leds-qpnp-flash-v2.c 84 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2016-2021, The Linux Foundation. All rights reserved.
  4. * Copyright (c) 2022 Qualcomm Innovation Center, Inc. All rights reserved.
  5. */
  6. #define pr_fmt(fmt) "flashv2: %s: " fmt, __func__
  7. #include <linux/module.h>
  8. #include <linux/init.h>
  9. #include <linux/kernel.h>
  10. #include <linux/errno.h>
  11. #include <linux/delay.h>
  12. #include <linux/slab.h>
  13. #include <linux/of.h>
  14. #include <linux/of_irq.h>
  15. #include <linux/of_gpio.h>
  16. #include <linux/of_device.h>
  17. #include <linux/gpio.h>
  18. #include <linux/regmap.h>
  19. #include <linux/power_supply.h>
  20. #include <linux/platform_device.h>
  21. #include <linux/interrupt.h>
  22. #include <linux/regulator/consumer.h>
  23. #include <linux/leds-qpnp-flash.h>
  24. #include <linux/leds-qpnp-flash-v2.h>
  25. #include <linux/iio/consumer.h>
  26. #include <linux/log2.h>
  27. #include "leds.h"
  28. #define FLASH_LED_REG_LED_STATUS1(base) (base + 0x08)
  29. #define FLASH_LED_REG_LED_STATUS2(base) (base + 0x09)
  30. #define FLASH_LED_VPH_DROOP_FAULT_MASK BIT(4)
  31. #define FLASH_LED_THERMAL_OTST_MASK GENMASK(2, 0)
  32. #define FLASH_LED_REG_INT_RT_STS(base) (base + 0x10)
  33. #define FLASH_LED_REG_SAFETY_TMR(base) (base + 0x40)
  34. #define FLASH_LED_SAFETY_TMR_ENABLE BIT(7)
  35. #define FLASH_LED_REG_TGR_CURRENT(base) (base + 0x43)
  36. #define FLASH_LED_REG_MOD_CTRL(base) (base + 0x46)
  37. #define FLASH_LED_MOD_CTRL_MASK BIT(7)
  38. #define FLASH_LED_MOD_ENABLE BIT(7)
  39. #define FLASH_LED_REG_IRES(base) (base + 0x47)
  40. #define FLASH_LED_REG_STROBE_CFG(base) (base + 0x48)
  41. #define FLASH_LED_STROBE_MASK GENMASK(1, 0)
  42. #define FLASH_LED_REG_STROBE_CTRL(base) (base + 0x49)
  43. #define FLASH_LED_HW_SW_STROBE_SEL_BIT BIT(2)
  44. #define FLASH_HW_STROBE_MASK GENMASK(2, 0)
  45. #define FLASH_LED_EN_LED_CTRL(base) (base + 0x4C)
  46. #define FLASH_LED_ENABLE BIT(0)
  47. #define FLASH_LED_REG_HDRM_PRGM(base) (base + 0x4D)
  48. #define FLASH_LED_HDRM_VOL_MASK GENMASK(7, 4)
  49. #define FLASH_LED_HDRM_VOL_SHIFT 4
  50. #define FLASH_LED_REG_HDRM_AUTO_MODE_CTRL(base) (base + 0x50)
  51. #define FLASH_LED_REG_WARMUP_DELAY(base) (base + 0x51)
  52. #define FLASH_LED_REG_ISC_DELAY(base) (base + 0x52)
  53. #define FLASH_LED_ISC_WARMUP_DELAY_MASK GENMASK(1, 0)
  54. #define FLASH_LED_ISC_WARMUP_DELAY_SHIFT 6
  55. #define FLASH_LED_REG_THERMAL_RMP_DN_RATE(base) (base + 0x55)
  56. #define THERMAL_OTST1_RAMP_CTRL_MASK BIT(7)
  57. #define THERMAL_OTST1_RAMP_CTRL_SHIFT 7
  58. #define THERMAL_DERATE_SLOW_SHIFT 4
  59. #define THERMAL_DERATE_SLOW_MASK GENMASK(6, 4)
  60. #define THERMAL_DERATE_FAST_MASK GENMASK(2, 0)
  61. #define FLASH_LED_REG_THERMAL_THRSH1(base) (base + 0x56)
  62. #define FLASH_LED_THERMAL_THRSH_MASK GENMASK(2, 0)
  63. #define FLASH_LED_REG_THERMAL_THRSH2(base) (base + 0x57)
  64. #define FLASH_LED_REG_THERMAL_THRSH3(base) (base + 0x58)
  65. #define FLASH_LED_REG_THERMAL_HYSTERESIS(base) (base + 0x59)
  66. #define FLASH_LED_THERMAL_HYSTERESIS_MASK GENMASK(1, 0)
  67. #define FLASH_LED_REG_THERMAL_DEBOUNCE(base) (base + 0x5A)
  68. #define FLASH_LED_THERMAL_DEBOUNCE_MASK GENMASK(1, 0)
  69. #define FLASH_LED_REG_RGLR_RAMP_RATE(base) (base + 0x5B)
  70. #define FLASH_LED_RAMP_UP_STEP_MASK GENMASK(6, 4)
  71. #define FLASH_LED_RAMP_UP_STEP_SHIFT 4
  72. #define FLASH_LED_RAMP_DOWN_STEP_MASK GENMASK(2, 0)
  73. #define FLASH_LED_RAMP_STEP_MIN_NS 200
  74. #define FLASH_LED_RAMP_STEP_MAX_NS 25600
  75. #define FLASH_LED_RAMP_STEP_DEFAULT_NS 6400
  76. #define FLASH_LED_REG_VPH_DROOP_THRESHOLD(base) (base + 0x61)
  77. #define FLASH_LED_VPH_DROOP_HYSTERESIS_MASK GENMASK(5, 4)
  78. #define FLASH_LED_VPH_DROOP_THRESHOLD_MASK GENMASK(2, 0)
  79. #define FLASH_LED_VPH_DROOP_HYST_SHIFT 4
  80. #define FLASH_LED_REG_VPH_DROOP_DEBOUNCE(base) (base + 0x62)
  81. #define FLASH_LED_VPH_DROOP_DEBOUNCE_MASK GENMASK(1, 0)
  82. #define FLASH_LED_REG_ILED_GRT_THRSH(base) (base + 0x67)
  83. #define FLASH_LED_ILED_GRT_THRSH_MASK GENMASK(5, 0)
  84. #define FLASH_LED_REG_LED1N2_ICLAMP_LOW(base) (base + 0x68)
  85. #define FLASH_LED_REG_LED1N2_ICLAMP_MID(base) (base + 0x69)
  86. #define FLASH_LED_REG_LED3_ICLAMP_LOW(base) (base + 0x6A)
  87. #define FLASH_LED_REG_LED3_ICLAMP_MID(base) (base + 0x6B)
  88. #define FLASH_LED_CURRENT_MASK GENMASK(6, 0)
  89. #define FLASH_LED_REG_MITIGATION_SEL(base) (base + 0x6E)
  90. #define FLASH_LED_CHGR_MITIGATION_SEL_MASK GENMASK(5, 4)
  91. #define FLASH_LED_LMH_MITIGATION_SEL_MASK GENMASK(1, 0)
  92. #define FLASH_LED_REG_MITIGATION_SW(base) (base + 0x6F)
  93. #define FLASH_LED_LMH_MITIGATION_EN_MASK BIT(0)
  94. #define FLASH_LED_CHGR_MITIGATION_EN_MASK BIT(4)
  95. #define FLASH_LED_CHGR_MITIGATION_ENABLE BIT(4)
  96. #define FLASH_LED_REG_LMH_LEVEL(base) (base + 0x70)
  97. #define FLASH_LED_LMH_LEVEL_MASK GENMASK(1, 0)
  98. #define FLASH_LED_REG_MULTI_STROBE_CTRL(base) (base + 0x71)
  99. #define LED3_FLASH_ONCE_ONLY_BIT BIT(1)
  100. #define LED1N2_FLASH_ONCE_ONLY_BIT BIT(0)
  101. #define FLASH_LED_REG_LPG_INPUT_CTRL(base) (base + 0x72)
  102. #define LPG_INPUT_SEL_BIT BIT(0)
  103. #define FLASH_LED_REG_CURRENT_DERATE_EN(base) (base + 0x76)
  104. #define FLASH_LED_CURRENT_DERATE_EN_MASK GENMASK(2, 0)
  105. #define VPH_DROOP_DEBOUNCE_US_TO_VAL(val_us) (val_us / 8)
  106. #define VPH_DROOP_HYST_MV_TO_VAL(val_mv) (val_mv / 25)
  107. #define VPH_DROOP_THRESH_VAL_TO_UV(val) ((val + 25) * 100000)
  108. #define MITIGATION_THRSH_MA_TO_VAL(val_ma) (val_ma / 100)
  109. #define THERMAL_HYST_TEMP_TO_VAL(val, divisor) (val / divisor)
  110. #define FLASH_LED_WARMUP_DELAY_DEFAULT 2
  111. #define FLASH_LED_ISC_DELAY_DEFAULT 3
  112. #define FLASH_LED_VPH_DROOP_DEBOUNCE_DEFAULT 2
  113. #define FLASH_LED_VPH_DROOP_HYST_DEFAULT 2
  114. #define FLASH_LED_VPH_DROOP_THRESH_DEFAULT 5
  115. #define BHARGER_FLASH_LED_VPH_DROOP_THRESH_DEFAULT 7
  116. #define FLASH_LED_DEBOUNCE_MAX 3
  117. #define FLASH_LED_HYSTERESIS_MAX 3
  118. #define FLASH_LED_VPH_DROOP_THRESH_MAX 7
  119. #define THERMAL_DERATE_SLOW_MAX 314592
  120. #define THERMAL_DERATE_FAST_MAX 512
  121. #define THERMAL_DEBOUNCE_TIME_MAX 64
  122. #define THERMAL_DERATE_HYSTERESIS_MAX 3
  123. #define FLASH_LED_THERMAL_THRSH_MIN 3
  124. #define FLASH_LED_THERMAL_THRSH_MAX 7
  125. #define FLASH_LED_THERMAL_OTST_LEVELS 3
  126. #define FLASH_LED_VLED_MAX_DEFAULT_UV 3500000
  127. #define FLASH_LED_IBATT_OCP_THRESH_DEFAULT_UA 4500000
  128. #define FLASH_LED_RPARA_DEFAULT_UOHM 0
  129. #define FLASH_LED_LMH_LEVEL_DEFAULT 0
  130. #define FLASH_LED_LMH_MITIGATION_ENABLE 1
  131. #define FLASH_LED_LMH_MITIGATION_DISABLE 0
  132. #define FLASH_LED_CHGR_MITIGATION_DISABLE 0
  133. #define FLASH_LED_LMH_MITIGATION_SEL_DEFAULT 2
  134. #define FLASH_LED_MITIGATION_SEL_MAX 2
  135. #define FLASH_LED_CHGR_MITIGATION_SEL_SHIFT 4
  136. #define FLASH_LED_CHGR_MITIGATION_THRSH_DEFAULT 0xA
  137. #define FLASH_LED_CHGR_MITIGATION_THRSH_MAX 0x1F
  138. #define FLASH_LED_LMH_OCV_THRESH_DEFAULT_UV 3700000
  139. #define FLASH_LED_LMH_RBATT_THRESH_DEFAULT_UOHM 400000
  140. #define FLASH_LED_IRES_BASE 3
  141. #define FLASH_LED_IRES_DIVISOR 2500
  142. #define FLASH_LED_IRES_MIN_UA 5000
  143. #define FLASH_LED_IRES_DEFAULT_UA 12500
  144. #define FLASH_LED_IRES_DEFAULT_VAL 0x00
  145. #define FLASH_LED_HDRM_VOL_DEFAULT_MV 0x80
  146. #define FLASH_LED_HDRM_VOL_HI_LO_WIN_DEFAULT_MV 0x04
  147. #define FLASH_LED_HDRM_VOL_BASE_MV 125
  148. #define FLASH_LED_HDRM_VOL_STEP_MV 25
  149. #define FLASH_LED_STROBE_CFG_DEFAULT 0x00
  150. #define FLASH_LED_HW_STROBE_OPTION_1 0x00
  151. #define FLASH_LED_HW_STROBE_OPTION_2 0x01
  152. #define FLASH_LED_HW_STROBE_OPTION_3 0x02
  153. #define FLASH_LED_DISABLE 0x00
  154. #define FLASH_LED_SAFETY_TMR_DISABLED 0x13
  155. #define FLASH_LED_MAX_TOTAL_CURRENT_MA 3750
  156. #define FLASH_LED_IRES5P0_MAX_CURR_MA 640
  157. #define FLASH_LED_IRES7P5_MAX_CURR_MA 960
  158. #define FLASH_LED_IRES10P0_MAX_CURR_MA 1280
  159. #define FLASH_LED_IRES12P5_MAX_CURR_MA 1600
  160. #define MAX_IRES_LEVELS 4
  161. #define FLASH_BST_PWM_OVRHD_MIN_UV 300000
  162. #define FLASH_BST_PWM_OVRHD_MAX_UV 600000
  163. /* notifier call chain for flash-led irqs */
  164. static ATOMIC_NOTIFIER_HEAD(irq_notifier_list);
  165. enum flash_charger_mitigation {
  166. FLASH_DISABLE_CHARGER_MITIGATION,
  167. FLASH_HW_CHARGER_MITIGATION_BY_ILED_THRSHLD,
  168. FLASH_SW_CHARGER_MITIGATION,
  169. };
  170. enum flash_led_type {
  171. FLASH_LED_TYPE_UNKNOWN,
  172. FLASH_LED_TYPE_FLASH,
  173. FLASH_LED_TYPE_TORCH,
  174. };
  175. enum {
  176. LED1 = 0,
  177. LED2,
  178. LED3,
  179. };
  180. enum pmic_type {
  181. PM6150L,
  182. PMI632,
  183. PM660L
  184. };
  185. enum strobe_type {
  186. SW_STROBE = 0,
  187. HW_STROBE,
  188. LPG_STROBE,
  189. };
  190. enum wa_flags {
  191. PM6150L_IRES_WA = BIT(0),
  192. };
  193. /*
  194. * Configurations for each individual LED
  195. */
  196. struct flash_node_data {
  197. struct platform_device *pdev;
  198. struct led_classdev cdev;
  199. struct pinctrl *strobe_pinctrl;
  200. struct pinctrl_state *hw_strobe_state_active;
  201. struct pinctrl_state *hw_strobe_state_suspend;
  202. int hw_strobe_gpio;
  203. int ires_ua;
  204. int default_ires_ua;
  205. int max_current;
  206. int current_ma;
  207. int prev_current_ma;
  208. u8 duration;
  209. u8 id;
  210. u8 ires_idx;
  211. u8 default_ires_idx;
  212. u8 hdrm_val;
  213. u8 current_reg_val;
  214. u8 strobe_ctrl;
  215. u8 strobe_sel;
  216. enum flash_led_type type;
  217. bool led_on;
  218. };
  219. struct flash_switch_data {
  220. struct platform_device *pdev;
  221. struct regulator *vreg;
  222. struct pinctrl *led_en_pinctrl;
  223. struct pinctrl_state *gpio_state_active;
  224. struct pinctrl_state *gpio_state_suspend;
  225. struct led_classdev cdev;
  226. int led_mask;
  227. bool regulator_on;
  228. bool enabled;
  229. bool symmetry_en;
  230. };
  231. /*
  232. * Flash LED configuration read from device tree
  233. */
  234. struct flash_led_platform_data {
  235. int *thermal_derate_current;
  236. int all_ramp_up_done_irq;
  237. int all_ramp_down_done_irq;
  238. int led_fault_irq;
  239. int ibatt_ocp_threshold_ua;
  240. int vled_max_uv;
  241. int rpara_uohm;
  242. int lmh_rbatt_threshold_uohm;
  243. int lmh_ocv_threshold_uv;
  244. int thermal_derate_slow;
  245. int thermal_derate_fast;
  246. int thermal_hysteresis;
  247. int thermal_debounce;
  248. int thermal_thrsh1;
  249. int thermal_thrsh2;
  250. int thermal_thrsh3;
  251. int ramp_up_step;
  252. int ramp_down_step;
  253. int hw_strobe_option;
  254. u32 led1n2_iclamp_low_ma;
  255. u32 led1n2_iclamp_mid_ma;
  256. u32 led3_iclamp_low_ma;
  257. u32 led3_iclamp_mid_ma;
  258. u32 bst_pwm_ovrhd_uv;
  259. u8 isc_delay;
  260. u8 warmup_delay;
  261. u8 current_derate_en_cfg;
  262. u8 vph_droop_threshold;
  263. u8 vph_droop_hysteresis;
  264. u8 vph_droop_debounce;
  265. u8 lmh_mitigation_sel;
  266. u8 chgr_mitigation_sel;
  267. u8 lmh_level;
  268. u8 iled_thrsh_val;
  269. bool hdrm_auto_mode_en;
  270. bool thermal_derate_en;
  271. bool otst_ramp_bkup_en;
  272. };
  273. enum flash_iio_props {
  274. RBATT,
  275. OCV,
  276. IBAT,
  277. F_TRIGGER,
  278. F_ACTIVE,
  279. };
  280. static char *flash_iio_prop_names[] = {
  281. [RBATT] = "rbatt",
  282. [OCV] = "voltage_ocv",
  283. [IBAT] = "current_now",
  284. [F_TRIGGER] = "flash_trigger",
  285. [F_ACTIVE] = "flash_active",
  286. };
  287. /*
  288. * Flash LED data structure containing flash LED attributes
  289. */
  290. struct qpnp_flash_led {
  291. struct flash_led_platform_data *pdata;
  292. struct platform_device *pdev;
  293. struct regmap *regmap;
  294. struct flash_node_data *fnode;
  295. struct flash_switch_data *snode;
  296. struct power_supply *usb_psy;
  297. struct iio_channel **iio_channels;
  298. struct notifier_block nb;
  299. spinlock_t lock;
  300. int num_fnodes;
  301. int num_snodes;
  302. int enable;
  303. int total_current_ma;
  304. int pmic_type;
  305. u32 wa_flags;
  306. u16 base;
  307. bool trigger_lmh;
  308. bool trigger_chgr;
  309. };
  310. static int thermal_derate_slow_table[] = {
  311. 128, 256, 512, 1024, 2048, 4096, 8192, 314592,
  312. };
  313. static int thermal_derate_fast_table[] = {
  314. 32, 64, 96, 128, 256, 384, 512,
  315. };
  316. static int otst1_threshold_table[] = {
  317. 85, 79, 73, 67, 109, 103, 97, 91,
  318. };
  319. static int otst2_threshold_table[] = {
  320. 110, 104, 98, 92, 134, 128, 122, 116,
  321. };
  322. static int otst3_threshold_table[] = {
  323. 125, 119, 113, 107, 149, 143, 137, 131,
  324. };
  325. static int max_ires_curr_ma_table[MAX_IRES_LEVELS] = {
  326. FLASH_LED_IRES12P5_MAX_CURR_MA, FLASH_LED_IRES10P0_MAX_CURR_MA,
  327. FLASH_LED_IRES7P5_MAX_CURR_MA, FLASH_LED_IRES5P0_MAX_CURR_MA
  328. };
  329. static inline int get_current_reg_code(int target_curr_ma, int ires_ua)
  330. {
  331. if (!ires_ua || !target_curr_ma || (target_curr_ma < (ires_ua / 1000)))
  332. return 0;
  333. return DIV_ROUND_CLOSEST(target_curr_ma * 1000, ires_ua) - 1;
  334. }
  335. static int qpnp_flash_led_read(struct qpnp_flash_led *led, u16 addr, u8 *data)
  336. {
  337. int rc;
  338. uint val;
  339. rc = regmap_read(led->regmap, addr, &val);
  340. if (rc < 0) {
  341. pr_err("Unable to read from 0x%04X rc = %d\n", addr, rc);
  342. return rc;
  343. }
  344. pr_debug("Read 0x%02X from addr 0x%04X\n", val, addr);
  345. *data = (u8)val;
  346. return 0;
  347. }
  348. static int qpnp_flash_led_write(struct qpnp_flash_led *led, u16 addr, u8 data)
  349. {
  350. int rc;
  351. rc = regmap_write(led->regmap, addr, data);
  352. if (rc < 0) {
  353. pr_err("Unable to write to 0x%04X rc = %d\n", addr, rc);
  354. return rc;
  355. }
  356. pr_debug("Wrote 0x%02X to addr 0x%04X\n", data, addr);
  357. return 0;
  358. }
  359. static int
  360. qpnp_flash_led_masked_read(struct qpnp_flash_led *led, u16 addr, u8 mask,
  361. u8 *val)
  362. {
  363. int rc;
  364. rc = qpnp_flash_led_read(led, addr, val);
  365. if (rc < 0)
  366. return rc;
  367. *val &= mask;
  368. return rc;
  369. }
  370. static int
  371. qpnp_flash_led_masked_write(struct qpnp_flash_led *led, u16 addr, u8 mask,
  372. u8 val)
  373. {
  374. int rc;
  375. rc = regmap_update_bits(led->regmap, addr, mask, val);
  376. if (rc < 0)
  377. pr_err("Unable to update bits from 0x%04X, rc = %d\n", addr,
  378. rc);
  379. else
  380. pr_debug("Wrote 0x%02X to addr 0x%04X\n", val, addr);
  381. return rc;
  382. }
  383. static enum
  384. led_brightness qpnp_flash_led_brightness_get(struct led_classdev *led_cdev)
  385. {
  386. return led_cdev->brightness;
  387. }
  388. static int qpnp_flash_led_headroom_config(struct qpnp_flash_led *led)
  389. {
  390. int rc, i, addr_offset;
  391. for (i = 0; i < led->num_fnodes; i++) {
  392. addr_offset = led->fnode[i].id;
  393. rc = qpnp_flash_led_write(led,
  394. FLASH_LED_REG_HDRM_PRGM(led->base + addr_offset),
  395. led->fnode[i].hdrm_val);
  396. if (rc < 0)
  397. return rc;
  398. }
  399. return rc;
  400. }
  401. static int qpnp_flash_led_safety_tmr_config(struct qpnp_flash_led *led)
  402. {
  403. int rc = 0, i, addr_offset;
  404. for (i = 0; i < led->num_fnodes; i++) {
  405. addr_offset = led->fnode[i].id;
  406. rc = qpnp_flash_led_write(led,
  407. FLASH_LED_REG_SAFETY_TMR(led->base + addr_offset),
  408. FLASH_LED_SAFETY_TMR_DISABLED);
  409. if (rc < 0)
  410. return rc;
  411. }
  412. return rc;
  413. }
  414. static int qpnp_flash_led_strobe_config(struct qpnp_flash_led *led)
  415. {
  416. int i, rc, addr_offset;
  417. u8 val = 0, mask, strobe_mask = 0, strobe_ctrl;
  418. for (i = 0; i < led->num_fnodes; i++) {
  419. val |= 0x1 << led->fnode[i].id;
  420. if (led->fnode[i].strobe_sel == HW_STROBE) {
  421. if (led->fnode[i].id == LED3)
  422. strobe_mask |= LED3_FLASH_ONCE_ONLY_BIT;
  423. else
  424. strobe_mask |= LED1N2_FLASH_ONCE_ONLY_BIT;
  425. }
  426. if (led->fnode[i].id == LED3 &&
  427. led->fnode[i].strobe_sel == LPG_STROBE)
  428. strobe_mask |= LED3_FLASH_ONCE_ONLY_BIT;
  429. /*
  430. * As per the hardware recommendation, to use LED2/LED3 in HW
  431. * strobe mode, LED1 should be set to HW strobe mode as well.
  432. */
  433. if (led->fnode[i].strobe_sel == HW_STROBE &&
  434. (led->fnode[i].id == LED2 || led->fnode[i].id == LED3)) {
  435. mask = FLASH_HW_STROBE_MASK;
  436. addr_offset = led->fnode[LED1].id;
  437. /*
  438. * HW_STROBE: enable, TRIGGER: level,
  439. * POLARITY: active high
  440. */
  441. strobe_ctrl = BIT(2) | BIT(0);
  442. rc = qpnp_flash_led_masked_write(led,
  443. FLASH_LED_REG_STROBE_CTRL(
  444. led->base + addr_offset),
  445. mask, strobe_ctrl);
  446. if (rc < 0)
  447. return rc;
  448. }
  449. }
  450. rc = qpnp_flash_led_masked_write(led,
  451. FLASH_LED_REG_MULTI_STROBE_CTRL(led->base),
  452. strobe_mask, 0);
  453. if (rc < 0)
  454. return rc;
  455. if (led->fnode[LED3].strobe_sel == LPG_STROBE) {
  456. rc = qpnp_flash_led_masked_write(led,
  457. FLASH_LED_REG_LPG_INPUT_CTRL(led->base),
  458. LPG_INPUT_SEL_BIT, LPG_INPUT_SEL_BIT);
  459. if (rc < 0)
  460. return rc;
  461. }
  462. return rc;
  463. }
  464. static int qpnp_flash_led_thermal_config(struct qpnp_flash_led *led)
  465. {
  466. int rc;
  467. u8 val, mask;
  468. val = (led->pdata->otst_ramp_bkup_en << THERMAL_OTST1_RAMP_CTRL_SHIFT);
  469. mask = THERMAL_OTST1_RAMP_CTRL_MASK;
  470. if (led->pdata->thermal_derate_slow >= 0) {
  471. val |= (led->pdata->thermal_derate_slow <<
  472. THERMAL_DERATE_SLOW_SHIFT);
  473. mask |= THERMAL_DERATE_SLOW_MASK;
  474. }
  475. if (led->pdata->thermal_derate_fast >= 0) {
  476. val |= led->pdata->thermal_derate_fast;
  477. mask |= THERMAL_DERATE_FAST_MASK;
  478. }
  479. rc = qpnp_flash_led_masked_write(led,
  480. FLASH_LED_REG_THERMAL_RMP_DN_RATE(led->base),
  481. mask, val);
  482. if (rc < 0)
  483. return rc;
  484. if (led->pdata->thermal_debounce >= 0) {
  485. rc = qpnp_flash_led_masked_write(led,
  486. FLASH_LED_REG_THERMAL_DEBOUNCE(led->base),
  487. FLASH_LED_THERMAL_DEBOUNCE_MASK,
  488. led->pdata->thermal_debounce);
  489. if (rc < 0)
  490. return rc;
  491. }
  492. if (led->pdata->thermal_hysteresis >= 0) {
  493. rc = qpnp_flash_led_masked_write(led,
  494. FLASH_LED_REG_THERMAL_HYSTERESIS(led->base),
  495. FLASH_LED_THERMAL_HYSTERESIS_MASK,
  496. led->pdata->thermal_hysteresis);
  497. if (rc < 0)
  498. return rc;
  499. }
  500. if (led->pdata->thermal_thrsh1 >= 0) {
  501. rc = qpnp_flash_led_masked_write(led,
  502. FLASH_LED_REG_THERMAL_THRSH1(led->base),
  503. FLASH_LED_THERMAL_THRSH_MASK,
  504. led->pdata->thermal_thrsh1);
  505. if (rc < 0)
  506. return rc;
  507. }
  508. if (led->pdata->thermal_thrsh2 >= 0) {
  509. rc = qpnp_flash_led_masked_write(led,
  510. FLASH_LED_REG_THERMAL_THRSH2(led->base),
  511. FLASH_LED_THERMAL_THRSH_MASK,
  512. led->pdata->thermal_thrsh2);
  513. if (rc < 0)
  514. return rc;
  515. }
  516. if (led->pdata->thermal_thrsh3 >= 0) {
  517. rc = qpnp_flash_led_masked_write(led,
  518. FLASH_LED_REG_THERMAL_THRSH3(led->base),
  519. FLASH_LED_THERMAL_THRSH_MASK,
  520. led->pdata->thermal_thrsh3);
  521. if (rc < 0)
  522. return rc;
  523. }
  524. return rc;
  525. }
  526. static int qpnp_flash_led_init_settings(struct qpnp_flash_led *led)
  527. {
  528. int rc;
  529. u8 val = 0;
  530. rc = qpnp_flash_led_headroom_config(led);
  531. if (rc < 0)
  532. return rc;
  533. rc = qpnp_flash_led_safety_tmr_config(led);
  534. if (rc < 0)
  535. return rc;
  536. rc = qpnp_flash_led_strobe_config(led);
  537. if (rc < 0)
  538. return rc;
  539. rc = qpnp_flash_led_write(led,
  540. FLASH_LED_REG_HDRM_AUTO_MODE_CTRL(led->base),
  541. val);
  542. if (rc < 0)
  543. return rc;
  544. rc = qpnp_flash_led_masked_write(led,
  545. FLASH_LED_REG_ISC_DELAY(led->base),
  546. FLASH_LED_ISC_WARMUP_DELAY_MASK,
  547. led->pdata->isc_delay);
  548. if (rc < 0)
  549. return rc;
  550. rc = qpnp_flash_led_masked_write(led,
  551. FLASH_LED_REG_WARMUP_DELAY(led->base),
  552. FLASH_LED_ISC_WARMUP_DELAY_MASK,
  553. led->pdata->warmup_delay);
  554. if (rc < 0)
  555. return rc;
  556. rc = qpnp_flash_led_masked_write(led,
  557. FLASH_LED_REG_CURRENT_DERATE_EN(led->base),
  558. FLASH_LED_CURRENT_DERATE_EN_MASK,
  559. led->pdata->current_derate_en_cfg);
  560. if (rc < 0)
  561. return rc;
  562. rc = qpnp_flash_led_thermal_config(led);
  563. if (rc < 0)
  564. return rc;
  565. val = led->pdata->ramp_up_step << FLASH_LED_RAMP_UP_STEP_SHIFT;
  566. val |= led->pdata->ramp_down_step;
  567. rc = qpnp_flash_led_masked_write(led,
  568. FLASH_LED_REG_RGLR_RAMP_RATE(led->base),
  569. FLASH_LED_RAMP_UP_STEP_MASK | FLASH_LED_RAMP_DOWN_STEP_MASK,
  570. val);
  571. if (rc < 0)
  572. return rc;
  573. rc = qpnp_flash_led_masked_write(led,
  574. FLASH_LED_REG_VPH_DROOP_DEBOUNCE(led->base),
  575. FLASH_LED_VPH_DROOP_DEBOUNCE_MASK,
  576. led->pdata->vph_droop_debounce);
  577. if (rc < 0)
  578. return rc;
  579. rc = qpnp_flash_led_masked_write(led,
  580. FLASH_LED_REG_VPH_DROOP_THRESHOLD(led->base),
  581. FLASH_LED_VPH_DROOP_THRESHOLD_MASK,
  582. led->pdata->vph_droop_threshold);
  583. if (rc < 0)
  584. return rc;
  585. rc = qpnp_flash_led_masked_write(led,
  586. FLASH_LED_REG_VPH_DROOP_THRESHOLD(led->base),
  587. FLASH_LED_VPH_DROOP_HYSTERESIS_MASK,
  588. led->pdata->vph_droop_hysteresis);
  589. if (rc < 0)
  590. return rc;
  591. rc = qpnp_flash_led_masked_write(led,
  592. FLASH_LED_REG_MITIGATION_SEL(led->base),
  593. FLASH_LED_LMH_MITIGATION_SEL_MASK,
  594. led->pdata->lmh_mitigation_sel);
  595. if (rc < 0)
  596. return rc;
  597. val = led->pdata->chgr_mitigation_sel
  598. << FLASH_LED_CHGR_MITIGATION_SEL_SHIFT;
  599. rc = qpnp_flash_led_masked_write(led,
  600. FLASH_LED_REG_MITIGATION_SEL(led->base),
  601. FLASH_LED_CHGR_MITIGATION_SEL_MASK,
  602. val);
  603. if (rc < 0)
  604. return rc;
  605. rc = qpnp_flash_led_masked_write(led,
  606. FLASH_LED_REG_LMH_LEVEL(led->base),
  607. FLASH_LED_LMH_LEVEL_MASK,
  608. led->pdata->lmh_level);
  609. if (rc < 0)
  610. return rc;
  611. rc = qpnp_flash_led_masked_write(led,
  612. FLASH_LED_REG_ILED_GRT_THRSH(led->base),
  613. FLASH_LED_ILED_GRT_THRSH_MASK,
  614. led->pdata->iled_thrsh_val);
  615. if (rc < 0)
  616. return rc;
  617. if (led->pdata->led1n2_iclamp_low_ma) {
  618. val = get_current_reg_code(led->pdata->led1n2_iclamp_low_ma,
  619. led->fnode[LED1].ires_ua);
  620. rc = qpnp_flash_led_masked_write(led,
  621. FLASH_LED_REG_LED1N2_ICLAMP_LOW(led->base),
  622. FLASH_LED_CURRENT_MASK, val);
  623. if (rc < 0)
  624. return rc;
  625. }
  626. if (led->pdata->led1n2_iclamp_mid_ma) {
  627. val = get_current_reg_code(led->pdata->led1n2_iclamp_mid_ma,
  628. led->fnode[LED1].ires_ua);
  629. rc = qpnp_flash_led_masked_write(led,
  630. FLASH_LED_REG_LED1N2_ICLAMP_MID(led->base),
  631. FLASH_LED_CURRENT_MASK, val);
  632. if (rc < 0)
  633. return rc;
  634. }
  635. if (led->pdata->led3_iclamp_low_ma) {
  636. val = get_current_reg_code(led->pdata->led3_iclamp_low_ma,
  637. led->fnode[LED3].ires_ua);
  638. rc = qpnp_flash_led_masked_write(led,
  639. FLASH_LED_REG_LED3_ICLAMP_LOW(led->base),
  640. FLASH_LED_CURRENT_MASK, val);
  641. if (rc < 0)
  642. return rc;
  643. }
  644. if (led->pdata->led3_iclamp_mid_ma) {
  645. val = get_current_reg_code(led->pdata->led3_iclamp_mid_ma,
  646. led->fnode[LED3].ires_ua);
  647. rc = qpnp_flash_led_masked_write(led,
  648. FLASH_LED_REG_LED3_ICLAMP_MID(led->base),
  649. FLASH_LED_CURRENT_MASK, val);
  650. if (rc < 0)
  651. return rc;
  652. }
  653. if (led->pdata->hw_strobe_option > 0) {
  654. rc = qpnp_flash_led_masked_write(led,
  655. FLASH_LED_REG_STROBE_CFG(led->base),
  656. FLASH_LED_STROBE_MASK,
  657. led->pdata->hw_strobe_option);
  658. if (rc < 0)
  659. return rc;
  660. }
  661. return 0;
  662. }
  663. static int qpnp_flash_led_hw_strobe_enable(struct flash_node_data *fnode,
  664. int hw_strobe_option, bool on)
  665. {
  666. int rc = 0;
  667. /*
  668. * If the LED controlled by this fnode is not GPIO controlled
  669. * for the given strobe_option, return.
  670. */
  671. if (hw_strobe_option == FLASH_LED_HW_STROBE_OPTION_1)
  672. return 0;
  673. else if (hw_strobe_option == FLASH_LED_HW_STROBE_OPTION_2
  674. && fnode->id != LED3)
  675. return 0;
  676. else if (hw_strobe_option == FLASH_LED_HW_STROBE_OPTION_3
  677. && fnode->id == LED1)
  678. return 0;
  679. if (gpio_is_valid(fnode->hw_strobe_gpio)) {
  680. gpio_set_value(fnode->hw_strobe_gpio, on ? 1 : 0);
  681. } else if (fnode->strobe_pinctrl && fnode->hw_strobe_state_active &&
  682. fnode->hw_strobe_state_suspend) {
  683. rc = pinctrl_select_state(fnode->strobe_pinctrl,
  684. on ? fnode->hw_strobe_state_active :
  685. fnode->hw_strobe_state_suspend);
  686. if (rc < 0) {
  687. pr_err("failed to change hw strobe pin state\n");
  688. return rc;
  689. }
  690. }
  691. return rc;
  692. }
  693. static int qpnp_flash_led_regulator_enable(struct qpnp_flash_led *led,
  694. struct flash_switch_data *snode, bool on)
  695. {
  696. int rc = 0;
  697. if (!snode || !snode->vreg)
  698. return 0;
  699. if (snode->regulator_on == on)
  700. return 0;
  701. if (on)
  702. rc = regulator_enable(snode->vreg);
  703. else
  704. rc = regulator_disable(snode->vreg);
  705. if (rc < 0) {
  706. pr_err("regulator_%s failed, rc=%d\n",
  707. on ? "enable" : "disable", rc);
  708. return rc;
  709. }
  710. snode->regulator_on = on ? true : false;
  711. return 0;
  712. }
  713. static int qpnp_flash_get_iio_chan(struct qpnp_flash_led *led,
  714. enum flash_iio_props chan)
  715. {
  716. int rc = 0;
  717. /*
  718. * if the channel pointer is not-NULL and has a ERR value it has
  719. * already been queried upon earlier, hence return from here.
  720. */
  721. if (IS_ERR(led->iio_channels[chan]))
  722. return -EINVAL;
  723. if (!led->iio_channels[chan]) {
  724. led->iio_channels[chan] = devm_iio_channel_get(&led->pdev->dev,
  725. flash_iio_prop_names[chan]);
  726. if (IS_ERR(led->iio_channels[chan])) {
  727. rc = PTR_ERR(led->iio_channels[chan]);
  728. if (rc == -EPROBE_DEFER) {
  729. led->iio_channels[chan] = NULL;
  730. return rc;
  731. }
  732. pr_err("%s channel unavailable %d\n",
  733. flash_iio_prop_names[chan], rc);
  734. return rc;
  735. }
  736. }
  737. return 0;
  738. }
  739. static int qpnp_flash_iio_getprop(struct qpnp_flash_led *led,
  740. enum flash_iio_props chan, int *data)
  741. {
  742. int rc = 0;
  743. rc = qpnp_flash_get_iio_chan(led, chan);
  744. if (rc < 0)
  745. return rc;
  746. rc = iio_read_channel_processed(led->iio_channels[chan], data);
  747. if (rc < 0)
  748. pr_err("Error in reading IIO channel data rc = %d\n", rc);
  749. return rc;
  750. }
  751. static int qpnp_flash_iio_setprop(struct qpnp_flash_led *led,
  752. enum flash_iio_props chan, int data)
  753. {
  754. int rc = 0;
  755. rc = qpnp_flash_get_iio_chan(led, chan);
  756. if (rc < 0)
  757. return rc;
  758. rc = iio_write_channel_raw(led->iio_channels[chan], data);
  759. if (rc < 0)
  760. pr_err("Error in writing IIO channel data rc = %d\n", rc);
  761. return rc;
  762. }
  763. #define VOLTAGE_HDRM_DEFAULT_MV 350
  764. #define BHARGER_VOLTAGE_HDRM_DEFAULT_MV 400
  765. #define BHARGER_HEADROOM_OFFSET_MV 50
  766. static int qpnp_flash_led_get_voltage_headroom(struct qpnp_flash_led *led)
  767. {
  768. int i, voltage_hdrm_mv = 0, voltage_hdrm_max = 0;
  769. for (i = 0; i < led->num_fnodes; i++) {
  770. if (led->fnode[i].led_on) {
  771. if (led->fnode[i].id < 2) {
  772. if (led->fnode[i].current_ma < 750)
  773. voltage_hdrm_mv = 125;
  774. else if (led->fnode[i].current_ma < 1000)
  775. voltage_hdrm_mv = 175;
  776. else if (led->fnode[i].current_ma < 1250)
  777. voltage_hdrm_mv = 250;
  778. else
  779. voltage_hdrm_mv = 350;
  780. } else {
  781. if (led->fnode[i].current_ma < 375)
  782. voltage_hdrm_mv = 125;
  783. else if (led->fnode[i].current_ma < 500)
  784. voltage_hdrm_mv = 175;
  785. else if (led->fnode[i].current_ma < 625)
  786. voltage_hdrm_mv = 250;
  787. else
  788. voltage_hdrm_mv = 350;
  789. }
  790. if (led->pmic_type == PMI632)
  791. voltage_hdrm_mv += BHARGER_HEADROOM_OFFSET_MV;
  792. voltage_hdrm_max = max(voltage_hdrm_max,
  793. voltage_hdrm_mv);
  794. }
  795. }
  796. if (!voltage_hdrm_max)
  797. return (led->pmic_type == PMI632) ?
  798. BHARGER_VOLTAGE_HDRM_DEFAULT_MV :
  799. VOLTAGE_HDRM_DEFAULT_MV;
  800. return voltage_hdrm_max;
  801. }
  802. #define UCONV 1000000LL
  803. #define MCONV 1000LL
  804. #define FLASH_VDIP_MARGIN 50000
  805. #define BOB_EFFICIENCY 900LL
  806. #define VIN_FLASH_MIN_UV 3300000LL
  807. static int qpnp_flash_led_calc_max_current(struct qpnp_flash_led *led,
  808. int *max_current)
  809. {
  810. int ocv_uv, ibat_now, voltage_hdrm_mv, rc;
  811. int rbatt_uohm = 0;
  812. int64_t ibat_flash_ua, avail_flash_ua, avail_flash_power_fw;
  813. int64_t ibat_safe_ua, vin_flash_uv, vph_flash_uv, vph_flash_vdip;
  814. /* RESISTANCE = esr_uohm + rslow_uohm */
  815. rc = qpnp_flash_iio_getprop(led, RBATT, &rbatt_uohm);
  816. /* Do not return error if the QG driver is not probed */
  817. if (rc == -EPROBE_DEFER) {
  818. *max_current = FLASH_LED_MAX_TOTAL_CURRENT_MA;
  819. return 0;
  820. } else if (rc < 0) {
  821. pr_err("Unable to read battery resistance, rc=%d\n", rc);
  822. return rc;
  823. }
  824. /* If no battery is connected, return max possible flash current */
  825. if (!rbatt_uohm) {
  826. *max_current = FLASH_LED_MAX_TOTAL_CURRENT_MA;
  827. return 0;
  828. }
  829. rc = qpnp_flash_iio_getprop(led, OCV, &ocv_uv);
  830. if (rc < 0) {
  831. pr_err("Unable to read OCV, rc=%d\n", rc);
  832. return rc;
  833. }
  834. rc = qpnp_flash_iio_getprop(led, IBAT, &ibat_now);
  835. if (rc < 0) {
  836. pr_err("unable to read current_now, rc=%d\n", rc);
  837. return rc;
  838. }
  839. rbatt_uohm += led->pdata->rpara_uohm;
  840. voltage_hdrm_mv = qpnp_flash_led_get_voltage_headroom(led);
  841. vph_flash_vdip =
  842. VPH_DROOP_THRESH_VAL_TO_UV(led->pdata->vph_droop_threshold)
  843. + FLASH_VDIP_MARGIN;
  844. /* Check if LMH_MITIGATION needs to be triggered */
  845. if (!led->trigger_lmh && (ocv_uv < led->pdata->lmh_ocv_threshold_uv ||
  846. rbatt_uohm > led->pdata->lmh_rbatt_threshold_uohm)) {
  847. led->trigger_lmh = true;
  848. rc = qpnp_flash_led_masked_write(led,
  849. FLASH_LED_REG_MITIGATION_SW(led->base),
  850. FLASH_LED_LMH_MITIGATION_EN_MASK,
  851. FLASH_LED_LMH_MITIGATION_ENABLE);
  852. if (rc < 0) {
  853. pr_err("trigger lmh mitigation failed, rc=%d\n", rc);
  854. return rc;
  855. }
  856. /* Wait for LMH mitigation to take effect */
  857. udelay(100);
  858. return qpnp_flash_led_calc_max_current(led, max_current);
  859. }
  860. /*
  861. * Calculate the maximum current that can pulled out of the battery
  862. * before the battery voltage dips below a safe threshold.
  863. */
  864. ibat_safe_ua = div_s64((ocv_uv - vph_flash_vdip) * UCONV,
  865. rbatt_uohm);
  866. if (ibat_safe_ua <= led->pdata->ibatt_ocp_threshold_ua) {
  867. /*
  868. * If the calculated current is below the OCP threshold, then
  869. * use it as the possible flash current.
  870. */
  871. ibat_flash_ua = ibat_safe_ua - ibat_now;
  872. vph_flash_uv = vph_flash_vdip;
  873. } else {
  874. /*
  875. * If the calculated current is above the OCP threshold, then
  876. * use the ocp threshold instead.
  877. *
  878. * Any higher current will be tripping the battery OCP.
  879. */
  880. ibat_flash_ua = led->pdata->ibatt_ocp_threshold_ua - ibat_now;
  881. vph_flash_uv = ocv_uv - div64_s64((int64_t)rbatt_uohm
  882. * led->pdata->ibatt_ocp_threshold_ua, UCONV);
  883. }
  884. /* Calculate the input voltage of the flash module. */
  885. vin_flash_uv = max((led->pdata->vled_max_uv +
  886. (voltage_hdrm_mv * MCONV)), VIN_FLASH_MIN_UV);
  887. /* Calculate the available power for the flash module. */
  888. avail_flash_power_fw = BOB_EFFICIENCY * vph_flash_uv * ibat_flash_ua;
  889. /*
  890. * Calculate the available amount of current the flash module can draw
  891. * before collapsing the battery. (available power/ flash input voltage)
  892. */
  893. avail_flash_ua = div64_s64(avail_flash_power_fw, vin_flash_uv * MCONV);
  894. pr_debug("avail_iflash=%lld, ocv=%d, ibat=%d, rbatt=%d, trigger_lmh=%d\n",
  895. avail_flash_ua, ocv_uv, ibat_now, rbatt_uohm, led->trigger_lmh);
  896. *max_current = min(FLASH_LED_MAX_TOTAL_CURRENT_MA,
  897. (int)(div64_s64(avail_flash_ua, MCONV)));
  898. return 0;
  899. }
  900. static int is_usb_psy_available(struct qpnp_flash_led *led)
  901. {
  902. if (!led->usb_psy) {
  903. led->usb_psy = power_supply_get_by_name("usb");
  904. if (!led->usb_psy) {
  905. pr_err_ratelimited("Couldn't get usb_psy\n");
  906. return -ENODEV;
  907. }
  908. }
  909. return 0;
  910. }
  911. #define CHGBST_EFFICIENCY 800LL
  912. #define CHGBST_FLASH_VDIP_MARGIN 10000
  913. #define VIN_FLASH_UV 5000000
  914. #define BHARGER_FLASH_LED_MAX_TOTAL_CURRENT_MA 1500
  915. #define BHARGER_FLASH_LED_WITH_OTG_MAX_TOTAL_CURRENT_MA 1100
  916. static int qpnp_flash_led_calc_bharger_max_current(struct qpnp_flash_led *led,
  917. int *max_current)
  918. {
  919. union power_supply_propval pval = {0, };
  920. int ocv_uv, ibat_now, voltage_hdrm_mv, flash_led_max_total_curr_ma, rc;
  921. int rbatt_uohm = 0, usb_present, otg_enable;
  922. int64_t ibat_flash_ua, avail_flash_ua, avail_flash_power_fw;
  923. int64_t ibat_safe_ua, vin_flash_uv, vph_flash_uv, vph_flash_vdip;
  924. int64_t bst_pwm_ovrhd_uv;
  925. rc = is_usb_psy_available(led);
  926. if (rc < 0)
  927. return rc;
  928. rc = power_supply_get_property(led->usb_psy, POWER_SUPPLY_PROP_SCOPE,
  929. &pval);
  930. if (rc < 0) {
  931. pr_err("usb psy does not support usb present, rc=%d\n", rc);
  932. return rc;
  933. }
  934. otg_enable = pval.intval;
  935. /* RESISTANCE = esr_uohm + rslow_uohm */
  936. rc = qpnp_flash_iio_getprop(led, RBATT, &rbatt_uohm);
  937. /* Do not return error if the QG driver is not probed */
  938. if (rc == -EPROBE_DEFER) {
  939. *max_current = FLASH_LED_MAX_TOTAL_CURRENT_MA;
  940. return 0;
  941. } else if (rc < 0) {
  942. pr_err("Unable to read battery resistance, rc=%d\n", rc);
  943. return rc;
  944. }
  945. /* If no battery is connected, return max possible flash current */
  946. if (!rbatt_uohm) {
  947. *max_current = (otg_enable == POWER_SUPPLY_SCOPE_SYSTEM) ?
  948. BHARGER_FLASH_LED_WITH_OTG_MAX_TOTAL_CURRENT_MA :
  949. BHARGER_FLASH_LED_MAX_TOTAL_CURRENT_MA;
  950. return 0;
  951. }
  952. rc = qpnp_flash_iio_getprop(led, OCV, &ocv_uv);
  953. if (rc < 0) {
  954. pr_err("Unable to read OCV, rc=%d\n", rc);
  955. return rc;
  956. }
  957. rc = qpnp_flash_iio_getprop(led, IBAT, &ibat_now);
  958. if (rc < 0) {
  959. pr_err("Unable to read current, rc=%d\n", rc);
  960. return rc;
  961. }
  962. bst_pwm_ovrhd_uv = led->pdata->bst_pwm_ovrhd_uv;
  963. rc = power_supply_get_property(led->usb_psy, POWER_SUPPLY_PROP_PRESENT,
  964. &pval);
  965. if (rc < 0) {
  966. pr_err("usb psy does not support usb present, rc=%d\n", rc);
  967. return rc;
  968. }
  969. usb_present = pval.intval;
  970. rbatt_uohm += led->pdata->rpara_uohm;
  971. voltage_hdrm_mv = qpnp_flash_led_get_voltage_headroom(led);
  972. vph_flash_vdip =
  973. VPH_DROOP_THRESH_VAL_TO_UV(led->pdata->vph_droop_threshold)
  974. + CHGBST_FLASH_VDIP_MARGIN;
  975. /* Check if LMH_MITIGATION needs to be triggered */
  976. if (!led->trigger_lmh && (ocv_uv < led->pdata->lmh_ocv_threshold_uv ||
  977. rbatt_uohm > led->pdata->lmh_rbatt_threshold_uohm)) {
  978. led->trigger_lmh = true;
  979. rc = qpnp_flash_led_masked_write(led,
  980. FLASH_LED_REG_MITIGATION_SW(led->base),
  981. FLASH_LED_LMH_MITIGATION_EN_MASK,
  982. FLASH_LED_LMH_MITIGATION_ENABLE);
  983. if (rc < 0) {
  984. pr_err("trigger lmh mitigation failed, rc=%d\n", rc);
  985. return rc;
  986. }
  987. /* Wait for LMH mitigation to take effect */
  988. udelay(100);
  989. return qpnp_flash_led_calc_bharger_max_current(led,
  990. max_current);
  991. }
  992. /*
  993. * Calculate the maximum current that can pulled out of the battery
  994. * before the battery voltage dips below a safe threshold.
  995. */
  996. ibat_safe_ua = div_s64((ocv_uv - vph_flash_vdip) * UCONV,
  997. rbatt_uohm);
  998. if (ibat_safe_ua <= led->pdata->ibatt_ocp_threshold_ua) {
  999. /*
  1000. * If the calculated current is below the OCP threshold, then
  1001. * use it as the possible flash current.
  1002. */
  1003. ibat_flash_ua = ibat_safe_ua - ibat_now;
  1004. vph_flash_uv = vph_flash_vdip;
  1005. } else {
  1006. /*
  1007. * If the calculated current is above the OCP threshold, then
  1008. * use the ocp threshold instead.
  1009. *
  1010. * Any higher current will be tripping the battery OCP.
  1011. */
  1012. ibat_flash_ua = led->pdata->ibatt_ocp_threshold_ua - ibat_now;
  1013. vph_flash_uv = ocv_uv - div64_s64((int64_t)rbatt_uohm
  1014. * led->pdata->ibatt_ocp_threshold_ua, UCONV);
  1015. }
  1016. /* when USB is present or OTG is enabled, VIN_FLASH is always at 5V */
  1017. if (usb_present || (otg_enable == POWER_SUPPLY_SCOPE_SYSTEM))
  1018. vin_flash_uv = VIN_FLASH_UV;
  1019. else
  1020. /* Calculate the input voltage of the flash module. */
  1021. vin_flash_uv = max((led->pdata->vled_max_uv +
  1022. (voltage_hdrm_mv * MCONV)),
  1023. vph_flash_uv + bst_pwm_ovrhd_uv);
  1024. /* Calculate the available power for the flash module. */
  1025. avail_flash_power_fw = CHGBST_EFFICIENCY * vph_flash_uv * ibat_flash_ua;
  1026. /*
  1027. * Calculate the available amount of current the flash module can draw
  1028. * before collapsing the battery. (available power/ flash input voltage)
  1029. */
  1030. avail_flash_ua = div64_s64(avail_flash_power_fw, vin_flash_uv * MCONV);
  1031. flash_led_max_total_curr_ma = otg_enable ?
  1032. BHARGER_FLASH_LED_WITH_OTG_MAX_TOTAL_CURRENT_MA :
  1033. BHARGER_FLASH_LED_MAX_TOTAL_CURRENT_MA;
  1034. *max_current = min(flash_led_max_total_curr_ma,
  1035. (int)(div64_s64(avail_flash_ua, MCONV)));
  1036. pr_debug("avail_iflash=%lld, ocv=%d, ibat=%d, rbatt=%d, trigger_lmh=%d max_current=%lld usb_present=%d otg_enable=%d\n",
  1037. avail_flash_ua, ocv_uv, ibat_now, rbatt_uohm, led->trigger_lmh,
  1038. (*max_current * MCONV), usb_present, otg_enable);
  1039. return 0;
  1040. }
  1041. static int qpnp_flash_led_calc_thermal_current_lim(struct qpnp_flash_led *led,
  1042. int *thermal_current_lim)
  1043. {
  1044. int rc;
  1045. u8 thermal_thrsh1, thermal_thrsh2, thermal_thrsh3, otst_status;
  1046. /* Store THERMAL_THRSHx register values */
  1047. rc = qpnp_flash_led_masked_read(led,
  1048. FLASH_LED_REG_THERMAL_THRSH1(led->base),
  1049. FLASH_LED_THERMAL_THRSH_MASK,
  1050. &thermal_thrsh1);
  1051. if (rc < 0)
  1052. return rc;
  1053. rc = qpnp_flash_led_masked_read(led,
  1054. FLASH_LED_REG_THERMAL_THRSH2(led->base),
  1055. FLASH_LED_THERMAL_THRSH_MASK,
  1056. &thermal_thrsh2);
  1057. if (rc < 0)
  1058. return rc;
  1059. rc = qpnp_flash_led_masked_read(led,
  1060. FLASH_LED_REG_THERMAL_THRSH3(led->base),
  1061. FLASH_LED_THERMAL_THRSH_MASK,
  1062. &thermal_thrsh3);
  1063. if (rc < 0)
  1064. return rc;
  1065. /* Lower THERMAL_THRSHx thresholds to minimum */
  1066. rc = qpnp_flash_led_masked_write(led,
  1067. FLASH_LED_REG_THERMAL_THRSH1(led->base),
  1068. FLASH_LED_THERMAL_THRSH_MASK,
  1069. FLASH_LED_THERMAL_THRSH_MIN);
  1070. if (rc < 0)
  1071. return rc;
  1072. rc = qpnp_flash_led_masked_write(led,
  1073. FLASH_LED_REG_THERMAL_THRSH2(led->base),
  1074. FLASH_LED_THERMAL_THRSH_MASK,
  1075. FLASH_LED_THERMAL_THRSH_MIN);
  1076. if (rc < 0)
  1077. return rc;
  1078. rc = qpnp_flash_led_masked_write(led,
  1079. FLASH_LED_REG_THERMAL_THRSH3(led->base),
  1080. FLASH_LED_THERMAL_THRSH_MASK,
  1081. FLASH_LED_THERMAL_THRSH_MIN);
  1082. if (rc < 0)
  1083. return rc;
  1084. /* Check THERMAL_OTST status */
  1085. rc = qpnp_flash_led_read(led,
  1086. FLASH_LED_REG_LED_STATUS2(led->base),
  1087. &otst_status);
  1088. if (rc < 0)
  1089. return rc;
  1090. otst_status &= FLASH_LED_THERMAL_OTST_MASK;
  1091. /* Look up current limit based on THERMAL_OTST status */
  1092. if (otst_status)
  1093. *thermal_current_lim =
  1094. led->pdata->thermal_derate_current[otst_status >> 1];
  1095. /* Restore THERMAL_THRESHx registers to original values */
  1096. rc = qpnp_flash_led_masked_write(led,
  1097. FLASH_LED_REG_THERMAL_THRSH1(led->base),
  1098. FLASH_LED_THERMAL_THRSH_MASK,
  1099. thermal_thrsh1);
  1100. if (rc < 0)
  1101. return rc;
  1102. rc = qpnp_flash_led_masked_write(led,
  1103. FLASH_LED_REG_THERMAL_THRSH2(led->base),
  1104. FLASH_LED_THERMAL_THRSH_MASK,
  1105. thermal_thrsh2);
  1106. if (rc < 0)
  1107. return rc;
  1108. rc = qpnp_flash_led_masked_write(led,
  1109. FLASH_LED_REG_THERMAL_THRSH3(led->base),
  1110. FLASH_LED_THERMAL_THRSH_MASK,
  1111. thermal_thrsh3);
  1112. if (rc < 0)
  1113. return rc;
  1114. return 0;
  1115. }
  1116. static int qpnp_flash_led_get_max_avail_current(struct qpnp_flash_led *led,
  1117. int *max_avail_current)
  1118. {
  1119. int thermal_current_lim = 0, rc;
  1120. led->trigger_lmh = false;
  1121. if (led->pmic_type == PMI632)
  1122. rc = qpnp_flash_led_calc_bharger_max_current(led,
  1123. max_avail_current);
  1124. else
  1125. rc = qpnp_flash_led_calc_max_current(led, max_avail_current);
  1126. if (rc < 0) {
  1127. pr_err("Couldn't calculate max_avail_current, rc=%d\n", rc);
  1128. return rc;
  1129. }
  1130. if (led->pdata->thermal_derate_en) {
  1131. rc = qpnp_flash_led_calc_thermal_current_lim(led,
  1132. &thermal_current_lim);
  1133. if (rc < 0) {
  1134. pr_err("Couldn't calculate thermal_current_lim, rc=%d\n",
  1135. rc);
  1136. return rc;
  1137. }
  1138. }
  1139. if (thermal_current_lim)
  1140. *max_avail_current = min(*max_avail_current,
  1141. thermal_current_lim);
  1142. return 0;
  1143. }
  1144. static void qpnp_flash_led_aggregate_max_current(struct flash_node_data *fnode)
  1145. {
  1146. struct qpnp_flash_led *led = dev_get_drvdata(&fnode->pdev->dev);
  1147. if (fnode->current_ma)
  1148. led->total_current_ma += fnode->current_ma
  1149. - fnode->prev_current_ma;
  1150. else
  1151. led->total_current_ma -= fnode->prev_current_ma;
  1152. fnode->prev_current_ma = fnode->current_ma;
  1153. }
  1154. static void qpnp_flash_led_node_set(struct flash_node_data *fnode, int value)
  1155. {
  1156. int i = 0;
  1157. int prgm_current_ma = value;
  1158. int min_ma = fnode->ires_ua / 1000;
  1159. struct qpnp_flash_led *led = dev_get_drvdata(&fnode->pdev->dev);
  1160. if (value <= 0)
  1161. prgm_current_ma = 0;
  1162. else if (value < min_ma)
  1163. prgm_current_ma = min_ma;
  1164. fnode->ires_idx = fnode->default_ires_idx;
  1165. fnode->ires_ua = fnode->default_ires_ua;
  1166. prgm_current_ma = min(prgm_current_ma, fnode->max_current);
  1167. if (prgm_current_ma > max_ires_curr_ma_table[fnode->ires_idx]) {
  1168. /* find the matching ires */
  1169. for (i = MAX_IRES_LEVELS - 1; i >= 0; i--) {
  1170. if (prgm_current_ma <= max_ires_curr_ma_table[i]) {
  1171. fnode->ires_idx = i;
  1172. fnode->ires_ua = FLASH_LED_IRES_MIN_UA +
  1173. (FLASH_LED_IRES_BASE - fnode->ires_idx) *
  1174. FLASH_LED_IRES_DIVISOR;
  1175. break;
  1176. }
  1177. }
  1178. } else if (prgm_current_ma <= 20 &&
  1179. (led->wa_flags & PM6150L_IRES_WA)) {
  1180. fnode->ires_idx = FLASH_LED_IRES_BASE;
  1181. fnode->ires_ua = FLASH_LED_IRES_MIN_UA;
  1182. }
  1183. fnode->current_ma = prgm_current_ma;
  1184. fnode->cdev.brightness = prgm_current_ma;
  1185. fnode->current_reg_val = get_current_reg_code(prgm_current_ma,
  1186. fnode->ires_ua);
  1187. if (prgm_current_ma)
  1188. fnode->led_on = true;
  1189. if (led->pmic_type != PMI632 &&
  1190. led->pdata->chgr_mitigation_sel == FLASH_SW_CHARGER_MITIGATION) {
  1191. qpnp_flash_led_aggregate_max_current(fnode);
  1192. led->trigger_chgr = false;
  1193. if (led->total_current_ma >= 1000)
  1194. led->trigger_chgr = true;
  1195. }
  1196. }
  1197. static int qpnp_flash_led_switch_disable(struct flash_switch_data *snode)
  1198. {
  1199. struct qpnp_flash_led *led = dev_get_drvdata(&snode->pdev->dev);
  1200. int i, rc, addr_offset;
  1201. rc = qpnp_flash_led_masked_write(led,
  1202. FLASH_LED_EN_LED_CTRL(led->base),
  1203. snode->led_mask, FLASH_LED_DISABLE);
  1204. if (rc < 0)
  1205. return rc;
  1206. if (led->trigger_lmh) {
  1207. rc = qpnp_flash_led_masked_write(led,
  1208. FLASH_LED_REG_MITIGATION_SW(led->base),
  1209. FLASH_LED_LMH_MITIGATION_EN_MASK,
  1210. FLASH_LED_LMH_MITIGATION_DISABLE);
  1211. if (rc < 0) {
  1212. pr_err("disable lmh mitigation failed, rc=%d\n", rc);
  1213. return rc;
  1214. }
  1215. }
  1216. if (led->pdata->chgr_mitigation_sel && !led->trigger_chgr) {
  1217. rc = qpnp_flash_led_masked_write(led,
  1218. FLASH_LED_REG_MITIGATION_SW(led->base),
  1219. FLASH_LED_CHGR_MITIGATION_EN_MASK,
  1220. FLASH_LED_CHGR_MITIGATION_DISABLE);
  1221. if (rc < 0) {
  1222. pr_err("disable chgr mitigation failed, rc=%d\n", rc);
  1223. return rc;
  1224. }
  1225. }
  1226. led->enable--;
  1227. if (led->enable == 0) {
  1228. rc = qpnp_flash_led_masked_write(led,
  1229. FLASH_LED_REG_MOD_CTRL(led->base),
  1230. FLASH_LED_MOD_CTRL_MASK, FLASH_LED_DISABLE);
  1231. if (rc < 0)
  1232. return rc;
  1233. }
  1234. for (i = 0; i < led->num_fnodes; i++) {
  1235. if (!led->fnode[i].led_on ||
  1236. !(snode->led_mask & BIT(led->fnode[i].id)))
  1237. continue;
  1238. addr_offset = led->fnode[i].id;
  1239. rc = qpnp_flash_led_masked_write(led,
  1240. FLASH_LED_REG_TGR_CURRENT(led->base + addr_offset),
  1241. FLASH_LED_CURRENT_MASK, 0);
  1242. if (rc < 0)
  1243. return rc;
  1244. rc = qpnp_flash_led_write(led,
  1245. FLASH_LED_REG_SAFETY_TMR(led->base + addr_offset),
  1246. FLASH_LED_SAFETY_TMR_DISABLED);
  1247. if (rc < 0)
  1248. return rc;
  1249. led->fnode[i].led_on = false;
  1250. if (led->fnode[i].strobe_sel == HW_STROBE) {
  1251. rc = qpnp_flash_led_hw_strobe_enable(&led->fnode[i],
  1252. led->pdata->hw_strobe_option, false);
  1253. if (rc < 0) {
  1254. pr_err("Unable to disable hw strobe, rc=%d\n",
  1255. rc);
  1256. return rc;
  1257. }
  1258. }
  1259. }
  1260. if (snode->led_en_pinctrl) {
  1261. pr_debug("Selecting suspend state for %s\n", snode->cdev.name);
  1262. rc = pinctrl_select_state(snode->led_en_pinctrl,
  1263. snode->gpio_state_suspend);
  1264. if (rc < 0) {
  1265. pr_err("failed to select pinctrl suspend state rc=%d\n",
  1266. rc);
  1267. return rc;
  1268. }
  1269. }
  1270. snode->enabled = false;
  1271. return 0;
  1272. }
  1273. static int qpnp_flash_led_symmetry_config(struct flash_switch_data *snode)
  1274. {
  1275. struct qpnp_flash_led *led = dev_get_drvdata(&snode->pdev->dev);
  1276. int i, total_curr_ma = 0, num_leds = 0, prgm_current_ma;
  1277. enum flash_led_type type = FLASH_LED_TYPE_UNKNOWN;
  1278. for (i = 0; i < led->num_fnodes; i++) {
  1279. if (snode->led_mask & BIT(led->fnode[i].id)) {
  1280. if (led->fnode[i].type == FLASH_LED_TYPE_FLASH &&
  1281. led->fnode[i].led_on)
  1282. type = FLASH_LED_TYPE_FLASH;
  1283. if (led->fnode[i].type == FLASH_LED_TYPE_TORCH &&
  1284. led->fnode[i].led_on)
  1285. type = FLASH_LED_TYPE_TORCH;
  1286. }
  1287. }
  1288. if (type == FLASH_LED_TYPE_UNKNOWN) {
  1289. pr_err("Incorrect type possibly because of no active LEDs\n");
  1290. return -EINVAL;
  1291. }
  1292. for (i = 0; i < led->num_fnodes; i++) {
  1293. if ((snode->led_mask & BIT(led->fnode[i].id)) &&
  1294. (led->fnode[i].type == type)) {
  1295. total_curr_ma += led->fnode[i].current_ma;
  1296. num_leds++;
  1297. }
  1298. }
  1299. if (num_leds > 0 && total_curr_ma > 0) {
  1300. prgm_current_ma = total_curr_ma / num_leds;
  1301. } else {
  1302. pr_err("Incorrect configuration, num_leds: %d total_curr_ma: %d\n",
  1303. num_leds, total_curr_ma);
  1304. return -EINVAL;
  1305. }
  1306. if (prgm_current_ma == 0) {
  1307. pr_warn("prgm_curr_ma cannot be 0\n");
  1308. return 0;
  1309. }
  1310. pr_debug("num_leds: %d total: %d prgm_curr_ma: %d\n", num_leds,
  1311. total_curr_ma, prgm_current_ma);
  1312. for (i = 0; i < led->num_fnodes; i++) {
  1313. if (snode->led_mask & BIT(led->fnode[i].id) &&
  1314. led->fnode[i].current_ma != prgm_current_ma &&
  1315. led->fnode[i].type == type) {
  1316. qpnp_flash_led_node_set(&led->fnode[i],
  1317. prgm_current_ma);
  1318. pr_debug("%s LED %d current: %d code: %d ires_ua: %d\n",
  1319. (type == FLASH_LED_TYPE_FLASH) ?
  1320. "flash" : "torch",
  1321. led->fnode[i].id, prgm_current_ma,
  1322. led->fnode[i].current_reg_val,
  1323. led->fnode[i].ires_ua);
  1324. }
  1325. }
  1326. return 0;
  1327. }
  1328. #define FLASH_VREG_OK_SETTLE_TIME_US 1000
  1329. static int qpnp_flash_led_module_enable(struct flash_switch_data *snode)
  1330. {
  1331. struct qpnp_flash_led *led = dev_get_drvdata(&snode->pdev->dev);
  1332. int rc = 0;
  1333. if (led->enable == 0) {
  1334. rc = qpnp_flash_led_masked_write(led,
  1335. FLASH_LED_REG_MOD_CTRL(led->base),
  1336. FLASH_LED_MOD_CTRL_MASK, FLASH_LED_MOD_ENABLE);
  1337. if (rc < 0)
  1338. return rc;
  1339. }
  1340. /* For PMI632, wait 1ms to allow flash to settle */
  1341. if (led->pmic_type == PMI632)
  1342. udelay(FLASH_VREG_OK_SETTLE_TIME_US);
  1343. led->enable++;
  1344. return rc;
  1345. }
  1346. static int qpnp_flash_led_switch_set(struct flash_switch_data *snode, bool on)
  1347. {
  1348. struct qpnp_flash_led *led = dev_get_drvdata(&snode->pdev->dev);
  1349. int rc, i, addr_offset;
  1350. u8 val, mask;
  1351. if (snode->enabled == on) {
  1352. pr_debug("Switch node is already %s!\n",
  1353. on ? "enabled" : "disabled");
  1354. return 0;
  1355. }
  1356. if (!on) {
  1357. rc = qpnp_flash_led_switch_disable(snode);
  1358. return rc;
  1359. }
  1360. /* Iterate over all active leds for this switch node */
  1361. if (snode->symmetry_en) {
  1362. rc = qpnp_flash_led_symmetry_config(snode);
  1363. if (rc < 0) {
  1364. pr_err("Failed to configure current symmetrically, rc=%d\n",
  1365. rc);
  1366. return rc;
  1367. }
  1368. }
  1369. val = 0;
  1370. for (i = 0; i < led->num_fnodes; i++)
  1371. if (led->fnode[i].led_on &&
  1372. snode->led_mask & BIT(led->fnode[i].id))
  1373. val |= led->fnode[i].ires_idx << (led->fnode[i].id * 2);
  1374. rc = qpnp_flash_led_masked_write(led, FLASH_LED_REG_IRES(led->base),
  1375. FLASH_LED_CURRENT_MASK, val);
  1376. if (rc < 0)
  1377. return rc;
  1378. val = 0;
  1379. for (i = 0; i < led->num_fnodes; i++) {
  1380. if (!led->fnode[i].led_on ||
  1381. !(snode->led_mask & BIT(led->fnode[i].id)))
  1382. continue;
  1383. addr_offset = led->fnode[i].id;
  1384. if (led->fnode[i].strobe_sel == SW_STROBE)
  1385. mask = FLASH_LED_HW_SW_STROBE_SEL_BIT;
  1386. else
  1387. mask = FLASH_HW_STROBE_MASK;
  1388. rc = qpnp_flash_led_masked_write(led,
  1389. FLASH_LED_REG_STROBE_CTRL(led->base + addr_offset),
  1390. mask, led->fnode[i].strobe_ctrl);
  1391. if (rc < 0)
  1392. return rc;
  1393. rc = qpnp_flash_led_masked_write(led,
  1394. FLASH_LED_REG_TGR_CURRENT(led->base + addr_offset),
  1395. FLASH_LED_CURRENT_MASK, led->fnode[i].current_reg_val);
  1396. if (rc < 0)
  1397. return rc;
  1398. rc = qpnp_flash_led_write(led,
  1399. FLASH_LED_REG_SAFETY_TMR(led->base + addr_offset),
  1400. led->fnode[i].duration);
  1401. if (rc < 0)
  1402. return rc;
  1403. val |= FLASH_LED_ENABLE << led->fnode[i].id;
  1404. if (led->fnode[i].strobe_sel == HW_STROBE) {
  1405. rc = qpnp_flash_led_hw_strobe_enable(&led->fnode[i],
  1406. led->pdata->hw_strobe_option, true);
  1407. if (rc < 0) {
  1408. pr_err("Unable to enable hw strobe rc=%d\n",
  1409. rc);
  1410. return rc;
  1411. }
  1412. }
  1413. }
  1414. if (snode->led_en_pinctrl) {
  1415. pr_debug("Selecting active state for %s\n", snode->cdev.name);
  1416. rc = pinctrl_select_state(snode->led_en_pinctrl,
  1417. snode->gpio_state_active);
  1418. if (rc < 0) {
  1419. pr_err("failed to select pinctrl active state rc=%d\n",
  1420. rc);
  1421. return rc;
  1422. }
  1423. }
  1424. rc = qpnp_flash_led_module_enable(snode);
  1425. if (rc < 0)
  1426. return rc;
  1427. if (led->trigger_lmh) {
  1428. rc = qpnp_flash_led_masked_write(led,
  1429. FLASH_LED_REG_MITIGATION_SW(led->base),
  1430. FLASH_LED_LMH_MITIGATION_EN_MASK,
  1431. FLASH_LED_LMH_MITIGATION_ENABLE);
  1432. if (rc < 0) {
  1433. pr_err("trigger lmh mitigation failed, rc=%d\n", rc);
  1434. return rc;
  1435. }
  1436. /* Wait for LMH mitigation to take effect */
  1437. udelay(500);
  1438. }
  1439. if (led->pdata->chgr_mitigation_sel && led->trigger_chgr) {
  1440. rc = qpnp_flash_led_masked_write(led,
  1441. FLASH_LED_REG_MITIGATION_SW(led->base),
  1442. FLASH_LED_CHGR_MITIGATION_EN_MASK,
  1443. FLASH_LED_CHGR_MITIGATION_ENABLE);
  1444. if (rc < 0) {
  1445. pr_err("trigger chgr mitigation failed, rc=%d\n", rc);
  1446. return rc;
  1447. }
  1448. }
  1449. rc = qpnp_flash_led_masked_write(led,
  1450. FLASH_LED_EN_LED_CTRL(led->base),
  1451. snode->led_mask, val);
  1452. if (rc < 0)
  1453. return rc;
  1454. snode->enabled = true;
  1455. return 0;
  1456. }
  1457. static int qpnp_flash_led_regulator_control(struct led_classdev *led_cdev,
  1458. int options, int *max_current)
  1459. {
  1460. int rc, val;
  1461. struct flash_switch_data *snode;
  1462. struct qpnp_flash_led *led;
  1463. snode = container_of(led_cdev, struct flash_switch_data, cdev);
  1464. led = dev_get_drvdata(&snode->pdev->dev);
  1465. if (led->pmic_type == PMI632) {
  1466. rc = is_usb_psy_available(led);
  1467. if (rc < 0)
  1468. return rc;
  1469. }
  1470. if (!(options & FLASH_LED_PREPARE_OPTIONS_MASK)) {
  1471. pr_err("Invalid options %d\n", options);
  1472. return -EINVAL;
  1473. }
  1474. if (options & ENABLE_REGULATOR) {
  1475. if (led->pmic_type == PMI632) {
  1476. val = 1;
  1477. rc = qpnp_flash_iio_setprop(led, F_ACTIVE, val);
  1478. if (rc < 0) {
  1479. pr_err("Failed to set FLASH_ACTIVE on charger rc=%d\n",
  1480. rc);
  1481. return rc;
  1482. }
  1483. pr_debug("FLASH_ACTIVE = 1\n");
  1484. } else {
  1485. rc = qpnp_flash_led_regulator_enable(led, snode, true);
  1486. if (rc < 0) {
  1487. pr_err("enable regulator failed, rc=%d\n", rc);
  1488. return rc;
  1489. }
  1490. }
  1491. }
  1492. if (options & DISABLE_REGULATOR) {
  1493. if (led->pmic_type == PMI632) {
  1494. val = 0;
  1495. rc = qpnp_flash_iio_setprop(led, F_ACTIVE, val);
  1496. if (rc < 0) {
  1497. pr_err("Failed to set FLASH_ACTIVE on charger rc=%d\n",
  1498. rc);
  1499. return rc;
  1500. }
  1501. pr_debug("FLASH_ACTIVE = 0\n");
  1502. } else {
  1503. rc = qpnp_flash_led_regulator_enable(led, snode, false);
  1504. if (rc < 0) {
  1505. pr_err("disable regulator failed, rc=%d\n", rc);
  1506. return rc;
  1507. }
  1508. }
  1509. }
  1510. if (options & QUERY_MAX_AVAIL_CURRENT) {
  1511. rc = qpnp_flash_led_get_max_avail_current(led, max_current);
  1512. if (rc < 0) {
  1513. pr_err("query max current failed, rc=%d\n", rc);
  1514. return rc;
  1515. }
  1516. }
  1517. return 0;
  1518. }
  1519. static struct led_classdev *trigger_to_lcdev(struct led_trigger *trig)
  1520. {
  1521. struct led_classdev *led_cdev;
  1522. spin_lock(&trig->leddev_list_lock);
  1523. list_for_each_entry(led_cdev, &trig->led_cdevs, trig_list) {
  1524. if (!strcmp(led_cdev->default_trigger, trig->name)) {
  1525. spin_unlock(&trig->leddev_list_lock);
  1526. return led_cdev;
  1527. }
  1528. }
  1529. spin_unlock(&trig->leddev_list_lock);
  1530. return NULL;
  1531. }
  1532. int qpnp_flash_led_prepare(struct led_trigger *trig, int options,
  1533. int *max_current)
  1534. {
  1535. struct led_classdev *led_cdev;
  1536. int rc;
  1537. if (!trig) {
  1538. pr_err("Invalid led_trigger provided\n");
  1539. return -EINVAL;
  1540. }
  1541. led_cdev = trigger_to_lcdev(trig);
  1542. if (!led_cdev) {
  1543. pr_err("Invalid led_cdev in trigger %s\n", trig->name);
  1544. return -EINVAL;
  1545. }
  1546. rc = qpnp_flash_led_regulator_control(led_cdev, options, max_current);
  1547. return rc;
  1548. }
  1549. EXPORT_SYMBOL(qpnp_flash_led_prepare);
  1550. static void qpnp_flash_led_brightness_set(struct led_classdev *led_cdev,
  1551. enum led_brightness value)
  1552. {
  1553. struct flash_node_data *fnode = NULL;
  1554. struct flash_switch_data *snode = NULL;
  1555. struct qpnp_flash_led *led = NULL;
  1556. int rc;
  1557. /*
  1558. * strncmp() must be used here since a prefix comparison is required
  1559. * in order to support names like led:switch_0 and led:flash_1.
  1560. */
  1561. if (!strncmp(led_cdev->name, "led:switch", strlen("led:switch"))) {
  1562. snode = container_of(led_cdev, struct flash_switch_data, cdev);
  1563. led = dev_get_drvdata(&snode->pdev->dev);
  1564. } else if (!strncmp(led_cdev->name, "led:flash", strlen("led:flash")) ||
  1565. !strncmp(led_cdev->name, "led:torch",
  1566. strlen("led:torch"))) {
  1567. fnode = container_of(led_cdev, struct flash_node_data, cdev);
  1568. led = dev_get_drvdata(&fnode->pdev->dev);
  1569. }
  1570. if (!led) {
  1571. pr_err("Failed to get flash driver data\n");
  1572. return;
  1573. }
  1574. spin_lock(&led->lock);
  1575. if (snode) {
  1576. rc = qpnp_flash_led_switch_set(snode, value > 0);
  1577. if (rc < 0)
  1578. pr_err("Failed to set flash LED switch rc=%d\n", rc);
  1579. } else if (fnode) {
  1580. qpnp_flash_led_node_set(fnode, value);
  1581. }
  1582. spin_unlock(&led->lock);
  1583. }
  1584. static ssize_t qpnp_flash_led_prepare_store(struct device *dev,
  1585. struct device_attribute *attr, const char *buf, size_t count)
  1586. {
  1587. int rc, options, max_current;
  1588. u32 val;
  1589. struct led_classdev *led_cdev = dev_get_drvdata(dev);
  1590. rc = kstrtouint(buf, 0, &val);
  1591. if (rc < 0)
  1592. return rc;
  1593. if (val != 0 && val != 1)
  1594. return count;
  1595. options = val ? ENABLE_REGULATOR : DISABLE_REGULATOR;
  1596. rc = qpnp_flash_led_regulator_control(led_cdev, options, &max_current);
  1597. if (rc < 0)
  1598. return rc;
  1599. return count;
  1600. }
  1601. /* sysfs show function for flash_max_current */
  1602. static ssize_t qpnp_flash_led_max_current_show(struct device *dev,
  1603. struct device_attribute *attr, char *buf)
  1604. {
  1605. int rc, max_current = 0;
  1606. struct flash_switch_data *snode;
  1607. struct qpnp_flash_led *led;
  1608. struct led_classdev *led_cdev = dev_get_drvdata(dev);
  1609. snode = container_of(led_cdev, struct flash_switch_data, cdev);
  1610. led = dev_get_drvdata(&snode->pdev->dev);
  1611. rc = qpnp_flash_led_get_max_avail_current(led, &max_current);
  1612. if (rc < 0)
  1613. pr_err("query max current failed, rc=%d\n", rc);
  1614. return scnprintf(buf, PAGE_SIZE, "%d\n", max_current);
  1615. }
  1616. /* sysfs attributes exported by flash_led */
  1617. static struct device_attribute qpnp_flash_led_attrs[] = {
  1618. __ATTR(max_current, 0664, qpnp_flash_led_max_current_show, NULL),
  1619. __ATTR(enable, 0664, NULL, qpnp_flash_led_prepare_store),
  1620. };
  1621. /* irq handler */
  1622. static irqreturn_t qpnp_flash_led_irq_handler(int irq, void *_led)
  1623. {
  1624. struct qpnp_flash_led *led = _led;
  1625. enum flash_led_irq_type irq_type = INVALID_IRQ;
  1626. int rc;
  1627. u8 irq_status, led_status1, led_status2;
  1628. pr_debug("irq received, irq=%d\n", irq);
  1629. rc = qpnp_flash_led_read(led,
  1630. FLASH_LED_REG_INT_RT_STS(led->base), &irq_status);
  1631. if (rc < 0) {
  1632. pr_err("Failed to read interrupt status reg, rc=%d\n", rc);
  1633. goto exit;
  1634. }
  1635. if (irq == led->pdata->all_ramp_up_done_irq)
  1636. irq_type = ALL_RAMP_UP_DONE_IRQ;
  1637. else if (irq == led->pdata->all_ramp_down_done_irq)
  1638. irq_type = ALL_RAMP_DOWN_DONE_IRQ;
  1639. else if (irq == led->pdata->led_fault_irq)
  1640. irq_type = LED_FAULT_IRQ;
  1641. if (irq_type == ALL_RAMP_UP_DONE_IRQ)
  1642. atomic_notifier_call_chain(&irq_notifier_list,
  1643. irq_type, NULL);
  1644. if (irq_type == LED_FAULT_IRQ) {
  1645. rc = qpnp_flash_led_read(led,
  1646. FLASH_LED_REG_LED_STATUS1(led->base), &led_status1);
  1647. if (rc < 0) {
  1648. pr_err("Failed to read led_status1 reg, rc=%d\n", rc);
  1649. goto exit;
  1650. }
  1651. rc = qpnp_flash_led_read(led,
  1652. FLASH_LED_REG_LED_STATUS2(led->base), &led_status2);
  1653. if (rc < 0) {
  1654. pr_err("Failed to read led_status2 reg, rc=%d\n", rc);
  1655. goto exit;
  1656. }
  1657. if (led_status1)
  1658. pr_emerg("led short/open fault detected! led_status1=%x\n",
  1659. led_status1);
  1660. if (led_status2 & FLASH_LED_VPH_DROOP_FAULT_MASK)
  1661. pr_emerg("led vph_droop fault detected!\n");
  1662. }
  1663. pr_debug("irq handled, irq_type=%x, irq_status=%x\n", irq_type,
  1664. irq_status);
  1665. exit:
  1666. return IRQ_HANDLED;
  1667. }
  1668. int qpnp_flash_led_register_irq_notifier(struct notifier_block *nb)
  1669. {
  1670. return atomic_notifier_chain_register(&irq_notifier_list, nb);
  1671. }
  1672. int qpnp_flash_led_unregister_irq_notifier(struct notifier_block *nb)
  1673. {
  1674. return atomic_notifier_chain_unregister(&irq_notifier_list, nb);
  1675. }
  1676. static inline u8 get_safety_timer_code(u32 duration_ms)
  1677. {
  1678. if (!duration_ms)
  1679. return 0;
  1680. return (duration_ms / 10) - 1;
  1681. }
  1682. static inline u8 get_vph_droop_thresh_code(u32 val_mv)
  1683. {
  1684. if (!val_mv)
  1685. return 0;
  1686. return (val_mv / 100) - 25;
  1687. }
  1688. static int qpnp_flash_led_parse_hw_strobe_dt(struct flash_node_data *fnode)
  1689. {
  1690. struct device_node *node = fnode->cdev.dev->of_node;
  1691. if (of_find_property(node, "qcom,hw-strobe-gpio", NULL)) {
  1692. fnode->hw_strobe_gpio = of_get_named_gpio(node,
  1693. "qcom,hw-strobe-gpio", 0);
  1694. if (fnode->hw_strobe_gpio < 0) {
  1695. pr_err("Invalid gpio specified\n");
  1696. return fnode->hw_strobe_gpio;
  1697. }
  1698. gpio_direction_output(fnode->hw_strobe_gpio, 0);
  1699. } else if (fnode->strobe_pinctrl) {
  1700. fnode->hw_strobe_gpio = -1;
  1701. fnode->hw_strobe_state_active =
  1702. pinctrl_lookup_state(fnode->strobe_pinctrl,
  1703. "strobe_enable");
  1704. if (IS_ERR_OR_NULL(fnode->hw_strobe_state_active)) {
  1705. pr_err("No active pin for hardware strobe, rc=%ld\n",
  1706. PTR_ERR(fnode->hw_strobe_state_active));
  1707. fnode->hw_strobe_state_active = NULL;
  1708. }
  1709. fnode->hw_strobe_state_suspend =
  1710. pinctrl_lookup_state(fnode->strobe_pinctrl,
  1711. "strobe_disable");
  1712. if (IS_ERR_OR_NULL(fnode->hw_strobe_state_suspend)) {
  1713. pr_err("No suspend pin for hardware strobe, rc=%ld\n",
  1714. PTR_ERR(fnode->hw_strobe_state_suspend));
  1715. fnode->hw_strobe_state_suspend = NULL;
  1716. }
  1717. }
  1718. return 0;
  1719. }
  1720. static int qpnp_flash_led_parse_strobe_sel_dt(struct qpnp_flash_led *led,
  1721. struct flash_node_data *fnode,
  1722. struct device_node *node)
  1723. {
  1724. int rc;
  1725. u32 val;
  1726. u8 hw_strobe = 0, edge_trigger = 0, active_high = 0;
  1727. fnode->strobe_sel = SW_STROBE;
  1728. rc = of_property_read_u32(node, "qcom,strobe-sel", &val);
  1729. if (rc < 0) {
  1730. if (rc != -EINVAL) {
  1731. pr_err("Unable to read qcom,strobe-sel property\n");
  1732. return rc;
  1733. }
  1734. } else {
  1735. if (val < SW_STROBE || val > LPG_STROBE) {
  1736. pr_err("Incorrect strobe selection specified %d\n",
  1737. val);
  1738. return -EINVAL;
  1739. }
  1740. fnode->strobe_sel = (u8)val;
  1741. }
  1742. /*
  1743. * LPG strobe is allowed only for LED3 and HW strobe option should be
  1744. * option 2 or 3.
  1745. */
  1746. if (fnode->strobe_sel == LPG_STROBE) {
  1747. if (led->pdata->hw_strobe_option ==
  1748. FLASH_LED_HW_STROBE_OPTION_1) {
  1749. pr_err("Incorrect strobe option for LPG strobe\n");
  1750. return -EINVAL;
  1751. }
  1752. if (fnode->id != LED3) {
  1753. pr_err("Incorrect LED chosen for LPG strobe\n");
  1754. return -EINVAL;
  1755. }
  1756. }
  1757. if (fnode->strobe_sel == HW_STROBE) {
  1758. edge_trigger = of_property_read_bool(node,
  1759. "qcom,hw-strobe-edge-trigger");
  1760. active_high = !of_property_read_bool(node,
  1761. "qcom,hw-strobe-active-low");
  1762. hw_strobe = 1;
  1763. } else if (fnode->strobe_sel == LPG_STROBE) {
  1764. /* LPG strobe requires level trigger and active high */
  1765. edge_trigger = 0;
  1766. active_high = 1;
  1767. hw_strobe = 1;
  1768. }
  1769. fnode->strobe_ctrl = (hw_strobe << 2) | (edge_trigger << 1) |
  1770. active_high;
  1771. return 0;
  1772. }
  1773. static int qpnp_flash_led_parse_label_dt(struct flash_node_data *fnode,
  1774. struct device_node *node)
  1775. {
  1776. const char *temp_string;
  1777. int rc;
  1778. rc = of_property_read_string(node, "label", &temp_string);
  1779. if (!rc) {
  1780. if (!strcmp(temp_string, "flash")) {
  1781. fnode->type = FLASH_LED_TYPE_FLASH;
  1782. } else if (!strcmp(temp_string, "torch")) {
  1783. fnode->type = FLASH_LED_TYPE_TORCH;
  1784. } else {
  1785. pr_err("Wrong flash LED type\n");
  1786. return rc;
  1787. }
  1788. } else {
  1789. pr_err("Unable to read flash LED label\n");
  1790. return rc;
  1791. }
  1792. return rc;
  1793. }
  1794. static int qpnp_flash_led_parse_each_led_dt(struct qpnp_flash_led *led,
  1795. struct flash_node_data *fnode, struct device_node *node)
  1796. {
  1797. int rc, min_ma;
  1798. u32 val;
  1799. fnode->pdev = led->pdev;
  1800. fnode->cdev.brightness_set = qpnp_flash_led_brightness_set;
  1801. fnode->cdev.brightness_get = qpnp_flash_led_brightness_get;
  1802. rc = of_property_read_string(node, "qcom,led-name", &fnode->cdev.name);
  1803. if (rc < 0) {
  1804. pr_err("Unable to read flash LED names\n");
  1805. return rc;
  1806. }
  1807. rc = qpnp_flash_led_parse_label_dt(fnode, node);
  1808. if (rc < 0)
  1809. return rc;
  1810. rc = of_property_read_u32(node, "qcom,id", &val);
  1811. if (!rc) {
  1812. fnode->id = (u8)val;
  1813. if (led->pmic_type == PMI632 && fnode->id > LED2) {
  1814. pr_err("Flash node id = %d not supported\n", fnode->id);
  1815. return -EINVAL;
  1816. }
  1817. } else {
  1818. pr_err("Unable to read flash LED ID\n");
  1819. return rc;
  1820. }
  1821. rc = of_property_read_string(node, "qcom,default-led-trigger",
  1822. &fnode->cdev.default_trigger);
  1823. if (rc < 0) {
  1824. pr_err("Unable to read trigger name\n");
  1825. return rc;
  1826. }
  1827. fnode->default_ires_ua = fnode->ires_ua = FLASH_LED_IRES_DEFAULT_UA;
  1828. fnode->default_ires_idx = fnode->ires_idx = FLASH_LED_IRES_DEFAULT_VAL;
  1829. rc = of_property_read_u32(node, "qcom,ires-ua", &val);
  1830. if (!rc) {
  1831. fnode->default_ires_ua = fnode->ires_ua = val;
  1832. fnode->default_ires_idx = fnode->ires_idx =
  1833. FLASH_LED_IRES_BASE - (val - FLASH_LED_IRES_MIN_UA) /
  1834. FLASH_LED_IRES_DIVISOR;
  1835. } else if (rc != -EINVAL) {
  1836. pr_err("Unable to read current resolution rc=%d\n", rc);
  1837. return rc;
  1838. }
  1839. min_ma = fnode->ires_ua / 1000;
  1840. rc = of_property_read_u32(node, "qcom,max-current", &val);
  1841. if (!rc) {
  1842. if (val < min_ma)
  1843. val = min_ma;
  1844. fnode->max_current = val;
  1845. fnode->cdev.max_brightness = val;
  1846. } else {
  1847. pr_err("Unable to read max current, rc=%d\n", rc);
  1848. return rc;
  1849. }
  1850. rc = of_property_read_u32(node, "qcom,current-ma", &val);
  1851. if (!rc) {
  1852. if (val < min_ma || val > fnode->max_current)
  1853. pr_warn("Invalid operational current specified, capping it\n");
  1854. if (val < min_ma)
  1855. val = min_ma;
  1856. if (val > fnode->max_current)
  1857. val = fnode->max_current;
  1858. fnode->current_ma = val;
  1859. fnode->cdev.brightness = val;
  1860. } else if (rc != -EINVAL) {
  1861. pr_err("Unable to read operational current, rc=%d\n", rc);
  1862. return rc;
  1863. }
  1864. fnode->duration = FLASH_LED_SAFETY_TMR_DISABLED;
  1865. rc = of_property_read_u32(node, "qcom,duration-ms", &val);
  1866. if (!rc) {
  1867. fnode->duration = get_safety_timer_code(val);
  1868. if (fnode->duration)
  1869. fnode->duration |= FLASH_LED_SAFETY_TMR_ENABLE;
  1870. } else if (rc == -EINVAL) {
  1871. if (fnode->type == FLASH_LED_TYPE_FLASH) {
  1872. pr_err("Timer duration is required for flash LED\n");
  1873. return rc;
  1874. }
  1875. } else {
  1876. pr_err("Unable to read timer duration\n");
  1877. return rc;
  1878. }
  1879. fnode->hdrm_val = FLASH_LED_HDRM_VOL_DEFAULT_MV;
  1880. rc = of_property_read_u32(node, "qcom,hdrm-voltage-mv", &val);
  1881. if (!rc) {
  1882. val = (val - FLASH_LED_HDRM_VOL_BASE_MV) /
  1883. FLASH_LED_HDRM_VOL_STEP_MV;
  1884. fnode->hdrm_val = (val << FLASH_LED_HDRM_VOL_SHIFT) &
  1885. FLASH_LED_HDRM_VOL_MASK;
  1886. } else if (rc != -EINVAL) {
  1887. pr_err("Unable to read headroom voltage\n");
  1888. return rc;
  1889. }
  1890. rc = of_property_read_u32(node, "qcom,hdrm-vol-hi-lo-win-mv", &val);
  1891. if (!rc) {
  1892. fnode->hdrm_val |= (val / FLASH_LED_HDRM_VOL_STEP_MV) &
  1893. ~FLASH_LED_HDRM_VOL_MASK;
  1894. } else if (rc == -EINVAL) {
  1895. fnode->hdrm_val |= FLASH_LED_HDRM_VOL_HI_LO_WIN_DEFAULT_MV;
  1896. } else {
  1897. pr_err("Unable to read hdrm hi-lo window voltage\n");
  1898. return rc;
  1899. }
  1900. rc = qpnp_flash_led_parse_strobe_sel_dt(led, fnode, node);
  1901. if (rc < 0)
  1902. return rc;
  1903. rc = led_classdev_register(&led->pdev->dev, &fnode->cdev);
  1904. if (rc < 0) {
  1905. pr_err("Unable to register led node %d\n", fnode->id);
  1906. return rc;
  1907. }
  1908. fnode->cdev.dev->of_node = node;
  1909. fnode->strobe_pinctrl = devm_pinctrl_get(fnode->cdev.dev);
  1910. if (IS_ERR_OR_NULL(fnode->strobe_pinctrl)) {
  1911. pr_debug("No pinctrl defined for %s, err=%ld\n",
  1912. fnode->cdev.name, PTR_ERR(fnode->strobe_pinctrl));
  1913. fnode->strobe_pinctrl = NULL;
  1914. }
  1915. if (fnode->strobe_sel == HW_STROBE)
  1916. return qpnp_flash_led_parse_hw_strobe_dt(fnode);
  1917. return 0;
  1918. }
  1919. static int qpnp_flash_led_parse_and_register_switch(struct qpnp_flash_led *led,
  1920. struct flash_switch_data *snode,
  1921. struct device_node *node)
  1922. {
  1923. int rc = 0, num;
  1924. char reg_name[16], reg_sup_name[16];
  1925. rc = of_property_read_string(node, "qcom,led-name", &snode->cdev.name);
  1926. if (rc < 0) {
  1927. pr_err("Failed to read switch node name, rc=%d\n", rc);
  1928. return rc;
  1929. }
  1930. rc = sscanf(snode->cdev.name, "led:switch_%d", &num);
  1931. if (!rc) {
  1932. pr_err("No number for switch device?\n");
  1933. return -EINVAL;
  1934. }
  1935. rc = of_property_read_string(node, "qcom,default-led-trigger",
  1936. &snode->cdev.default_trigger);
  1937. if (rc < 0) {
  1938. pr_err("Unable to read trigger name, rc=%d\n", rc);
  1939. return rc;
  1940. }
  1941. rc = of_property_read_u32(node, "qcom,led-mask", &snode->led_mask);
  1942. if (rc < 0) {
  1943. pr_err("Unable to read led mask rc=%d\n", rc);
  1944. return rc;
  1945. }
  1946. snode->symmetry_en = of_property_read_bool(node, "qcom,symmetry-en");
  1947. if (snode->led_mask < 1 || snode->led_mask > 7) {
  1948. pr_err("Invalid value for led-mask\n");
  1949. return -EINVAL;
  1950. }
  1951. scnprintf(reg_name, sizeof(reg_name), "switch%d-supply", num);
  1952. if (of_find_property(led->pdev->dev.of_node, reg_name, NULL)) {
  1953. scnprintf(reg_sup_name, sizeof(reg_sup_name), "switch%d", num);
  1954. snode->vreg = devm_regulator_get(&led->pdev->dev, reg_sup_name);
  1955. if (IS_ERR_OR_NULL(snode->vreg)) {
  1956. rc = PTR_ERR(snode->vreg);
  1957. if (rc != -EPROBE_DEFER)
  1958. pr_err("Failed to get regulator, rc=%d\n", rc);
  1959. snode->vreg = NULL;
  1960. return rc;
  1961. }
  1962. }
  1963. snode->pdev = led->pdev;
  1964. snode->cdev.brightness_set = qpnp_flash_led_brightness_set;
  1965. snode->cdev.brightness_get = qpnp_flash_led_brightness_get;
  1966. rc = led_classdev_register(&led->pdev->dev, &snode->cdev);
  1967. if (rc < 0) {
  1968. pr_err("Unable to register led switch node\n");
  1969. return rc;
  1970. }
  1971. snode->cdev.dev->of_node = node;
  1972. snode->led_en_pinctrl = devm_pinctrl_get(snode->cdev.dev);
  1973. if (IS_ERR_OR_NULL(snode->led_en_pinctrl)) {
  1974. pr_debug("No pinctrl defined for %s, err=%ld\n",
  1975. snode->cdev.name, PTR_ERR(snode->led_en_pinctrl));
  1976. snode->led_en_pinctrl = NULL;
  1977. }
  1978. if (snode->led_en_pinctrl) {
  1979. snode->gpio_state_active =
  1980. pinctrl_lookup_state(snode->led_en_pinctrl,
  1981. "led_enable");
  1982. if (IS_ERR_OR_NULL(snode->gpio_state_active)) {
  1983. pr_err("Cannot lookup LED active state\n");
  1984. devm_pinctrl_put(snode->led_en_pinctrl);
  1985. snode->led_en_pinctrl = NULL;
  1986. return PTR_ERR(snode->gpio_state_active);
  1987. }
  1988. snode->gpio_state_suspend =
  1989. pinctrl_lookup_state(snode->led_en_pinctrl,
  1990. "led_disable");
  1991. if (IS_ERR_OR_NULL(snode->gpio_state_suspend)) {
  1992. pr_err("Cannot lookup LED disable state\n");
  1993. devm_pinctrl_put(snode->led_en_pinctrl);
  1994. snode->led_en_pinctrl = NULL;
  1995. return PTR_ERR(snode->gpio_state_suspend);
  1996. }
  1997. }
  1998. return 0;
  1999. }
  2000. static int get_code_from_table(int *table, int len, int value)
  2001. {
  2002. int i;
  2003. for (i = 0; i < len; i++) {
  2004. if (value == table[i])
  2005. break;
  2006. }
  2007. if (i == len) {
  2008. pr_err("Couldn't find %d from table\n", value);
  2009. return -ENODATA;
  2010. }
  2011. return i;
  2012. }
  2013. static int qpnp_flash_led_parse_thermal_config_dt(struct qpnp_flash_led *led,
  2014. struct device_node *node)
  2015. {
  2016. int rc;
  2017. u32 val;
  2018. led->pdata->thermal_derate_en =
  2019. of_property_read_bool(node, "qcom,thermal-derate-en");
  2020. if (led->pdata->thermal_derate_en) {
  2021. led->pdata->thermal_derate_current =
  2022. devm_kcalloc(&led->pdev->dev,
  2023. FLASH_LED_THERMAL_OTST_LEVELS,
  2024. sizeof(int), GFP_KERNEL);
  2025. if (!led->pdata->thermal_derate_current)
  2026. return -ENOMEM;
  2027. rc = of_property_read_u32_array(node,
  2028. "qcom,thermal-derate-current",
  2029. led->pdata->thermal_derate_current,
  2030. FLASH_LED_THERMAL_OTST_LEVELS);
  2031. if (rc < 0) {
  2032. pr_err("Unable to read thermal current limits, rc=%d\n",
  2033. rc);
  2034. return rc;
  2035. }
  2036. }
  2037. led->pdata->otst_ramp_bkup_en =
  2038. !of_property_read_bool(node, "qcom,otst-ramp-back-up-dis");
  2039. led->pdata->thermal_derate_slow = -EINVAL;
  2040. rc = of_property_read_u32(node, "qcom,thermal-derate-slow", &val);
  2041. if (!rc) {
  2042. if (val < 0 || val > THERMAL_DERATE_SLOW_MAX) {
  2043. pr_err("Invalid thermal_derate_slow %d\n", val);
  2044. return -EINVAL;
  2045. }
  2046. led->pdata->thermal_derate_slow =
  2047. get_code_from_table(thermal_derate_slow_table,
  2048. ARRAY_SIZE(thermal_derate_slow_table), val);
  2049. } else if (rc != -EINVAL) {
  2050. pr_err("Unable to read thermal derate slow, rc=%d\n", rc);
  2051. return rc;
  2052. }
  2053. led->pdata->thermal_derate_fast = -EINVAL;
  2054. rc = of_property_read_u32(node, "qcom,thermal-derate-fast", &val);
  2055. if (!rc) {
  2056. if (val < 0 || val > THERMAL_DERATE_FAST_MAX) {
  2057. pr_err("Invalid thermal_derate_fast %d\n", val);
  2058. return -EINVAL;
  2059. }
  2060. led->pdata->thermal_derate_fast =
  2061. get_code_from_table(thermal_derate_fast_table,
  2062. ARRAY_SIZE(thermal_derate_fast_table), val);
  2063. } else if (rc != -EINVAL) {
  2064. pr_err("Unable to read thermal derate fast, rc=%d\n", rc);
  2065. return rc;
  2066. }
  2067. led->pdata->thermal_debounce = -EINVAL;
  2068. rc = of_property_read_u32(node, "qcom,thermal-debounce", &val);
  2069. if (!rc) {
  2070. if (val < 0 || val > THERMAL_DEBOUNCE_TIME_MAX) {
  2071. pr_err("Invalid thermal_debounce %d\n", val);
  2072. return -EINVAL;
  2073. }
  2074. if (val >= 0 && val < 16)
  2075. led->pdata->thermal_debounce = 0;
  2076. else
  2077. led->pdata->thermal_debounce = ilog2(val) - 3;
  2078. } else if (rc != -EINVAL) {
  2079. pr_err("Unable to read thermal debounce, rc=%d\n", rc);
  2080. return rc;
  2081. }
  2082. led->pdata->thermal_hysteresis = -EINVAL;
  2083. rc = of_property_read_u32(node, "qcom,thermal-hysteresis", &val);
  2084. if (!rc) {
  2085. if (led->pmic_type == PM660L)
  2086. val = THERMAL_HYST_TEMP_TO_VAL(val, 20);
  2087. else
  2088. val = THERMAL_HYST_TEMP_TO_VAL(val, 15);
  2089. if (val < 0 || val > THERMAL_DERATE_HYSTERESIS_MAX) {
  2090. pr_err("Invalid thermal_derate_hysteresis %d\n", val);
  2091. return -EINVAL;
  2092. }
  2093. led->pdata->thermal_hysteresis = val;
  2094. } else if (rc != -EINVAL) {
  2095. pr_err("Unable to read thermal hysteresis, rc=%d\n", rc);
  2096. return rc;
  2097. }
  2098. led->pdata->thermal_thrsh1 = -EINVAL;
  2099. rc = of_property_read_u32(node, "qcom,thermal-thrsh1", &val);
  2100. if (!rc) {
  2101. led->pdata->thermal_thrsh1 =
  2102. get_code_from_table(otst1_threshold_table,
  2103. ARRAY_SIZE(otst1_threshold_table), val);
  2104. } else if (rc != -EINVAL) {
  2105. pr_err("Unable to read thermal thrsh1, rc=%d\n", rc);
  2106. return rc;
  2107. }
  2108. led->pdata->thermal_thrsh2 = -EINVAL;
  2109. rc = of_property_read_u32(node, "qcom,thermal-thrsh2", &val);
  2110. if (!rc) {
  2111. led->pdata->thermal_thrsh2 =
  2112. get_code_from_table(otst2_threshold_table,
  2113. ARRAY_SIZE(otst2_threshold_table), val);
  2114. } else if (rc != -EINVAL) {
  2115. pr_err("Unable to read thermal thrsh2, rc=%d\n", rc);
  2116. return rc;
  2117. }
  2118. led->pdata->thermal_thrsh3 = -EINVAL;
  2119. rc = of_property_read_u32(node, "qcom,thermal-thrsh3", &val);
  2120. if (!rc) {
  2121. led->pdata->thermal_thrsh3 =
  2122. get_code_from_table(otst3_threshold_table,
  2123. ARRAY_SIZE(otst3_threshold_table), val);
  2124. } else if (rc != -EINVAL) {
  2125. pr_err("Unable to read thermal thrsh3, rc=%d\n", rc);
  2126. return rc;
  2127. }
  2128. return 0;
  2129. }
  2130. static int qpnp_flash_led_parse_vph_droop_config_dt(struct qpnp_flash_led *led,
  2131. struct device_node *node)
  2132. {
  2133. int rc;
  2134. u32 val;
  2135. led->pdata->vph_droop_debounce = FLASH_LED_VPH_DROOP_DEBOUNCE_DEFAULT;
  2136. rc = of_property_read_u32(node, "qcom,vph-droop-debounce-us", &val);
  2137. if (!rc) {
  2138. led->pdata->vph_droop_debounce =
  2139. VPH_DROOP_DEBOUNCE_US_TO_VAL(val);
  2140. } else if (rc != -EINVAL) {
  2141. pr_err("Unable to read VPH droop debounce, rc=%d\n", rc);
  2142. return rc;
  2143. }
  2144. if (led->pdata->vph_droop_debounce > FLASH_LED_DEBOUNCE_MAX) {
  2145. pr_err("Invalid VPH droop debounce specified\n");
  2146. return -EINVAL;
  2147. }
  2148. if (led->pmic_type == PMI632)
  2149. led->pdata->vph_droop_threshold =
  2150. BHARGER_FLASH_LED_VPH_DROOP_THRESH_DEFAULT;
  2151. else
  2152. led->pdata->vph_droop_threshold =
  2153. FLASH_LED_VPH_DROOP_THRESH_DEFAULT;
  2154. rc = of_property_read_u32(node, "qcom,vph-droop-threshold-mv", &val);
  2155. if (!rc) {
  2156. led->pdata->vph_droop_threshold =
  2157. get_vph_droop_thresh_code(val);
  2158. } else if (rc != -EINVAL) {
  2159. pr_err("Unable to read VPH droop threshold, rc=%d\n", rc);
  2160. return rc;
  2161. }
  2162. if (led->pdata->vph_droop_threshold > FLASH_LED_VPH_DROOP_THRESH_MAX) {
  2163. pr_err("Invalid VPH droop threshold specified\n");
  2164. return -EINVAL;
  2165. }
  2166. led->pdata->vph_droop_hysteresis =
  2167. FLASH_LED_VPH_DROOP_HYST_DEFAULT;
  2168. rc = of_property_read_u32(node, "qcom,vph-droop-hysteresis-mv", &val);
  2169. if (!rc) {
  2170. led->pdata->vph_droop_hysteresis =
  2171. VPH_DROOP_HYST_MV_TO_VAL(val);
  2172. } else if (rc != -EINVAL) {
  2173. pr_err("Unable to read VPH droop hysteresis, rc=%d\n", rc);
  2174. return rc;
  2175. }
  2176. if (led->pdata->vph_droop_hysteresis > FLASH_LED_HYSTERESIS_MAX) {
  2177. pr_err("Invalid VPH droop hysteresis specified\n");
  2178. return -EINVAL;
  2179. }
  2180. led->pdata->vph_droop_hysteresis <<= FLASH_LED_VPH_DROOP_HYST_SHIFT;
  2181. return 0;
  2182. }
  2183. static int qpnp_flash_led_parse_iclamp_config_dt(struct qpnp_flash_led *led,
  2184. struct device_node *node)
  2185. {
  2186. int rc;
  2187. u32 val;
  2188. rc = of_property_read_u32(node, "qcom,led1n2-iclamp-low-ma", &val);
  2189. if (!rc) {
  2190. led->pdata->led1n2_iclamp_low_ma = val;
  2191. } else if (rc != -EINVAL) {
  2192. pr_err("Unable to read led1n2_iclamp_low current, rc=%d\n", rc);
  2193. return rc;
  2194. }
  2195. rc = of_property_read_u32(node, "qcom,led1n2-iclamp-mid-ma", &val);
  2196. if (!rc) {
  2197. led->pdata->led1n2_iclamp_mid_ma = val;
  2198. } else if (rc != -EINVAL) {
  2199. pr_err("Unable to read led1n2_iclamp_mid current, rc=%d\n", rc);
  2200. return rc;
  2201. }
  2202. rc = of_property_read_u32(node, "qcom,led3-iclamp-low-ma", &val);
  2203. if (!rc) {
  2204. led->pdata->led3_iclamp_low_ma = val;
  2205. } else if (rc != -EINVAL) {
  2206. pr_err("Unable to read led3_iclamp_low current, rc=%d\n", rc);
  2207. return rc;
  2208. }
  2209. rc = of_property_read_u32(node, "qcom,led3-iclamp-mid-ma", &val);
  2210. if (!rc) {
  2211. led->pdata->led3_iclamp_mid_ma = val;
  2212. } else if (rc != -EINVAL) {
  2213. pr_err("Unable to read led3_iclamp_mid current, rc=%d\n", rc);
  2214. return rc;
  2215. }
  2216. return 0;
  2217. }
  2218. static int qpnp_flash_led_parse_lmh_config_dt(struct qpnp_flash_led *led,
  2219. struct device_node *node)
  2220. {
  2221. int rc;
  2222. u32 val;
  2223. led->pdata->lmh_ocv_threshold_uv =
  2224. FLASH_LED_LMH_OCV_THRESH_DEFAULT_UV;
  2225. rc = of_property_read_u32(node, "qcom,lmh-ocv-threshold-uv", &val);
  2226. if (!rc) {
  2227. led->pdata->lmh_ocv_threshold_uv = val;
  2228. } else if (rc != -EINVAL) {
  2229. pr_err("Unable to parse lmh ocv threshold, rc=%d\n", rc);
  2230. return rc;
  2231. }
  2232. led->pdata->lmh_rbatt_threshold_uohm =
  2233. FLASH_LED_LMH_RBATT_THRESH_DEFAULT_UOHM;
  2234. rc = of_property_read_u32(node, "qcom,lmh-rbatt-threshold-uohm", &val);
  2235. if (!rc) {
  2236. led->pdata->lmh_rbatt_threshold_uohm = val;
  2237. } else if (rc != -EINVAL) {
  2238. pr_err("Unable to parse lmh rbatt threshold, rc=%d\n", rc);
  2239. return rc;
  2240. }
  2241. led->pdata->lmh_level = FLASH_LED_LMH_LEVEL_DEFAULT;
  2242. rc = of_property_read_u32(node, "qcom,lmh-level", &val);
  2243. if (!rc) {
  2244. led->pdata->lmh_level = val;
  2245. } else if (rc != -EINVAL) {
  2246. pr_err("Unable to parse lmh_level, rc=%d\n", rc);
  2247. return rc;
  2248. }
  2249. led->pdata->lmh_mitigation_sel = FLASH_LED_LMH_MITIGATION_SEL_DEFAULT;
  2250. rc = of_property_read_u32(node, "qcom,lmh-mitigation-sel", &val);
  2251. if (!rc) {
  2252. led->pdata->lmh_mitigation_sel = val;
  2253. } else if (rc != -EINVAL) {
  2254. pr_err("Unable to parse lmh_mitigation_sel, rc=%d\n", rc);
  2255. return rc;
  2256. }
  2257. if (led->pdata->lmh_mitigation_sel > FLASH_LED_MITIGATION_SEL_MAX) {
  2258. pr_err("Invalid lmh_mitigation_sel specified\n");
  2259. return -EINVAL;
  2260. }
  2261. return 0;
  2262. }
  2263. static int qpnp_flash_led_parse_iled_threshold_dt(struct qpnp_flash_led *led,
  2264. struct device_node *node)
  2265. {
  2266. int rc;
  2267. u32 val;
  2268. led->pdata->iled_thrsh_val = FLASH_LED_CHGR_MITIGATION_THRSH_DEFAULT;
  2269. rc = of_property_read_u32(node, "qcom,iled-thrsh-ma", &val);
  2270. if (!rc) {
  2271. led->pdata->iled_thrsh_val = MITIGATION_THRSH_MA_TO_VAL(val);
  2272. } else if (rc != -EINVAL) {
  2273. pr_err("Unable to parse iled_thrsh_val, rc=%d\n", rc);
  2274. return rc;
  2275. }
  2276. if (led->pdata->iled_thrsh_val > FLASH_LED_CHGR_MITIGATION_THRSH_MAX) {
  2277. pr_err("Invalid iled_thrsh_val specified\n");
  2278. return -EINVAL;
  2279. }
  2280. return 0;
  2281. }
  2282. static int qpnp_flash_led_parse_chgr_mitigation_dt(struct qpnp_flash_led *led,
  2283. struct device_node *node)
  2284. {
  2285. int rc;
  2286. u32 val;
  2287. if (led->pmic_type == PMI632)
  2288. led->pdata->chgr_mitigation_sel =
  2289. FLASH_DISABLE_CHARGER_MITIGATION;
  2290. else
  2291. led->pdata->chgr_mitigation_sel = FLASH_SW_CHARGER_MITIGATION;
  2292. rc = of_property_read_u32(node, "qcom,chgr-mitigation-sel", &val);
  2293. if (!rc) {
  2294. led->pdata->chgr_mitigation_sel = val;
  2295. } else if (rc != -EINVAL) {
  2296. pr_err("Unable to parse chgr_mitigation_sel, rc=%d\n", rc);
  2297. return rc;
  2298. }
  2299. if (led->pdata->chgr_mitigation_sel > FLASH_LED_MITIGATION_SEL_MAX) {
  2300. pr_err("Invalid chgr_mitigation_sel specified\n");
  2301. return -EINVAL;
  2302. }
  2303. return 0;
  2304. }
  2305. static int qpnp_flash_led_parse_battery_prop_dt(struct qpnp_flash_led *led,
  2306. struct device_node *node)
  2307. {
  2308. int rc;
  2309. u32 val;
  2310. led->pdata->ibatt_ocp_threshold_ua =
  2311. FLASH_LED_IBATT_OCP_THRESH_DEFAULT_UA;
  2312. rc = of_property_read_u32(node, "qcom,ibatt-ocp-threshold-ua", &val);
  2313. if (!rc) {
  2314. led->pdata->ibatt_ocp_threshold_ua = val;
  2315. } else if (rc != -EINVAL) {
  2316. pr_err("Unable to parse ibatt_ocp threshold, rc=%d\n", rc);
  2317. return rc;
  2318. }
  2319. led->pdata->rpara_uohm = FLASH_LED_RPARA_DEFAULT_UOHM;
  2320. rc = of_property_read_u32(node, "qcom,rparasitic-uohm", &val);
  2321. if (!rc) {
  2322. led->pdata->rpara_uohm = val;
  2323. } else if (rc != -EINVAL) {
  2324. pr_err("Unable to parse rparasitic, rc=%d\n", rc);
  2325. return rc;
  2326. }
  2327. return 0;
  2328. }
  2329. static void qpnp_flash_led_parse_fault_detection_dt(struct qpnp_flash_led *led,
  2330. struct device_node *node)
  2331. {
  2332. bool short_circuit_det, open_circuit_det, vph_droop_det;
  2333. short_circuit_det =
  2334. of_property_read_bool(node, "qcom,short-circuit-det");
  2335. open_circuit_det = of_property_read_bool(node, "qcom,open-circuit-det");
  2336. vph_droop_det = of_property_read_bool(node, "qcom,vph-droop-det");
  2337. led->pdata->current_derate_en_cfg = (vph_droop_det << 2) |
  2338. (open_circuit_det << 1) | short_circuit_det;
  2339. }
  2340. static int qpnp_flash_led_parse_warmup_delay_dt(struct qpnp_flash_led *led,
  2341. struct device_node *node)
  2342. {
  2343. int rc;
  2344. u32 val;
  2345. led->pdata->warmup_delay = FLASH_LED_WARMUP_DELAY_DEFAULT;
  2346. rc = of_property_read_u32(node, "qcom,warmup-delay-us", &val);
  2347. if (!rc) {
  2348. led->pdata->warmup_delay =
  2349. val >> FLASH_LED_ISC_WARMUP_DELAY_SHIFT;
  2350. } else if (rc != -EINVAL) {
  2351. pr_err("Unable to read WARMUP delay, rc=%d\n", rc);
  2352. return rc;
  2353. }
  2354. return 0;
  2355. }
  2356. static void qpnp_flash_led_parse_irqs_dt(struct qpnp_flash_led *led,
  2357. struct device_node *node)
  2358. {
  2359. led->pdata->all_ramp_up_done_irq =
  2360. of_irq_get_byname(node, "all-ramp-up-done-irq");
  2361. if (led->pdata->all_ramp_up_done_irq < 0)
  2362. pr_debug("all-ramp-up-done-irq not used\n");
  2363. led->pdata->all_ramp_down_done_irq =
  2364. of_irq_get_byname(node, "all-ramp-down-done-irq");
  2365. if (led->pdata->all_ramp_down_done_irq < 0)
  2366. pr_debug("all-ramp-down-done-irq not used\n");
  2367. led->pdata->led_fault_irq =
  2368. of_irq_get_byname(node, "led-fault-irq");
  2369. if (led->pdata->led_fault_irq < 0)
  2370. pr_debug("led-fault-irq not used\n");
  2371. }
  2372. static int qpnp_flash_led_isc_delay_dt(struct qpnp_flash_led *led,
  2373. struct device_node *node)
  2374. {
  2375. int rc;
  2376. u32 val;
  2377. led->pdata->isc_delay = FLASH_LED_ISC_DELAY_DEFAULT;
  2378. rc = of_property_read_u32(node, "qcom,isc-delay-us", &val);
  2379. if (!rc) {
  2380. led->pdata->isc_delay =
  2381. val >> FLASH_LED_ISC_WARMUP_DELAY_SHIFT;
  2382. } else if (rc != -EINVAL) {
  2383. pr_err("Unable to read ISC delay, rc=%d\n", rc);
  2384. return rc;
  2385. }
  2386. return 0;
  2387. }
  2388. static int qpnp_flash_led_parse_common_dt(struct qpnp_flash_led *led,
  2389. struct device_node *node)
  2390. {
  2391. int rc;
  2392. u32 val;
  2393. rc = of_property_read_u32(node, "reg", &val);
  2394. if (rc < 0) {
  2395. pr_err("Couldn't find reg in node %s, rc = %d\n",
  2396. node->full_name, rc);
  2397. return rc;
  2398. }
  2399. led->base = val;
  2400. led->pdata->hdrm_auto_mode_en = of_property_read_bool(node,
  2401. "qcom,hdrm-auto-mode");
  2402. rc = qpnp_flash_led_isc_delay_dt(led, node);
  2403. if (rc < 0)
  2404. return rc;
  2405. rc = qpnp_flash_led_parse_warmup_delay_dt(led, node);
  2406. if (rc < 0)
  2407. return rc;
  2408. qpnp_flash_led_parse_fault_detection_dt(led, node);
  2409. rc = qpnp_flash_led_parse_thermal_config_dt(led, node);
  2410. if (rc < 0)
  2411. return rc;
  2412. rc = qpnp_flash_led_parse_vph_droop_config_dt(led, node);
  2413. if (rc < 0)
  2414. return rc;
  2415. rc = qpnp_flash_led_parse_iclamp_config_dt(led, node);
  2416. if (rc < 0)
  2417. return rc;
  2418. led->pdata->hw_strobe_option = -EINVAL;
  2419. rc = of_property_read_u32(node, "qcom,hw-strobe-option", &val);
  2420. if (!rc) {
  2421. led->pdata->hw_strobe_option = val;
  2422. } else if (rc != -EINVAL) {
  2423. pr_err("Unable to parse hw strobe option, rc=%d\n", rc);
  2424. return rc;
  2425. }
  2426. led->pdata->vled_max_uv = FLASH_LED_VLED_MAX_DEFAULT_UV;
  2427. rc = of_property_read_u32(node, "qcom,vled-max-uv", &val);
  2428. if (!rc) {
  2429. led->pdata->vled_max_uv = val;
  2430. } else if (rc != -EINVAL) {
  2431. pr_err("Unable to parse vled_max voltage, rc=%d\n", rc);
  2432. return rc;
  2433. }
  2434. val = FLASH_LED_RAMP_STEP_DEFAULT_NS;
  2435. rc = of_property_read_u32(node, "qcom,ramp-up-step", &val);
  2436. if (!rc && (val < FLASH_LED_RAMP_STEP_MIN_NS || val > FLASH_LED_RAMP_STEP_MAX_NS)) {
  2437. pr_err("Invalid ramp-up-step %d\n", val);
  2438. return -EINVAL;
  2439. } else if (rc && rc != -EINVAL) {
  2440. pr_err("Unable to read ramp-up-step, rc=%d\n", rc);
  2441. return rc;
  2442. }
  2443. led->pdata->ramp_up_step = ilog2(val / 100) - 1;
  2444. val = FLASH_LED_RAMP_STEP_DEFAULT_NS;
  2445. rc = of_property_read_u32(node, "qcom,ramp-down-step", &val);
  2446. if (!rc && (val < FLASH_LED_RAMP_STEP_MIN_NS || val > FLASH_LED_RAMP_STEP_MAX_NS)) {
  2447. pr_err("Invalid ramp-down-step %d\n", val);
  2448. return -EINVAL;
  2449. } else if (rc && rc != -EINVAL) {
  2450. pr_err("Unable to read ramp-down-step, rc=%d\n", rc);
  2451. return rc;
  2452. }
  2453. led->pdata->ramp_down_step = ilog2(val / 100) - 1;
  2454. rc = qpnp_flash_led_parse_battery_prop_dt(led, node);
  2455. if (rc < 0)
  2456. return rc;
  2457. rc = qpnp_flash_led_parse_lmh_config_dt(led, node);
  2458. if (rc < 0)
  2459. return rc;
  2460. rc = qpnp_flash_led_parse_chgr_mitigation_dt(led, node);
  2461. if (rc < 0)
  2462. return rc;
  2463. rc = qpnp_flash_led_parse_iled_threshold_dt(led, node);
  2464. if (rc < 0)
  2465. return rc;
  2466. led->pdata->bst_pwm_ovrhd_uv = FLASH_BST_PWM_OVRHD_MIN_UV;
  2467. rc = of_property_read_u32(node, "qcom,bst-pwm-ovrhd-uv", &val);
  2468. if (!rc) {
  2469. if (val >= FLASH_BST_PWM_OVRHD_MIN_UV &&
  2470. val <= FLASH_BST_PWM_OVRHD_MAX_UV)
  2471. led->pdata->bst_pwm_ovrhd_uv = val;
  2472. }
  2473. qpnp_flash_led_parse_irqs_dt(led, node);
  2474. return 0;
  2475. }
  2476. static int qpnp_flash_led_register_interrupts(struct qpnp_flash_led *led)
  2477. {
  2478. int rc;
  2479. /* setup irqs */
  2480. if (led->pdata->all_ramp_up_done_irq >= 0) {
  2481. rc = devm_request_threaded_irq(&led->pdev->dev,
  2482. led->pdata->all_ramp_up_done_irq,
  2483. NULL, qpnp_flash_led_irq_handler,
  2484. IRQF_ONESHOT,
  2485. "qpnp_flash_led_all_ramp_up_done_irq", led);
  2486. if (rc < 0) {
  2487. pr_err("Unable to request all_ramp_up_done(%d) IRQ(err:%d)\n",
  2488. led->pdata->all_ramp_up_done_irq, rc);
  2489. return rc;
  2490. }
  2491. }
  2492. if (led->pdata->all_ramp_down_done_irq >= 0) {
  2493. rc = devm_request_threaded_irq(&led->pdev->dev,
  2494. led->pdata->all_ramp_down_done_irq,
  2495. NULL, qpnp_flash_led_irq_handler,
  2496. IRQF_ONESHOT,
  2497. "qpnp_flash_led_all_ramp_down_done_irq", led);
  2498. if (rc < 0) {
  2499. pr_err("Unable to request all_ramp_down_done(%d) IRQ(err:%d)\n",
  2500. led->pdata->all_ramp_down_done_irq, rc);
  2501. return rc;
  2502. }
  2503. }
  2504. if (led->pdata->led_fault_irq >= 0) {
  2505. rc = devm_request_threaded_irq(&led->pdev->dev,
  2506. led->pdata->led_fault_irq,
  2507. NULL, qpnp_flash_led_irq_handler,
  2508. IRQF_ONESHOT,
  2509. "qpnp_flash_led_fault_irq", led);
  2510. if (rc < 0) {
  2511. pr_err("Unable to request led_fault(%d) IRQ(err:%d)\n",
  2512. led->pdata->led_fault_irq, rc);
  2513. return rc;
  2514. }
  2515. }
  2516. return 0;
  2517. }
  2518. static void qpnp_flash_led_free_interrupts(struct qpnp_flash_led *led)
  2519. {
  2520. /* free irqs */
  2521. if (led->pdata->all_ramp_up_done_irq >= 0)
  2522. devm_free_irq(&led->pdev->dev,
  2523. led->pdata->all_ramp_up_done_irq,
  2524. led);
  2525. if (led->pdata->all_ramp_down_done_irq >= 0)
  2526. devm_free_irq(&led->pdev->dev,
  2527. led->pdata->all_ramp_down_done_irq,
  2528. led);
  2529. if (led->pdata->led_fault_irq >= 0)
  2530. devm_free_irq(&led->pdev->dev,
  2531. led->pdata->led_fault_irq,
  2532. led);
  2533. }
  2534. static int qpnp_flash_led_probe(struct platform_device *pdev)
  2535. {
  2536. struct qpnp_flash_led *led;
  2537. struct device_node *node, *temp;
  2538. const char *temp_string;
  2539. int rc, i = 0, j = 0;
  2540. node = pdev->dev.of_node;
  2541. if (!node) {
  2542. pr_err("No flash LED nodes defined\n");
  2543. return -ENODEV;
  2544. }
  2545. led = devm_kzalloc(&pdev->dev, sizeof(struct qpnp_flash_led),
  2546. GFP_KERNEL);
  2547. if (!led)
  2548. return -ENOMEM;
  2549. led->regmap = dev_get_regmap(pdev->dev.parent, NULL);
  2550. if (!led->regmap) {
  2551. pr_err("Couldn't get parent's regmap\n");
  2552. return -EINVAL;
  2553. }
  2554. led->pmic_type = (enum pmic_type)(uintptr_t)of_device_get_match_data(&pdev->dev);
  2555. if (led->pmic_type == PM6150L)
  2556. led->wa_flags |= PM6150L_IRES_WA;
  2557. led->pdev = pdev;
  2558. led->pdata = devm_kzalloc(&pdev->dev,
  2559. sizeof(struct flash_led_platform_data), GFP_KERNEL);
  2560. if (!led->pdata)
  2561. return -ENOMEM;
  2562. led->iio_channels = devm_kcalloc(&pdev->dev,
  2563. ARRAY_SIZE(flash_iio_prop_names),
  2564. sizeof(struct iio_channel *), GFP_KERNEL);
  2565. if (!led->iio_channels)
  2566. return -ENOMEM;
  2567. spin_lock_init(&led->lock);
  2568. rc = qpnp_flash_led_parse_common_dt(led, node);
  2569. if (rc < 0) {
  2570. pr_err("Failed to parse common flash LED device tree rc=%d\n",
  2571. rc);
  2572. return rc;
  2573. }
  2574. for_each_available_child_of_node(node, temp) {
  2575. rc = of_property_read_string(temp, "label", &temp_string);
  2576. if (rc < 0) {
  2577. pr_err("Failed to parse label, rc=%d\n", rc);
  2578. return rc;
  2579. }
  2580. if (!strcmp("switch", temp_string)) {
  2581. led->num_snodes++;
  2582. } else if (!strcmp("flash", temp_string) ||
  2583. !strcmp("torch", temp_string)) {
  2584. led->num_fnodes++;
  2585. } else {
  2586. pr_err("Invalid label for led node\n");
  2587. return -EINVAL;
  2588. }
  2589. }
  2590. if (!led->num_fnodes) {
  2591. pr_err("No LED nodes defined\n");
  2592. return -ECHILD;
  2593. }
  2594. led->fnode = devm_kcalloc(&pdev->dev, led->num_fnodes,
  2595. sizeof(*led->fnode), GFP_KERNEL);
  2596. if (!led->fnode)
  2597. return -ENOMEM;
  2598. led->snode = devm_kcalloc(&pdev->dev, led->num_snodes,
  2599. sizeof(*led->snode), GFP_KERNEL);
  2600. if (!led->snode)
  2601. return -ENOMEM;
  2602. temp = NULL;
  2603. i = 0;
  2604. j = 0;
  2605. for_each_available_child_of_node(node, temp) {
  2606. rc = of_property_read_string(temp, "label", &temp_string);
  2607. if (rc < 0) {
  2608. pr_err("Failed to parse label, rc=%d\n", rc);
  2609. return rc;
  2610. }
  2611. if (!strcmp("flash", temp_string) ||
  2612. !strcmp("torch", temp_string)) {
  2613. rc = qpnp_flash_led_parse_each_led_dt(led,
  2614. &led->fnode[i], temp);
  2615. if (rc < 0) {
  2616. pr_err("Unable to parse flash node %d rc=%d\n",
  2617. i, rc);
  2618. goto error_led_register;
  2619. }
  2620. i++;
  2621. }
  2622. if (!strcmp("switch", temp_string)) {
  2623. rc = qpnp_flash_led_parse_and_register_switch(led,
  2624. &led->snode[j], temp);
  2625. if (rc < 0) {
  2626. pr_err("Unable to parse and register switch node, rc=%d\n",
  2627. rc);
  2628. goto error_switch_register;
  2629. }
  2630. j++;
  2631. }
  2632. }
  2633. rc = qpnp_flash_led_register_interrupts(led);
  2634. if (rc < 0)
  2635. goto error_switch_register;
  2636. rc = qpnp_flash_led_init_settings(led);
  2637. if (rc < 0) {
  2638. pr_err("Failed to initialize flash LED, rc=%d\n", rc);
  2639. goto error_switch_register;
  2640. }
  2641. for (i = 0; i < led->num_snodes; i++) {
  2642. for (j = 0; j < ARRAY_SIZE(qpnp_flash_led_attrs); j++) {
  2643. rc = sysfs_create_file(&led->snode[i].cdev.dev->kobj,
  2644. &qpnp_flash_led_attrs[j].attr);
  2645. if (rc < 0) {
  2646. pr_err("sysfs creation failed, rc=%d\n", rc);
  2647. goto sysfs_fail;
  2648. }
  2649. }
  2650. }
  2651. dev_set_drvdata(&pdev->dev, led);
  2652. return 0;
  2653. sysfs_fail:
  2654. for (--j; j >= 0; j--)
  2655. sysfs_remove_file(&led->snode[i].cdev.dev->kobj,
  2656. &qpnp_flash_led_attrs[j].attr);
  2657. for (--i; i >= 0; i--) {
  2658. for (j = 0; j < ARRAY_SIZE(qpnp_flash_led_attrs); j++)
  2659. sysfs_remove_file(&led->snode[i].cdev.dev->kobj,
  2660. &qpnp_flash_led_attrs[j].attr);
  2661. }
  2662. i = led->num_snodes;
  2663. error_switch_register:
  2664. while (i > 0)
  2665. led_classdev_unregister(&led->snode[--i].cdev);
  2666. i = led->num_fnodes;
  2667. error_led_register:
  2668. while (i > 0)
  2669. led_classdev_unregister(&led->fnode[--i].cdev);
  2670. return rc;
  2671. }
  2672. static int qpnp_flash_led_remove(struct platform_device *pdev)
  2673. {
  2674. struct qpnp_flash_led *led = dev_get_drvdata(&pdev->dev);
  2675. int i, j;
  2676. for (i = 0; i < led->num_snodes; i++) {
  2677. for (j = 0; j < ARRAY_SIZE(qpnp_flash_led_attrs); j++)
  2678. sysfs_remove_file(&led->snode[i].cdev.dev->kobj,
  2679. &qpnp_flash_led_attrs[j].attr);
  2680. if (led->snode[i].regulator_on)
  2681. qpnp_flash_led_regulator_enable(led,
  2682. &led->snode[i], false);
  2683. }
  2684. while (i > 0)
  2685. led_classdev_unregister(&led->snode[--i].cdev);
  2686. i = led->num_fnodes;
  2687. while (i > 0)
  2688. led_classdev_unregister(&led->fnode[--i].cdev);
  2689. power_supply_unreg_notifier(&led->nb);
  2690. return 0;
  2691. }
  2692. static int qpnp_flash_led_freeze(struct device *dev)
  2693. {
  2694. struct qpnp_flash_led *led = dev_get_drvdata(dev);
  2695. qpnp_flash_led_free_interrupts(led);
  2696. return 0;
  2697. }
  2698. static int qpnp_flash_led_restore(struct device *dev)
  2699. {
  2700. struct qpnp_flash_led *led = dev_get_drvdata(dev);
  2701. int rc = 0;
  2702. rc = qpnp_flash_led_init_settings(led);
  2703. if (rc < 0) {
  2704. pr_err("Flash setting re-init failed in Restore rc= %d\n", rc);
  2705. return rc;
  2706. }
  2707. rc = qpnp_flash_led_register_interrupts(led);
  2708. if (rc < 0)
  2709. pr_err("Interrupt re-registration failed in Restore rc= %d\n", rc);
  2710. return rc;
  2711. }
  2712. static const struct dev_pm_ops qpnp_flash_led_pm_ops = {
  2713. .freeze = qpnp_flash_led_freeze,
  2714. .restore = qpnp_flash_led_restore,
  2715. };
  2716. const struct of_device_id qpnp_flash_led_match_table[] = {
  2717. { .compatible = "qcom,pm6150l-flash-led-v2", .data = (void *)PM6150L},
  2718. { .compatible = "qcom,pmi632-flash-led-v2", .data = (void *)PMI632},
  2719. { },
  2720. };
  2721. static struct platform_driver qpnp_flash_led_driver = {
  2722. .driver = {
  2723. .name = "qcom,qpnp-flash-led-v2",
  2724. .of_match_table = qpnp_flash_led_match_table,
  2725. .pm = &qpnp_flash_led_pm_ops,
  2726. },
  2727. .probe = qpnp_flash_led_probe,
  2728. .remove = qpnp_flash_led_remove,
  2729. };
  2730. module_platform_driver(qpnp_flash_led_driver);
  2731. MODULE_DESCRIPTION("QPNP Flash LED driver v2");
  2732. MODULE_LICENSE("GPL");
  2733. MODULE_ALIAS("leds:leds-qpnp-flash-v2");