mei_hdcp.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Copyright © 2019 Intel Corporation
  4. *
  5. * mei_hdcp.c: HDCP client driver for mei bus
  6. *
  7. * Author:
  8. * Ramalingam C <[email protected]>
  9. */
  10. /**
  11. * DOC: MEI_HDCP Client Driver
  12. *
  13. * The mei_hdcp driver acts as a translation layer between HDCP 2.2
  14. * protocol implementer (I915) and ME FW by translating HDCP2.2
  15. * negotiation messages to ME FW command payloads and vice versa.
  16. */
  17. #include <linux/module.h>
  18. #include <linux/slab.h>
  19. #include <linux/uuid.h>
  20. #include <linux/mei_cl_bus.h>
  21. #include <linux/component.h>
  22. #include <drm/drm_connector.h>
  23. #include <drm/i915_component.h>
  24. #include <drm/i915_mei_hdcp_interface.h>
  25. #include "mei_hdcp.h"
  26. /**
  27. * mei_hdcp_initiate_session() - Initiate a Wired HDCP2.2 Tx Session in ME FW
  28. * @dev: device corresponding to the mei_cl_device
  29. * @data: Intel HW specific hdcp data
  30. * @ake_data: AKE_Init msg output.
  31. *
  32. * Return: 0 on Success, <0 on Failure.
  33. */
  34. static int
  35. mei_hdcp_initiate_session(struct device *dev, struct hdcp_port_data *data,
  36. struct hdcp2_ake_init *ake_data)
  37. {
  38. struct wired_cmd_initiate_hdcp2_session_in session_init_in = { { 0 } };
  39. struct wired_cmd_initiate_hdcp2_session_out
  40. session_init_out = { { 0 } };
  41. struct mei_cl_device *cldev;
  42. ssize_t byte;
  43. if (!dev || !data || !ake_data)
  44. return -EINVAL;
  45. cldev = to_mei_cl_device(dev);
  46. session_init_in.header.api_version = HDCP_API_VERSION;
  47. session_init_in.header.command_id = WIRED_INITIATE_HDCP2_SESSION;
  48. session_init_in.header.status = ME_HDCP_STATUS_SUCCESS;
  49. session_init_in.header.buffer_len =
  50. WIRED_CMD_BUF_LEN_INITIATE_HDCP2_SESSION_IN;
  51. session_init_in.port.integrated_port_type = data->port_type;
  52. session_init_in.port.physical_port = (u8)data->fw_ddi;
  53. session_init_in.port.attached_transcoder = (u8)data->fw_tc;
  54. session_init_in.protocol = data->protocol;
  55. byte = mei_cldev_send(cldev, (u8 *)&session_init_in,
  56. sizeof(session_init_in));
  57. if (byte < 0) {
  58. dev_dbg(dev, "mei_cldev_send failed. %zd\n", byte);
  59. return byte;
  60. }
  61. byte = mei_cldev_recv(cldev, (u8 *)&session_init_out,
  62. sizeof(session_init_out));
  63. if (byte < 0) {
  64. dev_dbg(dev, "mei_cldev_recv failed. %zd\n", byte);
  65. return byte;
  66. }
  67. if (session_init_out.header.status != ME_HDCP_STATUS_SUCCESS) {
  68. dev_dbg(dev, "ME cmd 0x%08X Failed. Status: 0x%X\n",
  69. WIRED_INITIATE_HDCP2_SESSION,
  70. session_init_out.header.status);
  71. return -EIO;
  72. }
  73. ake_data->msg_id = HDCP_2_2_AKE_INIT;
  74. ake_data->tx_caps = session_init_out.tx_caps;
  75. memcpy(ake_data->r_tx, session_init_out.r_tx, HDCP_2_2_RTX_LEN);
  76. return 0;
  77. }
  78. /**
  79. * mei_hdcp_verify_receiver_cert_prepare_km() - Verify the Receiver Certificate
  80. * AKE_Send_Cert and prepare AKE_Stored_Km/AKE_No_Stored_Km
  81. * @dev: device corresponding to the mei_cl_device
  82. * @data: Intel HW specific hdcp data
  83. * @rx_cert: AKE_Send_Cert for verification
  84. * @km_stored: Pairing status flag output
  85. * @ek_pub_km: AKE_Stored_Km/AKE_No_Stored_Km output msg
  86. * @msg_sz : size of AKE_XXXXX_Km output msg
  87. *
  88. * Return: 0 on Success, <0 on Failure
  89. */
  90. static int
  91. mei_hdcp_verify_receiver_cert_prepare_km(struct device *dev,
  92. struct hdcp_port_data *data,
  93. struct hdcp2_ake_send_cert *rx_cert,
  94. bool *km_stored,
  95. struct hdcp2_ake_no_stored_km
  96. *ek_pub_km,
  97. size_t *msg_sz)
  98. {
  99. struct wired_cmd_verify_receiver_cert_in verify_rxcert_in = { { 0 } };
  100. struct wired_cmd_verify_receiver_cert_out verify_rxcert_out = { { 0 } };
  101. struct mei_cl_device *cldev;
  102. ssize_t byte;
  103. if (!dev || !data || !rx_cert || !km_stored || !ek_pub_km || !msg_sz)
  104. return -EINVAL;
  105. cldev = to_mei_cl_device(dev);
  106. verify_rxcert_in.header.api_version = HDCP_API_VERSION;
  107. verify_rxcert_in.header.command_id = WIRED_VERIFY_RECEIVER_CERT;
  108. verify_rxcert_in.header.status = ME_HDCP_STATUS_SUCCESS;
  109. verify_rxcert_in.header.buffer_len =
  110. WIRED_CMD_BUF_LEN_VERIFY_RECEIVER_CERT_IN;
  111. verify_rxcert_in.port.integrated_port_type = data->port_type;
  112. verify_rxcert_in.port.physical_port = (u8)data->fw_ddi;
  113. verify_rxcert_in.port.attached_transcoder = (u8)data->fw_tc;
  114. verify_rxcert_in.cert_rx = rx_cert->cert_rx;
  115. memcpy(verify_rxcert_in.r_rx, &rx_cert->r_rx, HDCP_2_2_RRX_LEN);
  116. memcpy(verify_rxcert_in.rx_caps, rx_cert->rx_caps, HDCP_2_2_RXCAPS_LEN);
  117. byte = mei_cldev_send(cldev, (u8 *)&verify_rxcert_in,
  118. sizeof(verify_rxcert_in));
  119. if (byte < 0) {
  120. dev_dbg(dev, "mei_cldev_send failed: %zd\n", byte);
  121. return byte;
  122. }
  123. byte = mei_cldev_recv(cldev, (u8 *)&verify_rxcert_out,
  124. sizeof(verify_rxcert_out));
  125. if (byte < 0) {
  126. dev_dbg(dev, "mei_cldev_recv failed: %zd\n", byte);
  127. return byte;
  128. }
  129. if (verify_rxcert_out.header.status != ME_HDCP_STATUS_SUCCESS) {
  130. dev_dbg(dev, "ME cmd 0x%08X Failed. Status: 0x%X\n",
  131. WIRED_VERIFY_RECEIVER_CERT,
  132. verify_rxcert_out.header.status);
  133. return -EIO;
  134. }
  135. *km_stored = !!verify_rxcert_out.km_stored;
  136. if (verify_rxcert_out.km_stored) {
  137. ek_pub_km->msg_id = HDCP_2_2_AKE_STORED_KM;
  138. *msg_sz = sizeof(struct hdcp2_ake_stored_km);
  139. } else {
  140. ek_pub_km->msg_id = HDCP_2_2_AKE_NO_STORED_KM;
  141. *msg_sz = sizeof(struct hdcp2_ake_no_stored_km);
  142. }
  143. memcpy(ek_pub_km->e_kpub_km, &verify_rxcert_out.ekm_buff,
  144. sizeof(verify_rxcert_out.ekm_buff));
  145. return 0;
  146. }
  147. /**
  148. * mei_hdcp_verify_hprime() - Verify AKE_Send_H_prime at ME FW.
  149. * @dev: device corresponding to the mei_cl_device
  150. * @data: Intel HW specific hdcp data
  151. * @rx_hprime: AKE_Send_H_prime msg for ME FW verification
  152. *
  153. * Return: 0 on Success, <0 on Failure
  154. */
  155. static int
  156. mei_hdcp_verify_hprime(struct device *dev, struct hdcp_port_data *data,
  157. struct hdcp2_ake_send_hprime *rx_hprime)
  158. {
  159. struct wired_cmd_ake_send_hprime_in send_hprime_in = { { 0 } };
  160. struct wired_cmd_ake_send_hprime_out send_hprime_out = { { 0 } };
  161. struct mei_cl_device *cldev;
  162. ssize_t byte;
  163. if (!dev || !data || !rx_hprime)
  164. return -EINVAL;
  165. cldev = to_mei_cl_device(dev);
  166. send_hprime_in.header.api_version = HDCP_API_VERSION;
  167. send_hprime_in.header.command_id = WIRED_AKE_SEND_HPRIME;
  168. send_hprime_in.header.status = ME_HDCP_STATUS_SUCCESS;
  169. send_hprime_in.header.buffer_len = WIRED_CMD_BUF_LEN_AKE_SEND_HPRIME_IN;
  170. send_hprime_in.port.integrated_port_type = data->port_type;
  171. send_hprime_in.port.physical_port = (u8)data->fw_ddi;
  172. send_hprime_in.port.attached_transcoder = (u8)data->fw_tc;
  173. memcpy(send_hprime_in.h_prime, rx_hprime->h_prime,
  174. HDCP_2_2_H_PRIME_LEN);
  175. byte = mei_cldev_send(cldev, (u8 *)&send_hprime_in,
  176. sizeof(send_hprime_in));
  177. if (byte < 0) {
  178. dev_dbg(dev, "mei_cldev_send failed. %zd\n", byte);
  179. return byte;
  180. }
  181. byte = mei_cldev_recv(cldev, (u8 *)&send_hprime_out,
  182. sizeof(send_hprime_out));
  183. if (byte < 0) {
  184. dev_dbg(dev, "mei_cldev_recv failed. %zd\n", byte);
  185. return byte;
  186. }
  187. if (send_hprime_out.header.status != ME_HDCP_STATUS_SUCCESS) {
  188. dev_dbg(dev, "ME cmd 0x%08X Failed. Status: 0x%X\n",
  189. WIRED_AKE_SEND_HPRIME, send_hprime_out.header.status);
  190. return -EIO;
  191. }
  192. return 0;
  193. }
  194. /**
  195. * mei_hdcp_store_pairing_info() - Store pairing info received at ME FW
  196. * @dev: device corresponding to the mei_cl_device
  197. * @data: Intel HW specific hdcp data
  198. * @pairing_info: AKE_Send_Pairing_Info msg input to ME FW
  199. *
  200. * Return: 0 on Success, <0 on Failure
  201. */
  202. static int
  203. mei_hdcp_store_pairing_info(struct device *dev, struct hdcp_port_data *data,
  204. struct hdcp2_ake_send_pairing_info *pairing_info)
  205. {
  206. struct wired_cmd_ake_send_pairing_info_in pairing_info_in = { { 0 } };
  207. struct wired_cmd_ake_send_pairing_info_out pairing_info_out = { { 0 } };
  208. struct mei_cl_device *cldev;
  209. ssize_t byte;
  210. if (!dev || !data || !pairing_info)
  211. return -EINVAL;
  212. cldev = to_mei_cl_device(dev);
  213. pairing_info_in.header.api_version = HDCP_API_VERSION;
  214. pairing_info_in.header.command_id = WIRED_AKE_SEND_PAIRING_INFO;
  215. pairing_info_in.header.status = ME_HDCP_STATUS_SUCCESS;
  216. pairing_info_in.header.buffer_len =
  217. WIRED_CMD_BUF_LEN_SEND_PAIRING_INFO_IN;
  218. pairing_info_in.port.integrated_port_type = data->port_type;
  219. pairing_info_in.port.physical_port = (u8)data->fw_ddi;
  220. pairing_info_in.port.attached_transcoder = (u8)data->fw_tc;
  221. memcpy(pairing_info_in.e_kh_km, pairing_info->e_kh_km,
  222. HDCP_2_2_E_KH_KM_LEN);
  223. byte = mei_cldev_send(cldev, (u8 *)&pairing_info_in,
  224. sizeof(pairing_info_in));
  225. if (byte < 0) {
  226. dev_dbg(dev, "mei_cldev_send failed. %zd\n", byte);
  227. return byte;
  228. }
  229. byte = mei_cldev_recv(cldev, (u8 *)&pairing_info_out,
  230. sizeof(pairing_info_out));
  231. if (byte < 0) {
  232. dev_dbg(dev, "mei_cldev_recv failed. %zd\n", byte);
  233. return byte;
  234. }
  235. if (pairing_info_out.header.status != ME_HDCP_STATUS_SUCCESS) {
  236. dev_dbg(dev, "ME cmd 0x%08X failed. Status: 0x%X\n",
  237. WIRED_AKE_SEND_PAIRING_INFO,
  238. pairing_info_out.header.status);
  239. return -EIO;
  240. }
  241. return 0;
  242. }
  243. /**
  244. * mei_hdcp_initiate_locality_check() - Prepare LC_Init
  245. * @dev: device corresponding to the mei_cl_device
  246. * @data: Intel HW specific hdcp data
  247. * @lc_init_data: LC_Init msg output
  248. *
  249. * Return: 0 on Success, <0 on Failure
  250. */
  251. static int
  252. mei_hdcp_initiate_locality_check(struct device *dev,
  253. struct hdcp_port_data *data,
  254. struct hdcp2_lc_init *lc_init_data)
  255. {
  256. struct wired_cmd_init_locality_check_in lc_init_in = { { 0 } };
  257. struct wired_cmd_init_locality_check_out lc_init_out = { { 0 } };
  258. struct mei_cl_device *cldev;
  259. ssize_t byte;
  260. if (!dev || !data || !lc_init_data)
  261. return -EINVAL;
  262. cldev = to_mei_cl_device(dev);
  263. lc_init_in.header.api_version = HDCP_API_VERSION;
  264. lc_init_in.header.command_id = WIRED_INIT_LOCALITY_CHECK;
  265. lc_init_in.header.status = ME_HDCP_STATUS_SUCCESS;
  266. lc_init_in.header.buffer_len = WIRED_CMD_BUF_LEN_INIT_LOCALITY_CHECK_IN;
  267. lc_init_in.port.integrated_port_type = data->port_type;
  268. lc_init_in.port.physical_port = (u8)data->fw_ddi;
  269. lc_init_in.port.attached_transcoder = (u8)data->fw_tc;
  270. byte = mei_cldev_send(cldev, (u8 *)&lc_init_in, sizeof(lc_init_in));
  271. if (byte < 0) {
  272. dev_dbg(dev, "mei_cldev_send failed. %zd\n", byte);
  273. return byte;
  274. }
  275. byte = mei_cldev_recv(cldev, (u8 *)&lc_init_out, sizeof(lc_init_out));
  276. if (byte < 0) {
  277. dev_dbg(dev, "mei_cldev_recv failed. %zd\n", byte);
  278. return byte;
  279. }
  280. if (lc_init_out.header.status != ME_HDCP_STATUS_SUCCESS) {
  281. dev_dbg(dev, "ME cmd 0x%08X Failed. status: 0x%X\n",
  282. WIRED_INIT_LOCALITY_CHECK, lc_init_out.header.status);
  283. return -EIO;
  284. }
  285. lc_init_data->msg_id = HDCP_2_2_LC_INIT;
  286. memcpy(lc_init_data->r_n, lc_init_out.r_n, HDCP_2_2_RN_LEN);
  287. return 0;
  288. }
  289. /**
  290. * mei_hdcp_verify_lprime() - Verify lprime.
  291. * @dev: device corresponding to the mei_cl_device
  292. * @data: Intel HW specific hdcp data
  293. * @rx_lprime: LC_Send_L_prime msg for ME FW verification
  294. *
  295. * Return: 0 on Success, <0 on Failure
  296. */
  297. static int
  298. mei_hdcp_verify_lprime(struct device *dev, struct hdcp_port_data *data,
  299. struct hdcp2_lc_send_lprime *rx_lprime)
  300. {
  301. struct wired_cmd_validate_locality_in verify_lprime_in = { { 0 } };
  302. struct wired_cmd_validate_locality_out verify_lprime_out = { { 0 } };
  303. struct mei_cl_device *cldev;
  304. ssize_t byte;
  305. if (!dev || !data || !rx_lprime)
  306. return -EINVAL;
  307. cldev = to_mei_cl_device(dev);
  308. verify_lprime_in.header.api_version = HDCP_API_VERSION;
  309. verify_lprime_in.header.command_id = WIRED_VALIDATE_LOCALITY;
  310. verify_lprime_in.header.status = ME_HDCP_STATUS_SUCCESS;
  311. verify_lprime_in.header.buffer_len =
  312. WIRED_CMD_BUF_LEN_VALIDATE_LOCALITY_IN;
  313. verify_lprime_in.port.integrated_port_type = data->port_type;
  314. verify_lprime_in.port.physical_port = (u8)data->fw_ddi;
  315. verify_lprime_in.port.attached_transcoder = (u8)data->fw_tc;
  316. memcpy(verify_lprime_in.l_prime, rx_lprime->l_prime,
  317. HDCP_2_2_L_PRIME_LEN);
  318. byte = mei_cldev_send(cldev, (u8 *)&verify_lprime_in,
  319. sizeof(verify_lprime_in));
  320. if (byte < 0) {
  321. dev_dbg(dev, "mei_cldev_send failed. %zd\n", byte);
  322. return byte;
  323. }
  324. byte = mei_cldev_recv(cldev, (u8 *)&verify_lprime_out,
  325. sizeof(verify_lprime_out));
  326. if (byte < 0) {
  327. dev_dbg(dev, "mei_cldev_recv failed. %zd\n", byte);
  328. return byte;
  329. }
  330. if (verify_lprime_out.header.status != ME_HDCP_STATUS_SUCCESS) {
  331. dev_dbg(dev, "ME cmd 0x%08X failed. status: 0x%X\n",
  332. WIRED_VALIDATE_LOCALITY,
  333. verify_lprime_out.header.status);
  334. return -EIO;
  335. }
  336. return 0;
  337. }
  338. /**
  339. * mei_hdcp_get_session_key() - Prepare SKE_Send_Eks.
  340. * @dev: device corresponding to the mei_cl_device
  341. * @data: Intel HW specific hdcp data
  342. * @ske_data: SKE_Send_Eks msg output from ME FW.
  343. *
  344. * Return: 0 on Success, <0 on Failure
  345. */
  346. static int mei_hdcp_get_session_key(struct device *dev,
  347. struct hdcp_port_data *data,
  348. struct hdcp2_ske_send_eks *ske_data)
  349. {
  350. struct wired_cmd_get_session_key_in get_skey_in = { { 0 } };
  351. struct wired_cmd_get_session_key_out get_skey_out = { { 0 } };
  352. struct mei_cl_device *cldev;
  353. ssize_t byte;
  354. if (!dev || !data || !ske_data)
  355. return -EINVAL;
  356. cldev = to_mei_cl_device(dev);
  357. get_skey_in.header.api_version = HDCP_API_VERSION;
  358. get_skey_in.header.command_id = WIRED_GET_SESSION_KEY;
  359. get_skey_in.header.status = ME_HDCP_STATUS_SUCCESS;
  360. get_skey_in.header.buffer_len = WIRED_CMD_BUF_LEN_GET_SESSION_KEY_IN;
  361. get_skey_in.port.integrated_port_type = data->port_type;
  362. get_skey_in.port.physical_port = (u8)data->fw_ddi;
  363. get_skey_in.port.attached_transcoder = (u8)data->fw_tc;
  364. byte = mei_cldev_send(cldev, (u8 *)&get_skey_in, sizeof(get_skey_in));
  365. if (byte < 0) {
  366. dev_dbg(dev, "mei_cldev_send failed. %zd\n", byte);
  367. return byte;
  368. }
  369. byte = mei_cldev_recv(cldev, (u8 *)&get_skey_out, sizeof(get_skey_out));
  370. if (byte < 0) {
  371. dev_dbg(dev, "mei_cldev_recv failed. %zd\n", byte);
  372. return byte;
  373. }
  374. if (get_skey_out.header.status != ME_HDCP_STATUS_SUCCESS) {
  375. dev_dbg(dev, "ME cmd 0x%08X failed. status: 0x%X\n",
  376. WIRED_GET_SESSION_KEY, get_skey_out.header.status);
  377. return -EIO;
  378. }
  379. ske_data->msg_id = HDCP_2_2_SKE_SEND_EKS;
  380. memcpy(ske_data->e_dkey_ks, get_skey_out.e_dkey_ks,
  381. HDCP_2_2_E_DKEY_KS_LEN);
  382. memcpy(ske_data->riv, get_skey_out.r_iv, HDCP_2_2_RIV_LEN);
  383. return 0;
  384. }
  385. /**
  386. * mei_hdcp_repeater_check_flow_prepare_ack() - Validate the Downstream topology
  387. * and prepare rep_ack.
  388. * @dev: device corresponding to the mei_cl_device
  389. * @data: Intel HW specific hdcp data
  390. * @rep_topology: Receiver ID List to be validated
  391. * @rep_send_ack : repeater ack from ME FW.
  392. *
  393. * Return: 0 on Success, <0 on Failure
  394. */
  395. static int
  396. mei_hdcp_repeater_check_flow_prepare_ack(struct device *dev,
  397. struct hdcp_port_data *data,
  398. struct hdcp2_rep_send_receiverid_list
  399. *rep_topology,
  400. struct hdcp2_rep_send_ack
  401. *rep_send_ack)
  402. {
  403. struct wired_cmd_verify_repeater_in verify_repeater_in = { { 0 } };
  404. struct wired_cmd_verify_repeater_out verify_repeater_out = { { 0 } };
  405. struct mei_cl_device *cldev;
  406. ssize_t byte;
  407. if (!dev || !rep_topology || !rep_send_ack || !data)
  408. return -EINVAL;
  409. cldev = to_mei_cl_device(dev);
  410. verify_repeater_in.header.api_version = HDCP_API_VERSION;
  411. verify_repeater_in.header.command_id = WIRED_VERIFY_REPEATER;
  412. verify_repeater_in.header.status = ME_HDCP_STATUS_SUCCESS;
  413. verify_repeater_in.header.buffer_len =
  414. WIRED_CMD_BUF_LEN_VERIFY_REPEATER_IN;
  415. verify_repeater_in.port.integrated_port_type = data->port_type;
  416. verify_repeater_in.port.physical_port = (u8)data->fw_ddi;
  417. verify_repeater_in.port.attached_transcoder = (u8)data->fw_tc;
  418. memcpy(verify_repeater_in.rx_info, rep_topology->rx_info,
  419. HDCP_2_2_RXINFO_LEN);
  420. memcpy(verify_repeater_in.seq_num_v, rep_topology->seq_num_v,
  421. HDCP_2_2_SEQ_NUM_LEN);
  422. memcpy(verify_repeater_in.v_prime, rep_topology->v_prime,
  423. HDCP_2_2_V_PRIME_HALF_LEN);
  424. memcpy(verify_repeater_in.receiver_ids, rep_topology->receiver_ids,
  425. HDCP_2_2_RECEIVER_IDS_MAX_LEN);
  426. byte = mei_cldev_send(cldev, (u8 *)&verify_repeater_in,
  427. sizeof(verify_repeater_in));
  428. if (byte < 0) {
  429. dev_dbg(dev, "mei_cldev_send failed. %zd\n", byte);
  430. return byte;
  431. }
  432. byte = mei_cldev_recv(cldev, (u8 *)&verify_repeater_out,
  433. sizeof(verify_repeater_out));
  434. if (byte < 0) {
  435. dev_dbg(dev, "mei_cldev_recv failed. %zd\n", byte);
  436. return byte;
  437. }
  438. if (verify_repeater_out.header.status != ME_HDCP_STATUS_SUCCESS) {
  439. dev_dbg(dev, "ME cmd 0x%08X failed. status: 0x%X\n",
  440. WIRED_VERIFY_REPEATER,
  441. verify_repeater_out.header.status);
  442. return -EIO;
  443. }
  444. memcpy(rep_send_ack->v, verify_repeater_out.v,
  445. HDCP_2_2_V_PRIME_HALF_LEN);
  446. rep_send_ack->msg_id = HDCP_2_2_REP_SEND_ACK;
  447. return 0;
  448. }
  449. /**
  450. * mei_hdcp_verify_mprime() - Verify mprime.
  451. * @dev: device corresponding to the mei_cl_device
  452. * @data: Intel HW specific hdcp data
  453. * @stream_ready: RepeaterAuth_Stream_Ready msg for ME FW verification.
  454. *
  455. * Return: 0 on Success, <0 on Failure
  456. */
  457. static int mei_hdcp_verify_mprime(struct device *dev,
  458. struct hdcp_port_data *data,
  459. struct hdcp2_rep_stream_ready *stream_ready)
  460. {
  461. struct wired_cmd_repeater_auth_stream_req_in *verify_mprime_in;
  462. struct wired_cmd_repeater_auth_stream_req_out
  463. verify_mprime_out = { { 0 } };
  464. struct mei_cl_device *cldev;
  465. ssize_t byte;
  466. size_t cmd_size;
  467. if (!dev || !stream_ready || !data)
  468. return -EINVAL;
  469. cldev = to_mei_cl_device(dev);
  470. cmd_size = struct_size(verify_mprime_in, streams, data->k);
  471. if (cmd_size == SIZE_MAX)
  472. return -EINVAL;
  473. verify_mprime_in = kzalloc(cmd_size, GFP_KERNEL);
  474. if (!verify_mprime_in)
  475. return -ENOMEM;
  476. verify_mprime_in->header.api_version = HDCP_API_VERSION;
  477. verify_mprime_in->header.command_id = WIRED_REPEATER_AUTH_STREAM_REQ;
  478. verify_mprime_in->header.status = ME_HDCP_STATUS_SUCCESS;
  479. verify_mprime_in->header.buffer_len = cmd_size - sizeof(verify_mprime_in->header);
  480. verify_mprime_in->port.integrated_port_type = data->port_type;
  481. verify_mprime_in->port.physical_port = (u8)data->fw_ddi;
  482. verify_mprime_in->port.attached_transcoder = (u8)data->fw_tc;
  483. memcpy(verify_mprime_in->m_prime, stream_ready->m_prime, HDCP_2_2_MPRIME_LEN);
  484. drm_hdcp_cpu_to_be24(verify_mprime_in->seq_num_m, data->seq_num_m);
  485. memcpy(verify_mprime_in->streams, data->streams,
  486. array_size(data->k, sizeof(*data->streams)));
  487. verify_mprime_in->k = cpu_to_be16(data->k);
  488. byte = mei_cldev_send(cldev, (u8 *)verify_mprime_in, cmd_size);
  489. kfree(verify_mprime_in);
  490. if (byte < 0) {
  491. dev_dbg(dev, "mei_cldev_send failed. %zd\n", byte);
  492. return byte;
  493. }
  494. byte = mei_cldev_recv(cldev, (u8 *)&verify_mprime_out,
  495. sizeof(verify_mprime_out));
  496. if (byte < 0) {
  497. dev_dbg(dev, "mei_cldev_recv failed. %zd\n", byte);
  498. return byte;
  499. }
  500. if (verify_mprime_out.header.status != ME_HDCP_STATUS_SUCCESS) {
  501. dev_dbg(dev, "ME cmd 0x%08X failed. status: 0x%X\n",
  502. WIRED_REPEATER_AUTH_STREAM_REQ,
  503. verify_mprime_out.header.status);
  504. return -EIO;
  505. }
  506. return 0;
  507. }
  508. /**
  509. * mei_hdcp_enable_authentication() - Mark a port as authenticated
  510. * through ME FW
  511. * @dev: device corresponding to the mei_cl_device
  512. * @data: Intel HW specific hdcp data
  513. *
  514. * Return: 0 on Success, <0 on Failure
  515. */
  516. static int mei_hdcp_enable_authentication(struct device *dev,
  517. struct hdcp_port_data *data)
  518. {
  519. struct wired_cmd_enable_auth_in enable_auth_in = { { 0 } };
  520. struct wired_cmd_enable_auth_out enable_auth_out = { { 0 } };
  521. struct mei_cl_device *cldev;
  522. ssize_t byte;
  523. if (!dev || !data)
  524. return -EINVAL;
  525. cldev = to_mei_cl_device(dev);
  526. enable_auth_in.header.api_version = HDCP_API_VERSION;
  527. enable_auth_in.header.command_id = WIRED_ENABLE_AUTH;
  528. enable_auth_in.header.status = ME_HDCP_STATUS_SUCCESS;
  529. enable_auth_in.header.buffer_len = WIRED_CMD_BUF_LEN_ENABLE_AUTH_IN;
  530. enable_auth_in.port.integrated_port_type = data->port_type;
  531. enable_auth_in.port.physical_port = (u8)data->fw_ddi;
  532. enable_auth_in.port.attached_transcoder = (u8)data->fw_tc;
  533. enable_auth_in.stream_type = data->streams[0].stream_type;
  534. byte = mei_cldev_send(cldev, (u8 *)&enable_auth_in,
  535. sizeof(enable_auth_in));
  536. if (byte < 0) {
  537. dev_dbg(dev, "mei_cldev_send failed. %zd\n", byte);
  538. return byte;
  539. }
  540. byte = mei_cldev_recv(cldev, (u8 *)&enable_auth_out,
  541. sizeof(enable_auth_out));
  542. if (byte < 0) {
  543. dev_dbg(dev, "mei_cldev_recv failed. %zd\n", byte);
  544. return byte;
  545. }
  546. if (enable_auth_out.header.status != ME_HDCP_STATUS_SUCCESS) {
  547. dev_dbg(dev, "ME cmd 0x%08X failed. status: 0x%X\n",
  548. WIRED_ENABLE_AUTH, enable_auth_out.header.status);
  549. return -EIO;
  550. }
  551. return 0;
  552. }
  553. /**
  554. * mei_hdcp_close_session() - Close the Wired HDCP Tx session of ME FW per port.
  555. * This also disables the authenticated state of the port.
  556. * @dev: device corresponding to the mei_cl_device
  557. * @data: Intel HW specific hdcp data
  558. *
  559. * Return: 0 on Success, <0 on Failure
  560. */
  561. static int
  562. mei_hdcp_close_session(struct device *dev, struct hdcp_port_data *data)
  563. {
  564. struct wired_cmd_close_session_in session_close_in = { { 0 } };
  565. struct wired_cmd_close_session_out session_close_out = { { 0 } };
  566. struct mei_cl_device *cldev;
  567. ssize_t byte;
  568. if (!dev || !data)
  569. return -EINVAL;
  570. cldev = to_mei_cl_device(dev);
  571. session_close_in.header.api_version = HDCP_API_VERSION;
  572. session_close_in.header.command_id = WIRED_CLOSE_SESSION;
  573. session_close_in.header.status = ME_HDCP_STATUS_SUCCESS;
  574. session_close_in.header.buffer_len =
  575. WIRED_CMD_BUF_LEN_CLOSE_SESSION_IN;
  576. session_close_in.port.integrated_port_type = data->port_type;
  577. session_close_in.port.physical_port = (u8)data->fw_ddi;
  578. session_close_in.port.attached_transcoder = (u8)data->fw_tc;
  579. byte = mei_cldev_send(cldev, (u8 *)&session_close_in,
  580. sizeof(session_close_in));
  581. if (byte < 0) {
  582. dev_dbg(dev, "mei_cldev_send failed. %zd\n", byte);
  583. return byte;
  584. }
  585. byte = mei_cldev_recv(cldev, (u8 *)&session_close_out,
  586. sizeof(session_close_out));
  587. if (byte < 0) {
  588. dev_dbg(dev, "mei_cldev_recv failed. %zd\n", byte);
  589. return byte;
  590. }
  591. if (session_close_out.header.status != ME_HDCP_STATUS_SUCCESS) {
  592. dev_dbg(dev, "Session Close Failed. status: 0x%X\n",
  593. session_close_out.header.status);
  594. return -EIO;
  595. }
  596. return 0;
  597. }
  598. static const struct i915_hdcp_component_ops mei_hdcp_ops = {
  599. .owner = THIS_MODULE,
  600. .initiate_hdcp2_session = mei_hdcp_initiate_session,
  601. .verify_receiver_cert_prepare_km =
  602. mei_hdcp_verify_receiver_cert_prepare_km,
  603. .verify_hprime = mei_hdcp_verify_hprime,
  604. .store_pairing_info = mei_hdcp_store_pairing_info,
  605. .initiate_locality_check = mei_hdcp_initiate_locality_check,
  606. .verify_lprime = mei_hdcp_verify_lprime,
  607. .get_session_key = mei_hdcp_get_session_key,
  608. .repeater_check_flow_prepare_ack =
  609. mei_hdcp_repeater_check_flow_prepare_ack,
  610. .verify_mprime = mei_hdcp_verify_mprime,
  611. .enable_hdcp_authentication = mei_hdcp_enable_authentication,
  612. .close_hdcp_session = mei_hdcp_close_session,
  613. };
  614. static int mei_component_master_bind(struct device *dev)
  615. {
  616. struct mei_cl_device *cldev = to_mei_cl_device(dev);
  617. struct i915_hdcp_comp_master *comp_master =
  618. mei_cldev_get_drvdata(cldev);
  619. int ret;
  620. dev_dbg(dev, "%s\n", __func__);
  621. comp_master->ops = &mei_hdcp_ops;
  622. comp_master->mei_dev = dev;
  623. ret = component_bind_all(dev, comp_master);
  624. if (ret < 0)
  625. return ret;
  626. return 0;
  627. }
  628. static void mei_component_master_unbind(struct device *dev)
  629. {
  630. struct mei_cl_device *cldev = to_mei_cl_device(dev);
  631. struct i915_hdcp_comp_master *comp_master =
  632. mei_cldev_get_drvdata(cldev);
  633. dev_dbg(dev, "%s\n", __func__);
  634. component_unbind_all(dev, comp_master);
  635. }
  636. static const struct component_master_ops mei_component_master_ops = {
  637. .bind = mei_component_master_bind,
  638. .unbind = mei_component_master_unbind,
  639. };
  640. /**
  641. * mei_hdcp_component_match - compare function for matching mei hdcp.
  642. *
  643. * The function checks if the driver is i915, the subcomponent is HDCP
  644. * and the grand parent of hdcp and the parent of i915 are the same
  645. * PCH device.
  646. *
  647. * @dev: master device
  648. * @subcomponent: subcomponent to match (I915_COMPONENT_HDCP)
  649. * @data: compare data (mei hdcp device)
  650. *
  651. * Return:
  652. * * 1 - if components match
  653. * * 0 - otherwise
  654. */
  655. static int mei_hdcp_component_match(struct device *dev, int subcomponent,
  656. void *data)
  657. {
  658. struct device *base = data;
  659. if (!dev->driver || strcmp(dev->driver->name, "i915") ||
  660. subcomponent != I915_COMPONENT_HDCP)
  661. return 0;
  662. base = base->parent;
  663. if (!base)
  664. return 0;
  665. base = base->parent;
  666. dev = dev->parent;
  667. return (base && dev && dev == base);
  668. }
  669. static int mei_hdcp_probe(struct mei_cl_device *cldev,
  670. const struct mei_cl_device_id *id)
  671. {
  672. struct i915_hdcp_comp_master *comp_master;
  673. struct component_match *master_match;
  674. int ret;
  675. ret = mei_cldev_enable(cldev);
  676. if (ret < 0) {
  677. dev_err(&cldev->dev, "mei_cldev_enable Failed. %d\n", ret);
  678. goto enable_err_exit;
  679. }
  680. comp_master = kzalloc(sizeof(*comp_master), GFP_KERNEL);
  681. if (!comp_master) {
  682. ret = -ENOMEM;
  683. goto err_exit;
  684. }
  685. master_match = NULL;
  686. component_match_add_typed(&cldev->dev, &master_match,
  687. mei_hdcp_component_match, &cldev->dev);
  688. if (IS_ERR_OR_NULL(master_match)) {
  689. ret = -ENOMEM;
  690. goto err_exit;
  691. }
  692. mei_cldev_set_drvdata(cldev, comp_master);
  693. ret = component_master_add_with_match(&cldev->dev,
  694. &mei_component_master_ops,
  695. master_match);
  696. if (ret < 0) {
  697. dev_err(&cldev->dev, "Master comp add failed %d\n", ret);
  698. goto err_exit;
  699. }
  700. return 0;
  701. err_exit:
  702. mei_cldev_set_drvdata(cldev, NULL);
  703. kfree(comp_master);
  704. mei_cldev_disable(cldev);
  705. enable_err_exit:
  706. return ret;
  707. }
  708. static void mei_hdcp_remove(struct mei_cl_device *cldev)
  709. {
  710. struct i915_hdcp_comp_master *comp_master =
  711. mei_cldev_get_drvdata(cldev);
  712. int ret;
  713. component_master_del(&cldev->dev, &mei_component_master_ops);
  714. kfree(comp_master);
  715. mei_cldev_set_drvdata(cldev, NULL);
  716. ret = mei_cldev_disable(cldev);
  717. if (ret)
  718. dev_warn(&cldev->dev, "mei_cldev_disable() failed\n");
  719. }
  720. #define MEI_UUID_HDCP UUID_LE(0xB638AB7E, 0x94E2, 0x4EA2, 0xA5, \
  721. 0x52, 0xD1, 0xC5, 0x4B, 0x62, 0x7F, 0x04)
  722. static const struct mei_cl_device_id mei_hdcp_tbl[] = {
  723. { .uuid = MEI_UUID_HDCP, .version = MEI_CL_VERSION_ANY },
  724. { }
  725. };
  726. MODULE_DEVICE_TABLE(mei, mei_hdcp_tbl);
  727. static struct mei_cl_driver mei_hdcp_driver = {
  728. .id_table = mei_hdcp_tbl,
  729. .name = KBUILD_MODNAME,
  730. .probe = mei_hdcp_probe,
  731. .remove = mei_hdcp_remove,
  732. };
  733. module_mei_cl_driver(mei_hdcp_driver);
  734. MODULE_AUTHOR("Intel Corporation");
  735. MODULE_LICENSE("GPL");
  736. MODULE_DESCRIPTION("MEI HDCP");