123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660 |
- // SPDX-License-Identifier: GPL-2.0-or-later
- /*
- * This file contains an ECC algorithm that detects and corrects 1 bit
- * errors in a 256 byte block of data.
- *
- * Copyright © 2008 Koninklijke Philips Electronics NV.
- * Author: Frans Meulenbroeks
- *
- * Completely replaces the previous ECC implementation which was written by:
- * Steven J. Hill ([email protected])
- * Thomas Gleixner ([email protected])
- *
- * Information on how this algorithm works and how it was developed
- * can be found in Documentation/driver-api/mtd/nand_ecc.rst
- */
- #include <linux/types.h>
- #include <linux/kernel.h>
- #include <linux/module.h>
- #include <linux/mtd/nand.h>
- #include <linux/mtd/nand-ecc-sw-hamming.h>
- #include <linux/slab.h>
- #include <asm/byteorder.h>
- /*
- * invparity is a 256 byte table that contains the odd parity
- * for each byte. So if the number of bits in a byte is even,
- * the array element is 1, and when the number of bits is odd
- * the array eleemnt is 0.
- */
- static const char invparity[256] = {
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
- };
- /*
- * bitsperbyte contains the number of bits per byte
- * this is only used for testing and repairing parity
- * (a precalculated value slightly improves performance)
- */
- static const char bitsperbyte[256] = {
- 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,
- 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
- 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
- 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
- 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
- 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
- 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
- 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
- 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
- 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
- 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
- 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
- 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
- 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
- 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
- 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8,
- };
- /*
- * addressbits is a lookup table to filter out the bits from the xor-ed
- * ECC data that identify the faulty location.
- * this is only used for repairing parity
- * see the comments in nand_ecc_sw_hamming_correct for more details
- */
- static const char addressbits[256] = {
- 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
- 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
- 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
- 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
- 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
- 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
- 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
- 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
- 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
- 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
- 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
- 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
- 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
- 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
- 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
- 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
- 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
- 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
- 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
- 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
- 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
- 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f,
- 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
- 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f,
- 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
- 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
- 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
- 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
- 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
- 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f,
- 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
- 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f
- };
- int ecc_sw_hamming_calculate(const unsigned char *buf, unsigned int step_size,
- unsigned char *code, bool sm_order)
- {
- const u32 *bp = (uint32_t *)buf;
- const u32 eccsize_mult = (step_size == 256) ? 1 : 2;
- /* current value in buffer */
- u32 cur;
- /* rp0..rp17 are the various accumulated parities (per byte) */
- u32 rp0, rp1, rp2, rp3, rp4, rp5, rp6, rp7, rp8, rp9, rp10, rp11, rp12,
- rp13, rp14, rp15, rp16, rp17;
- /* Cumulative parity for all data */
- u32 par;
- /* Cumulative parity at the end of the loop (rp12, rp14, rp16) */
- u32 tmppar;
- int i;
- par = 0;
- rp4 = 0;
- rp6 = 0;
- rp8 = 0;
- rp10 = 0;
- rp12 = 0;
- rp14 = 0;
- rp16 = 0;
- rp17 = 0;
- /*
- * The loop is unrolled a number of times;
- * This avoids if statements to decide on which rp value to update
- * Also we process the data by longwords.
- * Note: passing unaligned data might give a performance penalty.
- * It is assumed that the buffers are aligned.
- * tmppar is the cumulative sum of this iteration.
- * needed for calculating rp12, rp14, rp16 and par
- * also used as a performance improvement for rp6, rp8 and rp10
- */
- for (i = 0; i < eccsize_mult << 2; i++) {
- cur = *bp++;
- tmppar = cur;
- rp4 ^= cur;
- cur = *bp++;
- tmppar ^= cur;
- rp6 ^= tmppar;
- cur = *bp++;
- tmppar ^= cur;
- rp4 ^= cur;
- cur = *bp++;
- tmppar ^= cur;
- rp8 ^= tmppar;
- cur = *bp++;
- tmppar ^= cur;
- rp4 ^= cur;
- rp6 ^= cur;
- cur = *bp++;
- tmppar ^= cur;
- rp6 ^= cur;
- cur = *bp++;
- tmppar ^= cur;
- rp4 ^= cur;
- cur = *bp++;
- tmppar ^= cur;
- rp10 ^= tmppar;
- cur = *bp++;
- tmppar ^= cur;
- rp4 ^= cur;
- rp6 ^= cur;
- rp8 ^= cur;
- cur = *bp++;
- tmppar ^= cur;
- rp6 ^= cur;
- rp8 ^= cur;
- cur = *bp++;
- tmppar ^= cur;
- rp4 ^= cur;
- rp8 ^= cur;
- cur = *bp++;
- tmppar ^= cur;
- rp8 ^= cur;
- cur = *bp++;
- tmppar ^= cur;
- rp4 ^= cur;
- rp6 ^= cur;
- cur = *bp++;
- tmppar ^= cur;
- rp6 ^= cur;
- cur = *bp++;
- tmppar ^= cur;
- rp4 ^= cur;
- cur = *bp++;
- tmppar ^= cur;
- par ^= tmppar;
- if ((i & 0x1) == 0)
- rp12 ^= tmppar;
- if ((i & 0x2) == 0)
- rp14 ^= tmppar;
- if (eccsize_mult == 2 && (i & 0x4) == 0)
- rp16 ^= tmppar;
- }
- /*
- * handle the fact that we use longword operations
- * we'll bring rp4..rp14..rp16 back to single byte entities by
- * shifting and xoring first fold the upper and lower 16 bits,
- * then the upper and lower 8 bits.
- */
- rp4 ^= (rp4 >> 16);
- rp4 ^= (rp4 >> 8);
- rp4 &= 0xff;
- rp6 ^= (rp6 >> 16);
- rp6 ^= (rp6 >> 8);
- rp6 &= 0xff;
- rp8 ^= (rp8 >> 16);
- rp8 ^= (rp8 >> 8);
- rp8 &= 0xff;
- rp10 ^= (rp10 >> 16);
- rp10 ^= (rp10 >> 8);
- rp10 &= 0xff;
- rp12 ^= (rp12 >> 16);
- rp12 ^= (rp12 >> 8);
- rp12 &= 0xff;
- rp14 ^= (rp14 >> 16);
- rp14 ^= (rp14 >> 8);
- rp14 &= 0xff;
- if (eccsize_mult == 2) {
- rp16 ^= (rp16 >> 16);
- rp16 ^= (rp16 >> 8);
- rp16 &= 0xff;
- }
- /*
- * we also need to calculate the row parity for rp0..rp3
- * This is present in par, because par is now
- * rp3 rp3 rp2 rp2 in little endian and
- * rp2 rp2 rp3 rp3 in big endian
- * as well as
- * rp1 rp0 rp1 rp0 in little endian and
- * rp0 rp1 rp0 rp1 in big endian
- * First calculate rp2 and rp3
- */
- #ifdef __BIG_ENDIAN
- rp2 = (par >> 16);
- rp2 ^= (rp2 >> 8);
- rp2 &= 0xff;
- rp3 = par & 0xffff;
- rp3 ^= (rp3 >> 8);
- rp3 &= 0xff;
- #else
- rp3 = (par >> 16);
- rp3 ^= (rp3 >> 8);
- rp3 &= 0xff;
- rp2 = par & 0xffff;
- rp2 ^= (rp2 >> 8);
- rp2 &= 0xff;
- #endif
- /* reduce par to 16 bits then calculate rp1 and rp0 */
- par ^= (par >> 16);
- #ifdef __BIG_ENDIAN
- rp0 = (par >> 8) & 0xff;
- rp1 = (par & 0xff);
- #else
- rp1 = (par >> 8) & 0xff;
- rp0 = (par & 0xff);
- #endif
- /* finally reduce par to 8 bits */
- par ^= (par >> 8);
- par &= 0xff;
- /*
- * and calculate rp5..rp15..rp17
- * note that par = rp4 ^ rp5 and due to the commutative property
- * of the ^ operator we can say:
- * rp5 = (par ^ rp4);
- * The & 0xff seems superfluous, but benchmarking learned that
- * leaving it out gives slightly worse results. No idea why, probably
- * it has to do with the way the pipeline in pentium is organized.
- */
- rp5 = (par ^ rp4) & 0xff;
- rp7 = (par ^ rp6) & 0xff;
- rp9 = (par ^ rp8) & 0xff;
- rp11 = (par ^ rp10) & 0xff;
- rp13 = (par ^ rp12) & 0xff;
- rp15 = (par ^ rp14) & 0xff;
- if (eccsize_mult == 2)
- rp17 = (par ^ rp16) & 0xff;
- /*
- * Finally calculate the ECC bits.
- * Again here it might seem that there are performance optimisations
- * possible, but benchmarks showed that on the system this is developed
- * the code below is the fastest
- */
- if (sm_order) {
- code[0] = (invparity[rp7] << 7) | (invparity[rp6] << 6) |
- (invparity[rp5] << 5) | (invparity[rp4] << 4) |
- (invparity[rp3] << 3) | (invparity[rp2] << 2) |
- (invparity[rp1] << 1) | (invparity[rp0]);
- code[1] = (invparity[rp15] << 7) | (invparity[rp14] << 6) |
- (invparity[rp13] << 5) | (invparity[rp12] << 4) |
- (invparity[rp11] << 3) | (invparity[rp10] << 2) |
- (invparity[rp9] << 1) | (invparity[rp8]);
- } else {
- code[1] = (invparity[rp7] << 7) | (invparity[rp6] << 6) |
- (invparity[rp5] << 5) | (invparity[rp4] << 4) |
- (invparity[rp3] << 3) | (invparity[rp2] << 2) |
- (invparity[rp1] << 1) | (invparity[rp0]);
- code[0] = (invparity[rp15] << 7) | (invparity[rp14] << 6) |
- (invparity[rp13] << 5) | (invparity[rp12] << 4) |
- (invparity[rp11] << 3) | (invparity[rp10] << 2) |
- (invparity[rp9] << 1) | (invparity[rp8]);
- }
- if (eccsize_mult == 1)
- code[2] =
- (invparity[par & 0xf0] << 7) |
- (invparity[par & 0x0f] << 6) |
- (invparity[par & 0xcc] << 5) |
- (invparity[par & 0x33] << 4) |
- (invparity[par & 0xaa] << 3) |
- (invparity[par & 0x55] << 2) |
- 3;
- else
- code[2] =
- (invparity[par & 0xf0] << 7) |
- (invparity[par & 0x0f] << 6) |
- (invparity[par & 0xcc] << 5) |
- (invparity[par & 0x33] << 4) |
- (invparity[par & 0xaa] << 3) |
- (invparity[par & 0x55] << 2) |
- (invparity[rp17] << 1) |
- (invparity[rp16] << 0);
- return 0;
- }
- EXPORT_SYMBOL(ecc_sw_hamming_calculate);
- /**
- * nand_ecc_sw_hamming_calculate - Calculate 3-byte ECC for 256/512-byte block
- * @nand: NAND device
- * @buf: Input buffer with raw data
- * @code: Output buffer with ECC
- */
- int nand_ecc_sw_hamming_calculate(struct nand_device *nand,
- const unsigned char *buf, unsigned char *code)
- {
- struct nand_ecc_sw_hamming_conf *engine_conf = nand->ecc.ctx.priv;
- unsigned int step_size = nand->ecc.ctx.conf.step_size;
- bool sm_order = engine_conf ? engine_conf->sm_order : false;
- return ecc_sw_hamming_calculate(buf, step_size, code, sm_order);
- }
- EXPORT_SYMBOL(nand_ecc_sw_hamming_calculate);
- int ecc_sw_hamming_correct(unsigned char *buf, unsigned char *read_ecc,
- unsigned char *calc_ecc, unsigned int step_size,
- bool sm_order)
- {
- const u32 eccsize_mult = step_size >> 8;
- unsigned char b0, b1, b2, bit_addr;
- unsigned int byte_addr;
- /*
- * b0 to b2 indicate which bit is faulty (if any)
- * we might need the xor result more than once,
- * so keep them in a local var
- */
- if (sm_order) {
- b0 = read_ecc[0] ^ calc_ecc[0];
- b1 = read_ecc[1] ^ calc_ecc[1];
- } else {
- b0 = read_ecc[1] ^ calc_ecc[1];
- b1 = read_ecc[0] ^ calc_ecc[0];
- }
- b2 = read_ecc[2] ^ calc_ecc[2];
- /* check if there are any bitfaults */
- /* repeated if statements are slightly more efficient than switch ... */
- /* ordered in order of likelihood */
- if ((b0 | b1 | b2) == 0)
- return 0; /* no error */
- if ((((b0 ^ (b0 >> 1)) & 0x55) == 0x55) &&
- (((b1 ^ (b1 >> 1)) & 0x55) == 0x55) &&
- ((eccsize_mult == 1 && ((b2 ^ (b2 >> 1)) & 0x54) == 0x54) ||
- (eccsize_mult == 2 && ((b2 ^ (b2 >> 1)) & 0x55) == 0x55))) {
- /* single bit error */
- /*
- * rp17/rp15/13/11/9/7/5/3/1 indicate which byte is the faulty
- * byte, cp 5/3/1 indicate the faulty bit.
- * A lookup table (called addressbits) is used to filter
- * the bits from the byte they are in.
- * A marginal optimisation is possible by having three
- * different lookup tables.
- * One as we have now (for b0), one for b2
- * (that would avoid the >> 1), and one for b1 (with all values
- * << 4). However it was felt that introducing two more tables
- * hardly justify the gain.
- *
- * The b2 shift is there to get rid of the lowest two bits.
- * We could also do addressbits[b2] >> 1 but for the
- * performance it does not make any difference
- */
- if (eccsize_mult == 1)
- byte_addr = (addressbits[b1] << 4) + addressbits[b0];
- else
- byte_addr = (addressbits[b2 & 0x3] << 8) +
- (addressbits[b1] << 4) + addressbits[b0];
- bit_addr = addressbits[b2 >> 2];
- /* flip the bit */
- buf[byte_addr] ^= (1 << bit_addr);
- return 1;
- }
- /* count nr of bits; use table lookup, faster than calculating it */
- if ((bitsperbyte[b0] + bitsperbyte[b1] + bitsperbyte[b2]) == 1)
- return 1; /* error in ECC data; no action needed */
- pr_err("%s: uncorrectable ECC error\n", __func__);
- return -EBADMSG;
- }
- EXPORT_SYMBOL(ecc_sw_hamming_correct);
- /**
- * nand_ecc_sw_hamming_correct - Detect and correct bit error(s)
- * @nand: NAND device
- * @buf: Raw data read from the chip
- * @read_ecc: ECC bytes read from the chip
- * @calc_ecc: ECC calculated from the raw data
- *
- * Detect and correct up to 1 bit error per 256/512-byte block.
- */
- int nand_ecc_sw_hamming_correct(struct nand_device *nand, unsigned char *buf,
- unsigned char *read_ecc,
- unsigned char *calc_ecc)
- {
- struct nand_ecc_sw_hamming_conf *engine_conf = nand->ecc.ctx.priv;
- unsigned int step_size = nand->ecc.ctx.conf.step_size;
- bool sm_order = engine_conf ? engine_conf->sm_order : false;
- return ecc_sw_hamming_correct(buf, read_ecc, calc_ecc, step_size,
- sm_order);
- }
- EXPORT_SYMBOL(nand_ecc_sw_hamming_correct);
- int nand_ecc_sw_hamming_init_ctx(struct nand_device *nand)
- {
- struct nand_ecc_props *conf = &nand->ecc.ctx.conf;
- struct nand_ecc_sw_hamming_conf *engine_conf;
- struct mtd_info *mtd = nanddev_to_mtd(nand);
- int ret;
- if (!mtd->ooblayout) {
- switch (mtd->oobsize) {
- case 8:
- case 16:
- mtd_set_ooblayout(mtd, nand_get_small_page_ooblayout());
- break;
- case 64:
- case 128:
- mtd_set_ooblayout(mtd,
- nand_get_large_page_hamming_ooblayout());
- break;
- default:
- return -ENOTSUPP;
- }
- }
- conf->engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
- conf->algo = NAND_ECC_ALGO_HAMMING;
- conf->step_size = nand->ecc.user_conf.step_size;
- conf->strength = 1;
- /* Use the strongest configuration by default */
- if (conf->step_size != 256 && conf->step_size != 512)
- conf->step_size = 256;
- engine_conf = kzalloc(sizeof(*engine_conf), GFP_KERNEL);
- if (!engine_conf)
- return -ENOMEM;
- ret = nand_ecc_init_req_tweaking(&engine_conf->req_ctx, nand);
- if (ret)
- goto free_engine_conf;
- engine_conf->code_size = 3;
- engine_conf->calc_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
- engine_conf->code_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
- if (!engine_conf->calc_buf || !engine_conf->code_buf) {
- ret = -ENOMEM;
- goto free_bufs;
- }
- nand->ecc.ctx.priv = engine_conf;
- nand->ecc.ctx.nsteps = mtd->writesize / conf->step_size;
- nand->ecc.ctx.total = nand->ecc.ctx.nsteps * engine_conf->code_size;
- return 0;
- free_bufs:
- nand_ecc_cleanup_req_tweaking(&engine_conf->req_ctx);
- kfree(engine_conf->calc_buf);
- kfree(engine_conf->code_buf);
- free_engine_conf:
- kfree(engine_conf);
- return ret;
- }
- EXPORT_SYMBOL(nand_ecc_sw_hamming_init_ctx);
- void nand_ecc_sw_hamming_cleanup_ctx(struct nand_device *nand)
- {
- struct nand_ecc_sw_hamming_conf *engine_conf = nand->ecc.ctx.priv;
- if (engine_conf) {
- nand_ecc_cleanup_req_tweaking(&engine_conf->req_ctx);
- kfree(engine_conf->calc_buf);
- kfree(engine_conf->code_buf);
- kfree(engine_conf);
- }
- }
- EXPORT_SYMBOL(nand_ecc_sw_hamming_cleanup_ctx);
- static int nand_ecc_sw_hamming_prepare_io_req(struct nand_device *nand,
- struct nand_page_io_req *req)
- {
- struct nand_ecc_sw_hamming_conf *engine_conf = nand->ecc.ctx.priv;
- struct mtd_info *mtd = nanddev_to_mtd(nand);
- int eccsize = nand->ecc.ctx.conf.step_size;
- int eccbytes = engine_conf->code_size;
- int eccsteps = nand->ecc.ctx.nsteps;
- int total = nand->ecc.ctx.total;
- u8 *ecccalc = engine_conf->calc_buf;
- const u8 *data;
- int i;
- /* Nothing to do for a raw operation */
- if (req->mode == MTD_OPS_RAW)
- return 0;
- /* This engine does not provide BBM/free OOB bytes protection */
- if (!req->datalen)
- return 0;
- nand_ecc_tweak_req(&engine_conf->req_ctx, req);
- /* No more preparation for page read */
- if (req->type == NAND_PAGE_READ)
- return 0;
- /* Preparation for page write: derive the ECC bytes and place them */
- for (i = 0, data = req->databuf.out;
- eccsteps;
- eccsteps--, i += eccbytes, data += eccsize)
- nand_ecc_sw_hamming_calculate(nand, data, &ecccalc[i]);
- return mtd_ooblayout_set_eccbytes(mtd, ecccalc, (void *)req->oobbuf.out,
- 0, total);
- }
- static int nand_ecc_sw_hamming_finish_io_req(struct nand_device *nand,
- struct nand_page_io_req *req)
- {
- struct nand_ecc_sw_hamming_conf *engine_conf = nand->ecc.ctx.priv;
- struct mtd_info *mtd = nanddev_to_mtd(nand);
- int eccsize = nand->ecc.ctx.conf.step_size;
- int total = nand->ecc.ctx.total;
- int eccbytes = engine_conf->code_size;
- int eccsteps = nand->ecc.ctx.nsteps;
- u8 *ecccalc = engine_conf->calc_buf;
- u8 *ecccode = engine_conf->code_buf;
- unsigned int max_bitflips = 0;
- u8 *data = req->databuf.in;
- int i, ret;
- /* Nothing to do for a raw operation */
- if (req->mode == MTD_OPS_RAW)
- return 0;
- /* This engine does not provide BBM/free OOB bytes protection */
- if (!req->datalen)
- return 0;
- /* No more preparation for page write */
- if (req->type == NAND_PAGE_WRITE) {
- nand_ecc_restore_req(&engine_conf->req_ctx, req);
- return 0;
- }
- /* Finish a page read: retrieve the (raw) ECC bytes*/
- ret = mtd_ooblayout_get_eccbytes(mtd, ecccode, req->oobbuf.in, 0,
- total);
- if (ret)
- return ret;
- /* Calculate the ECC bytes */
- for (i = 0; eccsteps; eccsteps--, i += eccbytes, data += eccsize)
- nand_ecc_sw_hamming_calculate(nand, data, &ecccalc[i]);
- /* Finish a page read: compare and correct */
- for (eccsteps = nand->ecc.ctx.nsteps, i = 0, data = req->databuf.in;
- eccsteps;
- eccsteps--, i += eccbytes, data += eccsize) {
- int stat = nand_ecc_sw_hamming_correct(nand, data,
- &ecccode[i],
- &ecccalc[i]);
- if (stat < 0) {
- mtd->ecc_stats.failed++;
- } else {
- mtd->ecc_stats.corrected += stat;
- max_bitflips = max_t(unsigned int, max_bitflips, stat);
- }
- }
- nand_ecc_restore_req(&engine_conf->req_ctx, req);
- return max_bitflips;
- }
- static struct nand_ecc_engine_ops nand_ecc_sw_hamming_engine_ops = {
- .init_ctx = nand_ecc_sw_hamming_init_ctx,
- .cleanup_ctx = nand_ecc_sw_hamming_cleanup_ctx,
- .prepare_io_req = nand_ecc_sw_hamming_prepare_io_req,
- .finish_io_req = nand_ecc_sw_hamming_finish_io_req,
- };
- static struct nand_ecc_engine nand_ecc_sw_hamming_engine = {
- .ops = &nand_ecc_sw_hamming_engine_ops,
- };
- struct nand_ecc_engine *nand_ecc_sw_hamming_get_engine(void)
- {
- return &nand_ecc_sw_hamming_engine;
- }
- EXPORT_SYMBOL(nand_ecc_sw_hamming_get_engine);
- MODULE_LICENSE("GPL");
- MODULE_AUTHOR("Frans Meulenbroeks <[email protected]>");
- MODULE_DESCRIPTION("NAND software Hamming ECC support");
|