rmi_f3a.c 6.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2012-2020 Synaptics Incorporated
  4. */
  5. #include <linux/kernel.h>
  6. #include <linux/rmi.h>
  7. #include <linux/input.h>
  8. #include <linux/slab.h>
  9. #include "rmi_driver.h"
  10. #define RMI_F3A_MAX_GPIO_COUNT 128
  11. #define RMI_F3A_MAX_REG_SIZE DIV_ROUND_UP(RMI_F3A_MAX_GPIO_COUNT, 8)
  12. /* Defs for Query 0 */
  13. #define RMI_F3A_GPIO_COUNT 0x7F
  14. #define RMI_F3A_DATA_REGS_MAX_SIZE RMI_F3A_MAX_REG_SIZE
  15. #define TRACKSTICK_RANGE_START 3
  16. #define TRACKSTICK_RANGE_END 6
  17. struct f3a_data {
  18. /* Query Data */
  19. u8 gpio_count;
  20. u8 register_count;
  21. u8 data_regs[RMI_F3A_DATA_REGS_MAX_SIZE];
  22. u16 *gpio_key_map;
  23. struct input_dev *input;
  24. struct rmi_function *f03;
  25. bool trackstick_buttons;
  26. };
  27. static void rmi_f3a_report_button(struct rmi_function *fn,
  28. struct f3a_data *f3a, unsigned int button)
  29. {
  30. u16 key_code = f3a->gpio_key_map[button];
  31. bool key_down = !(f3a->data_regs[0] & BIT(button));
  32. if (f3a->trackstick_buttons &&
  33. button >= TRACKSTICK_RANGE_START &&
  34. button <= TRACKSTICK_RANGE_END) {
  35. rmi_f03_overwrite_button(f3a->f03, key_code, key_down);
  36. } else {
  37. rmi_dbg(RMI_DEBUG_FN, &fn->dev,
  38. "%s: call input report key (0x%04x) value (0x%02x)",
  39. __func__, key_code, key_down);
  40. input_report_key(f3a->input, key_code, key_down);
  41. }
  42. }
  43. static irqreturn_t rmi_f3a_attention(int irq, void *ctx)
  44. {
  45. struct rmi_function *fn = ctx;
  46. struct f3a_data *f3a = dev_get_drvdata(&fn->dev);
  47. struct rmi_driver_data *drvdata = dev_get_drvdata(&fn->rmi_dev->dev);
  48. int error;
  49. int i;
  50. if (drvdata->attn_data.data) {
  51. if (drvdata->attn_data.size < f3a->register_count) {
  52. dev_warn(&fn->dev,
  53. "F3A interrupted, but data is missing\n");
  54. return IRQ_HANDLED;
  55. }
  56. memcpy(f3a->data_regs, drvdata->attn_data.data,
  57. f3a->register_count);
  58. drvdata->attn_data.data += f3a->register_count;
  59. drvdata->attn_data.size -= f3a->register_count;
  60. } else {
  61. error = rmi_read_block(fn->rmi_dev, fn->fd.data_base_addr,
  62. f3a->data_regs, f3a->register_count);
  63. if (error) {
  64. dev_err(&fn->dev,
  65. "%s: Failed to read F3a data registers: %d\n",
  66. __func__, error);
  67. return IRQ_RETVAL(error);
  68. }
  69. }
  70. for (i = 0; i < f3a->gpio_count; i++)
  71. if (f3a->gpio_key_map[i] != KEY_RESERVED)
  72. rmi_f3a_report_button(fn, f3a, i);
  73. if (f3a->trackstick_buttons)
  74. rmi_f03_commit_buttons(f3a->f03);
  75. return IRQ_HANDLED;
  76. }
  77. static int rmi_f3a_config(struct rmi_function *fn)
  78. {
  79. struct f3a_data *f3a = dev_get_drvdata(&fn->dev);
  80. struct rmi_driver *drv = fn->rmi_dev->driver;
  81. const struct rmi_device_platform_data *pdata =
  82. rmi_get_platform_data(fn->rmi_dev);
  83. if (!f3a)
  84. return 0;
  85. if (pdata->gpio_data.trackstick_buttons) {
  86. /* Try [re-]establish link to F03. */
  87. f3a->f03 = rmi_find_function(fn->rmi_dev, 0x03);
  88. f3a->trackstick_buttons = f3a->f03 != NULL;
  89. }
  90. drv->set_irq_bits(fn->rmi_dev, fn->irq_mask);
  91. return 0;
  92. }
  93. static bool rmi_f3a_is_valid_button(int button, struct f3a_data *f3a,
  94. u8 *query1_regs, u8 *ctrl1_regs)
  95. {
  96. /* gpio exist && direction input */
  97. return (query1_regs[0] & BIT(button)) && !(ctrl1_regs[0] & BIT(button));
  98. }
  99. static int rmi_f3a_map_gpios(struct rmi_function *fn, struct f3a_data *f3a,
  100. u8 *query1_regs, u8 *ctrl1_regs)
  101. {
  102. const struct rmi_device_platform_data *pdata =
  103. rmi_get_platform_data(fn->rmi_dev);
  104. struct input_dev *input = f3a->input;
  105. unsigned int button = BTN_LEFT;
  106. unsigned int trackstick_button = BTN_LEFT;
  107. bool button_mapped = false;
  108. int i;
  109. int button_count = min_t(u8, f3a->gpio_count, TRACKSTICK_RANGE_END);
  110. f3a->gpio_key_map = devm_kcalloc(&fn->dev,
  111. button_count,
  112. sizeof(f3a->gpio_key_map[0]),
  113. GFP_KERNEL);
  114. if (!f3a->gpio_key_map) {
  115. dev_err(&fn->dev, "Failed to allocate gpio map memory.\n");
  116. return -ENOMEM;
  117. }
  118. for (i = 0; i < button_count; i++) {
  119. if (!rmi_f3a_is_valid_button(i, f3a, query1_regs, ctrl1_regs))
  120. continue;
  121. if (pdata->gpio_data.trackstick_buttons &&
  122. i >= TRACKSTICK_RANGE_START &&
  123. i < TRACKSTICK_RANGE_END) {
  124. f3a->gpio_key_map[i] = trackstick_button++;
  125. } else if (!pdata->gpio_data.buttonpad || !button_mapped) {
  126. f3a->gpio_key_map[i] = button;
  127. input_set_capability(input, EV_KEY, button++);
  128. button_mapped = true;
  129. }
  130. }
  131. input->keycode = f3a->gpio_key_map;
  132. input->keycodesize = sizeof(f3a->gpio_key_map[0]);
  133. input->keycodemax = f3a->gpio_count;
  134. if (pdata->gpio_data.buttonpad || (button - BTN_LEFT == 1))
  135. __set_bit(INPUT_PROP_BUTTONPAD, input->propbit);
  136. return 0;
  137. }
  138. static int rmi_f3a_initialize(struct rmi_function *fn, struct f3a_data *f3a)
  139. {
  140. u8 query1[RMI_F3A_MAX_REG_SIZE];
  141. u8 ctrl1[RMI_F3A_MAX_REG_SIZE];
  142. u8 buf;
  143. int error;
  144. error = rmi_read(fn->rmi_dev, fn->fd.query_base_addr, &buf);
  145. if (error < 0) {
  146. dev_err(&fn->dev, "Failed to read general info register: %d\n",
  147. error);
  148. return -ENODEV;
  149. }
  150. f3a->gpio_count = buf & RMI_F3A_GPIO_COUNT;
  151. f3a->register_count = DIV_ROUND_UP(f3a->gpio_count, 8);
  152. /* Query1 -> gpio exist */
  153. error = rmi_read_block(fn->rmi_dev, fn->fd.query_base_addr + 1,
  154. query1, f3a->register_count);
  155. if (error) {
  156. dev_err(&fn->dev, "Failed to read query1 register\n");
  157. return error;
  158. }
  159. /* Ctrl1 -> gpio direction */
  160. error = rmi_read_block(fn->rmi_dev, fn->fd.control_base_addr + 1,
  161. ctrl1, f3a->register_count);
  162. if (error) {
  163. dev_err(&fn->dev, "Failed to read control1 register\n");
  164. return error;
  165. }
  166. error = rmi_f3a_map_gpios(fn, f3a, query1, ctrl1);
  167. if (error)
  168. return error;
  169. return 0;
  170. }
  171. static int rmi_f3a_probe(struct rmi_function *fn)
  172. {
  173. struct rmi_device *rmi_dev = fn->rmi_dev;
  174. struct rmi_driver_data *drv_data = dev_get_drvdata(&rmi_dev->dev);
  175. struct f3a_data *f3a;
  176. int error;
  177. if (!drv_data->input) {
  178. dev_info(&fn->dev, "F3A: no input device found, ignoring\n");
  179. return -ENXIO;
  180. }
  181. f3a = devm_kzalloc(&fn->dev, sizeof(*f3a), GFP_KERNEL);
  182. if (!f3a)
  183. return -ENOMEM;
  184. f3a->input = drv_data->input;
  185. error = rmi_f3a_initialize(fn, f3a);
  186. if (error)
  187. return error;
  188. dev_set_drvdata(&fn->dev, f3a);
  189. return 0;
  190. }
  191. struct rmi_function_handler rmi_f3a_handler = {
  192. .driver = {
  193. .name = "rmi4_f3a",
  194. },
  195. .func = 0x3a,
  196. .probe = rmi_f3a_probe,
  197. .config = rmi_f3a_config,
  198. .attention = rmi_f3a_attention,
  199. };