ecc-mtk.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599
  1. // SPDX-License-Identifier: GPL-2.0 OR MIT
  2. /*
  3. * MTK ECC controller driver.
  4. * Copyright (C) 2016 MediaTek Inc.
  5. * Authors: Xiaolei Li <[email protected]>
  6. * Jorge Ramirez-Ortiz <[email protected]>
  7. */
  8. #include <linux/platform_device.h>
  9. #include <linux/dma-mapping.h>
  10. #include <linux/interrupt.h>
  11. #include <linux/clk.h>
  12. #include <linux/module.h>
  13. #include <linux/iopoll.h>
  14. #include <linux/of.h>
  15. #include <linux/of_platform.h>
  16. #include <linux/mutex.h>
  17. #include <linux/mtd/nand-ecc-mtk.h>
  18. #define ECC_IDLE_MASK BIT(0)
  19. #define ECC_IRQ_EN BIT(0)
  20. #define ECC_PG_IRQ_SEL BIT(1)
  21. #define ECC_OP_ENABLE (1)
  22. #define ECC_OP_DISABLE (0)
  23. #define ECC_ENCCON (0x00)
  24. #define ECC_ENCCNFG (0x04)
  25. #define ECC_MS_SHIFT (16)
  26. #define ECC_ENCDIADDR (0x08)
  27. #define ECC_ENCIDLE (0x0C)
  28. #define ECC_DECCON (0x100)
  29. #define ECC_DECCNFG (0x104)
  30. #define DEC_EMPTY_EN BIT(31)
  31. #define DEC_CNFG_CORRECT (0x3 << 12)
  32. #define ECC_DECIDLE (0x10C)
  33. #define ECC_DECENUM0 (0x114)
  34. #define ECC_TIMEOUT (500000)
  35. #define ECC_IDLE_REG(op) ((op) == ECC_ENCODE ? ECC_ENCIDLE : ECC_DECIDLE)
  36. #define ECC_CTL_REG(op) ((op) == ECC_ENCODE ? ECC_ENCCON : ECC_DECCON)
  37. struct mtk_ecc_caps {
  38. u32 err_mask;
  39. u32 err_shift;
  40. const u8 *ecc_strength;
  41. const u32 *ecc_regs;
  42. u8 num_ecc_strength;
  43. u8 ecc_mode_shift;
  44. u32 parity_bits;
  45. int pg_irq_sel;
  46. };
  47. struct mtk_ecc {
  48. struct device *dev;
  49. const struct mtk_ecc_caps *caps;
  50. void __iomem *regs;
  51. struct clk *clk;
  52. struct completion done;
  53. struct mutex lock;
  54. u32 sectors;
  55. u8 *eccdata;
  56. };
  57. /* ecc strength that each IP supports */
  58. static const u8 ecc_strength_mt2701[] = {
  59. 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 28, 32, 36,
  60. 40, 44, 48, 52, 56, 60
  61. };
  62. static const u8 ecc_strength_mt2712[] = {
  63. 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 28, 32, 36,
  64. 40, 44, 48, 52, 56, 60, 68, 72, 80
  65. };
  66. static const u8 ecc_strength_mt7622[] = {
  67. 4, 6, 8, 10, 12
  68. };
  69. enum mtk_ecc_regs {
  70. ECC_ENCPAR00,
  71. ECC_ENCIRQ_EN,
  72. ECC_ENCIRQ_STA,
  73. ECC_DECDONE,
  74. ECC_DECIRQ_EN,
  75. ECC_DECIRQ_STA,
  76. };
  77. static int mt2701_ecc_regs[] = {
  78. [ECC_ENCPAR00] = 0x10,
  79. [ECC_ENCIRQ_EN] = 0x80,
  80. [ECC_ENCIRQ_STA] = 0x84,
  81. [ECC_DECDONE] = 0x124,
  82. [ECC_DECIRQ_EN] = 0x200,
  83. [ECC_DECIRQ_STA] = 0x204,
  84. };
  85. static int mt2712_ecc_regs[] = {
  86. [ECC_ENCPAR00] = 0x300,
  87. [ECC_ENCIRQ_EN] = 0x80,
  88. [ECC_ENCIRQ_STA] = 0x84,
  89. [ECC_DECDONE] = 0x124,
  90. [ECC_DECIRQ_EN] = 0x200,
  91. [ECC_DECIRQ_STA] = 0x204,
  92. };
  93. static int mt7622_ecc_regs[] = {
  94. [ECC_ENCPAR00] = 0x10,
  95. [ECC_ENCIRQ_EN] = 0x30,
  96. [ECC_ENCIRQ_STA] = 0x34,
  97. [ECC_DECDONE] = 0x11c,
  98. [ECC_DECIRQ_EN] = 0x140,
  99. [ECC_DECIRQ_STA] = 0x144,
  100. };
  101. static inline void mtk_ecc_wait_idle(struct mtk_ecc *ecc,
  102. enum mtk_ecc_operation op)
  103. {
  104. struct device *dev = ecc->dev;
  105. u32 val;
  106. int ret;
  107. ret = readl_poll_timeout_atomic(ecc->regs + ECC_IDLE_REG(op), val,
  108. val & ECC_IDLE_MASK,
  109. 10, ECC_TIMEOUT);
  110. if (ret)
  111. dev_warn(dev, "%s NOT idle\n",
  112. op == ECC_ENCODE ? "encoder" : "decoder");
  113. }
  114. static irqreturn_t mtk_ecc_irq(int irq, void *id)
  115. {
  116. struct mtk_ecc *ecc = id;
  117. u32 dec, enc;
  118. dec = readw(ecc->regs + ecc->caps->ecc_regs[ECC_DECIRQ_STA])
  119. & ECC_IRQ_EN;
  120. if (dec) {
  121. dec = readw(ecc->regs + ecc->caps->ecc_regs[ECC_DECDONE]);
  122. if (dec & ecc->sectors) {
  123. /*
  124. * Clear decode IRQ status once again to ensure that
  125. * there will be no extra IRQ.
  126. */
  127. readw(ecc->regs + ecc->caps->ecc_regs[ECC_DECIRQ_STA]);
  128. ecc->sectors = 0;
  129. complete(&ecc->done);
  130. } else {
  131. return IRQ_HANDLED;
  132. }
  133. } else {
  134. enc = readl(ecc->regs + ecc->caps->ecc_regs[ECC_ENCIRQ_STA])
  135. & ECC_IRQ_EN;
  136. if (enc)
  137. complete(&ecc->done);
  138. else
  139. return IRQ_NONE;
  140. }
  141. return IRQ_HANDLED;
  142. }
  143. static int mtk_ecc_config(struct mtk_ecc *ecc, struct mtk_ecc_config *config)
  144. {
  145. u32 ecc_bit, dec_sz, enc_sz;
  146. u32 reg, i;
  147. for (i = 0; i < ecc->caps->num_ecc_strength; i++) {
  148. if (ecc->caps->ecc_strength[i] == config->strength)
  149. break;
  150. }
  151. if (i == ecc->caps->num_ecc_strength) {
  152. dev_err(ecc->dev, "invalid ecc strength %d\n",
  153. config->strength);
  154. return -EINVAL;
  155. }
  156. ecc_bit = i;
  157. if (config->op == ECC_ENCODE) {
  158. /* configure ECC encoder (in bits) */
  159. enc_sz = config->len << 3;
  160. reg = ecc_bit | (config->mode << ecc->caps->ecc_mode_shift);
  161. reg |= (enc_sz << ECC_MS_SHIFT);
  162. writel(reg, ecc->regs + ECC_ENCCNFG);
  163. if (config->mode != ECC_NFI_MODE)
  164. writel(lower_32_bits(config->addr),
  165. ecc->regs + ECC_ENCDIADDR);
  166. } else {
  167. /* configure ECC decoder (in bits) */
  168. dec_sz = (config->len << 3) +
  169. config->strength * ecc->caps->parity_bits;
  170. reg = ecc_bit | (config->mode << ecc->caps->ecc_mode_shift);
  171. reg |= (dec_sz << ECC_MS_SHIFT) | DEC_CNFG_CORRECT;
  172. reg |= DEC_EMPTY_EN;
  173. writel(reg, ecc->regs + ECC_DECCNFG);
  174. if (config->sectors)
  175. ecc->sectors = 1 << (config->sectors - 1);
  176. }
  177. return 0;
  178. }
  179. void mtk_ecc_get_stats(struct mtk_ecc *ecc, struct mtk_ecc_stats *stats,
  180. int sectors)
  181. {
  182. u32 offset, i, err;
  183. u32 bitflips = 0;
  184. stats->corrected = 0;
  185. stats->failed = 0;
  186. for (i = 0; i < sectors; i++) {
  187. offset = (i >> 2) << 2;
  188. err = readl(ecc->regs + ECC_DECENUM0 + offset);
  189. err = err >> ((i % 4) * ecc->caps->err_shift);
  190. err &= ecc->caps->err_mask;
  191. if (err == ecc->caps->err_mask) {
  192. /* uncorrectable errors */
  193. stats->failed++;
  194. continue;
  195. }
  196. stats->corrected += err;
  197. bitflips = max_t(u32, bitflips, err);
  198. }
  199. stats->bitflips = bitflips;
  200. }
  201. EXPORT_SYMBOL(mtk_ecc_get_stats);
  202. void mtk_ecc_release(struct mtk_ecc *ecc)
  203. {
  204. clk_disable_unprepare(ecc->clk);
  205. put_device(ecc->dev);
  206. }
  207. EXPORT_SYMBOL(mtk_ecc_release);
  208. static void mtk_ecc_hw_init(struct mtk_ecc *ecc)
  209. {
  210. mtk_ecc_wait_idle(ecc, ECC_ENCODE);
  211. writew(ECC_OP_DISABLE, ecc->regs + ECC_ENCCON);
  212. mtk_ecc_wait_idle(ecc, ECC_DECODE);
  213. writel(ECC_OP_DISABLE, ecc->regs + ECC_DECCON);
  214. }
  215. static struct mtk_ecc *mtk_ecc_get(struct device_node *np)
  216. {
  217. struct platform_device *pdev;
  218. struct mtk_ecc *ecc;
  219. pdev = of_find_device_by_node(np);
  220. if (!pdev)
  221. return ERR_PTR(-EPROBE_DEFER);
  222. ecc = platform_get_drvdata(pdev);
  223. if (!ecc) {
  224. put_device(&pdev->dev);
  225. return ERR_PTR(-EPROBE_DEFER);
  226. }
  227. clk_prepare_enable(ecc->clk);
  228. mtk_ecc_hw_init(ecc);
  229. return ecc;
  230. }
  231. struct mtk_ecc *of_mtk_ecc_get(struct device_node *of_node)
  232. {
  233. struct mtk_ecc *ecc = NULL;
  234. struct device_node *np;
  235. np = of_parse_phandle(of_node, "nand-ecc-engine", 0);
  236. /* for backward compatibility */
  237. if (!np)
  238. np = of_parse_phandle(of_node, "ecc-engine", 0);
  239. if (np) {
  240. ecc = mtk_ecc_get(np);
  241. of_node_put(np);
  242. }
  243. return ecc;
  244. }
  245. EXPORT_SYMBOL(of_mtk_ecc_get);
  246. int mtk_ecc_enable(struct mtk_ecc *ecc, struct mtk_ecc_config *config)
  247. {
  248. enum mtk_ecc_operation op = config->op;
  249. u16 reg_val;
  250. int ret;
  251. ret = mutex_lock_interruptible(&ecc->lock);
  252. if (ret) {
  253. dev_err(ecc->dev, "interrupted when attempting to lock\n");
  254. return ret;
  255. }
  256. mtk_ecc_wait_idle(ecc, op);
  257. ret = mtk_ecc_config(ecc, config);
  258. if (ret) {
  259. mutex_unlock(&ecc->lock);
  260. return ret;
  261. }
  262. if (config->mode != ECC_NFI_MODE || op != ECC_ENCODE) {
  263. init_completion(&ecc->done);
  264. reg_val = ECC_IRQ_EN;
  265. /*
  266. * For ECC_NFI_MODE, if ecc->caps->pg_irq_sel is 1, then it
  267. * means this chip can only generate one ecc irq during page
  268. * read / write. If is 0, generate one ecc irq each ecc step.
  269. */
  270. if (ecc->caps->pg_irq_sel && config->mode == ECC_NFI_MODE)
  271. reg_val |= ECC_PG_IRQ_SEL;
  272. if (op == ECC_ENCODE)
  273. writew(reg_val, ecc->regs +
  274. ecc->caps->ecc_regs[ECC_ENCIRQ_EN]);
  275. else
  276. writew(reg_val, ecc->regs +
  277. ecc->caps->ecc_regs[ECC_DECIRQ_EN]);
  278. }
  279. writew(ECC_OP_ENABLE, ecc->regs + ECC_CTL_REG(op));
  280. return 0;
  281. }
  282. EXPORT_SYMBOL(mtk_ecc_enable);
  283. void mtk_ecc_disable(struct mtk_ecc *ecc)
  284. {
  285. enum mtk_ecc_operation op = ECC_ENCODE;
  286. /* find out the running operation */
  287. if (readw(ecc->regs + ECC_CTL_REG(op)) != ECC_OP_ENABLE)
  288. op = ECC_DECODE;
  289. /* disable it */
  290. mtk_ecc_wait_idle(ecc, op);
  291. if (op == ECC_DECODE) {
  292. /*
  293. * Clear decode IRQ status in case there is a timeout to wait
  294. * decode IRQ.
  295. */
  296. readw(ecc->regs + ecc->caps->ecc_regs[ECC_DECDONE]);
  297. writew(0, ecc->regs + ecc->caps->ecc_regs[ECC_DECIRQ_EN]);
  298. } else {
  299. writew(0, ecc->regs + ecc->caps->ecc_regs[ECC_ENCIRQ_EN]);
  300. }
  301. writew(ECC_OP_DISABLE, ecc->regs + ECC_CTL_REG(op));
  302. mutex_unlock(&ecc->lock);
  303. }
  304. EXPORT_SYMBOL(mtk_ecc_disable);
  305. int mtk_ecc_wait_done(struct mtk_ecc *ecc, enum mtk_ecc_operation op)
  306. {
  307. int ret;
  308. ret = wait_for_completion_timeout(&ecc->done, msecs_to_jiffies(500));
  309. if (!ret) {
  310. dev_err(ecc->dev, "%s timeout - interrupt did not arrive)\n",
  311. (op == ECC_ENCODE) ? "encoder" : "decoder");
  312. return -ETIMEDOUT;
  313. }
  314. return 0;
  315. }
  316. EXPORT_SYMBOL(mtk_ecc_wait_done);
  317. int mtk_ecc_encode(struct mtk_ecc *ecc, struct mtk_ecc_config *config,
  318. u8 *data, u32 bytes)
  319. {
  320. dma_addr_t addr;
  321. u32 len;
  322. int ret;
  323. addr = dma_map_single(ecc->dev, data, bytes, DMA_TO_DEVICE);
  324. ret = dma_mapping_error(ecc->dev, addr);
  325. if (ret) {
  326. dev_err(ecc->dev, "dma mapping error\n");
  327. return -EINVAL;
  328. }
  329. config->op = ECC_ENCODE;
  330. config->addr = addr;
  331. ret = mtk_ecc_enable(ecc, config);
  332. if (ret) {
  333. dma_unmap_single(ecc->dev, addr, bytes, DMA_TO_DEVICE);
  334. return ret;
  335. }
  336. ret = mtk_ecc_wait_done(ecc, ECC_ENCODE);
  337. if (ret)
  338. goto timeout;
  339. mtk_ecc_wait_idle(ecc, ECC_ENCODE);
  340. /* Program ECC bytes to OOB: per sector oob = FDM + ECC + SPARE */
  341. len = (config->strength * ecc->caps->parity_bits + 7) >> 3;
  342. /* write the parity bytes generated by the ECC back to temp buffer */
  343. __ioread32_copy(ecc->eccdata,
  344. ecc->regs + ecc->caps->ecc_regs[ECC_ENCPAR00],
  345. round_up(len, 4));
  346. /* copy into possibly unaligned OOB region with actual length */
  347. memcpy(data + bytes, ecc->eccdata, len);
  348. timeout:
  349. dma_unmap_single(ecc->dev, addr, bytes, DMA_TO_DEVICE);
  350. mtk_ecc_disable(ecc);
  351. return ret;
  352. }
  353. EXPORT_SYMBOL(mtk_ecc_encode);
  354. void mtk_ecc_adjust_strength(struct mtk_ecc *ecc, u32 *p)
  355. {
  356. const u8 *ecc_strength = ecc->caps->ecc_strength;
  357. int i;
  358. for (i = 0; i < ecc->caps->num_ecc_strength; i++) {
  359. if (*p <= ecc_strength[i]) {
  360. if (!i)
  361. *p = ecc_strength[i];
  362. else if (*p != ecc_strength[i])
  363. *p = ecc_strength[i - 1];
  364. return;
  365. }
  366. }
  367. *p = ecc_strength[ecc->caps->num_ecc_strength - 1];
  368. }
  369. EXPORT_SYMBOL(mtk_ecc_adjust_strength);
  370. unsigned int mtk_ecc_get_parity_bits(struct mtk_ecc *ecc)
  371. {
  372. return ecc->caps->parity_bits;
  373. }
  374. EXPORT_SYMBOL(mtk_ecc_get_parity_bits);
  375. static const struct mtk_ecc_caps mtk_ecc_caps_mt2701 = {
  376. .err_mask = 0x3f,
  377. .err_shift = 8,
  378. .ecc_strength = ecc_strength_mt2701,
  379. .ecc_regs = mt2701_ecc_regs,
  380. .num_ecc_strength = 20,
  381. .ecc_mode_shift = 5,
  382. .parity_bits = 14,
  383. .pg_irq_sel = 0,
  384. };
  385. static const struct mtk_ecc_caps mtk_ecc_caps_mt2712 = {
  386. .err_mask = 0x7f,
  387. .err_shift = 8,
  388. .ecc_strength = ecc_strength_mt2712,
  389. .ecc_regs = mt2712_ecc_regs,
  390. .num_ecc_strength = 23,
  391. .ecc_mode_shift = 5,
  392. .parity_bits = 14,
  393. .pg_irq_sel = 1,
  394. };
  395. static const struct mtk_ecc_caps mtk_ecc_caps_mt7622 = {
  396. .err_mask = 0x1f,
  397. .err_shift = 5,
  398. .ecc_strength = ecc_strength_mt7622,
  399. .ecc_regs = mt7622_ecc_regs,
  400. .num_ecc_strength = 5,
  401. .ecc_mode_shift = 4,
  402. .parity_bits = 13,
  403. .pg_irq_sel = 0,
  404. };
  405. static const struct of_device_id mtk_ecc_dt_match[] = {
  406. {
  407. .compatible = "mediatek,mt2701-ecc",
  408. .data = &mtk_ecc_caps_mt2701,
  409. }, {
  410. .compatible = "mediatek,mt2712-ecc",
  411. .data = &mtk_ecc_caps_mt2712,
  412. }, {
  413. .compatible = "mediatek,mt7622-ecc",
  414. .data = &mtk_ecc_caps_mt7622,
  415. },
  416. {},
  417. };
  418. static int mtk_ecc_probe(struct platform_device *pdev)
  419. {
  420. struct device *dev = &pdev->dev;
  421. struct mtk_ecc *ecc;
  422. u32 max_eccdata_size;
  423. int irq, ret;
  424. ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL);
  425. if (!ecc)
  426. return -ENOMEM;
  427. ecc->caps = of_device_get_match_data(dev);
  428. max_eccdata_size = ecc->caps->num_ecc_strength - 1;
  429. max_eccdata_size = ecc->caps->ecc_strength[max_eccdata_size];
  430. max_eccdata_size = (max_eccdata_size * ecc->caps->parity_bits + 7) >> 3;
  431. max_eccdata_size = round_up(max_eccdata_size, 4);
  432. ecc->eccdata = devm_kzalloc(dev, max_eccdata_size, GFP_KERNEL);
  433. if (!ecc->eccdata)
  434. return -ENOMEM;
  435. ecc->regs = devm_platform_ioremap_resource(pdev, 0);
  436. if (IS_ERR(ecc->regs))
  437. return PTR_ERR(ecc->regs);
  438. ecc->clk = devm_clk_get(dev, NULL);
  439. if (IS_ERR(ecc->clk)) {
  440. dev_err(dev, "failed to get clock: %ld\n", PTR_ERR(ecc->clk));
  441. return PTR_ERR(ecc->clk);
  442. }
  443. irq = platform_get_irq(pdev, 0);
  444. if (irq < 0)
  445. return irq;
  446. ret = dma_set_mask(dev, DMA_BIT_MASK(32));
  447. if (ret) {
  448. dev_err(dev, "failed to set DMA mask\n");
  449. return ret;
  450. }
  451. ret = devm_request_irq(dev, irq, mtk_ecc_irq, 0x0, "mtk-ecc", ecc);
  452. if (ret) {
  453. dev_err(dev, "failed to request irq\n");
  454. return -EINVAL;
  455. }
  456. ecc->dev = dev;
  457. mutex_init(&ecc->lock);
  458. platform_set_drvdata(pdev, ecc);
  459. dev_info(dev, "probed\n");
  460. return 0;
  461. }
  462. #ifdef CONFIG_PM_SLEEP
  463. static int mtk_ecc_suspend(struct device *dev)
  464. {
  465. struct mtk_ecc *ecc = dev_get_drvdata(dev);
  466. clk_disable_unprepare(ecc->clk);
  467. return 0;
  468. }
  469. static int mtk_ecc_resume(struct device *dev)
  470. {
  471. struct mtk_ecc *ecc = dev_get_drvdata(dev);
  472. int ret;
  473. ret = clk_prepare_enable(ecc->clk);
  474. if (ret) {
  475. dev_err(dev, "failed to enable clk\n");
  476. return ret;
  477. }
  478. return 0;
  479. }
  480. static SIMPLE_DEV_PM_OPS(mtk_ecc_pm_ops, mtk_ecc_suspend, mtk_ecc_resume);
  481. #endif
  482. MODULE_DEVICE_TABLE(of, mtk_ecc_dt_match);
  483. static struct platform_driver mtk_ecc_driver = {
  484. .probe = mtk_ecc_probe,
  485. .driver = {
  486. .name = "mtk-ecc",
  487. .of_match_table = mtk_ecc_dt_match,
  488. #ifdef CONFIG_PM_SLEEP
  489. .pm = &mtk_ecc_pm_ops,
  490. #endif
  491. },
  492. };
  493. module_platform_driver(mtk_ecc_driver);
  494. MODULE_AUTHOR("Xiaolei Li <[email protected]>");
  495. MODULE_DESCRIPTION("MTK Nand ECC Driver");
  496. MODULE_LICENSE("Dual MIT/GPL");