ucb1400_ts.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Philips UCB1400 touchscreen driver
  4. *
  5. * Author: Nicolas Pitre
  6. * Created: September 25, 2006
  7. * Copyright: MontaVista Software, Inc.
  8. *
  9. * Spliting done by: Marek Vasut <[email protected]>
  10. * If something doesn't work and it worked before spliting, e-mail me,
  11. * dont bother Nicolas please ;-)
  12. *
  13. * This code is heavily based on ucb1x00-*.c copyrighted by Russell King
  14. * covering the UCB1100, UCB1200 and UCB1300.. Support for the UCB1400 has
  15. * been made separate from ucb1x00-core/ucb1x00-ts on Russell's request.
  16. */
  17. #include <linux/module.h>
  18. #include <linux/delay.h>
  19. #include <linux/sched.h>
  20. #include <linux/wait.h>
  21. #include <linux/input.h>
  22. #include <linux/device.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/ucb1400.h>
  25. #define UCB1400_TS_POLL_PERIOD 10 /* ms */
  26. static bool adcsync;
  27. static int ts_delay = 55; /* us */
  28. static int ts_delay_pressure; /* us */
  29. /* Switch to interrupt mode. */
  30. static void ucb1400_ts_mode_int(struct ucb1400_ts *ucb)
  31. {
  32. ucb1400_reg_write(ucb->ac97, UCB_TS_CR,
  33. UCB_TS_CR_TSMX_POW | UCB_TS_CR_TSPX_POW |
  34. UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_GND |
  35. UCB_TS_CR_MODE_INT);
  36. }
  37. /*
  38. * Switch to pressure mode, and read pressure. We don't need to wait
  39. * here, since both plates are being driven.
  40. */
  41. static unsigned int ucb1400_ts_read_pressure(struct ucb1400_ts *ucb)
  42. {
  43. ucb1400_reg_write(ucb->ac97, UCB_TS_CR,
  44. UCB_TS_CR_TSMX_POW | UCB_TS_CR_TSPX_POW |
  45. UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_GND |
  46. UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
  47. udelay(ts_delay_pressure);
  48. return ucb1400_adc_read(ucb->ac97, UCB_ADC_INP_TSPY, adcsync);
  49. }
  50. /*
  51. * Switch to X position mode and measure Y plate. We switch the plate
  52. * configuration in pressure mode, then switch to position mode. This
  53. * gives a faster response time. Even so, we need to wait about 55us
  54. * for things to stabilise.
  55. */
  56. static unsigned int ucb1400_ts_read_xpos(struct ucb1400_ts *ucb)
  57. {
  58. ucb1400_reg_write(ucb->ac97, UCB_TS_CR,
  59. UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
  60. UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
  61. ucb1400_reg_write(ucb->ac97, UCB_TS_CR,
  62. UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
  63. UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
  64. ucb1400_reg_write(ucb->ac97, UCB_TS_CR,
  65. UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
  66. UCB_TS_CR_MODE_POS | UCB_TS_CR_BIAS_ENA);
  67. udelay(ts_delay);
  68. return ucb1400_adc_read(ucb->ac97, UCB_ADC_INP_TSPY, adcsync);
  69. }
  70. /*
  71. * Switch to Y position mode and measure X plate. We switch the plate
  72. * configuration in pressure mode, then switch to position mode. This
  73. * gives a faster response time. Even so, we need to wait about 55us
  74. * for things to stabilise.
  75. */
  76. static int ucb1400_ts_read_ypos(struct ucb1400_ts *ucb)
  77. {
  78. ucb1400_reg_write(ucb->ac97, UCB_TS_CR,
  79. UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
  80. UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
  81. ucb1400_reg_write(ucb->ac97, UCB_TS_CR,
  82. UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
  83. UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
  84. ucb1400_reg_write(ucb->ac97, UCB_TS_CR,
  85. UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
  86. UCB_TS_CR_MODE_POS | UCB_TS_CR_BIAS_ENA);
  87. udelay(ts_delay);
  88. return ucb1400_adc_read(ucb->ac97, UCB_ADC_INP_TSPX, adcsync);
  89. }
  90. /*
  91. * Switch to X plate resistance mode. Set MX to ground, PX to
  92. * supply. Measure current.
  93. */
  94. static unsigned int ucb1400_ts_read_xres(struct ucb1400_ts *ucb)
  95. {
  96. ucb1400_reg_write(ucb->ac97, UCB_TS_CR,
  97. UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
  98. UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
  99. return ucb1400_adc_read(ucb->ac97, 0, adcsync);
  100. }
  101. /*
  102. * Switch to Y plate resistance mode. Set MY to ground, PY to
  103. * supply. Measure current.
  104. */
  105. static unsigned int ucb1400_ts_read_yres(struct ucb1400_ts *ucb)
  106. {
  107. ucb1400_reg_write(ucb->ac97, UCB_TS_CR,
  108. UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
  109. UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
  110. return ucb1400_adc_read(ucb->ac97, 0, adcsync);
  111. }
  112. static int ucb1400_ts_pen_up(struct ucb1400_ts *ucb)
  113. {
  114. unsigned short val = ucb1400_reg_read(ucb->ac97, UCB_TS_CR);
  115. return val & (UCB_TS_CR_TSPX_LOW | UCB_TS_CR_TSMX_LOW);
  116. }
  117. static void ucb1400_ts_irq_enable(struct ucb1400_ts *ucb)
  118. {
  119. ucb1400_reg_write(ucb->ac97, UCB_IE_CLEAR, UCB_IE_TSPX);
  120. ucb1400_reg_write(ucb->ac97, UCB_IE_CLEAR, 0);
  121. ucb1400_reg_write(ucb->ac97, UCB_IE_FAL, UCB_IE_TSPX);
  122. }
  123. static void ucb1400_ts_irq_disable(struct ucb1400_ts *ucb)
  124. {
  125. ucb1400_reg_write(ucb->ac97, UCB_IE_FAL, 0);
  126. }
  127. static void ucb1400_ts_report_event(struct input_dev *idev, u16 pressure, u16 x, u16 y)
  128. {
  129. input_report_abs(idev, ABS_X, x);
  130. input_report_abs(idev, ABS_Y, y);
  131. input_report_abs(idev, ABS_PRESSURE, pressure);
  132. input_report_key(idev, BTN_TOUCH, 1);
  133. input_sync(idev);
  134. }
  135. static void ucb1400_ts_event_release(struct input_dev *idev)
  136. {
  137. input_report_abs(idev, ABS_PRESSURE, 0);
  138. input_report_key(idev, BTN_TOUCH, 0);
  139. input_sync(idev);
  140. }
  141. static void ucb1400_clear_pending_irq(struct ucb1400_ts *ucb)
  142. {
  143. unsigned int isr;
  144. isr = ucb1400_reg_read(ucb->ac97, UCB_IE_STATUS);
  145. ucb1400_reg_write(ucb->ac97, UCB_IE_CLEAR, isr);
  146. ucb1400_reg_write(ucb->ac97, UCB_IE_CLEAR, 0);
  147. if (isr & UCB_IE_TSPX)
  148. ucb1400_ts_irq_disable(ucb);
  149. else
  150. dev_dbg(&ucb->ts_idev->dev,
  151. "ucb1400: unexpected IE_STATUS = %#x\n", isr);
  152. }
  153. /*
  154. * A restriction with interrupts exists when using the ucb1400, as
  155. * the codec read/write routines may sleep while waiting for codec
  156. * access completion and uses semaphores for access control to the
  157. * AC97 bus. Therefore the driver is forced to use threaded interrupt
  158. * handler.
  159. */
  160. static irqreturn_t ucb1400_irq(int irqnr, void *devid)
  161. {
  162. struct ucb1400_ts *ucb = devid;
  163. unsigned int x, y, p;
  164. if (unlikely(irqnr != ucb->irq))
  165. return IRQ_NONE;
  166. ucb1400_clear_pending_irq(ucb);
  167. /* Start with a small delay before checking pendown state */
  168. msleep(UCB1400_TS_POLL_PERIOD);
  169. while (!ucb->stopped && !ucb1400_ts_pen_up(ucb)) {
  170. ucb1400_adc_enable(ucb->ac97);
  171. x = ucb1400_ts_read_xpos(ucb);
  172. y = ucb1400_ts_read_ypos(ucb);
  173. p = ucb1400_ts_read_pressure(ucb);
  174. ucb1400_adc_disable(ucb->ac97);
  175. ucb1400_ts_report_event(ucb->ts_idev, p, x, y);
  176. wait_event_timeout(ucb->ts_wait, ucb->stopped,
  177. msecs_to_jiffies(UCB1400_TS_POLL_PERIOD));
  178. }
  179. ucb1400_ts_event_release(ucb->ts_idev);
  180. if (!ucb->stopped) {
  181. /* Switch back to interrupt mode. */
  182. ucb1400_ts_mode_int(ucb);
  183. ucb1400_ts_irq_enable(ucb);
  184. }
  185. return IRQ_HANDLED;
  186. }
  187. static void ucb1400_ts_stop(struct ucb1400_ts *ucb)
  188. {
  189. /* Signal IRQ thread to stop polling and disable the handler. */
  190. ucb->stopped = true;
  191. mb();
  192. wake_up(&ucb->ts_wait);
  193. disable_irq(ucb->irq);
  194. ucb1400_ts_irq_disable(ucb);
  195. ucb1400_reg_write(ucb->ac97, UCB_TS_CR, 0);
  196. }
  197. /* Must be called with ts->lock held */
  198. static void ucb1400_ts_start(struct ucb1400_ts *ucb)
  199. {
  200. /* Tell IRQ thread that it may poll the device. */
  201. ucb->stopped = false;
  202. mb();
  203. ucb1400_ts_mode_int(ucb);
  204. ucb1400_ts_irq_enable(ucb);
  205. enable_irq(ucb->irq);
  206. }
  207. static int ucb1400_ts_open(struct input_dev *idev)
  208. {
  209. struct ucb1400_ts *ucb = input_get_drvdata(idev);
  210. ucb1400_ts_start(ucb);
  211. return 0;
  212. }
  213. static void ucb1400_ts_close(struct input_dev *idev)
  214. {
  215. struct ucb1400_ts *ucb = input_get_drvdata(idev);
  216. ucb1400_ts_stop(ucb);
  217. }
  218. #ifndef NO_IRQ
  219. #define NO_IRQ 0
  220. #endif
  221. /*
  222. * Try to probe our interrupt, rather than relying on lots of
  223. * hard-coded machine dependencies.
  224. */
  225. static int ucb1400_ts_detect_irq(struct ucb1400_ts *ucb,
  226. struct platform_device *pdev)
  227. {
  228. unsigned long mask, timeout;
  229. mask = probe_irq_on();
  230. /* Enable the ADC interrupt. */
  231. ucb1400_reg_write(ucb->ac97, UCB_IE_RIS, UCB_IE_ADC);
  232. ucb1400_reg_write(ucb->ac97, UCB_IE_FAL, UCB_IE_ADC);
  233. ucb1400_reg_write(ucb->ac97, UCB_IE_CLEAR, 0xffff);
  234. ucb1400_reg_write(ucb->ac97, UCB_IE_CLEAR, 0);
  235. /* Cause an ADC interrupt. */
  236. ucb1400_reg_write(ucb->ac97, UCB_ADC_CR, UCB_ADC_ENA);
  237. ucb1400_reg_write(ucb->ac97, UCB_ADC_CR, UCB_ADC_ENA | UCB_ADC_START);
  238. /* Wait for the conversion to complete. */
  239. timeout = jiffies + HZ/2;
  240. while (!(ucb1400_reg_read(ucb->ac97, UCB_ADC_DATA) &
  241. UCB_ADC_DAT_VALID)) {
  242. cpu_relax();
  243. if (time_after(jiffies, timeout)) {
  244. dev_err(&pdev->dev, "timed out in IRQ probe\n");
  245. probe_irq_off(mask);
  246. return -ENODEV;
  247. }
  248. }
  249. ucb1400_reg_write(ucb->ac97, UCB_ADC_CR, 0);
  250. /* Disable and clear interrupt. */
  251. ucb1400_reg_write(ucb->ac97, UCB_IE_RIS, 0);
  252. ucb1400_reg_write(ucb->ac97, UCB_IE_FAL, 0);
  253. ucb1400_reg_write(ucb->ac97, UCB_IE_CLEAR, 0xffff);
  254. ucb1400_reg_write(ucb->ac97, UCB_IE_CLEAR, 0);
  255. /* Read triggered interrupt. */
  256. ucb->irq = probe_irq_off(mask);
  257. if (ucb->irq < 0 || ucb->irq == NO_IRQ)
  258. return -ENODEV;
  259. return 0;
  260. }
  261. static int ucb1400_ts_probe(struct platform_device *pdev)
  262. {
  263. struct ucb1400_ts *ucb = dev_get_platdata(&pdev->dev);
  264. int error, x_res, y_res;
  265. u16 fcsr;
  266. ucb->ts_idev = input_allocate_device();
  267. if (!ucb->ts_idev) {
  268. error = -ENOMEM;
  269. goto err;
  270. }
  271. /* Only in case the IRQ line wasn't supplied, try detecting it */
  272. if (ucb->irq < 0) {
  273. error = ucb1400_ts_detect_irq(ucb, pdev);
  274. if (error) {
  275. dev_err(&pdev->dev, "IRQ probe failed\n");
  276. goto err_free_devs;
  277. }
  278. }
  279. dev_dbg(&pdev->dev, "found IRQ %d\n", ucb->irq);
  280. init_waitqueue_head(&ucb->ts_wait);
  281. input_set_drvdata(ucb->ts_idev, ucb);
  282. ucb->ts_idev->dev.parent = &pdev->dev;
  283. ucb->ts_idev->name = "UCB1400 touchscreen interface";
  284. ucb->ts_idev->id.vendor = ucb1400_reg_read(ucb->ac97,
  285. AC97_VENDOR_ID1);
  286. ucb->ts_idev->id.product = ucb->id;
  287. ucb->ts_idev->open = ucb1400_ts_open;
  288. ucb->ts_idev->close = ucb1400_ts_close;
  289. ucb->ts_idev->evbit[0] = BIT_MASK(EV_ABS) | BIT_MASK(EV_KEY);
  290. ucb->ts_idev->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH);
  291. /*
  292. * Enable ADC filter to prevent horrible jitter on Colibri.
  293. * This also further reduces jitter on boards where ADCSYNC
  294. * pin is connected.
  295. */
  296. fcsr = ucb1400_reg_read(ucb->ac97, UCB_FCSR);
  297. ucb1400_reg_write(ucb->ac97, UCB_FCSR, fcsr | UCB_FCSR_AVE);
  298. ucb1400_adc_enable(ucb->ac97);
  299. x_res = ucb1400_ts_read_xres(ucb);
  300. y_res = ucb1400_ts_read_yres(ucb);
  301. ucb1400_adc_disable(ucb->ac97);
  302. dev_dbg(&pdev->dev, "x/y = %d/%d\n", x_res, y_res);
  303. input_set_abs_params(ucb->ts_idev, ABS_X, 0, x_res, 0, 0);
  304. input_set_abs_params(ucb->ts_idev, ABS_Y, 0, y_res, 0, 0);
  305. input_set_abs_params(ucb->ts_idev, ABS_PRESSURE, 0, 0, 0, 0);
  306. ucb1400_ts_stop(ucb);
  307. error = request_threaded_irq(ucb->irq, NULL, ucb1400_irq,
  308. IRQF_TRIGGER_RISING | IRQF_ONESHOT,
  309. "UCB1400", ucb);
  310. if (error) {
  311. dev_err(&pdev->dev,
  312. "unable to grab irq%d: %d\n", ucb->irq, error);
  313. goto err_free_devs;
  314. }
  315. error = input_register_device(ucb->ts_idev);
  316. if (error)
  317. goto err_free_irq;
  318. return 0;
  319. err_free_irq:
  320. free_irq(ucb->irq, ucb);
  321. err_free_devs:
  322. input_free_device(ucb->ts_idev);
  323. err:
  324. return error;
  325. }
  326. static int ucb1400_ts_remove(struct platform_device *pdev)
  327. {
  328. struct ucb1400_ts *ucb = dev_get_platdata(&pdev->dev);
  329. free_irq(ucb->irq, ucb);
  330. input_unregister_device(ucb->ts_idev);
  331. return 0;
  332. }
  333. static int __maybe_unused ucb1400_ts_suspend(struct device *dev)
  334. {
  335. struct ucb1400_ts *ucb = dev_get_platdata(dev);
  336. struct input_dev *idev = ucb->ts_idev;
  337. mutex_lock(&idev->mutex);
  338. if (input_device_enabled(idev))
  339. ucb1400_ts_stop(ucb);
  340. mutex_unlock(&idev->mutex);
  341. return 0;
  342. }
  343. static int __maybe_unused ucb1400_ts_resume(struct device *dev)
  344. {
  345. struct ucb1400_ts *ucb = dev_get_platdata(dev);
  346. struct input_dev *idev = ucb->ts_idev;
  347. mutex_lock(&idev->mutex);
  348. if (input_device_enabled(idev))
  349. ucb1400_ts_start(ucb);
  350. mutex_unlock(&idev->mutex);
  351. return 0;
  352. }
  353. static SIMPLE_DEV_PM_OPS(ucb1400_ts_pm_ops,
  354. ucb1400_ts_suspend, ucb1400_ts_resume);
  355. static struct platform_driver ucb1400_ts_driver = {
  356. .probe = ucb1400_ts_probe,
  357. .remove = ucb1400_ts_remove,
  358. .driver = {
  359. .name = "ucb1400_ts",
  360. .pm = &ucb1400_ts_pm_ops,
  361. },
  362. };
  363. module_platform_driver(ucb1400_ts_driver);
  364. module_param(adcsync, bool, 0444);
  365. MODULE_PARM_DESC(adcsync, "Synchronize touch readings with ADCSYNC pin.");
  366. module_param(ts_delay, int, 0444);
  367. MODULE_PARM_DESC(ts_delay, "Delay between panel setup and"
  368. " position read. Default = 55us.");
  369. module_param(ts_delay_pressure, int, 0444);
  370. MODULE_PARM_DESC(ts_delay_pressure,
  371. "delay between panel setup and pressure read."
  372. " Default = 0us.");
  373. MODULE_DESCRIPTION("Philips UCB1400 touchscreen driver");
  374. MODULE_LICENSE("GPL");