fsl_ddr_edac.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Freescale Memory Controller kernel module
  4. *
  5. * Support Power-based SoCs including MPC85xx, MPC86xx, MPC83xx and
  6. * ARM-based Layerscape SoCs including LS2xxx and LS1021A. Originally
  7. * split out from mpc85xx_edac EDAC driver.
  8. *
  9. * Parts Copyrighted (c) 2013 by Freescale Semiconductor, Inc.
  10. *
  11. * Author: Dave Jiang <[email protected]>
  12. *
  13. * 2006-2007 (c) MontaVista Software, Inc.
  14. */
  15. #include <linux/module.h>
  16. #include <linux/init.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/ctype.h>
  19. #include <linux/io.h>
  20. #include <linux/mod_devicetable.h>
  21. #include <linux/edac.h>
  22. #include <linux/smp.h>
  23. #include <linux/gfp.h>
  24. #include <linux/of_platform.h>
  25. #include <linux/of_device.h>
  26. #include <linux/of_address.h>
  27. #include "edac_module.h"
  28. #include "fsl_ddr_edac.h"
  29. #define EDAC_MOD_STR "fsl_ddr_edac"
  30. static int edac_mc_idx;
  31. static u32 orig_ddr_err_disable;
  32. static u32 orig_ddr_err_sbe;
  33. static bool little_endian;
  34. static inline u32 ddr_in32(void __iomem *addr)
  35. {
  36. return little_endian ? ioread32(addr) : ioread32be(addr);
  37. }
  38. static inline void ddr_out32(void __iomem *addr, u32 value)
  39. {
  40. if (little_endian)
  41. iowrite32(value, addr);
  42. else
  43. iowrite32be(value, addr);
  44. }
  45. #ifdef CONFIG_EDAC_DEBUG
  46. /************************ MC SYSFS parts ***********************************/
  47. #define to_mci(k) container_of(k, struct mem_ctl_info, dev)
  48. static ssize_t fsl_mc_inject_data_hi_show(struct device *dev,
  49. struct device_attribute *mattr,
  50. char *data)
  51. {
  52. struct mem_ctl_info *mci = to_mci(dev);
  53. struct fsl_mc_pdata *pdata = mci->pvt_info;
  54. return sprintf(data, "0x%08x",
  55. ddr_in32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_HI));
  56. }
  57. static ssize_t fsl_mc_inject_data_lo_show(struct device *dev,
  58. struct device_attribute *mattr,
  59. char *data)
  60. {
  61. struct mem_ctl_info *mci = to_mci(dev);
  62. struct fsl_mc_pdata *pdata = mci->pvt_info;
  63. return sprintf(data, "0x%08x",
  64. ddr_in32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_LO));
  65. }
  66. static ssize_t fsl_mc_inject_ctrl_show(struct device *dev,
  67. struct device_attribute *mattr,
  68. char *data)
  69. {
  70. struct mem_ctl_info *mci = to_mci(dev);
  71. struct fsl_mc_pdata *pdata = mci->pvt_info;
  72. return sprintf(data, "0x%08x",
  73. ddr_in32(pdata->mc_vbase + FSL_MC_ECC_ERR_INJECT));
  74. }
  75. static ssize_t fsl_mc_inject_data_hi_store(struct device *dev,
  76. struct device_attribute *mattr,
  77. const char *data, size_t count)
  78. {
  79. struct mem_ctl_info *mci = to_mci(dev);
  80. struct fsl_mc_pdata *pdata = mci->pvt_info;
  81. unsigned long val;
  82. int rc;
  83. if (isdigit(*data)) {
  84. rc = kstrtoul(data, 0, &val);
  85. if (rc)
  86. return rc;
  87. ddr_out32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_HI, val);
  88. return count;
  89. }
  90. return 0;
  91. }
  92. static ssize_t fsl_mc_inject_data_lo_store(struct device *dev,
  93. struct device_attribute *mattr,
  94. const char *data, size_t count)
  95. {
  96. struct mem_ctl_info *mci = to_mci(dev);
  97. struct fsl_mc_pdata *pdata = mci->pvt_info;
  98. unsigned long val;
  99. int rc;
  100. if (isdigit(*data)) {
  101. rc = kstrtoul(data, 0, &val);
  102. if (rc)
  103. return rc;
  104. ddr_out32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_LO, val);
  105. return count;
  106. }
  107. return 0;
  108. }
  109. static ssize_t fsl_mc_inject_ctrl_store(struct device *dev,
  110. struct device_attribute *mattr,
  111. const char *data, size_t count)
  112. {
  113. struct mem_ctl_info *mci = to_mci(dev);
  114. struct fsl_mc_pdata *pdata = mci->pvt_info;
  115. unsigned long val;
  116. int rc;
  117. if (isdigit(*data)) {
  118. rc = kstrtoul(data, 0, &val);
  119. if (rc)
  120. return rc;
  121. ddr_out32(pdata->mc_vbase + FSL_MC_ECC_ERR_INJECT, val);
  122. return count;
  123. }
  124. return 0;
  125. }
  126. static DEVICE_ATTR(inject_data_hi, S_IRUGO | S_IWUSR,
  127. fsl_mc_inject_data_hi_show, fsl_mc_inject_data_hi_store);
  128. static DEVICE_ATTR(inject_data_lo, S_IRUGO | S_IWUSR,
  129. fsl_mc_inject_data_lo_show, fsl_mc_inject_data_lo_store);
  130. static DEVICE_ATTR(inject_ctrl, S_IRUGO | S_IWUSR,
  131. fsl_mc_inject_ctrl_show, fsl_mc_inject_ctrl_store);
  132. #endif /* CONFIG_EDAC_DEBUG */
  133. static struct attribute *fsl_ddr_dev_attrs[] = {
  134. #ifdef CONFIG_EDAC_DEBUG
  135. &dev_attr_inject_data_hi.attr,
  136. &dev_attr_inject_data_lo.attr,
  137. &dev_attr_inject_ctrl.attr,
  138. #endif
  139. NULL
  140. };
  141. ATTRIBUTE_GROUPS(fsl_ddr_dev);
  142. /**************************** MC Err device ***************************/
  143. /*
  144. * Taken from table 8-55 in the MPC8641 User's Manual and/or 9-61 in the
  145. * MPC8572 User's Manual. Each line represents a syndrome bit column as a
  146. * 64-bit value, but split into an upper and lower 32-bit chunk. The labels
  147. * below correspond to Freescale's manuals.
  148. */
  149. static unsigned int ecc_table[16] = {
  150. /* MSB LSB */
  151. /* [0:31] [32:63] */
  152. 0xf00fe11e, 0xc33c0ff7, /* Syndrome bit 7 */
  153. 0x00ff00ff, 0x00fff0ff,
  154. 0x0f0f0f0f, 0x0f0fff00,
  155. 0x11113333, 0x7777000f,
  156. 0x22224444, 0x8888222f,
  157. 0x44448888, 0xffff4441,
  158. 0x8888ffff, 0x11118882,
  159. 0xffff1111, 0x22221114, /* Syndrome bit 0 */
  160. };
  161. /*
  162. * Calculate the correct ECC value for a 64-bit value specified by high:low
  163. */
  164. static u8 calculate_ecc(u32 high, u32 low)
  165. {
  166. u32 mask_low;
  167. u32 mask_high;
  168. int bit_cnt;
  169. u8 ecc = 0;
  170. int i;
  171. int j;
  172. for (i = 0; i < 8; i++) {
  173. mask_high = ecc_table[i * 2];
  174. mask_low = ecc_table[i * 2 + 1];
  175. bit_cnt = 0;
  176. for (j = 0; j < 32; j++) {
  177. if ((mask_high >> j) & 1)
  178. bit_cnt ^= (high >> j) & 1;
  179. if ((mask_low >> j) & 1)
  180. bit_cnt ^= (low >> j) & 1;
  181. }
  182. ecc |= bit_cnt << i;
  183. }
  184. return ecc;
  185. }
  186. /*
  187. * Create the syndrome code which is generated if the data line specified by
  188. * 'bit' failed. Eg generate an 8-bit codes seen in Table 8-55 in the MPC8641
  189. * User's Manual and 9-61 in the MPC8572 User's Manual.
  190. */
  191. static u8 syndrome_from_bit(unsigned int bit) {
  192. int i;
  193. u8 syndrome = 0;
  194. /*
  195. * Cycle through the upper or lower 32-bit portion of each value in
  196. * ecc_table depending on if 'bit' is in the upper or lower half of
  197. * 64-bit data.
  198. */
  199. for (i = bit < 32; i < 16; i += 2)
  200. syndrome |= ((ecc_table[i] >> (bit % 32)) & 1) << (i / 2);
  201. return syndrome;
  202. }
  203. /*
  204. * Decode data and ecc syndrome to determine what went wrong
  205. * Note: This can only decode single-bit errors
  206. */
  207. static void sbe_ecc_decode(u32 cap_high, u32 cap_low, u32 cap_ecc,
  208. int *bad_data_bit, int *bad_ecc_bit)
  209. {
  210. int i;
  211. u8 syndrome;
  212. *bad_data_bit = -1;
  213. *bad_ecc_bit = -1;
  214. /*
  215. * Calculate the ECC of the captured data and XOR it with the captured
  216. * ECC to find an ECC syndrome value we can search for
  217. */
  218. syndrome = calculate_ecc(cap_high, cap_low) ^ cap_ecc;
  219. /* Check if a data line is stuck... */
  220. for (i = 0; i < 64; i++) {
  221. if (syndrome == syndrome_from_bit(i)) {
  222. *bad_data_bit = i;
  223. return;
  224. }
  225. }
  226. /* If data is correct, check ECC bits for errors... */
  227. for (i = 0; i < 8; i++) {
  228. if ((syndrome >> i) & 0x1) {
  229. *bad_ecc_bit = i;
  230. return;
  231. }
  232. }
  233. }
  234. #define make64(high, low) (((u64)(high) << 32) | (low))
  235. static void fsl_mc_check(struct mem_ctl_info *mci)
  236. {
  237. struct fsl_mc_pdata *pdata = mci->pvt_info;
  238. struct csrow_info *csrow;
  239. u32 bus_width;
  240. u32 err_detect;
  241. u32 syndrome;
  242. u64 err_addr;
  243. u32 pfn;
  244. int row_index;
  245. u32 cap_high;
  246. u32 cap_low;
  247. int bad_data_bit;
  248. int bad_ecc_bit;
  249. err_detect = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DETECT);
  250. if (!err_detect)
  251. return;
  252. fsl_mc_printk(mci, KERN_ERR, "Err Detect Register: %#8.8x\n",
  253. err_detect);
  254. /* no more processing if not ECC bit errors */
  255. if (!(err_detect & (DDR_EDE_SBE | DDR_EDE_MBE))) {
  256. ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, err_detect);
  257. return;
  258. }
  259. syndrome = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_ECC);
  260. /* Mask off appropriate bits of syndrome based on bus width */
  261. bus_width = (ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG) &
  262. DSC_DBW_MASK) ? 32 : 64;
  263. if (bus_width == 64)
  264. syndrome &= 0xff;
  265. else
  266. syndrome &= 0xffff;
  267. err_addr = make64(
  268. ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_EXT_ADDRESS),
  269. ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_ADDRESS));
  270. pfn = err_addr >> PAGE_SHIFT;
  271. for (row_index = 0; row_index < mci->nr_csrows; row_index++) {
  272. csrow = mci->csrows[row_index];
  273. if ((pfn >= csrow->first_page) && (pfn <= csrow->last_page))
  274. break;
  275. }
  276. cap_high = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_DATA_HI);
  277. cap_low = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_DATA_LO);
  278. /*
  279. * Analyze single-bit errors on 64-bit wide buses
  280. * TODO: Add support for 32-bit wide buses
  281. */
  282. if ((err_detect & DDR_EDE_SBE) && (bus_width == 64)) {
  283. sbe_ecc_decode(cap_high, cap_low, syndrome,
  284. &bad_data_bit, &bad_ecc_bit);
  285. if (bad_data_bit != -1)
  286. fsl_mc_printk(mci, KERN_ERR,
  287. "Faulty Data bit: %d\n", bad_data_bit);
  288. if (bad_ecc_bit != -1)
  289. fsl_mc_printk(mci, KERN_ERR,
  290. "Faulty ECC bit: %d\n", bad_ecc_bit);
  291. fsl_mc_printk(mci, KERN_ERR,
  292. "Expected Data / ECC:\t%#8.8x_%08x / %#2.2x\n",
  293. cap_high ^ (1 << (bad_data_bit - 32)),
  294. cap_low ^ (1 << bad_data_bit),
  295. syndrome ^ (1 << bad_ecc_bit));
  296. }
  297. fsl_mc_printk(mci, KERN_ERR,
  298. "Captured Data / ECC:\t%#8.8x_%08x / %#2.2x\n",
  299. cap_high, cap_low, syndrome);
  300. fsl_mc_printk(mci, KERN_ERR, "Err addr: %#8.8llx\n", err_addr);
  301. fsl_mc_printk(mci, KERN_ERR, "PFN: %#8.8x\n", pfn);
  302. /* we are out of range */
  303. if (row_index == mci->nr_csrows)
  304. fsl_mc_printk(mci, KERN_ERR, "PFN out of range!\n");
  305. if (err_detect & DDR_EDE_SBE)
  306. edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1,
  307. pfn, err_addr & ~PAGE_MASK, syndrome,
  308. row_index, 0, -1,
  309. mci->ctl_name, "");
  310. if (err_detect & DDR_EDE_MBE)
  311. edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1,
  312. pfn, err_addr & ~PAGE_MASK, syndrome,
  313. row_index, 0, -1,
  314. mci->ctl_name, "");
  315. ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, err_detect);
  316. }
  317. static irqreturn_t fsl_mc_isr(int irq, void *dev_id)
  318. {
  319. struct mem_ctl_info *mci = dev_id;
  320. struct fsl_mc_pdata *pdata = mci->pvt_info;
  321. u32 err_detect;
  322. err_detect = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DETECT);
  323. if (!err_detect)
  324. return IRQ_NONE;
  325. fsl_mc_check(mci);
  326. return IRQ_HANDLED;
  327. }
  328. static void fsl_ddr_init_csrows(struct mem_ctl_info *mci)
  329. {
  330. struct fsl_mc_pdata *pdata = mci->pvt_info;
  331. struct csrow_info *csrow;
  332. struct dimm_info *dimm;
  333. u32 sdram_ctl;
  334. u32 sdtype;
  335. enum mem_type mtype;
  336. u32 cs_bnds;
  337. int index;
  338. sdram_ctl = ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG);
  339. sdtype = sdram_ctl & DSC_SDTYPE_MASK;
  340. if (sdram_ctl & DSC_RD_EN) {
  341. switch (sdtype) {
  342. case 0x02000000:
  343. mtype = MEM_RDDR;
  344. break;
  345. case 0x03000000:
  346. mtype = MEM_RDDR2;
  347. break;
  348. case 0x07000000:
  349. mtype = MEM_RDDR3;
  350. break;
  351. case 0x05000000:
  352. mtype = MEM_RDDR4;
  353. break;
  354. default:
  355. mtype = MEM_UNKNOWN;
  356. break;
  357. }
  358. } else {
  359. switch (sdtype) {
  360. case 0x02000000:
  361. mtype = MEM_DDR;
  362. break;
  363. case 0x03000000:
  364. mtype = MEM_DDR2;
  365. break;
  366. case 0x07000000:
  367. mtype = MEM_DDR3;
  368. break;
  369. case 0x05000000:
  370. mtype = MEM_DDR4;
  371. break;
  372. default:
  373. mtype = MEM_UNKNOWN;
  374. break;
  375. }
  376. }
  377. for (index = 0; index < mci->nr_csrows; index++) {
  378. u32 start;
  379. u32 end;
  380. csrow = mci->csrows[index];
  381. dimm = csrow->channels[0]->dimm;
  382. cs_bnds = ddr_in32(pdata->mc_vbase + FSL_MC_CS_BNDS_0 +
  383. (index * FSL_MC_CS_BNDS_OFS));
  384. start = (cs_bnds & 0xffff0000) >> 16;
  385. end = (cs_bnds & 0x0000ffff);
  386. if (start == end)
  387. continue; /* not populated */
  388. start <<= (24 - PAGE_SHIFT);
  389. end <<= (24 - PAGE_SHIFT);
  390. end |= (1 << (24 - PAGE_SHIFT)) - 1;
  391. csrow->first_page = start;
  392. csrow->last_page = end;
  393. dimm->nr_pages = end + 1 - start;
  394. dimm->grain = 8;
  395. dimm->mtype = mtype;
  396. dimm->dtype = DEV_UNKNOWN;
  397. if (sdram_ctl & DSC_X32_EN)
  398. dimm->dtype = DEV_X32;
  399. dimm->edac_mode = EDAC_SECDED;
  400. }
  401. }
  402. int fsl_mc_err_probe(struct platform_device *op)
  403. {
  404. struct mem_ctl_info *mci;
  405. struct edac_mc_layer layers[2];
  406. struct fsl_mc_pdata *pdata;
  407. struct resource r;
  408. u32 sdram_ctl;
  409. int res;
  410. if (!devres_open_group(&op->dev, fsl_mc_err_probe, GFP_KERNEL))
  411. return -ENOMEM;
  412. layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
  413. layers[0].size = 4;
  414. layers[0].is_virt_csrow = true;
  415. layers[1].type = EDAC_MC_LAYER_CHANNEL;
  416. layers[1].size = 1;
  417. layers[1].is_virt_csrow = false;
  418. mci = edac_mc_alloc(edac_mc_idx, ARRAY_SIZE(layers), layers,
  419. sizeof(*pdata));
  420. if (!mci) {
  421. devres_release_group(&op->dev, fsl_mc_err_probe);
  422. return -ENOMEM;
  423. }
  424. pdata = mci->pvt_info;
  425. pdata->name = "fsl_mc_err";
  426. mci->pdev = &op->dev;
  427. pdata->edac_idx = edac_mc_idx++;
  428. dev_set_drvdata(mci->pdev, mci);
  429. mci->ctl_name = pdata->name;
  430. mci->dev_name = pdata->name;
  431. /*
  432. * Get the endianness of DDR controller registers.
  433. * Default is big endian.
  434. */
  435. little_endian = of_property_read_bool(op->dev.of_node, "little-endian");
  436. res = of_address_to_resource(op->dev.of_node, 0, &r);
  437. if (res) {
  438. pr_err("%s: Unable to get resource for MC err regs\n",
  439. __func__);
  440. goto err;
  441. }
  442. if (!devm_request_mem_region(&op->dev, r.start, resource_size(&r),
  443. pdata->name)) {
  444. pr_err("%s: Error while requesting mem region\n",
  445. __func__);
  446. res = -EBUSY;
  447. goto err;
  448. }
  449. pdata->mc_vbase = devm_ioremap(&op->dev, r.start, resource_size(&r));
  450. if (!pdata->mc_vbase) {
  451. pr_err("%s: Unable to setup MC err regs\n", __func__);
  452. res = -ENOMEM;
  453. goto err;
  454. }
  455. sdram_ctl = ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG);
  456. if (!(sdram_ctl & DSC_ECC_EN)) {
  457. /* no ECC */
  458. pr_warn("%s: No ECC DIMMs discovered\n", __func__);
  459. res = -ENODEV;
  460. goto err;
  461. }
  462. edac_dbg(3, "init mci\n");
  463. mci->mtype_cap = MEM_FLAG_DDR | MEM_FLAG_RDDR |
  464. MEM_FLAG_DDR2 | MEM_FLAG_RDDR2 |
  465. MEM_FLAG_DDR3 | MEM_FLAG_RDDR3 |
  466. MEM_FLAG_DDR4 | MEM_FLAG_RDDR4;
  467. mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED;
  468. mci->edac_cap = EDAC_FLAG_SECDED;
  469. mci->mod_name = EDAC_MOD_STR;
  470. if (edac_op_state == EDAC_OPSTATE_POLL)
  471. mci->edac_check = fsl_mc_check;
  472. mci->ctl_page_to_phys = NULL;
  473. mci->scrub_mode = SCRUB_SW_SRC;
  474. fsl_ddr_init_csrows(mci);
  475. /* store the original error disable bits */
  476. orig_ddr_err_disable = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DISABLE);
  477. ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DISABLE, 0);
  478. /* clear all error bits */
  479. ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, ~0);
  480. res = edac_mc_add_mc_with_groups(mci, fsl_ddr_dev_groups);
  481. if (res) {
  482. edac_dbg(3, "failed edac_mc_add_mc()\n");
  483. goto err;
  484. }
  485. if (edac_op_state == EDAC_OPSTATE_INT) {
  486. ddr_out32(pdata->mc_vbase + FSL_MC_ERR_INT_EN,
  487. DDR_EIE_MBEE | DDR_EIE_SBEE);
  488. /* store the original error management threshold */
  489. orig_ddr_err_sbe = ddr_in32(pdata->mc_vbase +
  490. FSL_MC_ERR_SBE) & 0xff0000;
  491. /* set threshold to 1 error per interrupt */
  492. ddr_out32(pdata->mc_vbase + FSL_MC_ERR_SBE, 0x10000);
  493. /* register interrupts */
  494. pdata->irq = platform_get_irq(op, 0);
  495. res = devm_request_irq(&op->dev, pdata->irq,
  496. fsl_mc_isr,
  497. IRQF_SHARED,
  498. "[EDAC] MC err", mci);
  499. if (res < 0) {
  500. pr_err("%s: Unable to request irq %d for FSL DDR DRAM ERR\n",
  501. __func__, pdata->irq);
  502. res = -ENODEV;
  503. goto err2;
  504. }
  505. pr_info(EDAC_MOD_STR " acquired irq %d for MC\n",
  506. pdata->irq);
  507. }
  508. devres_remove_group(&op->dev, fsl_mc_err_probe);
  509. edac_dbg(3, "success\n");
  510. pr_info(EDAC_MOD_STR " MC err registered\n");
  511. return 0;
  512. err2:
  513. edac_mc_del_mc(&op->dev);
  514. err:
  515. devres_release_group(&op->dev, fsl_mc_err_probe);
  516. edac_mc_free(mci);
  517. return res;
  518. }
  519. int fsl_mc_err_remove(struct platform_device *op)
  520. {
  521. struct mem_ctl_info *mci = dev_get_drvdata(&op->dev);
  522. struct fsl_mc_pdata *pdata = mci->pvt_info;
  523. edac_dbg(0, "\n");
  524. if (edac_op_state == EDAC_OPSTATE_INT) {
  525. ddr_out32(pdata->mc_vbase + FSL_MC_ERR_INT_EN, 0);
  526. }
  527. ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DISABLE,
  528. orig_ddr_err_disable);
  529. ddr_out32(pdata->mc_vbase + FSL_MC_ERR_SBE, orig_ddr_err_sbe);
  530. edac_mc_del_mc(&op->dev);
  531. edac_mc_free(mci);
  532. return 0;
  533. }