmap_name = "atmel,matrix",
  2023. .ops = &at91rm9200_nc_ops,
  2024. };
  2025. static const struct atmel_nand_controller_ops atmel_smc_nc_ops = {
  2026. .probe = atmel_smc_nand_controller_probe,
  2027. .remove = atmel_smc_nand_controller_remove,
  2028. .ecc_init = atmel_nand_ecc_init,
  2029. .nand_init = atmel_smc_nand_init,
  2030. .setup_interface = atmel_smc_nand_setup_interface,
  2031. .exec_op = atmel_smc_nand_exec_op,
  2032. };
  2033. static const struct atmel_nand_controller_caps atmel_sam9260_nc_caps = {
  2034. .ale_offs = BIT(21),
  2035. .cle_offs = BIT(22),
  2036. .ebi_csa_regmap_name = "atmel,matrix",
  2037. .ops = &atmel_smc_nc_ops,
  2038. };
  2039. static const struct atmel_nand_controller_caps atmel_sam9261_nc_caps = {
  2040. .ale_offs = BIT(22),
  2041. .cle_offs = BIT(21),
  2042. .ebi_csa_regmap_name = "atmel,matrix",
  2043. .ops = &atmel_smc_nc_ops,
  2044. };
  2045. static const struct atmel_nand_controller_caps atmel_sam9g45_nc_caps = {
  2046. .has_dma = true,
  2047. .ale_offs = BIT(21),
  2048. .cle_offs = BIT(22),
  2049. .ebi_csa_regmap_name = "atmel,matrix",
  2050. .ops = &atmel_smc_nc_ops,
  2051. };
  2052. static const struct atmel_nand_controller_caps microchip_sam9x60_nc_caps = {
  2053. .has_dma = true,
  2054. .ale_offs = BIT(21),
  2055. .cle_offs = BIT(22),
  2056. .ebi_csa_regmap_name = "microchip,sfr",
  2057. .ops = &atmel_smc_nc_ops,
  2058. };
  2059. /* Only used to parse old bindings. */
  2060. static const struct atmel_nand_controller_caps atmel_rm9200_nand_caps = {
  2061. .ale_offs = BIT(21),
  2062. .cle_offs = BIT(22),
  2063. .ops = &atmel_smc_nc_ops,
  2064. .legacy_of_bindings = true,
  2065. };
  2066. static const struct atmel_nand_controller_caps atmel_sam9261_nand_caps = {
  2067. .ale_offs = BIT(22),
  2068. .cle_offs = BIT(21),
  2069. .ops = &atmel_smc_nc_ops,
  2070. .legacy_of_bindings = true,
  2071. };
  2072. static const struct atmel_nand_controller_caps atmel_sam9g45_nand_caps = {
  2073. .has_dma = true,
  2074. .ale_offs = BIT(21),
  2075. .cle_offs = BIT(22),
  2076. .ops = &atmel_smc_nc_ops,
  2077. .legacy_of_bindings = true,
  2078. };
  2079. static const struct of_device_id atmel_nand_controller_of_ids[] = {
  2080. {
  2081. .compatible = "atmel,at91rm9200-nand-controller",
  2082. .data = &atmel_rm9200_nc_caps,
  2083. },
  2084. {
  2085. .compatible = "atmel,at91sam9260-nand-controller",
  2086. .data = &atmel_sam9260_nc_caps,
  2087. },
  2088. {
  2089. .compatible = "atmel,at91sam9261-nand-controller",
  2090. .data = &atmel_sam9261_nc_caps,
  2091. },
  2092. {
  2093. .compatible = "atmel,at91sam9g45-nand-controller",
  2094. .data = &atmel_sam9g45_nc_caps,
  2095. },
  2096. {
  2097. .compatible = "atmel,sama5d3-nand-controller",
  2098. .data = &atmel_sama5_nc_caps,
  2099. },
  2100. {
  2101. .compatible = "microchip,sam9x60-nand-controller",
  2102. .data = &microchip_sam9x60_nc_caps,
  2103. },
  2104. /* Support for old/deprecated bindings: */
  2105. {
  2106. .compatible = "atmel,at91rm9200-nand",
  2107. .data = &atmel_rm9200_nand_caps,
  2108. },
  2109. {
  2110. .compatible = "atmel,sama5d4-nand",
  2111. .data = &atmel_rm9200_nand_caps,
  2112. },
  2113. {
  2114. .compatible = "atmel,sama5d2-nand",
  2115. .data = &atmel_rm9200_nand_caps,
  2116. },
  2117. { /* sentinel */ },
  2118. };
  2119. MODULE_DEVICE_TABLE(of, atmel_nand_controller_of_ids);
  2120. static int atmel_nand_controller_probe(struct platform_device *pdev)
  2121. {
  2122. const struct atmel_nand_controller_caps *caps;
  2123. if (pdev->id_entry)
  2124. caps = (void *)pdev->id_entry->driver_data;
  2125. else
  2126. caps = of_device_get_match_data(&pdev->dev);
  2127. if (!caps) {
  2128. dev_err(&pdev->dev, "Could not retrieve NFC caps\n");
  2129. return -EINVAL;
  2130. }
  2131. if (caps->legacy_of_bindings) {
  2132. struct device_node *nfc_node;
  2133. u32 ale_offs = 21;
  2134. /*
  2135. * If we are parsing legacy DT props and the DT contains a
  2136. * valid NFC node, forward the request to the sama5 logic.
  2137. */
  2138. nfc_node = of_get_compatible_child(pdev->dev.of_node,
  2139. "atmel,sama5d3-nfc");
  2140. if (nfc_node) {
  2141. caps = &atmel_sama5_nand_caps;
  2142. of_node_put(nfc_node);
  2143. }
  2144. /*
  2145. * Even if the compatible says we are dealing with an
  2146. * at91rm9200 controller, the atmel,nand-has-dma specify that
  2147. * this controller supports DMA, which means we are in fact
  2148. * dealing with an at91sam9g45+ controller.
  2149. */
  2150. if (!caps->has_dma &&
  2151. of_property_read_bool(pdev->dev.of_node,
  2152. "atmel,nand-has-dma"))
  2153. caps = &atmel_sam9g45_nand_caps;
  2154. /*
  2155. * All SoCs except the at91sam9261 are assigning ALE to A21 and
  2156. * CLE to A22. If atmel,nand-addr-offset != 21 this means we're
  2157. * actually dealing with an at91sam9261 controller.
  2158. */
  2159. of_property_read_u32(pdev->dev.of_node,
  2160. "atmel,nand-addr-offset", &ale_offs);
  2161. if (ale_offs != 21)
  2162. caps = &atmel_sam9261_nand_caps;
  2163. }
  2164. return caps->ops->probe(pdev, caps);
  2165. }
  2166. static int atmel_nand_controller_remove(struct platform_device *pdev)
  2167. {
  2168. struct atmel_nand_controller *nc = platform_get_drvdata(pdev);
  2169. WARN_ON(nc->caps->ops->remove(nc));
  2170. return 0;
  2171. }
  2172. static __maybe_unused int atmel_nand_controller_resume(struct device *dev)
  2173. {
  2174. struct atmel_nand_controller *nc = dev_get_drvdata(dev);
  2175. struct atmel_nand *nand;
  2176. if (nc->pmecc)
  2177. atmel_pmecc_reset(nc->pmecc);
  2178. list_for_each_entry(nand, &nc->chips, node) {
  2179. int i;
  2180. for (i = 0; i < nand->numcs; i++)
  2181. nand_reset(&nand->base, i);
  2182. }
  2183. return 0;
  2184. }
  2185. static SIMPLE_DEV_PM_OPS(atmel_nand_controller_pm_ops, NULL,
  2186. atmel_nand_controller_resume);
  2187. static struct platform_driver atmel_nand_controller_driver = {
  2188. .driver = {
  2189. .name = "atmel-nand-controller",
  2190. .of_match_table = atmel_nand_controller_of_ids,
  2191. .pm = &atmel_nand_controller_pm_ops,
  2192. },
  2193. .probe = atmel_nand_controller_probe,
  2194. .remove = atmel_nand_controller_remove,
  2195. };
  2196. module_platform_driver(atmel_nand_controller_driver);
  2197. MODULE_LICENSE("GPL");
  2198. MODULE_AUTHOR("Boris Brezillon <[email protected]>");
  2199. MODULE_DESCRIPTION("NAND Flash Controller driver for Atmel SoCs");
  2200. MODULE_ALIAS("platform:atmel-nand-controller");