onenand_samsung.c 25 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Samsung S3C64XX/S5PC1XX OneNAND driver
  4. *
  5. * Copyright © 2008-2010 Samsung Electronics
  6. * Kyungmin Park <[email protected]>
  7. * Marek Szyprowski <[email protected]>
  8. *
  9. * Implementation:
  10. * S3C64XX: emulate the pseudo BufferRAM
  11. * S5PC110: use DMA
  12. */
  13. #include <linux/module.h>
  14. #include <linux/platform_device.h>
  15. #include <linux/sched.h>
  16. #include <linux/slab.h>
  17. #include <linux/mtd/mtd.h>
  18. #include <linux/mtd/onenand.h>
  19. #include <linux/mtd/partitions.h>
  20. #include <linux/dma-mapping.h>
  21. #include <linux/interrupt.h>
  22. #include <linux/io.h>
  23. #include "samsung.h"
  24. enum soc_type {
  25. TYPE_S3C6400,
  26. TYPE_S3C6410,
  27. TYPE_S5PC110,
  28. };
  29. #define ONENAND_ERASE_STATUS 0x00
  30. #define ONENAND_MULTI_ERASE_SET 0x01
  31. #define ONENAND_ERASE_START 0x03
  32. #define ONENAND_UNLOCK_START 0x08
  33. #define ONENAND_UNLOCK_END 0x09
  34. #define ONENAND_LOCK_START 0x0A
  35. #define ONENAND_LOCK_END 0x0B
  36. #define ONENAND_LOCK_TIGHT_START 0x0C
  37. #define ONENAND_LOCK_TIGHT_END 0x0D
  38. #define ONENAND_UNLOCK_ALL 0x0E
  39. #define ONENAND_OTP_ACCESS 0x12
  40. #define ONENAND_SPARE_ACCESS_ONLY 0x13
  41. #define ONENAND_MAIN_ACCESS_ONLY 0x14
  42. #define ONENAND_ERASE_VERIFY 0x15
  43. #define ONENAND_MAIN_SPARE_ACCESS 0x16
  44. #define ONENAND_PIPELINE_READ 0x4000
  45. #define MAP_00 (0x0)
  46. #define MAP_01 (0x1)
  47. #define MAP_10 (0x2)
  48. #define MAP_11 (0x3)
  49. #define S3C64XX_CMD_MAP_SHIFT 24
  50. #define S3C6400_FBA_SHIFT 10
  51. #define S3C6400_FPA_SHIFT 4
  52. #define S3C6400_FSA_SHIFT 2
  53. #define S3C6410_FBA_SHIFT 12
  54. #define S3C6410_FPA_SHIFT 6
  55. #define S3C6410_FSA_SHIFT 4
  56. /* S5PC110 specific definitions */
  57. #define S5PC110_DMA_SRC_ADDR 0x400
  58. #define S5PC110_DMA_SRC_CFG 0x404
  59. #define S5PC110_DMA_DST_ADDR 0x408
  60. #define S5PC110_DMA_DST_CFG 0x40C
  61. #define S5PC110_DMA_TRANS_SIZE 0x414
  62. #define S5PC110_DMA_TRANS_CMD 0x418
  63. #define S5PC110_DMA_TRANS_STATUS 0x41C
  64. #define S5PC110_DMA_TRANS_DIR 0x420
  65. #define S5PC110_INTC_DMA_CLR 0x1004
  66. #define S5PC110_INTC_ONENAND_CLR 0x1008
  67. #define S5PC110_INTC_DMA_MASK 0x1024
  68. #define S5PC110_INTC_ONENAND_MASK 0x1028
  69. #define S5PC110_INTC_DMA_PEND 0x1044
  70. #define S5PC110_INTC_ONENAND_PEND 0x1048
  71. #define S5PC110_INTC_DMA_STATUS 0x1064
  72. #define S5PC110_INTC_ONENAND_STATUS 0x1068
  73. #define S5PC110_INTC_DMA_TD (1 << 24)
  74. #define S5PC110_INTC_DMA_TE (1 << 16)
  75. #define S5PC110_DMA_CFG_SINGLE (0x0 << 16)
  76. #define S5PC110_DMA_CFG_4BURST (0x2 << 16)
  77. #define S5PC110_DMA_CFG_8BURST (0x3 << 16)
  78. #define S5PC110_DMA_CFG_16BURST (0x4 << 16)
  79. #define S5PC110_DMA_CFG_INC (0x0 << 8)
  80. #define S5PC110_DMA_CFG_CNT (0x1 << 8)
  81. #define S5PC110_DMA_CFG_8BIT (0x0 << 0)
  82. #define S5PC110_DMA_CFG_16BIT (0x1 << 0)
  83. #define S5PC110_DMA_CFG_32BIT (0x2 << 0)
  84. #define S5PC110_DMA_SRC_CFG_READ (S5PC110_DMA_CFG_16BURST | \
  85. S5PC110_DMA_CFG_INC | \
  86. S5PC110_DMA_CFG_16BIT)
  87. #define S5PC110_DMA_DST_CFG_READ (S5PC110_DMA_CFG_16BURST | \
  88. S5PC110_DMA_CFG_INC | \
  89. S5PC110_DMA_CFG_32BIT)
  90. #define S5PC110_DMA_SRC_CFG_WRITE (S5PC110_DMA_CFG_16BURST | \
  91. S5PC110_DMA_CFG_INC | \
  92. S5PC110_DMA_CFG_32BIT)
  93. #define S5PC110_DMA_DST_CFG_WRITE (S5PC110_DMA_CFG_16BURST | \
  94. S5PC110_DMA_CFG_INC | \
  95. S5PC110_DMA_CFG_16BIT)
  96. #define S5PC110_DMA_TRANS_CMD_TDC (0x1 << 18)
  97. #define S5PC110_DMA_TRANS_CMD_TEC (0x1 << 16)
  98. #define S5PC110_DMA_TRANS_CMD_TR (0x1 << 0)
  99. #define S5PC110_DMA_TRANS_STATUS_TD (0x1 << 18)
  100. #define S5PC110_DMA_TRANS_STATUS_TB (0x1 << 17)
  101. #define S5PC110_DMA_TRANS_STATUS_TE (0x1 << 16)
  102. #define S5PC110_DMA_DIR_READ 0x0
  103. #define S5PC110_DMA_DIR_WRITE 0x1
  104. struct s3c_onenand {
  105. struct mtd_info *mtd;
  106. struct platform_device *pdev;
  107. enum soc_type type;
  108. void __iomem *base;
  109. void __iomem *ahb_addr;
  110. int bootram_command;
  111. void *page_buf;
  112. void *oob_buf;
  113. unsigned int (*mem_addr)(int fba, int fpa, int fsa);
  114. unsigned int (*cmd_map)(unsigned int type, unsigned int val);
  115. void __iomem *dma_addr;
  116. unsigned long phys_base;
  117. struct completion complete;
  118. };
  119. #define CMD_MAP_00(dev, addr) (dev->cmd_map(MAP_00, ((addr) << 1)))
  120. #define CMD_MAP_01(dev, mem_addr) (dev->cmd_map(MAP_01, (mem_addr)))
  121. #define CMD_MAP_10(dev, mem_addr) (dev->cmd_map(MAP_10, (mem_addr)))
  122. #define CMD_MAP_11(dev, addr) (dev->cmd_map(MAP_11, ((addr) << 2)))
  123. static struct s3c_onenand *onenand;
  124. static inline int s3c_read_reg(int offset)
  125. {
  126. return readl(onenand->base + offset);
  127. }
  128. static inline void s3c_write_reg(int value, int offset)
  129. {
  130. writel(value, onenand->base + offset);
  131. }
  132. static inline int s3c_read_cmd(unsigned int cmd)
  133. {
  134. return readl(onenand->ahb_addr + cmd);
  135. }
  136. static inline void s3c_write_cmd(int value, unsigned int cmd)
  137. {
  138. writel(value, onenand->ahb_addr + cmd);
  139. }
  140. #ifdef SAMSUNG_DEBUG
  141. static void s3c_dump_reg(void)
  142. {
  143. int i;
  144. for (i = 0; i < 0x400; i += 0x40) {
  145. printk(KERN_INFO "0x%08X: 0x%08x 0x%08x 0x%08x 0x%08x\n",
  146. (unsigned int) onenand->base + i,
  147. s3c_read_reg(i), s3c_read_reg(i + 0x10),
  148. s3c_read_reg(i + 0x20), s3c_read_reg(i + 0x30));
  149. }
  150. }
  151. #endif
  152. static unsigned int s3c64xx_cmd_map(unsigned type, unsigned val)
  153. {
  154. return (type << S3C64XX_CMD_MAP_SHIFT) | val;
  155. }
  156. static unsigned int s3c6400_mem_addr(int fba, int fpa, int fsa)
  157. {
  158. return (fba << S3C6400_FBA_SHIFT) | (fpa << S3C6400_FPA_SHIFT) |
  159. (fsa << S3C6400_FSA_SHIFT);
  160. }
  161. static unsigned int s3c6410_mem_addr(int fba, int fpa, int fsa)
  162. {
  163. return (fba << S3C6410_FBA_SHIFT) | (fpa << S3C6410_FPA_SHIFT) |
  164. (fsa << S3C6410_FSA_SHIFT);
  165. }
  166. static void s3c_onenand_reset(void)
  167. {
  168. unsigned long timeout = 0x10000;
  169. int stat;
  170. s3c_write_reg(ONENAND_MEM_RESET_COLD, MEM_RESET_OFFSET);
  171. while (1 && timeout--) {
  172. stat = s3c_read_reg(INT_ERR_STAT_OFFSET);
  173. if (stat & RST_CMP)
  174. break;
  175. }
  176. stat = s3c_read_reg(INT_ERR_STAT_OFFSET);
  177. s3c_write_reg(stat, INT_ERR_ACK_OFFSET);
  178. /* Clear interrupt */
  179. s3c_write_reg(0x0, INT_ERR_ACK_OFFSET);
  180. /* Clear the ECC status */
  181. s3c_write_reg(0x0, ECC_ERR_STAT_OFFSET);
  182. }
  183. static unsigned short s3c_onenand_readw(void __iomem *addr)
  184. {
  185. struct onenand_chip *this = onenand->mtd->priv;
  186. struct device *dev = &onenand->pdev->dev;
  187. int reg = addr - this->base;
  188. int word_addr = reg >> 1;
  189. int value;
  190. /* It's used for probing time */
  191. switch (reg) {
  192. case ONENAND_REG_MANUFACTURER_ID:
  193. return s3c_read_reg(MANUFACT_ID_OFFSET);
  194. case ONENAND_REG_DEVICE_ID:
  195. return s3c_read_reg(DEVICE_ID_OFFSET);
  196. case ONENAND_REG_VERSION_ID:
  197. return s3c_read_reg(FLASH_VER_ID_OFFSET);
  198. case ONENAND_REG_DATA_BUFFER_SIZE:
  199. return s3c_read_reg(DATA_BUF_SIZE_OFFSET);
  200. case ONENAND_REG_TECHNOLOGY:
  201. return s3c_read_reg(TECH_OFFSET);
  202. case ONENAND_REG_SYS_CFG1:
  203. return s3c_read_reg(MEM_CFG_OFFSET);
  204. /* Used at unlock all status */
  205. case ONENAND_REG_CTRL_STATUS:
  206. return 0;
  207. case ONENAND_REG_WP_STATUS:
  208. return ONENAND_WP_US;
  209. default:
  210. break;
  211. }
  212. /* BootRAM access control */
  213. if ((unsigned long)addr < ONENAND_DATARAM && onenand->bootram_command) {
  214. if (word_addr == 0)
  215. return s3c_read_reg(MANUFACT_ID_OFFSET);
  216. if (word_addr == 1)
  217. return s3c_read_reg(DEVICE_ID_OFFSET);
  218. if (word_addr == 2)
  219. return s3c_read_reg(FLASH_VER_ID_OFFSET);
  220. }
  221. value = s3c_read_cmd(CMD_MAP_11(onenand, word_addr)) & 0xffff;
  222. dev_info(dev, "%s: Illegal access at reg 0x%x, value 0x%x\n", __func__,
  223. word_addr, value);
  224. return value;
  225. }
  226. static void s3c_onenand_writew(unsigned short value, void __iomem *addr)
  227. {
  228. struct onenand_chip *this = onenand->mtd->priv;
  229. struct device *dev = &onenand->pdev->dev;
  230. unsigned int reg = addr - this->base;
  231. unsigned int word_addr = reg >> 1;
  232. /* It's used for probing time */
  233. switch (reg) {
  234. case ONENAND_REG_SYS_CFG1:
  235. s3c_write_reg(value, MEM_CFG_OFFSET);
  236. return;
  237. case ONENAND_REG_START_ADDRESS1:
  238. case ONENAND_REG_START_ADDRESS2:
  239. return;
  240. /* Lock/lock-tight/unlock/unlock_all */
  241. case ONENAND_REG_START_BLOCK_ADDRESS:
  242. return;
  243. default:
  244. break;
  245. }
  246. /* BootRAM access control */
  247. if ((unsigned long)addr < ONENAND_DATARAM) {
  248. if (value == ONENAND_CMD_READID) {
  249. onenand->bootram_command = 1;
  250. return;
  251. }
  252. if (value == ONENAND_CMD_RESET) {
  253. s3c_write_reg(ONENAND_MEM_RESET_COLD, MEM_RESET_OFFSET);
  254. onenand->bootram_command = 0;
  255. return;
  256. }
  257. }
  258. dev_info(dev, "%s: Illegal access at reg 0x%x, value 0x%x\n", __func__,
  259. word_addr, value);
  260. s3c_write_cmd(value, CMD_MAP_11(onenand, word_addr));
  261. }
  262. static int s3c_onenand_wait(struct mtd_info *mtd, int state)
  263. {
  264. struct device *dev = &onenand->pdev->dev;
  265. unsigned int flags = INT_ACT;
  266. unsigned int stat, ecc;
  267. unsigned long timeout;
  268. switch (state) {
  269. case FL_READING:
  270. flags |= BLK_RW_CMP | LOAD_CMP;
  271. break;
  272. case FL_WRITING:
  273. flags |= BLK_RW_CMP | PGM_CMP;
  274. break;
  275. case FL_ERASING:
  276. flags |= BLK_RW_CMP | ERS_CMP;
  277. break;
  278. case FL_LOCKING:
  279. flags |= BLK_RW_CMP;
  280. break;
  281. default:
  282. break;
  283. }
  284. /* The 20 msec is enough */
  285. timeout = jiffies + msecs_to_jiffies(20);
  286. while (time_before(jiffies, timeout)) {
  287. stat = s3c_read_reg(INT_ERR_STAT_OFFSET);
  288. if (stat & flags)
  289. break;
  290. if (state != FL_READING)
  291. cond_resched();
  292. }
  293. /* To get correct interrupt status in timeout case */
  294. stat = s3c_read_reg(INT_ERR_STAT_OFFSET);
  295. s3c_write_reg(stat, INT_ERR_ACK_OFFSET);
  296. /*
  297. * In the Spec. it checks the controller status first
  298. * However if you get the correct information in case of
  299. * power off recovery (POR) test, it should read ECC status first
  300. */
  301. if (stat & LOAD_CMP) {
  302. ecc = s3c_read_reg(ECC_ERR_STAT_OFFSET);
  303. if (ecc & ONENAND_ECC_4BIT_UNCORRECTABLE) {
  304. dev_info(dev, "%s: ECC error = 0x%04x\n", __func__,
  305. ecc);
  306. mtd->ecc_stats.failed++;
  307. return -EBADMSG;
  308. }
  309. }
  310. if (stat & (LOCKED_BLK | ERS_FAIL | PGM_FAIL | LD_FAIL_ECC_ERR)) {
  311. dev_info(dev, "%s: controller error = 0x%04x\n", __func__,
  312. stat);
  313. if (stat & LOCKED_BLK)
  314. dev_info(dev, "%s: it's locked error = 0x%04x\n",
  315. __func__, stat);
  316. return -EIO;
  317. }
  318. return 0;
  319. }
  320. static int s3c_onenand_command(struct mtd_info *mtd, int cmd, loff_t addr,
  321. size_t len)
  322. {
  323. struct onenand_chip *this = mtd->priv;
  324. unsigned int *m, *s;
  325. int fba, fpa, fsa = 0;
  326. unsigned int mem_addr, cmd_map_01, cmd_map_10;
  327. int i, mcount, scount;
  328. int index;
  329. fba = (int) (addr >> this->erase_shift);
  330. fpa = (int) (addr >> this->page_shift);
  331. fpa &= this->page_mask;
  332. mem_addr = onenand->mem_addr(fba, fpa, fsa);
  333. cmd_map_01 = CMD_MAP_01(onenand, mem_addr);
  334. cmd_map_10 = CMD_MAP_10(onenand, mem_addr);
  335. switch (cmd) {
  336. case ONENAND_CMD_READ:
  337. case ONENAND_CMD_READOOB:
  338. case ONENAND_CMD_BUFFERRAM:
  339. ONENAND_SET_NEXT_BUFFERRAM(this);
  340. break;
  341. default:
  342. break;
  343. }
  344. index = ONENAND_CURRENT_BUFFERRAM(this);
  345. /*
  346. * Emulate Two BufferRAMs and access with 4 bytes pointer
  347. */
  348. m = onenand->page_buf;
  349. s = onenand->oob_buf;
  350. if (index) {
  351. m += (this->writesize >> 2);
  352. s += (mtd->oobsize >> 2);
  353. }
  354. mcount = mtd->writesize >> 2;
  355. scount = mtd->oobsize >> 2;
  356. switch (cmd) {
  357. case ONENAND_CMD_READ:
  358. /* Main */
  359. for (i = 0; i < mcount; i++)
  360. *m++ = s3c_read_cmd(cmd_map_01);
  361. return 0;
  362. case ONENAND_CMD_READOOB:
  363. s3c_write_reg(TSRF, TRANS_SPARE_OFFSET);
  364. /* Main */
  365. for (i = 0; i < mcount; i++)
  366. *m++ = s3c_read_cmd(cmd_map_01);
  367. /* Spare */
  368. for (i = 0; i < scount; i++)
  369. *s++ = s3c_read_cmd(cmd_map_01);
  370. s3c_write_reg(0, TRANS_SPARE_OFFSET);
  371. return 0;
  372. case ONENAND_CMD_PROG:
  373. /* Main */
  374. for (i = 0; i < mcount; i++)
  375. s3c_write_cmd(*m++, cmd_map_01);
  376. return 0;
  377. case ONENAND_CMD_PROGOOB:
  378. s3c_write_reg(TSRF, TRANS_SPARE_OFFSET);
  379. /* Main - dummy write */
  380. for (i = 0; i < mcount; i++)
  381. s3c_write_cmd(0xffffffff, cmd_map_01);
  382. /* Spare */
  383. for (i = 0; i < scount; i++)
  384. s3c_write_cmd(*s++, cmd_map_01);
  385. s3c_write_reg(0, TRANS_SPARE_OFFSET);
  386. return 0;
  387. case ONENAND_CMD_UNLOCK_ALL:
  388. s3c_write_cmd(ONENAND_UNLOCK_ALL, cmd_map_10);
  389. return 0;
  390. case ONENAND_CMD_ERASE:
  391. s3c_write_cmd(ONENAND_ERASE_START, cmd_map_10);
  392. return 0;
  393. default:
  394. break;
  395. }
  396. return 0;
  397. }
  398. static unsigned char *s3c_get_bufferram(struct mtd_info *mtd, int area)
  399. {
  400. struct onenand_chip *this = mtd->priv;
  401. int index = ONENAND_CURRENT_BUFFERRAM(this);
  402. unsigned char *p;
  403. if (area == ONENAND_DATARAM) {
  404. p = onenand->page_buf;
  405. if (index == 1)
  406. p += this->writesize;
  407. } else {
  408. p = onenand->oob_buf;
  409. if (index == 1)
  410. p += mtd->oobsize;
  411. }
  412. return p;
  413. }
  414. static int onenand_read_bufferram(struct mtd_info *mtd, int area,
  415. unsigned char *buffer, int offset,
  416. size_t count)
  417. {
  418. unsigned char *p;
  419. p = s3c_get_bufferram(mtd, area);
  420. memcpy(buffer, p + offset, count);
  421. return 0;
  422. }
  423. static int onenand_write_bufferram(struct mtd_info *mtd, int area,
  424. const unsigned char *buffer, int offset,
  425. size_t count)
  426. {
  427. unsigned char *p;
  428. p = s3c_get_bufferram(mtd, area);
  429. memcpy(p + offset, buffer, count);
  430. return 0;
  431. }
  432. static int (*s5pc110_dma_ops)(dma_addr_t dst, dma_addr_t src, size_t count, int direction);
  433. static int s5pc110_dma_poll(dma_addr_t dst, dma_addr_t src, size_t count, int direction)
  434. {
  435. void __iomem *base = onenand->dma_addr;
  436. int status;
  437. unsigned long timeout;
  438. writel(src, base + S5PC110_DMA_SRC_ADDR);
  439. writel(dst, base + S5PC110_DMA_DST_ADDR);
  440. if (direction == S5PC110_DMA_DIR_READ) {
  441. writel(S5PC110_DMA_SRC_CFG_READ, base + S5PC110_DMA_SRC_CFG);
  442. writel(S5PC110_DMA_DST_CFG_READ, base + S5PC110_DMA_DST_CFG);
  443. } else {
  444. writel(S5PC110_DMA_SRC_CFG_WRITE, base + S5PC110_DMA_SRC_CFG);
  445. writel(S5PC110_DMA_DST_CFG_WRITE, base + S5PC110_DMA_DST_CFG);
  446. }
  447. writel(count, base + S5PC110_DMA_TRANS_SIZE);
  448. writel(direction, base + S5PC110_DMA_TRANS_DIR);
  449. writel(S5PC110_DMA_TRANS_CMD_TR, base + S5PC110_DMA_TRANS_CMD);
  450. /*
  451. * There's no exact timeout values at Spec.
  452. * In real case it takes under 1 msec.
  453. * So 20 msecs are enough.
  454. */
  455. timeout = jiffies + msecs_to_jiffies(20);
  456. do {
  457. status = readl(base + S5PC110_DMA_TRANS_STATUS);
  458. if (status & S5PC110_DMA_TRANS_STATUS_TE) {
  459. writel(S5PC110_DMA_TRANS_CMD_TEC,
  460. base + S5PC110_DMA_TRANS_CMD);
  461. return -EIO;
  462. }
  463. } while (!(status & S5PC110_DMA_TRANS_STATUS_TD) &&
  464. time_before(jiffies, timeout));
  465. writel(S5PC110_DMA_TRANS_CMD_TDC, base + S5PC110_DMA_TRANS_CMD);
  466. return 0;
  467. }
  468. static irqreturn_t s5pc110_onenand_irq(int irq, void *data)
  469. {
  470. void __iomem *base = onenand->dma_addr;
  471. int status, cmd = 0;
  472. status = readl(base + S5PC110_INTC_DMA_STATUS);
  473. if (likely(status & S5PC110_INTC_DMA_TD))
  474. cmd = S5PC110_DMA_TRANS_CMD_TDC;
  475. if (unlikely(status & S5PC110_INTC_DMA_TE))
  476. cmd = S5PC110_DMA_TRANS_CMD_TEC;
  477. writel(cmd, base + S5PC110_DMA_TRANS_CMD);
  478. writel(status, base + S5PC110_INTC_DMA_CLR);
  479. if (!onenand->complete.done)
  480. complete(&onenand->complete);
  481. return IRQ_HANDLED;
  482. }
  483. static int s5pc110_dma_irq(dma_addr_t dst, dma_addr_t src, size_t count, int direction)
  484. {
  485. void __iomem *base = onenand->dma_addr;
  486. int status;
  487. status = readl(base + S5PC110_INTC_DMA_MASK);
  488. if (status) {
  489. status &= ~(S5PC110_INTC_DMA_TD | S5PC110_INTC_DMA_TE);
  490. writel(status, base + S5PC110_INTC_DMA_MASK);
  491. }
  492. writel(src, base + S5PC110_DMA_SRC_ADDR);
  493. writel(dst, base + S5PC110_DMA_DST_ADDR);
  494. if (direction == S5PC110_DMA_DIR_READ) {
  495. writel(S5PC110_DMA_SRC_CFG_READ, base + S5PC110_DMA_SRC_CFG);
  496. writel(S5PC110_DMA_DST_CFG_READ, base + S5PC110_DMA_DST_CFG);
  497. } else {
  498. writel(S5PC110_DMA_SRC_CFG_WRITE, base + S5PC110_DMA_SRC_CFG);
  499. writel(S5PC110_DMA_DST_CFG_WRITE, base + S5PC110_DMA_DST_CFG);
  500. }
  501. writel(count, base + S5PC110_DMA_TRANS_SIZE);
  502. writel(direction, base + S5PC110_DMA_TRANS_DIR);
  503. writel(S5PC110_DMA_TRANS_CMD_TR, base + S5PC110_DMA_TRANS_CMD);
  504. wait_for_completion_timeout(&onenand->complete, msecs_to_jiffies(20));
  505. return 0;
  506. }
  507. static int s5pc110_read_bufferram(struct mtd_info *mtd, int area,
  508. unsigned char *buffer, int offset, size_t count)
  509. {
  510. struct onenand_chip *this = mtd->priv;
  511. void __iomem *p;
  512. void *buf = (void *) buffer;
  513. dma_addr_t dma_src, dma_dst;
  514. int err, ofs, page_dma = 0;
  515. struct device *dev = &onenand->pdev->dev;
  516. p = this->base + area;
  517. if (ONENAND_CURRENT_BUFFERRAM(this)) {
  518. if (area == ONENAND_DATARAM)
  519. p += this->writesize;
  520. else
  521. p += mtd->oobsize;
  522. }
  523. if (offset & 3 || (size_t) buf & 3 ||
  524. !onenand->dma_addr || count != mtd->writesize)
  525. goto normal;
  526. /* Handle vmalloc address */
  527. if (buf >= high_memory) {
  528. struct page *page;
  529. if (((size_t) buf & PAGE_MASK) !=
  530. ((size_t) (buf + count - 1) & PAGE_MASK))
  531. goto normal;
  532. page = vmalloc_to_page(buf);
  533. if (!page)
  534. goto normal;
  535. /* Page offset */
  536. ofs = ((size_t) buf & ~PAGE_MASK);
  537. page_dma = 1;
  538. /* DMA routine */
  539. dma_src = onenand->phys_base + (p - this->base);
  540. dma_dst = dma_map_page(dev, page, ofs, count, DMA_FROM_DEVICE);
  541. } else {
  542. /* DMA routine */
  543. dma_src = onenand->phys_base + (p - this->base);
  544. dma_dst = dma_map_single(dev, buf, count, DMA_FROM_DEVICE);
  545. }
  546. if (dma_mapping_error(dev, dma_dst)) {
  547. dev_err(dev, "Couldn't map a %zu byte buffer for DMA\n", count);
  548. goto normal;
  549. }
  550. err = s5pc110_dma_ops(dma_dst, dma_src,
  551. count, S5PC110_DMA_DIR_READ);
  552. if (page_dma)
  553. dma_unmap_page(dev, dma_dst, count, DMA_FROM_DEVICE);
  554. else
  555. dma_unmap_single(dev, dma_dst, count, DMA_FROM_DEVICE);
  556. if (!err)
  557. return 0;
  558. normal:
  559. if (count != mtd->writesize) {
  560. /* Copy the bufferram to memory to prevent unaligned access */
  561. memcpy_fromio(this->page_buf, p, mtd->writesize);
  562. memcpy(buffer, this->page_buf + offset, count);
  563. } else {
  564. memcpy_fromio(buffer, p, count);
  565. }
  566. return 0;
  567. }
  568. static int s5pc110_chip_probe(struct mtd_info *mtd)
  569. {
  570. /* Now just return 0 */
  571. return 0;
  572. }
  573. static int s3c_onenand_bbt_wait(struct mtd_info *mtd, int state)
  574. {
  575. unsigned int flags = INT_ACT | LOAD_CMP;
  576. unsigned int stat;
  577. unsigned long timeout;
  578. /* The 20 msec is enough */
  579. timeout = jiffies + msecs_to_jiffies(20);
  580. while (time_before(jiffies, timeout)) {
  581. stat = s3c_read_reg(INT_ERR_STAT_OFFSET);
  582. if (stat & flags)
  583. break;
  584. }
  585. /* To get correct interrupt status in timeout case */
  586. stat = s3c_read_reg(INT_ERR_STAT_OFFSET);
  587. s3c_write_reg(stat, INT_ERR_ACK_OFFSET);
  588. if (stat & LD_FAIL_ECC_ERR) {
  589. s3c_onenand_reset();
  590. return ONENAND_BBT_READ_ERROR;
  591. }
  592. if (stat & LOAD_CMP) {
  593. int ecc = s3c_read_reg(ECC_ERR_STAT_OFFSET);
  594. if (ecc & ONENAND_ECC_4BIT_UNCORRECTABLE) {
  595. s3c_onenand_reset();
  596. return ONENAND_BBT_READ_ERROR;
  597. }
  598. }
  599. return 0;
  600. }
  601. static void s3c_onenand_check_lock_status(struct mtd_info *mtd)
  602. {
  603. struct onenand_chip *this = mtd->priv;
  604. struct device *dev = &onenand->pdev->dev;
  605. unsigned int block, end;
  606. end = this->chipsize >> this->erase_shift;
  607. for (block = 0; block < end; block++) {
  608. unsigned int mem_addr = onenand->mem_addr(block, 0, 0);
  609. s3c_read_cmd(CMD_MAP_01(onenand, mem_addr));
  610. if (s3c_read_reg(INT_ERR_STAT_OFFSET) & LOCKED_BLK) {
  611. dev_err(dev, "block %d is write-protected!\n", block);
  612. s3c_write_reg(LOCKED_BLK, INT_ERR_ACK_OFFSET);
  613. }
  614. }
  615. }
  616. static void s3c_onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs,
  617. size_t len, int cmd)
  618. {
  619. struct onenand_chip *this = mtd->priv;
  620. int start, end, start_mem_addr, end_mem_addr;
  621. start = ofs >> this->erase_shift;
  622. start_mem_addr = onenand->mem_addr(start, 0, 0);
  623. end = start + (len >> this->erase_shift) - 1;
  624. end_mem_addr = onenand->mem_addr(end, 0, 0);
  625. if (cmd == ONENAND_CMD_LOCK) {
  626. s3c_write_cmd(ONENAND_LOCK_START, CMD_MAP_10(onenand,
  627. start_mem_addr));
  628. s3c_write_cmd(ONENAND_LOCK_END, CMD_MAP_10(onenand,
  629. end_mem_addr));
  630. } else {
  631. s3c_write_cmd(ONENAND_UNLOCK_START, CMD_MAP_10(onenand,
  632. start_mem_addr));
  633. s3c_write_cmd(ONENAND_UNLOCK_END, CMD_MAP_10(onenand,
  634. end_mem_addr));
  635. }
  636. this->wait(mtd, FL_LOCKING);
  637. }
  638. static void s3c_unlock_all(struct mtd_info *mtd)
  639. {
  640. struct onenand_chip *this = mtd->priv;
  641. loff_t ofs = 0;
  642. size_t len = this->chipsize;
  643. if (this->options & ONENAND_HAS_UNLOCK_ALL) {
  644. /* Write unlock command */
  645. this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
  646. /* No need to check return value */
  647. this->wait(mtd, FL_LOCKING);
  648. /* Workaround for all block unlock in DDP */
  649. if (!ONENAND_IS_DDP(this)) {
  650. s3c_onenand_check_lock_status(mtd);
  651. return;
  652. }
  653. /* All blocks on another chip */
  654. ofs = this->chipsize >> 1;
  655. len = this->chipsize >> 1;
  656. }
  657. s3c_onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
  658. s3c_onenand_check_lock_status(mtd);
  659. }
  660. static void s3c_onenand_setup(struct mtd_info *mtd)
  661. {
  662. struct onenand_chip *this = mtd->priv;
  663. onenand->mtd = mtd;
  664. if (onenand->type == TYPE_S3C6400) {
  665. onenand->mem_addr = s3c6400_mem_addr;
  666. onenand->cmd_map = s3c64xx_cmd_map;
  667. } else if (onenand->type == TYPE_S3C6410) {
  668. onenand->mem_addr = s3c6410_mem_addr;
  669. onenand->cmd_map = s3c64xx_cmd_map;
  670. } else if (onenand->type == TYPE_S5PC110) {
  671. /* Use generic onenand functions */
  672. this->read_bufferram = s5pc110_read_bufferram;
  673. this->chip_probe = s5pc110_chip_probe;
  674. return;
  675. } else {
  676. BUG();
  677. }
  678. this->read_word = s3c_onenand_readw;
  679. this->write_word = s3c_onenand_writew;
  680. this->wait = s3c_onenand_wait;
  681. this->bbt_wait = s3c_onenand_bbt_wait;
  682. this->unlock_all = s3c_unlock_all;
  683. this->command = s3c_onenand_command;
  684. this->read_bufferram = onenand_read_bufferram;
  685. this->write_bufferram = onenand_write_bufferram;
  686. }
  687. static int s3c_onenand_probe(struct platform_device *pdev)
  688. {
  689. struct onenand_platform_data *pdata;
  690. struct onenand_chip *this;
  691. struct mtd_info *mtd;
  692. struct resource *r;
  693. int size, err;
  694. pdata = dev_get_platdata(&pdev->dev);
  695. /* No need to check pdata. the platform data is optional */
  696. size = sizeof(struct mtd_info) + sizeof(struct onenand_chip);
  697. mtd = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
  698. if (!mtd)
  699. return -ENOMEM;
  700. onenand = devm_kzalloc(&pdev->dev, sizeof(struct s3c_onenand),
  701. GFP_KERNEL);
  702. if (!onenand)
  703. return -ENOMEM;
  704. this = (struct onenand_chip *) &mtd[1];
  705. mtd->priv = this;
  706. mtd->dev.parent = &pdev->dev;
  707. onenand->pdev = pdev;
  708. onenand->type = platform_get_device_id(pdev)->driver_data;
  709. s3c_onenand_setup(mtd);
  710. r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  711. onenand->base = devm_ioremap_resource(&pdev->dev, r);
  712. if (IS_ERR(onenand->base))
  713. return PTR_ERR(onenand->base);
  714. onenand->phys_base = r->start;
  715. /* Set onenand_chip also */
  716. this->base = onenand->base;
  717. /* Use runtime badblock check */
  718. this->options |= ONENAND_SKIP_UNLOCK_CHECK;
  719. if (onenand->type != TYPE_S5PC110) {
  720. r = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  721. onenand->ahb_addr = devm_ioremap_resource(&pdev->dev, r);
  722. if (IS_ERR(onenand->ahb_addr))
  723. return PTR_ERR(onenand->ahb_addr);
  724. /* Allocate 4KiB BufferRAM */
  725. onenand->page_buf = devm_kzalloc(&pdev->dev, SZ_4K,
  726. GFP_KERNEL);
  727. if (!onenand->page_buf)
  728. return -ENOMEM;
  729. /* Allocate 128 SpareRAM */
  730. onenand->oob_buf = devm_kzalloc(&pdev->dev, 128, GFP_KERNEL);
  731. if (!onenand->oob_buf)
  732. return -ENOMEM;
  733. /* S3C doesn't handle subpage write */
  734. mtd->subpage_sft = 0;
  735. this->subpagesize = mtd->writesize;
  736. } else { /* S5PC110 */
  737. r = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  738. onenand->dma_addr = devm_ioremap_resource(&pdev->dev, r);
  739. if (IS_ERR(onenand->dma_addr))
  740. return PTR_ERR(onenand->dma_addr);
  741. s5pc110_dma_ops = s5pc110_dma_poll;
  742. /* Interrupt support */
  743. r = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
  744. if (r) {
  745. init_completion(&onenand->complete);
  746. s5pc110_dma_ops = s5pc110_dma_irq;
  747. err = devm_request_irq(&pdev->dev, r->start,
  748. s5pc110_onenand_irq,
  749. IRQF_SHARED, "onenand",
  750. &onenand);
  751. if (err) {
  752. dev_err(&pdev->dev, "failed to get irq\n");
  753. return err;
  754. }
  755. }
  756. }
  757. err = onenand_scan(mtd, 1);
  758. if (err)
  759. return err;
  760. if (onenand->type != TYPE_S5PC110) {
  761. /* S3C doesn't handle subpage write */
  762. mtd->subpage_sft = 0;
  763. this->subpagesize = mtd->writesize;
  764. }
  765. if (s3c_read_reg(MEM_CFG_OFFSET) & ONENAND_SYS_CFG1_SYNC_READ)
  766. dev_info(&onenand->pdev->dev, "OneNAND Sync. Burst Read enabled\n");
  767. err = mtd_device_register(mtd, pdata ? pdata->parts : NULL,
  768. pdata ? pdata->nr_parts : 0);
  769. if (err) {
  770. dev_err(&pdev->dev, "failed to parse partitions and register the MTD device\n");
  771. onenand_release(mtd);
  772. return err;
  773. }
  774. platform_set_drvdata(pdev, mtd);
  775. return 0;
  776. }
  777. static int s3c_onenand_remove(struct platform_device *pdev)
  778. {
  779. struct mtd_info *mtd = platform_get_drvdata(pdev);
  780. onenand_release(mtd);
  781. return 0;
  782. }
  783. static int s3c_pm_ops_suspend(struct device *dev)
  784. {
  785. struct mtd_info *mtd = dev_get_drvdata(dev);
  786. struct onenand_chip *this = mtd->priv;
  787. this->wait(mtd, FL_PM_SUSPENDED);
  788. return 0;
  789. }
  790. static int s3c_pm_ops_resume(struct device *dev)
  791. {
  792. struct mtd_info *mtd = dev_get_drvdata(dev);
  793. struct onenand_chip *this = mtd->priv;
  794. this->unlock_all(mtd);
  795. return 0;
  796. }
  797. static const struct dev_pm_ops s3c_pm_ops = {
  798. .suspend = s3c_pm_ops_suspend,
  799. .resume = s3c_pm_ops_resume,
  800. };
  801. static const struct platform_device_id s3c_onenand_driver_ids[] = {
  802. {
  803. .name = "s3c6400-onenand",
  804. .driver_data = TYPE_S3C6400,
  805. }, {
  806. .name = "s3c6410-onenand",
  807. .driver_data = TYPE_S3C6410,
  808. }, {
  809. .name = "s5pc110-onenand",
  810. .driver_data = TYPE_S5PC110,
  811. }, { },
  812. };
  813. MODULE_DEVICE_TABLE(platform, s3c_onenand_driver_ids);
  814. static struct platform_driver s3c_onenand_driver = {
  815. .driver = {
  816. .name = "samsung-onenand",
  817. .pm = &s3c_pm_ops,
  818. },
  819. .id_table = s3c_onenand_driver_ids,
  820. .probe = s3c_onenand_probe,
  821. .remove = s3c_onenand_remove,
  822. };
  823. module_platform_driver(s3c_onenand_driver);
  824. MODULE_LICENSE("GPL");
  825. MODULE_AUTHOR("Kyungmin Park <[email protected]>");
  826. MODULE_DESCRIPTION("Samsung OneNAND controller support");