123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548 |
- // SPDX-License-Identifier: GPL-2.0
- /*
- * Arasan NAND Flash Controller Driver
- *
- * Copyright (C) 2014 - 2020 Xilinx, Inc.
- * Author:
- * Miquel Raynal <[email protected]>
- * Original work (fully rewritten):
- * Punnaiah Choudary Kalluri <[email protected]>
- * Naga Sureshkumar Relli <[email protected]>
- */
- #include <linux/bch.h>
- #include <linux/bitfield.h>
- #include <linux/clk.h>
- #include <linux/delay.h>
- #include <linux/dma-mapping.h>
- #include <linux/gpio/consumer.h>
- #include <linux/interrupt.h>
- #include <linux/iopoll.h>
- #include <linux/module.h>
- #include <linux/mtd/mtd.h>
- #include <linux/mtd/partitions.h>
- #include <linux/mtd/rawnand.h>
- #include <linux/of.h>
- #include <linux/platform_device.h>
- #include <linux/slab.h>
- #define PKT_REG 0x00
- #define PKT_SIZE(x) FIELD_PREP(GENMASK(10, 0), (x))
- #define PKT_STEPS(x) FIELD_PREP(GENMASK(23, 12), (x))
- #define MEM_ADDR1_REG 0x04
- #define MEM_ADDR2_REG 0x08
- #define ADDR2_STRENGTH(x) FIELD_PREP(GENMASK(27, 25), (x))
- #define ADDR2_CS(x) FIELD_PREP(GENMASK(31, 30), (x))
- #define CMD_REG 0x0C
- #define CMD_1(x) FIELD_PREP(GENMASK(7, 0), (x))
- #define CMD_2(x) FIELD_PREP(GENMASK(15, 8), (x))
- #define CMD_PAGE_SIZE(x) FIELD_PREP(GENMASK(25, 23), (x))
- #define CMD_DMA_ENABLE BIT(27)
- #define CMD_NADDRS(x) FIELD_PREP(GENMASK(30, 28), (x))
- #define CMD_ECC_ENABLE BIT(31)
- #define PROG_REG 0x10
- #define PROG_PGRD BIT(0)
- #define PROG_ERASE BIT(2)
- #define PROG_STATUS BIT(3)
- #define PROG_PGPROG BIT(4)
- #define PROG_RDID BIT(6)
- #define PROG_RDPARAM BIT(7)
- #define PROG_RST BIT(8)
- #define PROG_GET_FEATURE BIT(9)
- #define PROG_SET_FEATURE BIT(10)
- #define PROG_CHG_RD_COL_ENH BIT(14)
- #define INTR_STS_EN_REG 0x14
- #define INTR_SIG_EN_REG 0x18
- #define INTR_STS_REG 0x1C
- #define WRITE_READY BIT(0)
- #define READ_READY BIT(1)
- #define XFER_COMPLETE BIT(2)
- #define DMA_BOUNDARY BIT(6)
- #define EVENT_MASK GENMASK(7, 0)
- #define READY_STS_REG 0x20
- #define DMA_ADDR0_REG 0x50
- #define DMA_ADDR1_REG 0x24
- #define FLASH_STS_REG 0x28
- #define TIMING_REG 0x2C
- #define TCCS_TIME_500NS 0
- #define TCCS_TIME_300NS 3
- #define TCCS_TIME_200NS 2
- #define TCCS_TIME_100NS 1
- #define FAST_TCAD BIT(2)
- #define DQS_BUFF_SEL_IN(x) FIELD_PREP(GENMASK(6, 3), (x))
- #define DQS_BUFF_SEL_OUT(x) FIELD_PREP(GENMASK(18, 15), (x))
- #define DATA_PORT_REG 0x30
- #define ECC_CONF_REG 0x34
- #define ECC_CONF_COL(x) FIELD_PREP(GENMASK(15, 0), (x))
- #define ECC_CONF_LEN(x) FIELD_PREP(GENMASK(26, 16), (x))
- #define ECC_CONF_BCH_EN BIT(27)
- #define ECC_ERR_CNT_REG 0x38
- #define GET_PKT_ERR_CNT(x) FIELD_GET(GENMASK(7, 0), (x))
- #define GET_PAGE_ERR_CNT(x) FIELD_GET(GENMASK(16, 8), (x))
- #define ECC_SP_REG 0x3C
- #define ECC_SP_CMD1(x) FIELD_PREP(GENMASK(7, 0), (x))
- #define ECC_SP_CMD2(x) FIELD_PREP(GENMASK(15, 8), (x))
- #define ECC_SP_ADDRS(x) FIELD_PREP(GENMASK(30, 28), (x))
- #define ECC_1ERR_CNT_REG 0x40
- #define ECC_2ERR_CNT_REG 0x44
- #define DATA_INTERFACE_REG 0x6C
- #define DIFACE_SDR_MODE(x) FIELD_PREP(GENMASK(2, 0), (x))
- #define DIFACE_DDR_MODE(x) FIELD_PREP(GENMASK(5, 3), (x))
- #define DIFACE_SDR 0
- #define DIFACE_NVDDR BIT(9)
- #define ANFC_MAX_CS 2
- #define ANFC_DFLT_TIMEOUT_US 1000000
- #define ANFC_MAX_CHUNK_SIZE SZ_1M
- #define ANFC_MAX_PARAM_SIZE SZ_4K
- #define ANFC_MAX_STEPS SZ_2K
- #define ANFC_MAX_PKT_SIZE (SZ_2K - 1)
- #define ANFC_MAX_ADDR_CYC 5U
- #define ANFC_RSVD_ECC_BYTES 21
- #define ANFC_XLNX_SDR_DFLT_CORE_CLK 100000000
- #define ANFC_XLNX_SDR_HS_CORE_CLK 80000000
- static struct gpio_desc *anfc_default_cs_array[2] = {NULL, NULL};
- /**
- * struct anfc_op - Defines how to execute an operation
- * @pkt_reg: Packet register
- * @addr1_reg: Memory address 1 register
- * @addr2_reg: Memory address 2 register
- * @cmd_reg: Command register
- * @prog_reg: Program register
- * @steps: Number of "packets" to read/write
- * @rdy_timeout_ms: Timeout for waits on Ready/Busy pin
- * @len: Data transfer length
- * @read: Data transfer direction from the controller point of view
- * @buf: Data buffer
- */
- struct anfc_op {
- u32 pkt_reg;
- u32 addr1_reg;
- u32 addr2_reg;
- u32 cmd_reg;
- u32 prog_reg;
- int steps;
- unsigned int rdy_timeout_ms;
- unsigned int len;
- bool read;
- u8 *buf;
- };
- /**
- * struct anand - Defines the NAND chip related information
- * @node: Used to store NAND chips into a list
- * @chip: NAND chip information structure
- * @rb: Ready-busy line
- * @page_sz: Register value of the page_sz field to use
- * @clk: Expected clock frequency to use
- * @data_iface: Data interface timing mode to use
- * @timings: NV-DDR specific timings to use
- * @ecc_conf: Hardware ECC configuration value
- * @strength: Register value of the ECC strength
- * @raddr_cycles: Row address cycle information
- * @caddr_cycles: Column address cycle information
- * @ecc_bits: Exact number of ECC bits per syndrome
- * @ecc_total: Total number of ECC bytes
- * @errloc: Array of errors located with soft BCH
- * @hw_ecc: Buffer to store syndromes computed by hardware
- * @bch: BCH structure
- * @cs_idx: Array of chip-select for this device, values are indexes
- * of the controller structure @gpio_cs array
- * @ncs_idx: Size of the @cs_idx array
- */
- struct anand {
- struct list_head node;
- struct nand_chip chip;
- unsigned int rb;
- unsigned int page_sz;
- unsigned long clk;
- u32 data_iface;
- u32 timings;
- u32 ecc_conf;
- u32 strength;
- u16 raddr_cycles;
- u16 caddr_cycles;
- unsigned int ecc_bits;
- unsigned int ecc_total;
- unsigned int *errloc;
- u8 *hw_ecc;
- struct bch_control *bch;
- int *cs_idx;
- int ncs_idx;
- };
- /**
- * struct arasan_nfc - Defines the Arasan NAND flash controller driver instance
- * @dev: Pointer to the device structure
- * @base: Remapped register area
- * @controller_clk: Pointer to the system clock
- * @bus_clk: Pointer to the flash clock
- * @controller: Base controller structure
- * @chips: List of all NAND chips attached to the controller
- * @cur_clk: Current clock rate
- * @cs_array: CS array. Native CS are left empty, the other cells are
- * populated with their corresponding GPIO descriptor.
- * @ncs: Size of @cs_array
- * @cur_cs: Index in @cs_array of the currently in use CS
- * @native_cs: Currently selected native CS
- * @spare_cs: Native CS that is not wired (may be selected when a GPIO
- * CS is in use)
- */
- struct arasan_nfc {
- struct device *dev;
- void __iomem *base;
- struct clk *controller_clk;
- struct clk *bus_clk;
- struct nand_controller controller;
- struct list_head chips;
- unsigned int cur_clk;
- struct gpio_desc **cs_array;
- unsigned int ncs;
- int cur_cs;
- unsigned int native_cs;
- unsigned int spare_cs;
- };
- static struct anand *to_anand(struct nand_chip *nand)
- {
- return container_of(nand, struct anand, chip);
- }
- static struct arasan_nfc *to_anfc(struct nand_controller *ctrl)
- {
- return container_of(ctrl, struct arasan_nfc, controller);
- }
- static int anfc_wait_for_event(struct arasan_nfc *nfc, unsigned int event)
- {
- u32 val;
- int ret;
- ret = readl_relaxed_poll_timeout(nfc->base + INTR_STS_REG, val,
- val & event, 0,
- ANFC_DFLT_TIMEOUT_US);
- if (ret) {
- dev_err(nfc->dev, "Timeout waiting for event 0x%x\n", event);
- return -ETIMEDOUT;
- }
- writel_relaxed(event, nfc->base + INTR_STS_REG);
- return 0;
- }
- static int anfc_wait_for_rb(struct arasan_nfc *nfc, struct nand_chip *chip,
- unsigned int timeout_ms)
- {
- struct anand *anand = to_anand(chip);
- u32 val;
- int ret;
- /* There is no R/B interrupt, we must poll a register */
- ret = readl_relaxed_poll_timeout(nfc->base + READY_STS_REG, val,
- val & BIT(anand->rb),
- 1, timeout_ms * 1000);
- if (ret) {
- dev_err(nfc->dev, "Timeout waiting for R/B 0x%x\n",
- readl_relaxed(nfc->base + READY_STS_REG));
- return -ETIMEDOUT;
- }
- return 0;
- }
- static void anfc_trigger_op(struct arasan_nfc *nfc, struct anfc_op *nfc_op)
- {
- writel_relaxed(nfc_op->pkt_reg, nfc->base + PKT_REG);
- writel_relaxed(nfc_op->addr1_reg, nfc->base + MEM_ADDR1_REG);
- writel_relaxed(nfc_op->addr2_reg, nfc->base + MEM_ADDR2_REG);
- writel_relaxed(nfc_op->cmd_reg, nfc->base + CMD_REG);
- writel_relaxed(nfc_op->prog_reg, nfc->base + PROG_REG);
- }
- static int anfc_pkt_len_config(unsigned int len, unsigned int *steps,
- unsigned int *pktsize)
- {
- unsigned int nb, sz;
- for (nb = 1; nb < ANFC_MAX_STEPS; nb *= 2) {
- sz = len / nb;
- if (sz <= ANFC_MAX_PKT_SIZE)
- break;
- }
- if (sz * nb != len)
- return -ENOTSUPP;
- if (steps)
- *steps = nb;
- if (pktsize)
- *pktsize = sz;
- return 0;
- }
- static bool anfc_is_gpio_cs(struct arasan_nfc *nfc, int nfc_cs)
- {
- return nfc_cs >= 0 && nfc->cs_array[nfc_cs];
- }
- static int anfc_relative_to_absolute_cs(struct anand *anand, int num)
- {
- return anand->cs_idx[num];
- }
- static void anfc_assert_cs(struct arasan_nfc *nfc, unsigned int nfc_cs_idx)
- {
- /* CS did not change: do nothing */
- if (nfc->cur_cs == nfc_cs_idx)
- return;
- /* Deassert the previous CS if it was a GPIO */
- if (anfc_is_gpio_cs(nfc, nfc->cur_cs))
- gpiod_set_value_cansleep(nfc->cs_array[nfc->cur_cs], 1);
- /* Assert the new one */
- if (anfc_is_gpio_cs(nfc, nfc_cs_idx)) {
- nfc->native_cs = nfc->spare_cs;
- gpiod_set_value_cansleep(nfc->cs_array[nfc_cs_idx], 0);
- } else {
- nfc->native_cs = nfc_cs_idx;
- }
- nfc->cur_cs = nfc_cs_idx;
- }
- static int anfc_select_target(struct nand_chip *chip, int target)
- {
- struct anand *anand = to_anand(chip);
- struct arasan_nfc *nfc = to_anfc(chip->controller);
- unsigned int nfc_cs_idx = anfc_relative_to_absolute_cs(anand, target);
- int ret;
- anfc_assert_cs(nfc, nfc_cs_idx);
- /* Update the controller timings and the potential ECC configuration */
- writel_relaxed(anand->data_iface, nfc->base + DATA_INTERFACE_REG);
- writel_relaxed(anand->timings, nfc->base + TIMING_REG);
- /* Update clock frequency */
- if (nfc->cur_clk != anand->clk) {
- clk_disable_unprepare(nfc->bus_clk);
- ret = clk_set_rate(nfc->bus_clk, anand->clk);
- if (ret) {
- dev_err(nfc->dev, "Failed to change clock rate\n");
- return ret;
- }
- ret = clk_prepare_enable(nfc->bus_clk);
- if (ret) {
- dev_err(nfc->dev,
- "Failed to re-enable the bus clock\n");
- return ret;
- }
- nfc->cur_clk = anand->clk;
- }
- return 0;
- }
- /*
- * When using the embedded hardware ECC engine, the controller is in charge of
- * feeding the engine with, first, the ECC residue present in the data array.
- * A typical read operation is:
- * 1/ Assert the read operation by sending the relevant command/address cycles
- * but targeting the column of the first ECC bytes in the OOB area instead of
- * the main data directly.
- * 2/ After having read the relevant number of ECC bytes, the controller uses
- * the RNDOUT/RNDSTART commands which are set into the "ECC Spare Command
- * Register" to move the pointer back at the beginning of the main data.
- * 3/ It will read the content of the main area for a given size (pktsize) and
- * will feed the ECC engine with this buffer again.
- * 4/ The ECC engine derives the ECC bytes for the given data and compare them
- * with the ones already received. It eventually trigger status flags and
- * then set the "Buffer Read Ready" flag.
- * 5/ The corrected data is then available for reading from the data port
- * register.
- *
- * The hardware BCH ECC engine is known to be inconstent in BCH mode and never
- * reports uncorrectable errors. Because of this bug, we have to use the
- * software BCH implementation in the read path.
- */
- static int anfc_read_page_hw_ecc(struct nand_chip *chip, u8 *buf,
- int oob_required, int page)
- {
- struct arasan_nfc *nfc = to_anfc(chip->controller);
- struct mtd_info *mtd = nand_to_mtd(chip);
- struct anand *anand = to_anand(chip);
- unsigned int len = mtd->writesize + (oob_required ? mtd->oobsize : 0);
- unsigned int max_bitflips = 0;
- dma_addr_t dma_addr;
- int step, ret;
- struct anfc_op nfc_op = {
- .pkt_reg =
- PKT_SIZE(chip->ecc.size) |
- PKT_STEPS(chip->ecc.steps),
- .addr1_reg =
- (page & 0xFF) << (8 * (anand->caddr_cycles)) |
- (((page >> 8) & 0xFF) << (8 * (1 + anand->caddr_cycles))),
- .addr2_reg =
- ((page >> 16) & 0xFF) |
- ADDR2_STRENGTH(anand->strength) |
- ADDR2_CS(nfc->native_cs),
- .cmd_reg =
- CMD_1(NAND_CMD_READ0) |
- CMD_2(NAND_CMD_READSTART) |
- CMD_PAGE_SIZE(anand->page_sz) |
- CMD_DMA_ENABLE |
- CMD_NADDRS(anand->caddr_cycles +
- anand->raddr_cycles),
- .prog_reg = PROG_PGRD,
- };
- dma_addr = dma_map_single(nfc->dev, (void *)buf, len, DMA_FROM_DEVICE);
- if (dma_mapping_error(nfc->dev, dma_addr)) {
- dev_err(nfc->dev, "Buffer mapping error");
- return -EIO;
- }
- writel_relaxed(lower_32_bits(dma_addr), nfc->base + DMA_ADDR0_REG);
- writel_relaxed(upper_32_bits(dma_addr), nfc->base + DMA_ADDR1_REG);
- anfc_trigger_op(nfc, &nfc_op);
- ret = anfc_wait_for_event(nfc, XFER_COMPLETE);
- dma_unmap_single(nfc->dev, dma_addr, len, DMA_FROM_DEVICE);
- if (ret) {
- dev_err(nfc->dev, "Error reading page %d\n", page);
- return ret;
- }
- /* Store the raw OOB bytes as well */
- ret = nand_change_read_column_op(chip, mtd->writesize, chip->oob_poi,
- mtd->oobsize, 0);
- if (ret)
- return ret;
- /*
- * For each step, compute by softare the BCH syndrome over the raw data.
- * Compare the theoretical amount of errors and compare with the
- * hardware engine feedback.
- */
- for (step = 0; step < chip->ecc.steps; step++) {
- u8 *raw_buf = &buf[step * chip->ecc.size];
- unsigned int bit, byte;
- int bf, i;
- /* Extract the syndrome, it is not necessarily aligned */
- memset(anand->hw_ecc, 0, chip->ecc.bytes);
- nand_extract_bits(anand->hw_ecc, 0,
- &chip->oob_poi[mtd->oobsize - anand->ecc_total],
- anand->ecc_bits * step, anand->ecc_bits);
- bf = bch_decode(anand->bch, raw_buf, chip->ecc.size,
- anand->hw_ecc, NULL, NULL, anand->errloc);
- if (!bf) {
- continue;
- } else if (bf > 0) {
- for (i = 0; i < bf; i++) {
- /* Only correct the data, not the syndrome */
- if (anand->errloc[i] < (chip->ecc.size * 8)) {
- bit = BIT(anand->errloc[i] & 7);
- byte = anand->errloc[i] >> 3;
- raw_buf[byte] ^= bit;
- }
- }
- mtd->ecc_stats.corrected += bf;
- max_bitflips = max_t(unsigned int, max_bitflips, bf);
- continue;
- }
- bf = nand_check_erased_ecc_chunk(raw_buf, chip->ecc.size,
- NULL, 0, NULL, 0,
- chip->ecc.strength);
- if (bf > 0) {
- mtd->ecc_stats.corrected += bf;
- max_bitflips = max_t(unsigned int, max_bitflips, bf);
- memset(raw_buf, 0xFF, chip->ecc.size);
- } else if (bf < 0) {
- mtd->ecc_stats.failed++;
- }
- }
- return 0;
- }
- static int anfc_sel_read_page_hw_ecc(struct nand_chip *chip, u8 *buf,
- int oob_required, int page)
- {
- int ret;
- ret = anfc_select_target(chip, chip->cur_cs);
- if (ret)
- return ret;
- return anfc_read_page_hw_ecc(chip, buf, oob_required, page);
- };
- static int anfc_write_page_hw_ecc(struct nand_chip *chip, const u8 *buf,
- int oob_required, int page)
- {
- struct anand *anand = to_anand(chip);
- struct arasan_nfc *nfc = to_anfc(chip->controller);
- struct mtd_info *mtd = nand_to_mtd(chip);
- unsigned int len = mtd->writesize + (oob_required ? mtd->oobsize : 0);
- dma_addr_t dma_addr;
- u8 status;
- int ret;
- struct anfc_op nfc_op = {
- .pkt_reg =
- PKT_SIZE(chip->ecc.size) |
- PKT_STEPS(chip->ecc.steps),
- .addr1_reg =
- (page & 0xFF) << (8 * (anand->caddr_cycles)) |
- (((page >> 8) & 0xFF) << (8 * (1 + anand->caddr_cycles))),
- .addr2_reg =
- ((page >> 16) & 0xFF) |
- ADDR2_STRENGTH(anand->strength) |
- ADDR2_CS(nfc->native_cs),
- .cmd_reg =
- CMD_1(NAND_CMD_SEQIN) |
- CMD_2(NAND_CMD_PAGEPROG) |
- CMD_PAGE_SIZE(anand->page_sz) |
- CMD_DMA_ENABLE |
- CMD_NADDRS(anand->caddr_cycles +
- anand->raddr_cycles) |
- CMD_ECC_ENABLE,
- .prog_reg = PROG_PGPROG,
- };
- writel_relaxed(anand->ecc_conf, nfc->base + ECC_CONF_REG);
- writel_relaxed(ECC_SP_CMD1(NAND_CMD_RNDIN) |
- ECC_SP_ADDRS(anand->caddr_cycles),
- nfc->base + ECC_SP_REG);
- dma_addr = dma_map_single(nfc->dev, (void *)buf, len, DMA_TO_DEVICE);
- if (dma_mapping_error(nfc->dev, dma_addr)) {
- dev_err(nfc->dev, "Buffer mapping error");
- return -EIO;
- }
- writel_relaxed(lower_32_bits(dma_addr), nfc->base + DMA_ADDR0_REG);
- writel_relaxed(upper_32_bits(dma_addr), nfc->base + DMA_ADDR1_REG);
- anfc_trigger_op(nfc, &nfc_op);
- ret = anfc_wait_for_event(nfc, XFER_COMPLETE);
- dma_unmap_single(nfc->dev, dma_addr, len, DMA_TO_DEVICE);
- if (ret) {
- dev_err(nfc->dev, "Error writing page %d\n", page);
- return ret;
- }
- /* Spare data is not protected */
- if (oob_required) {
- ret = nand_write_oob_std(chip, page);
- if (ret)
- return ret;
- }
- /* Check write status on the chip side */
- ret = nand_status_op(chip, &status);
- if (ret)
- return ret;
- if (status & NAND_STATUS_FAIL)
- return -EIO;
- return 0;
- }
- static int anfc_sel_write_page_hw_ecc(struct nand_chip *chip, const u8 *buf,
- int oob_required, int page)
- {
- int ret;
- ret = anfc_select_target(chip, chip->cur_cs);
- if (ret)
- return ret;
- return anfc_write_page_hw_ecc(chip, buf, oob_required, page);
- };
- /* NAND framework ->exec_op() hooks and related helpers */
- static int anfc_parse_instructions(struct nand_chip *chip,
- const struct nand_subop *subop,
- struct anfc_op *nfc_op)
- {
- struct arasan_nfc *nfc = to_anfc(chip->controller);
- struct anand *anand = to_anand(chip);
- const struct nand_op_instr *instr = NULL;
- bool first_cmd = true;
- unsigned int op_id;
- int ret, i;
- memset(nfc_op, 0, sizeof(*nfc_op));
- nfc_op->addr2_reg = ADDR2_CS(nfc->native_cs);
- nfc_op->cmd_reg = CMD_PAGE_SIZE(anand->page_sz);
- for (op_id = 0; op_id < subop->ninstrs; op_id++) {
- unsigned int offset, naddrs, pktsize;
- const u8 *addrs;
- u8 *buf;
- instr = &subop->instrs[op_id];
- switch (instr->type) {
- case NAND_OP_CMD_INSTR:
- if (first_cmd)
- nfc_op->cmd_reg |= CMD_1(instr->ctx.cmd.opcode);
- else
- nfc_op->cmd_reg |= CMD_2(instr->ctx.cmd.opcode);
- first_cmd = false;
- break;
- case NAND_OP_ADDR_INSTR:
- offset = nand_subop_get_addr_start_off(subop, op_id);
- naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
- addrs = &instr->ctx.addr.addrs[offset];
- nfc_op->cmd_reg |= CMD_NADDRS(naddrs);
- for (i = 0; i < min(ANFC_MAX_ADDR_CYC, naddrs); i++) {
- if (i < 4)
- nfc_op->addr1_reg |= (u32)addrs[i] << i * 8;
- else
- nfc_op->addr2_reg |= addrs[i];
- }
- break;
- case NAND_OP_DATA_IN_INSTR:
- nfc_op->read = true;
- fallthrough;
- case NAND_OP_DATA_OUT_INSTR:
- offset = nand_subop_get_data_start_off(subop, op_id);
- buf = instr->ctx.data.buf.in;
- nfc_op->buf = &buf[offset];
- nfc_op->len = nand_subop_get_data_len(subop, op_id);
- ret = anfc_pkt_len_config(nfc_op->len, &nfc_op->steps,
- &pktsize);
- if (ret)
- return ret;
- /*
- * Number of DATA cycles must be aligned on 4, this
- * means the controller might read/write more than
- * requested. This is harmless most of the time as extra
- * DATA are discarded in the write path and read pointer
- * adjusted in the read path.
- *
- * FIXME: The core should mark operations where
- * reading/writing more is allowed so the exec_op()
- * implementation can take the right decision when the
- * alignment constraint is not met: adjust the number of
- * DATA cycles when it's allowed, reject the operation
- * otherwise.
- */
- nfc_op->pkt_reg |= PKT_SIZE(round_up(pktsize, 4)) |
- PKT_STEPS(nfc_op->steps);
- break;
- case NAND_OP_WAITRDY_INSTR:
- nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms;
- break;
- }
- }
- return 0;
- }
- static int anfc_rw_pio_op(struct arasan_nfc *nfc, struct anfc_op *nfc_op)
- {
- unsigned int dwords = (nfc_op->len / 4) / nfc_op->steps;
- unsigned int last_len = nfc_op->len % 4;
- unsigned int offset, dir;
- u8 *buf = nfc_op->buf;
- int ret, i;
- for (i = 0; i < nfc_op->steps; i++) {
- dir = nfc_op->read ? READ_READY : WRITE_READY;
- ret = anfc_wait_for_event(nfc, dir);
- if (ret) {
- dev_err(nfc->dev, "PIO %s ready signal not received\n",
- nfc_op->read ? "Read" : "Write");
- return ret;
- }
- offset = i * (dwords * 4);
- if (nfc_op->read)
- ioread32_rep(nfc->base + DATA_PORT_REG, &buf[offset],
- dwords);
- else
- iowrite32_rep(nfc->base + DATA_PORT_REG, &buf[offset],
- dwords);
- }
- if (last_len) {
- u32 remainder;
- offset = nfc_op->len - last_len;
- if (nfc_op->read) {
- remainder = readl_relaxed(nfc->base + DATA_PORT_REG);
- memcpy(&buf[offset], &remainder, last_len);
- } else {
- memcpy(&remainder, &buf[offset], last_len);
- writel_relaxed(remainder, nfc->base + DATA_PORT_REG);
- }
- }
- return anfc_wait_for_event(nfc, XFER_COMPLETE);
- }
- static int anfc_misc_data_type_exec(struct nand_chip *chip,
- const struct nand_subop *subop,
- u32 prog_reg)
- {
- struct arasan_nfc *nfc = to_anfc(chip->controller);
- struct anfc_op nfc_op = {};
- int ret;
- ret = anfc_parse_instructions(chip, subop, &nfc_op);
- if (ret)
- return ret;
- nfc_op.prog_reg = prog_reg;
- anfc_trigger_op(nfc, &nfc_op);
- if (nfc_op.rdy_timeout_ms) {
- ret = anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms);
- if (ret)
- return ret;
- }
- return anfc_rw_pio_op(nfc, &nfc_op);
- }
- static int anfc_param_read_type_exec(struct nand_chip *chip,
- const struct nand_subop *subop)
- {
- return anfc_misc_data_type_exec(chip, subop, PROG_RDPARAM);
- }
- static int anfc_data_read_type_exec(struct nand_chip *chip,
- const struct nand_subop *subop)
- {
- u32 prog_reg = PROG_PGRD;
- /*
- * Experience shows that while in SDR mode sending a CHANGE READ COLUMN
- * command through the READ PAGE "type" always works fine, when in
- * NV-DDR mode the same command simply fails. However, it was also
- * spotted that any CHANGE READ COLUMN command sent through the CHANGE
- * READ COLUMN ENHANCED "type" would correctly work in both cases (SDR
- * and NV-DDR). So, for simplicity, let's program the controller with
- * the CHANGE READ COLUMN ENHANCED "type" whenever we are requested to
- * perform a CHANGE READ COLUMN operation.
- */
- if (subop->instrs[0].ctx.cmd.opcode == NAND_CMD_RNDOUT &&
- subop->instrs[2].ctx.cmd.opcode == NAND_CMD_RNDOUTSTART)
- prog_reg = PROG_CHG_RD_COL_ENH;
- return anfc_misc_data_type_exec(chip, subop, prog_reg);
- }
- static int anfc_param_write_type_exec(struct nand_chip *chip,
- const struct nand_subop *subop)
- {
- return anfc_misc_data_type_exec(chip, subop, PROG_SET_FEATURE);
- }
- static int anfc_data_write_type_exec(struct nand_chip *chip,
- const struct nand_subop *subop)
- {
- return anfc_misc_data_type_exec(chip, subop, PROG_PGPROG);
- }
- static int anfc_misc_zerolen_type_exec(struct nand_chip *chip,
- const struct nand_subop *subop,
- u32 prog_reg)
- {
- struct arasan_nfc *nfc = to_anfc(chip->controller);
- struct anfc_op nfc_op = {};
- int ret;
- ret = anfc_parse_instructions(chip, subop, &nfc_op);
- if (ret)
- return ret;
- nfc_op.prog_reg = prog_reg;
- anfc_trigger_op(nfc, &nfc_op);
- ret = anfc_wait_for_event(nfc, XFER_COMPLETE);
- if (ret)
- return ret;
- if (nfc_op.rdy_timeout_ms)
- ret = anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms);
- return ret;
- }
- static int anfc_status_type_exec(struct nand_chip *chip,
- const struct nand_subop *subop)
- {
- struct arasan_nfc *nfc = to_anfc(chip->controller);
- u32 tmp;
- int ret;
- /* See anfc_check_op() for details about this constraint */
- if (subop->instrs[0].ctx.cmd.opcode != NAND_CMD_STATUS)
- return -ENOTSUPP;
- ret = anfc_misc_zerolen_type_exec(chip, subop, PROG_STATUS);
- if (ret)
- return ret;
- tmp = readl_relaxed(nfc->base + FLASH_STS_REG);
- memcpy(subop->instrs[1].ctx.data.buf.in, &tmp, 1);
- return 0;
- }
- static int anfc_reset_type_exec(struct nand_chip *chip,
- const struct nand_subop *subop)
- {
- return anfc_misc_zerolen_type_exec(chip, subop, PROG_RST);
- }
- static int anfc_erase_type_exec(struct nand_chip *chip,
- const struct nand_subop *subop)
- {
- return anfc_misc_zerolen_type_exec(chip, subop, PROG_ERASE);
- }
- static int anfc_wait_type_exec(struct nand_chip *chip,
- const struct nand_subop *subop)
- {
- struct arasan_nfc *nfc = to_anfc(chip->controller);
- struct anfc_op nfc_op = {};
- int ret;
- ret = anfc_parse_instructions(chip, subop, &nfc_op);
- if (ret)
- return ret;
- return anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms);
- }
- static const struct nand_op_parser anfc_op_parser = NAND_OP_PARSER(
- NAND_OP_PARSER_PATTERN(
- anfc_param_read_type_exec,
- NAND_OP_PARSER_PAT_CMD_ELEM(false),
- NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
- NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
- NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, ANFC_MAX_CHUNK_SIZE)),
- NAND_OP_PARSER_PATTERN(
- anfc_param_write_type_exec,
- NAND_OP_PARSER_PAT_CMD_ELEM(false),
- NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
- NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, ANFC_MAX_PARAM_SIZE)),
- NAND_OP_PARSER_PATTERN(
- anfc_data_read_type_exec,
- NAND_OP_PARSER_PAT_CMD_ELEM(false),
- NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
- NAND_OP_PARSER_PAT_CMD_ELEM(false),
- NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
- NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, ANFC_MAX_CHUNK_SIZE)),
- NAND_OP_PARSER_PATTERN(
- anfc_data_write_type_exec,
- NAND_OP_PARSER_PAT_CMD_ELEM(false),
- NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
- NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, ANFC_MAX_CHUNK_SIZE),
- NAND_OP_PARSER_PAT_CMD_ELEM(false)),
- NAND_OP_PARSER_PATTERN(
- anfc_reset_type_exec,
- NAND_OP_PARSER_PAT_CMD_ELEM(false),
- NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
- NAND_OP_PARSER_PATTERN(
- anfc_erase_type_exec,
- NAND_OP_PARSER_PAT_CMD_ELEM(false),
- NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
- NAND_OP_PARSER_PAT_CMD_ELEM(false),
- NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
- NAND_OP_PARSER_PATTERN(
- anfc_status_type_exec,
- NAND_OP_PARSER_PAT_CMD_ELEM(false),
- NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, ANFC_MAX_CHUNK_SIZE)),
- NAND_OP_PARSER_PATTERN(
- anfc_wait_type_exec,
- NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
- );
- static int anfc_check_op(struct nand_chip *chip,
- const struct nand_operation *op)
- {
- const struct nand_op_instr *instr;
- int op_id;
- /*
- * The controller abstracts all the NAND operations and do not support
- * data only operations.
- *
- * TODO: The nand_op_parser framework should be extended to
- * support custom checks on DATA instructions.
- */
- for (op_id = 0; op_id < op->ninstrs; op_id++) {
- instr = &op->instrs[op_id];
- switch (instr->type) {
- case NAND_OP_ADDR_INSTR:
- if (instr->ctx.addr.naddrs > ANFC_MAX_ADDR_CYC)
- return -ENOTSUPP;
- break;
- case NAND_OP_DATA_IN_INSTR:
- case NAND_OP_DATA_OUT_INSTR:
- if (instr->ctx.data.len > ANFC_MAX_CHUNK_SIZE)
- return -ENOTSUPP;
- if (anfc_pkt_len_config(instr->ctx.data.len, NULL, NULL))
- return -ENOTSUPP;
- break;
- default:
- break;
- }
- }
- /*
- * The controller does not allow to proceed with a CMD+DATA_IN cycle
- * manually on the bus by reading data from the data register. Instead,
- * the controller abstract a status read operation with its own status
- * register after ordering a read status operation. Hence, we cannot
- * support any CMD+DATA_IN operation other than a READ STATUS.
- *
- * TODO: The nand_op_parser() framework should be extended to describe
- * fixed patterns instead of open-coding this check here.
- */
- if (op->ninstrs == 2 &&
- op->instrs[0].type == NAND_OP_CMD_INSTR &&
- op->instrs[0].ctx.cmd.opcode != NAND_CMD_STATUS &&
- op->instrs[1].type == NAND_OP_DATA_IN_INSTR)
- return -ENOTSUPP;
- return nand_op_parser_exec_op(chip, &anfc_op_parser, op, true);
- }
- static int anfc_exec_op(struct nand_chip *chip,
- const struct nand_operation *op,
- bool check_only)
- {
- int ret;
- if (check_only)
- return anfc_check_op(chip, op);
- ret = anfc_select_target(chip, op->cs);
- if (ret)
- return ret;
- return nand_op_parser_exec_op(chip, &anfc_op_parser, op, check_only);
- }
- static int anfc_setup_interface(struct nand_chip *chip, int target,
- const struct nand_interface_config *conf)
- {
- struct anand *anand = to_anand(chip);
- struct arasan_nfc *nfc = to_anfc(chip->controller);
- struct device_node *np = nfc->dev->of_node;
- const struct nand_sdr_timings *sdr;
- const struct nand_nvddr_timings *nvddr;
- unsigned int tccs_min, dqs_mode, fast_tcad;
- if (nand_interface_is_nvddr(conf)) {
- nvddr = nand_get_nvddr_timings(conf);
- if (IS_ERR(nvddr))
- return PTR_ERR(nvddr);
- /*
- * The controller only supports data payload requests which are
- * a multiple of 4. In practice, most data accesses are 4-byte
- * aligned and this is not an issue. However, rounding up will
- * simply be refused by the controller if we reached the end of
- * the device *and* we are using the NV-DDR interface(!). In
- * this situation, unaligned data requests ending at the device
- * boundary will confuse the controller and cannot be performed.
- *
- * This is something that happens in nand_read_subpage() when
- * selecting software ECC support and must be avoided.
- */
- if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_SOFT)
- return -ENOTSUPP;
- } else {
- sdr = nand_get_sdr_timings(conf);
- if (IS_ERR(sdr))
- return PTR_ERR(sdr);
- }
- if (target < 0)
- return 0;
- if (nand_interface_is_sdr(conf)) {
- anand->data_iface = DIFACE_SDR |
- DIFACE_SDR_MODE(conf->timings.mode);
- anand->timings = 0;
- } else {
- anand->data_iface = DIFACE_NVDDR |
- DIFACE_DDR_MODE(conf->timings.mode);
- if (conf->timings.nvddr.tCCS_min <= 100000)
- tccs_min = TCCS_TIME_100NS;
- else if (conf->timings.nvddr.tCCS_min <= 200000)
- tccs_min = TCCS_TIME_200NS;
- else if (conf->timings.nvddr.tCCS_min <= 300000)
- tccs_min = TCCS_TIME_300NS;
- else
- tccs_min = TCCS_TIME_500NS;
- fast_tcad = 0;
- if (conf->timings.nvddr.tCAD_min < 45000)
- fast_tcad = FAST_TCAD;
- switch (conf->timings.mode) {
- case 5:
- case 4:
- dqs_mode = 2;
- break;
- case 3:
- dqs_mode = 3;
- break;
- case 2:
- dqs_mode = 4;
- break;
- case 1:
- dqs_mode = 5;
- break;
- case 0:
- default:
- dqs_mode = 6;
- break;
- }
- anand->timings = tccs_min | fast_tcad |
- DQS_BUFF_SEL_IN(dqs_mode) |
- DQS_BUFF_SEL_OUT(dqs_mode);
- }
- if (nand_interface_is_sdr(conf)) {
- anand->clk = ANFC_XLNX_SDR_DFLT_CORE_CLK;
- } else {
- /* ONFI timings are defined in picoseconds */
- anand->clk = div_u64((u64)NSEC_PER_SEC * 1000,
- conf->timings.nvddr.tCK_min);
- }
- /*
- * Due to a hardware bug in the ZynqMP SoC, SDR timing modes 0-1 work
- * with f > 90MHz (default clock is 100MHz) but signals are unstable
- * with higher modes. Hence we decrease a little bit the clock rate to
- * 80MHz when using SDR modes 2-5 with this SoC.
- */
- if (of_device_is_compatible(np, "xlnx,zynqmp-nand-controller") &&
- nand_interface_is_sdr(conf) && conf->timings.mode >= 2)
- anand->clk = ANFC_XLNX_SDR_HS_CORE_CLK;
- return 0;
- }
- static int anfc_calc_hw_ecc_bytes(int step_size, int strength)
- {
- unsigned int bch_gf_mag, ecc_bits;
- switch (step_size) {
- case SZ_512:
- bch_gf_mag = 13;
- break;
- case SZ_1K:
- bch_gf_mag = 14;
- break;
- default:
- return -EINVAL;
- }
- ecc_bits = bch_gf_mag * strength;
- return DIV_ROUND_UP(ecc_bits, 8);
- }
- static const int anfc_hw_ecc_512_strengths[] = {4, 8, 12};
- static const int anfc_hw_ecc_1024_strengths[] = {24};
- static const struct nand_ecc_step_info anfc_hw_ecc_step_infos[] = {
- {
- .stepsize = SZ_512,
- .strengths = anfc_hw_ecc_512_strengths,
- .nstrengths = ARRAY_SIZE(anfc_hw_ecc_512_strengths),
- },
- {
- .stepsize = SZ_1K,
- .strengths = anfc_hw_ecc_1024_strengths,
- .nstrengths = ARRAY_SIZE(anfc_hw_ecc_1024_strengths),
- },
- };
- static const struct nand_ecc_caps anfc_hw_ecc_caps = {
- .stepinfos = anfc_hw_ecc_step_infos,
- .nstepinfos = ARRAY_SIZE(anfc_hw_ecc_step_infos),
- .calc_ecc_bytes = anfc_calc_hw_ecc_bytes,
- };
- static int anfc_init_hw_ecc_controller(struct arasan_nfc *nfc,
- struct nand_chip *chip)
- {
- struct anand *anand = to_anand(chip);
- struct mtd_info *mtd = nand_to_mtd(chip);
- struct nand_ecc_ctrl *ecc = &chip->ecc;
- unsigned int bch_prim_poly = 0, bch_gf_mag = 0, ecc_offset;
- int ret;
- switch (mtd->writesize) {
- case SZ_512:
- case SZ_2K:
- case SZ_4K:
- case SZ_8K:
- case SZ_16K:
- break;
- default:
- dev_err(nfc->dev, "Unsupported page size %d\n", mtd->writesize);
- return -EINVAL;
- }
- ret = nand_ecc_choose_conf(chip, &anfc_hw_ecc_caps, mtd->oobsize);
- if (ret)
- return ret;
- switch (ecc->strength) {
- case 12:
- anand->strength = 0x1;
- break;
- case 8:
- anand->strength = 0x2;
- break;
- case 4:
- anand->strength = 0x3;
- break;
- case 24:
- anand->strength = 0x4;
- break;
- default:
- dev_err(nfc->dev, "Unsupported strength %d\n", ecc->strength);
- return -EINVAL;
- }
- switch (ecc->size) {
- case SZ_512:
- bch_gf_mag = 13;
- bch_prim_poly = 0x201b;
- break;
- case SZ_1K:
- bch_gf_mag = 14;
- bch_prim_poly = 0x4443;
- break;
- default:
- dev_err(nfc->dev, "Unsupported step size %d\n", ecc->strength);
- return -EINVAL;
- }
- mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout());
- ecc->steps = mtd->writesize / ecc->size;
- ecc->algo = NAND_ECC_ALGO_BCH;
- anand->ecc_bits = bch_gf_mag * ecc->strength;
- ecc->bytes = DIV_ROUND_UP(anand->ecc_bits, 8);
- anand->ecc_total = DIV_ROUND_UP(anand->ecc_bits * ecc->steps, 8);
- ecc_offset = mtd->writesize + mtd->oobsize - anand->ecc_total;
- anand->ecc_conf = ECC_CONF_COL(ecc_offset) |
- ECC_CONF_LEN(anand->ecc_total) |
- ECC_CONF_BCH_EN;
- anand->errloc = devm_kmalloc_array(nfc->dev, ecc->strength,
- sizeof(*anand->errloc), GFP_KERNEL);
- if (!anand->errloc)
- return -ENOMEM;
- anand->hw_ecc = devm_kmalloc(nfc->dev, ecc->bytes, GFP_KERNEL);
- if (!anand->hw_ecc)
- return -ENOMEM;
- /* Enforce bit swapping to fit the hardware */
- anand->bch = bch_init(bch_gf_mag, ecc->strength, bch_prim_poly, true);
- if (!anand->bch)
- return -EINVAL;
- ecc->read_page = anfc_sel_read_page_hw_ecc;
- ecc->write_page = anfc_sel_write_page_hw_ecc;
- return 0;
- }
- static int anfc_attach_chip(struct nand_chip *chip)
- {
- struct anand *anand = to_anand(chip);
- struct arasan_nfc *nfc = to_anfc(chip->controller);
- struct mtd_info *mtd = nand_to_mtd(chip);
- int ret = 0;
- if (mtd->writesize <= SZ_512)
- anand->caddr_cycles = 1;
- else
- anand->caddr_cycles = 2;
- if (chip->options & NAND_ROW_ADDR_3)
- anand->raddr_cycles = 3;
- else
- anand->raddr_cycles = 2;
- switch (mtd->writesize) {
- case 512:
- anand->page_sz = 0;
- break;
- case 1024:
- anand->page_sz = 5;
- break;
- case 2048:
- anand->page_sz = 1;
- break;
- case 4096:
- anand->page_sz = 2;
- break;
- case 8192:
- anand->page_sz = 3;
- break;
- case 16384:
- anand->page_sz = 4;
- break;
- default:
- return -EINVAL;
- }
- /* These hooks are valid for all ECC providers */
- chip->ecc.read_page_raw = nand_monolithic_read_page_raw;
- chip->ecc.write_page_raw = nand_monolithic_write_page_raw;
- switch (chip->ecc.engine_type) {
- case NAND_ECC_ENGINE_TYPE_NONE:
- case NAND_ECC_ENGINE_TYPE_SOFT:
- case NAND_ECC_ENGINE_TYPE_ON_DIE:
- break;
- case NAND_ECC_ENGINE_TYPE_ON_HOST:
- ret = anfc_init_hw_ecc_controller(nfc, chip);
- break;
- default:
- dev_err(nfc->dev, "Unsupported ECC mode: %d\n",
- chip->ecc.engine_type);
- return -EINVAL;
- }
- return ret;
- }
- static void anfc_detach_chip(struct nand_chip *chip)
- {
- struct anand *anand = to_anand(chip);
- if (anand->bch)
- bch_free(anand->bch);
- }
- static const struct nand_controller_ops anfc_ops = {
- .exec_op = anfc_exec_op,
- .setup_interface = anfc_setup_interface,
- .attach_chip = anfc_attach_chip,
- .detach_chip = anfc_detach_chip,
- };
- static int anfc_chip_init(struct arasan_nfc *nfc, struct device_node *np)
- {
- struct anand *anand;
- struct nand_chip *chip;
- struct mtd_info *mtd;
- int rb, ret, i;
- anand = devm_kzalloc(nfc->dev, sizeof(*anand), GFP_KERNEL);
- if (!anand)
- return -ENOMEM;
- /* Chip-select init */
- anand->ncs_idx = of_property_count_elems_of_size(np, "reg", sizeof(u32));
- if (anand->ncs_idx <= 0 || anand->ncs_idx > nfc->ncs) {
- dev_err(nfc->dev, "Invalid reg property\n");
- return -EINVAL;
- }
- anand->cs_idx = devm_kcalloc(nfc->dev, anand->ncs_idx,
- sizeof(*anand->cs_idx), GFP_KERNEL);
- if (!anand->cs_idx)
- return -ENOMEM;
- for (i = 0; i < anand->ncs_idx; i++) {
- ret = of_property_read_u32_index(np, "reg", i,
- &anand->cs_idx[i]);
- if (ret) {
- dev_err(nfc->dev, "invalid CS property: %d\n", ret);
- return ret;
- }
- }
- /* Ready-busy init */
- ret = of_property_read_u32(np, "nand-rb", &rb);
- if (ret)
- return ret;
- if (rb >= ANFC_MAX_CS) {
- dev_err(nfc->dev, "Wrong RB %d\n", rb);
- return -EINVAL;
- }
- anand->rb = rb;
- chip = &anand->chip;
- mtd = nand_to_mtd(chip);
- mtd->dev.parent = nfc->dev;
- chip->controller = &nfc->controller;
- chip->options = NAND_BUSWIDTH_AUTO | NAND_NO_SUBPAGE_WRITE |
- NAND_USES_DMA;
- nand_set_flash_node(chip, np);
- if (!mtd->name) {
- dev_err(nfc->dev, "NAND label property is mandatory\n");
- return -EINVAL;
- }
- ret = nand_scan(chip, anand->ncs_idx);
- if (ret) {
- dev_err(nfc->dev, "Scan operation failed\n");
- return ret;
- }
- ret = mtd_device_register(mtd, NULL, 0);
- if (ret) {
- nand_cleanup(chip);
- return ret;
- }
- list_add_tail(&anand->node, &nfc->chips);
- return 0;
- }
- static void anfc_chips_cleanup(struct arasan_nfc *nfc)
- {
- struct anand *anand, *tmp;
- struct nand_chip *chip;
- int ret;
- list_for_each_entry_safe(anand, tmp, &nfc->chips, node) {
- chip = &anand->chip;
- ret = mtd_device_unregister(nand_to_mtd(chip));
- WARN_ON(ret);
- nand_cleanup(chip);
- list_del(&anand->node);
- }
- }
- static int anfc_chips_init(struct arasan_nfc *nfc)
- {
- struct device_node *np = nfc->dev->of_node, *nand_np;
- int nchips = of_get_child_count(np);
- int ret;
- if (!nchips) {
- dev_err(nfc->dev, "Incorrect number of NAND chips (%d)\n",
- nchips);
- return -EINVAL;
- }
- for_each_child_of_node(np, nand_np) {
- ret = anfc_chip_init(nfc, nand_np);
- if (ret) {
- of_node_put(nand_np);
- anfc_chips_cleanup(nfc);
- break;
- }
- }
- return ret;
- }
- static void anfc_reset(struct arasan_nfc *nfc)
- {
- /* Disable interrupt signals */
- writel_relaxed(0, nfc->base + INTR_SIG_EN_REG);
- /* Enable interrupt status */
- writel_relaxed(EVENT_MASK, nfc->base + INTR_STS_EN_REG);
- nfc->cur_cs = -1;
- }
- static int anfc_parse_cs(struct arasan_nfc *nfc)
- {
- int ret;
- /* Check the gpio-cs property */
- ret = rawnand_dt_parse_gpio_cs(nfc->dev, &nfc->cs_array, &nfc->ncs);
- if (ret)
- return ret;
- /*
- * The controller native CS cannot be both disabled at the same time.
- * Hence, only one native CS can be used if GPIO CS are needed, so that
- * the other is selected when a non-native CS must be asserted (not
- * wired physically or configured as GPIO instead of NAND CS). In this
- * case, the "not" chosen CS is assigned to nfc->spare_cs and selected
- * whenever a GPIO CS must be asserted.
- */
- if (nfc->cs_array && nfc->ncs > 2) {
- if (!nfc->cs_array[0] && !nfc->cs_array[1]) {
- dev_err(nfc->dev,
- "Assign a single native CS when using GPIOs\n");
- return -EINVAL;
- }
- if (nfc->cs_array[0])
- nfc->spare_cs = 0;
- else
- nfc->spare_cs = 1;
- }
- if (!nfc->cs_array) {
- nfc->cs_array = anfc_default_cs_array;
- nfc->ncs = ANFC_MAX_CS;
- return 0;
- }
- return 0;
- }
- static int anfc_probe(struct platform_device *pdev)
- {
- struct arasan_nfc *nfc;
- int ret;
- nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL);
- if (!nfc)
- return -ENOMEM;
- nfc->dev = &pdev->dev;
- nand_controller_init(&nfc->controller);
- nfc->controller.ops = &anfc_ops;
- INIT_LIST_HEAD(&nfc->chips);
- nfc->base = devm_platform_ioremap_resource(pdev, 0);
- if (IS_ERR(nfc->base))
- return PTR_ERR(nfc->base);
- anfc_reset(nfc);
- nfc->controller_clk = devm_clk_get(&pdev->dev, "controller");
- if (IS_ERR(nfc->controller_clk))
- return PTR_ERR(nfc->controller_clk);
- nfc->bus_clk = devm_clk_get(&pdev->dev, "bus");
- if (IS_ERR(nfc->bus_clk))
- return PTR_ERR(nfc->bus_clk);
- ret = clk_prepare_enable(nfc->controller_clk);
- if (ret)
- return ret;
- ret = clk_prepare_enable(nfc->bus_clk);
- if (ret)
- goto disable_controller_clk;
- ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
- if (ret)
- goto disable_bus_clk;
- ret = anfc_parse_cs(nfc);
- if (ret)
- goto disable_bus_clk;
- ret = anfc_chips_init(nfc);
- if (ret)
- goto disable_bus_clk;
- platform_set_drvdata(pdev, nfc);
- return 0;
- disable_bus_clk:
- clk_disable_unprepare(nfc->bus_clk);
- disable_controller_clk:
- clk_disable_unprepare(nfc->controller_clk);
- return ret;
- }
- static int anfc_remove(struct platform_device *pdev)
- {
- struct arasan_nfc *nfc = platform_get_drvdata(pdev);
- anfc_chips_cleanup(nfc);
- clk_disable_unprepare(nfc->bus_clk);
- clk_disable_unprepare(nfc->controller_clk);
- return 0;
- }
- static const struct of_device_id anfc_ids[] = {
- {
- .compatible = "xlnx,zynqmp-nand-controller",
- },
- {
- .compatible = "arasan,nfc-v3p10",
- },
- {}
- };
- MODULE_DEVICE_TABLE(of, anfc_ids);
- static struct platform_driver anfc_driver = {
- .driver = {
- .name = "arasan-nand-controller",
- .of_match_table = anfc_ids,
- },
- .probe = anfc_probe,
- .remove = anfc_remove,
- };
- module_platform_driver(anfc_driver);
- MODULE_LICENSE("GPL v2");
- MODULE_AUTHOR("Punnaiah Choudary Kalluri <[email protected]>");
- MODULE_AUTHOR("Naga Sureshkumar Relli <[email protected]>");
- MODULE_AUTHOR("Miquel Raynal <[email protected]>");
- MODULE_DESCRIPTION("Arasan NAND Flash Controller Driver");
|