cma3000_d0x.c 8.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * VTI CMA3000_D0x Accelerometer driver
  4. *
  5. * Copyright (C) 2010 Texas Instruments
  6. * Author: Hemanth V <[email protected]>
  7. */
  8. #include <linux/types.h>
  9. #include <linux/interrupt.h>
  10. #include <linux/delay.h>
  11. #include <linux/slab.h>
  12. #include <linux/input.h>
  13. #include <linux/input/cma3000.h>
  14. #include <linux/module.h>
  15. #include "cma3000_d0x.h"
  16. #define CMA3000_WHOAMI 0x00
  17. #define CMA3000_REVID 0x01
  18. #define CMA3000_CTRL 0x02
  19. #define CMA3000_STATUS 0x03
  20. #define CMA3000_RSTR 0x04
  21. #define CMA3000_INTSTATUS 0x05
  22. #define CMA3000_DOUTX 0x06
  23. #define CMA3000_DOUTY 0x07
  24. #define CMA3000_DOUTZ 0x08
  25. #define CMA3000_MDTHR 0x09
  26. #define CMA3000_MDFFTMR 0x0A
  27. #define CMA3000_FFTHR 0x0B
  28. #define CMA3000_RANGE2G (1 << 7)
  29. #define CMA3000_RANGE8G (0 << 7)
  30. #define CMA3000_BUSI2C (0 << 4)
  31. #define CMA3000_MODEMASK (7 << 1)
  32. #define CMA3000_GRANGEMASK (1 << 7)
  33. #define CMA3000_STATUS_PERR 1
  34. #define CMA3000_INTSTATUS_FFDET (1 << 2)
  35. /* Settling time delay in ms */
  36. #define CMA3000_SETDELAY 30
  37. /* Delay for clearing interrupt in us */
  38. #define CMA3000_INTDELAY 44
  39. /*
  40. * Bit weights in mg for bit 0, other bits need
  41. * multiply factor 2^n. Eight bit is the sign bit.
  42. */
  43. #define BIT_TO_2G 18
  44. #define BIT_TO_8G 71
  45. struct cma3000_accl_data {
  46. const struct cma3000_bus_ops *bus_ops;
  47. const struct cma3000_platform_data *pdata;
  48. struct device *dev;
  49. struct input_dev *input_dev;
  50. int bit_to_mg;
  51. int irq;
  52. int g_range;
  53. u8 mode;
  54. struct mutex mutex;
  55. bool opened;
  56. bool suspended;
  57. };
  58. #define CMA3000_READ(data, reg, msg) \
  59. (data->bus_ops->read(data->dev, reg, msg))
  60. #define CMA3000_SET(data, reg, val, msg) \
  61. ((data)->bus_ops->write(data->dev, reg, val, msg))
  62. /*
  63. * Conversion for each of the eight modes to g, depending
  64. * on G range i.e 2G or 8G. Some modes always operate in
  65. * 8G.
  66. */
  67. static int mode_to_mg[8][2] = {
  68. { 0, 0 },
  69. { BIT_TO_8G, BIT_TO_2G },
  70. { BIT_TO_8G, BIT_TO_2G },
  71. { BIT_TO_8G, BIT_TO_8G },
  72. { BIT_TO_8G, BIT_TO_8G },
  73. { BIT_TO_8G, BIT_TO_2G },
  74. { BIT_TO_8G, BIT_TO_2G },
  75. { 0, 0},
  76. };
  77. static void decode_mg(struct cma3000_accl_data *data, int *datax,
  78. int *datay, int *dataz)
  79. {
  80. /* Data in 2's complement, convert to mg */
  81. *datax = ((s8)*datax) * data->bit_to_mg;
  82. *datay = ((s8)*datay) * data->bit_to_mg;
  83. *dataz = ((s8)*dataz) * data->bit_to_mg;
  84. }
  85. static irqreturn_t cma3000_thread_irq(int irq, void *dev_id)
  86. {
  87. struct cma3000_accl_data *data = dev_id;
  88. int datax, datay, dataz, intr_status;
  89. u8 ctrl, mode, range;
  90. intr_status = CMA3000_READ(data, CMA3000_INTSTATUS, "interrupt status");
  91. if (intr_status < 0)
  92. return IRQ_NONE;
  93. /* Check if free fall is detected, report immediately */
  94. if (intr_status & CMA3000_INTSTATUS_FFDET) {
  95. input_report_abs(data->input_dev, ABS_MISC, 1);
  96. input_sync(data->input_dev);
  97. } else {
  98. input_report_abs(data->input_dev, ABS_MISC, 0);
  99. }
  100. datax = CMA3000_READ(data, CMA3000_DOUTX, "X");
  101. datay = CMA3000_READ(data, CMA3000_DOUTY, "Y");
  102. dataz = CMA3000_READ(data, CMA3000_DOUTZ, "Z");
  103. ctrl = CMA3000_READ(data, CMA3000_CTRL, "ctrl");
  104. mode = (ctrl & CMA3000_MODEMASK) >> 1;
  105. range = (ctrl & CMA3000_GRANGEMASK) >> 7;
  106. data->bit_to_mg = mode_to_mg[mode][range];
  107. /* Interrupt not for this device */
  108. if (data->bit_to_mg == 0)
  109. return IRQ_NONE;
  110. /* Decode register values to milli g */
  111. decode_mg(data, &datax, &datay, &dataz);
  112. input_report_abs(data->input_dev, ABS_X, datax);
  113. input_report_abs(data->input_dev, ABS_Y, datay);
  114. input_report_abs(data->input_dev, ABS_Z, dataz);
  115. input_sync(data->input_dev);
  116. return IRQ_HANDLED;
  117. }
  118. static int cma3000_reset(struct cma3000_accl_data *data)
  119. {
  120. int val;
  121. /* Reset sequence */
  122. CMA3000_SET(data, CMA3000_RSTR, 0x02, "Reset");
  123. CMA3000_SET(data, CMA3000_RSTR, 0x0A, "Reset");
  124. CMA3000_SET(data, CMA3000_RSTR, 0x04, "Reset");
  125. /* Settling time delay */
  126. mdelay(10);
  127. val = CMA3000_READ(data, CMA3000_STATUS, "Status");
  128. if (val < 0) {
  129. dev_err(data->dev, "Reset failed\n");
  130. return val;
  131. }
  132. if (val & CMA3000_STATUS_PERR) {
  133. dev_err(data->dev, "Parity Error\n");
  134. return -EIO;
  135. }
  136. return 0;
  137. }
  138. static int cma3000_poweron(struct cma3000_accl_data *data)
  139. {
  140. const struct cma3000_platform_data *pdata = data->pdata;
  141. u8 ctrl = 0;
  142. int ret;
  143. if (data->g_range == CMARANGE_2G) {
  144. ctrl = (data->mode << 1) | CMA3000_RANGE2G;
  145. } else if (data->g_range == CMARANGE_8G) {
  146. ctrl = (data->mode << 1) | CMA3000_RANGE8G;
  147. } else {
  148. dev_info(data->dev,
  149. "Invalid G range specified, assuming 8G\n");
  150. ctrl = (data->mode << 1) | CMA3000_RANGE8G;
  151. }
  152. ctrl |= data->bus_ops->ctrl_mod;
  153. CMA3000_SET(data, CMA3000_MDTHR, pdata->mdthr,
  154. "Motion Detect Threshold");
  155. CMA3000_SET(data, CMA3000_MDFFTMR, pdata->mdfftmr,
  156. "Time register");
  157. CMA3000_SET(data, CMA3000_FFTHR, pdata->ffthr,
  158. "Free fall threshold");
  159. ret = CMA3000_SET(data, CMA3000_CTRL, ctrl, "Mode setting");
  160. if (ret < 0)
  161. return -EIO;
  162. msleep(CMA3000_SETDELAY);
  163. return 0;
  164. }
  165. static int cma3000_poweroff(struct cma3000_accl_data *data)
  166. {
  167. int ret;
  168. ret = CMA3000_SET(data, CMA3000_CTRL, CMAMODE_POFF, "Mode setting");
  169. msleep(CMA3000_SETDELAY);
  170. return ret;
  171. }
  172. static int cma3000_open(struct input_dev *input_dev)
  173. {
  174. struct cma3000_accl_data *data = input_get_drvdata(input_dev);
  175. mutex_lock(&data->mutex);
  176. if (!data->suspended)
  177. cma3000_poweron(data);
  178. data->opened = true;
  179. mutex_unlock(&data->mutex);
  180. return 0;
  181. }
  182. static void cma3000_close(struct input_dev *input_dev)
  183. {
  184. struct cma3000_accl_data *data = input_get_drvdata(input_dev);
  185. mutex_lock(&data->mutex);
  186. if (!data->suspended)
  187. cma3000_poweroff(data);
  188. data->opened = false;
  189. mutex_unlock(&data->mutex);
  190. }
  191. void cma3000_suspend(struct cma3000_accl_data *data)
  192. {
  193. mutex_lock(&data->mutex);
  194. if (!data->suspended && data->opened)
  195. cma3000_poweroff(data);
  196. data->suspended = true;
  197. mutex_unlock(&data->mutex);
  198. }
  199. EXPORT_SYMBOL(cma3000_suspend);
  200. void cma3000_resume(struct cma3000_accl_data *data)
  201. {
  202. mutex_lock(&data->mutex);
  203. if (data->suspended && data->opened)
  204. cma3000_poweron(data);
  205. data->suspended = false;
  206. mutex_unlock(&data->mutex);
  207. }
  208. EXPORT_SYMBOL(cma3000_resume);
  209. struct cma3000_accl_data *cma3000_init(struct device *dev, int irq,
  210. const struct cma3000_bus_ops *bops)
  211. {
  212. const struct cma3000_platform_data *pdata = dev_get_platdata(dev);
  213. struct cma3000_accl_data *data;
  214. struct input_dev *input_dev;
  215. int rev;
  216. int error;
  217. if (!pdata) {
  218. dev_err(dev, "platform data not found\n");
  219. error = -EINVAL;
  220. goto err_out;
  221. }
  222. /* if no IRQ return error */
  223. if (irq == 0) {
  224. error = -EINVAL;
  225. goto err_out;
  226. }
  227. data = kzalloc(sizeof(struct cma3000_accl_data), GFP_KERNEL);
  228. input_dev = input_allocate_device();
  229. if (!data || !input_dev) {
  230. error = -ENOMEM;
  231. goto err_free_mem;
  232. }
  233. data->dev = dev;
  234. data->input_dev = input_dev;
  235. data->bus_ops = bops;
  236. data->pdata = pdata;
  237. data->irq = irq;
  238. mutex_init(&data->mutex);
  239. data->mode = pdata->mode;
  240. if (data->mode > CMAMODE_POFF) {
  241. data->mode = CMAMODE_MOTDET;
  242. dev_warn(dev,
  243. "Invalid mode specified, assuming Motion Detect\n");
  244. }
  245. data->g_range = pdata->g_range;
  246. if (data->g_range != CMARANGE_2G && data->g_range != CMARANGE_8G) {
  247. dev_info(dev,
  248. "Invalid G range specified, assuming 8G\n");
  249. data->g_range = CMARANGE_8G;
  250. }
  251. input_dev->name = "cma3000-accelerometer";
  252. input_dev->id.bustype = bops->bustype;
  253. input_dev->open = cma3000_open;
  254. input_dev->close = cma3000_close;
  255. __set_bit(EV_ABS, input_dev->evbit);
  256. input_set_abs_params(input_dev, ABS_X,
  257. -data->g_range, data->g_range, pdata->fuzz_x, 0);
  258. input_set_abs_params(input_dev, ABS_Y,
  259. -data->g_range, data->g_range, pdata->fuzz_y, 0);
  260. input_set_abs_params(input_dev, ABS_Z,
  261. -data->g_range, data->g_range, pdata->fuzz_z, 0);
  262. input_set_abs_params(input_dev, ABS_MISC, 0, 1, 0, 0);
  263. input_set_drvdata(input_dev, data);
  264. error = cma3000_reset(data);
  265. if (error)
  266. goto err_free_mem;
  267. rev = CMA3000_READ(data, CMA3000_REVID, "Revid");
  268. if (rev < 0) {
  269. error = rev;
  270. goto err_free_mem;
  271. }
  272. pr_info("CMA3000 Accelerometer: Revision %x\n", rev);
  273. error = request_threaded_irq(irq, NULL, cma3000_thread_irq,
  274. pdata->irqflags | IRQF_ONESHOT,
  275. "cma3000_d0x", data);
  276. if (error) {
  277. dev_err(dev, "request_threaded_irq failed\n");
  278. goto err_free_mem;
  279. }
  280. error = input_register_device(data->input_dev);
  281. if (error) {
  282. dev_err(dev, "Unable to register input device\n");
  283. goto err_free_irq;
  284. }
  285. return data;
  286. err_free_irq:
  287. free_irq(irq, data);
  288. err_free_mem:
  289. input_free_device(input_dev);
  290. kfree(data);
  291. err_out:
  292. return ERR_PTR(error);
  293. }
  294. EXPORT_SYMBOL(cma3000_init);
  295. void cma3000_exit(struct cma3000_accl_data *data)
  296. {
  297. free_irq(data->irq, data);
  298. input_unregister_device(data->input_dev);
  299. kfree(data);
  300. }
  301. EXPORT_SYMBOL(cma3000_exit);
  302. MODULE_DESCRIPTION("CMA3000-D0x Accelerometer Driver");
  303. MODULE_LICENSE("GPL");
  304. MODULE_AUTHOR("Hemanth V <[email protected]>");