altera_edac.c 61 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Copyright (C) 2017-2018, Intel Corporation. All rights reserved
  4. * Copyright Altera Corporation (C) 2014-2016. All rights reserved.
  5. * Copyright 2011-2012 Calxeda, Inc.
  6. */
  7. #include <asm/cacheflush.h>
  8. #include <linux/ctype.h>
  9. #include <linux/delay.h>
  10. #include <linux/edac.h>
  11. #include <linux/firmware/intel/stratix10-smc.h>
  12. #include <linux/genalloc.h>
  13. #include <linux/interrupt.h>
  14. #include <linux/irqchip/chained_irq.h>
  15. #include <linux/kernel.h>
  16. #include <linux/mfd/altera-sysmgr.h>
  17. #include <linux/mfd/syscon.h>
  18. #include <linux/notifier.h>
  19. #include <linux/of_address.h>
  20. #include <linux/of_irq.h>
  21. #include <linux/of_platform.h>
  22. #include <linux/panic_notifier.h>
  23. #include <linux/platform_device.h>
  24. #include <linux/regmap.h>
  25. #include <linux/types.h>
  26. #include <linux/uaccess.h>
  27. #include "altera_edac.h"
  28. #include "edac_module.h"
  29. #define EDAC_MOD_STR "altera_edac"
  30. #define EDAC_DEVICE "Altera"
  31. #ifdef CONFIG_EDAC_ALTERA_SDRAM
  32. static const struct altr_sdram_prv_data c5_data = {
  33. .ecc_ctrl_offset = CV_CTLCFG_OFST,
  34. .ecc_ctl_en_mask = CV_CTLCFG_ECC_AUTO_EN,
  35. .ecc_stat_offset = CV_DRAMSTS_OFST,
  36. .ecc_stat_ce_mask = CV_DRAMSTS_SBEERR,
  37. .ecc_stat_ue_mask = CV_DRAMSTS_DBEERR,
  38. .ecc_saddr_offset = CV_ERRADDR_OFST,
  39. .ecc_daddr_offset = CV_ERRADDR_OFST,
  40. .ecc_cecnt_offset = CV_SBECOUNT_OFST,
  41. .ecc_uecnt_offset = CV_DBECOUNT_OFST,
  42. .ecc_irq_en_offset = CV_DRAMINTR_OFST,
  43. .ecc_irq_en_mask = CV_DRAMINTR_INTREN,
  44. .ecc_irq_clr_offset = CV_DRAMINTR_OFST,
  45. .ecc_irq_clr_mask = (CV_DRAMINTR_INTRCLR | CV_DRAMINTR_INTREN),
  46. .ecc_cnt_rst_offset = CV_DRAMINTR_OFST,
  47. .ecc_cnt_rst_mask = CV_DRAMINTR_INTRCLR,
  48. .ce_ue_trgr_offset = CV_CTLCFG_OFST,
  49. .ce_set_mask = CV_CTLCFG_GEN_SB_ERR,
  50. .ue_set_mask = CV_CTLCFG_GEN_DB_ERR,
  51. };
  52. static const struct altr_sdram_prv_data a10_data = {
  53. .ecc_ctrl_offset = A10_ECCCTRL1_OFST,
  54. .ecc_ctl_en_mask = A10_ECCCTRL1_ECC_EN,
  55. .ecc_stat_offset = A10_INTSTAT_OFST,
  56. .ecc_stat_ce_mask = A10_INTSTAT_SBEERR,
  57. .ecc_stat_ue_mask = A10_INTSTAT_DBEERR,
  58. .ecc_saddr_offset = A10_SERRADDR_OFST,
  59. .ecc_daddr_offset = A10_DERRADDR_OFST,
  60. .ecc_irq_en_offset = A10_ERRINTEN_OFST,
  61. .ecc_irq_en_mask = A10_ECC_IRQ_EN_MASK,
  62. .ecc_irq_clr_offset = A10_INTSTAT_OFST,
  63. .ecc_irq_clr_mask = (A10_INTSTAT_SBEERR | A10_INTSTAT_DBEERR),
  64. .ecc_cnt_rst_offset = A10_ECCCTRL1_OFST,
  65. .ecc_cnt_rst_mask = A10_ECC_CNT_RESET_MASK,
  66. .ce_ue_trgr_offset = A10_DIAGINTTEST_OFST,
  67. .ce_set_mask = A10_DIAGINT_TSERRA_MASK,
  68. .ue_set_mask = A10_DIAGINT_TDERRA_MASK,
  69. };
  70. /*********************** EDAC Memory Controller Functions ****************/
  71. /* The SDRAM controller uses the EDAC Memory Controller framework. */
  72. static irqreturn_t altr_sdram_mc_err_handler(int irq, void *dev_id)
  73. {
  74. struct mem_ctl_info *mci = dev_id;
  75. struct altr_sdram_mc_data *drvdata = mci->pvt_info;
  76. const struct altr_sdram_prv_data *priv = drvdata->data;
  77. u32 status, err_count = 1, err_addr;
  78. regmap_read(drvdata->mc_vbase, priv->ecc_stat_offset, &status);
  79. if (status & priv->ecc_stat_ue_mask) {
  80. regmap_read(drvdata->mc_vbase, priv->ecc_daddr_offset,
  81. &err_addr);
  82. if (priv->ecc_uecnt_offset)
  83. regmap_read(drvdata->mc_vbase, priv->ecc_uecnt_offset,
  84. &err_count);
  85. panic("\nEDAC: [%d Uncorrectable errors @ 0x%08X]\n",
  86. err_count, err_addr);
  87. }
  88. if (status & priv->ecc_stat_ce_mask) {
  89. regmap_read(drvdata->mc_vbase, priv->ecc_saddr_offset,
  90. &err_addr);
  91. if (priv->ecc_uecnt_offset)
  92. regmap_read(drvdata->mc_vbase, priv->ecc_cecnt_offset,
  93. &err_count);
  94. edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, err_count,
  95. err_addr >> PAGE_SHIFT,
  96. err_addr & ~PAGE_MASK, 0,
  97. 0, 0, -1, mci->ctl_name, "");
  98. /* Clear IRQ to resume */
  99. regmap_write(drvdata->mc_vbase, priv->ecc_irq_clr_offset,
  100. priv->ecc_irq_clr_mask);
  101. return IRQ_HANDLED;
  102. }
  103. return IRQ_NONE;
  104. }
  105. static ssize_t altr_sdr_mc_err_inject_write(struct file *file,
  106. const char __user *data,
  107. size_t count, loff_t *ppos)
  108. {
  109. struct mem_ctl_info *mci = file->private_data;
  110. struct altr_sdram_mc_data *drvdata = mci->pvt_info;
  111. const struct altr_sdram_prv_data *priv = drvdata->data;
  112. u32 *ptemp;
  113. dma_addr_t dma_handle;
  114. u32 reg, read_reg;
  115. ptemp = dma_alloc_coherent(mci->pdev, 16, &dma_handle, GFP_KERNEL);
  116. if (!ptemp) {
  117. dma_free_coherent(mci->pdev, 16, ptemp, dma_handle);
  118. edac_printk(KERN_ERR, EDAC_MC,
  119. "Inject: Buffer Allocation error\n");
  120. return -ENOMEM;
  121. }
  122. regmap_read(drvdata->mc_vbase, priv->ce_ue_trgr_offset,
  123. &read_reg);
  124. read_reg &= ~(priv->ce_set_mask | priv->ue_set_mask);
  125. /* Error are injected by writing a word while the SBE or DBE
  126. * bit in the CTLCFG register is set. Reading the word will
  127. * trigger the SBE or DBE error and the corresponding IRQ.
  128. */
  129. if (count == 3) {
  130. edac_printk(KERN_ALERT, EDAC_MC,
  131. "Inject Double bit error\n");
  132. local_irq_disable();
  133. regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset,
  134. (read_reg | priv->ue_set_mask));
  135. local_irq_enable();
  136. } else {
  137. edac_printk(KERN_ALERT, EDAC_MC,
  138. "Inject Single bit error\n");
  139. local_irq_disable();
  140. regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset,
  141. (read_reg | priv->ce_set_mask));
  142. local_irq_enable();
  143. }
  144. ptemp[0] = 0x5A5A5A5A;
  145. ptemp[1] = 0xA5A5A5A5;
  146. /* Clear the error injection bits */
  147. regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset, read_reg);
  148. /* Ensure it has been written out */
  149. wmb();
  150. /*
  151. * To trigger the error, we need to read the data back
  152. * (the data was written with errors above).
  153. * The READ_ONCE macros and printk are used to prevent the
  154. * the compiler optimizing these reads out.
  155. */
  156. reg = READ_ONCE(ptemp[0]);
  157. read_reg = READ_ONCE(ptemp[1]);
  158. /* Force Read */
  159. rmb();
  160. edac_printk(KERN_ALERT, EDAC_MC, "Read Data [0x%X, 0x%X]\n",
  161. reg, read_reg);
  162. dma_free_coherent(mci->pdev, 16, ptemp, dma_handle);
  163. return count;
  164. }
  165. static const struct file_operations altr_sdr_mc_debug_inject_fops = {
  166. .open = simple_open,
  167. .write = altr_sdr_mc_err_inject_write,
  168. .llseek = generic_file_llseek,
  169. };
  170. static void altr_sdr_mc_create_debugfs_nodes(struct mem_ctl_info *mci)
  171. {
  172. if (!IS_ENABLED(CONFIG_EDAC_DEBUG))
  173. return;
  174. if (!mci->debugfs)
  175. return;
  176. edac_debugfs_create_file("altr_trigger", S_IWUSR, mci->debugfs, mci,
  177. &altr_sdr_mc_debug_inject_fops);
  178. }
  179. /* Get total memory size from Open Firmware DTB */
  180. static unsigned long get_total_mem(void)
  181. {
  182. struct device_node *np = NULL;
  183. struct resource res;
  184. int ret;
  185. unsigned long total_mem = 0;
  186. for_each_node_by_type(np, "memory") {
  187. ret = of_address_to_resource(np, 0, &res);
  188. if (ret)
  189. continue;
  190. total_mem += resource_size(&res);
  191. }
  192. edac_dbg(0, "total_mem 0x%lx\n", total_mem);
  193. return total_mem;
  194. }
  195. static const struct of_device_id altr_sdram_ctrl_of_match[] = {
  196. { .compatible = "altr,sdram-edac", .data = &c5_data},
  197. { .compatible = "altr,sdram-edac-a10", .data = &a10_data},
  198. {},
  199. };
  200. MODULE_DEVICE_TABLE(of, altr_sdram_ctrl_of_match);
  201. static int a10_init(struct regmap *mc_vbase)
  202. {
  203. if (regmap_update_bits(mc_vbase, A10_INTMODE_OFST,
  204. A10_INTMODE_SB_INT, A10_INTMODE_SB_INT)) {
  205. edac_printk(KERN_ERR, EDAC_MC,
  206. "Error setting SB IRQ mode\n");
  207. return -ENODEV;
  208. }
  209. if (regmap_write(mc_vbase, A10_SERRCNTREG_OFST, 1)) {
  210. edac_printk(KERN_ERR, EDAC_MC,
  211. "Error setting trigger count\n");
  212. return -ENODEV;
  213. }
  214. return 0;
  215. }
  216. static int a10_unmask_irq(struct platform_device *pdev, u32 mask)
  217. {
  218. void __iomem *sm_base;
  219. int ret = 0;
  220. if (!request_mem_region(A10_SYMAN_INTMASK_CLR, sizeof(u32),
  221. dev_name(&pdev->dev))) {
  222. edac_printk(KERN_ERR, EDAC_MC,
  223. "Unable to request mem region\n");
  224. return -EBUSY;
  225. }
  226. sm_base = ioremap(A10_SYMAN_INTMASK_CLR, sizeof(u32));
  227. if (!sm_base) {
  228. edac_printk(KERN_ERR, EDAC_MC,
  229. "Unable to ioremap device\n");
  230. ret = -ENOMEM;
  231. goto release;
  232. }
  233. iowrite32(mask, sm_base);
  234. iounmap(sm_base);
  235. release:
  236. release_mem_region(A10_SYMAN_INTMASK_CLR, sizeof(u32));
  237. return ret;
  238. }
  239. static int altr_sdram_probe(struct platform_device *pdev)
  240. {
  241. const struct of_device_id *id;
  242. struct edac_mc_layer layers[2];
  243. struct mem_ctl_info *mci;
  244. struct altr_sdram_mc_data *drvdata;
  245. const struct altr_sdram_prv_data *priv;
  246. struct regmap *mc_vbase;
  247. struct dimm_info *dimm;
  248. u32 read_reg;
  249. int irq, irq2, res = 0;
  250. unsigned long mem_size, irqflags = 0;
  251. id = of_match_device(altr_sdram_ctrl_of_match, &pdev->dev);
  252. if (!id)
  253. return -ENODEV;
  254. /* Grab the register range from the sdr controller in device tree */
  255. mc_vbase = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
  256. "altr,sdr-syscon");
  257. if (IS_ERR(mc_vbase)) {
  258. edac_printk(KERN_ERR, EDAC_MC,
  259. "regmap for altr,sdr-syscon lookup failed.\n");
  260. return -ENODEV;
  261. }
  262. /* Check specific dependencies for the module */
  263. priv = of_match_node(altr_sdram_ctrl_of_match,
  264. pdev->dev.of_node)->data;
  265. /* Validate the SDRAM controller has ECC enabled */
  266. if (regmap_read(mc_vbase, priv->ecc_ctrl_offset, &read_reg) ||
  267. ((read_reg & priv->ecc_ctl_en_mask) != priv->ecc_ctl_en_mask)) {
  268. edac_printk(KERN_ERR, EDAC_MC,
  269. "No ECC/ECC disabled [0x%08X]\n", read_reg);
  270. return -ENODEV;
  271. }
  272. /* Grab memory size from device tree. */
  273. mem_size = get_total_mem();
  274. if (!mem_size) {
  275. edac_printk(KERN_ERR, EDAC_MC, "Unable to calculate memory size\n");
  276. return -ENODEV;
  277. }
  278. /* Ensure the SDRAM Interrupt is disabled */
  279. if (regmap_update_bits(mc_vbase, priv->ecc_irq_en_offset,
  280. priv->ecc_irq_en_mask, 0)) {
  281. edac_printk(KERN_ERR, EDAC_MC,
  282. "Error disabling SDRAM ECC IRQ\n");
  283. return -ENODEV;
  284. }
  285. /* Toggle to clear the SDRAM Error count */
  286. if (regmap_update_bits(mc_vbase, priv->ecc_cnt_rst_offset,
  287. priv->ecc_cnt_rst_mask,
  288. priv->ecc_cnt_rst_mask)) {
  289. edac_printk(KERN_ERR, EDAC_MC,
  290. "Error clearing SDRAM ECC count\n");
  291. return -ENODEV;
  292. }
  293. if (regmap_update_bits(mc_vbase, priv->ecc_cnt_rst_offset,
  294. priv->ecc_cnt_rst_mask, 0)) {
  295. edac_printk(KERN_ERR, EDAC_MC,
  296. "Error clearing SDRAM ECC count\n");
  297. return -ENODEV;
  298. }
  299. irq = platform_get_irq(pdev, 0);
  300. if (irq < 0) {
  301. edac_printk(KERN_ERR, EDAC_MC,
  302. "No irq %d in DT\n", irq);
  303. return irq;
  304. }
  305. /* Arria10 has a 2nd IRQ */
  306. irq2 = platform_get_irq(pdev, 1);
  307. layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
  308. layers[0].size = 1;
  309. layers[0].is_virt_csrow = true;
  310. layers[1].type = EDAC_MC_LAYER_CHANNEL;
  311. layers[1].size = 1;
  312. layers[1].is_virt_csrow = false;
  313. mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers,
  314. sizeof(struct altr_sdram_mc_data));
  315. if (!mci)
  316. return -ENOMEM;
  317. mci->pdev = &pdev->dev;
  318. drvdata = mci->pvt_info;
  319. drvdata->mc_vbase = mc_vbase;
  320. drvdata->data = priv;
  321. platform_set_drvdata(pdev, mci);
  322. if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) {
  323. edac_printk(KERN_ERR, EDAC_MC,
  324. "Unable to get managed device resource\n");
  325. res = -ENOMEM;
  326. goto free;
  327. }
  328. mci->mtype_cap = MEM_FLAG_DDR3;
  329. mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED;
  330. mci->edac_cap = EDAC_FLAG_SECDED;
  331. mci->mod_name = EDAC_MOD_STR;
  332. mci->ctl_name = dev_name(&pdev->dev);
  333. mci->scrub_mode = SCRUB_SW_SRC;
  334. mci->dev_name = dev_name(&pdev->dev);
  335. dimm = *mci->dimms;
  336. dimm->nr_pages = ((mem_size - 1) >> PAGE_SHIFT) + 1;
  337. dimm->grain = 8;
  338. dimm->dtype = DEV_X8;
  339. dimm->mtype = MEM_DDR3;
  340. dimm->edac_mode = EDAC_SECDED;
  341. res = edac_mc_add_mc(mci);
  342. if (res < 0)
  343. goto err;
  344. /* Only the Arria10 has separate IRQs */
  345. if (of_machine_is_compatible("altr,socfpga-arria10")) {
  346. /* Arria10 specific initialization */
  347. res = a10_init(mc_vbase);
  348. if (res < 0)
  349. goto err2;
  350. res = devm_request_irq(&pdev->dev, irq2,
  351. altr_sdram_mc_err_handler,
  352. IRQF_SHARED, dev_name(&pdev->dev), mci);
  353. if (res < 0) {
  354. edac_mc_printk(mci, KERN_ERR,
  355. "Unable to request irq %d\n", irq2);
  356. res = -ENODEV;
  357. goto err2;
  358. }
  359. res = a10_unmask_irq(pdev, A10_DDR0_IRQ_MASK);
  360. if (res < 0)
  361. goto err2;
  362. irqflags = IRQF_SHARED;
  363. }
  364. res = devm_request_irq(&pdev->dev, irq, altr_sdram_mc_err_handler,
  365. irqflags, dev_name(&pdev->dev), mci);
  366. if (res < 0) {
  367. edac_mc_printk(mci, KERN_ERR,
  368. "Unable to request irq %d\n", irq);
  369. res = -ENODEV;
  370. goto err2;
  371. }
  372. /* Infrastructure ready - enable the IRQ */
  373. if (regmap_update_bits(drvdata->mc_vbase, priv->ecc_irq_en_offset,
  374. priv->ecc_irq_en_mask, priv->ecc_irq_en_mask)) {
  375. edac_mc_printk(mci, KERN_ERR,
  376. "Error enabling SDRAM ECC IRQ\n");
  377. res = -ENODEV;
  378. goto err2;
  379. }
  380. altr_sdr_mc_create_debugfs_nodes(mci);
  381. devres_close_group(&pdev->dev, NULL);
  382. return 0;
  383. err2:
  384. edac_mc_del_mc(&pdev->dev);
  385. err:
  386. devres_release_group(&pdev->dev, NULL);
  387. free:
  388. edac_mc_free(mci);
  389. edac_printk(KERN_ERR, EDAC_MC,
  390. "EDAC Probe Failed; Error %d\n", res);
  391. return res;
  392. }
  393. static int altr_sdram_remove(struct platform_device *pdev)
  394. {
  395. struct mem_ctl_info *mci = platform_get_drvdata(pdev);
  396. edac_mc_del_mc(&pdev->dev);
  397. edac_mc_free(mci);
  398. platform_set_drvdata(pdev, NULL);
  399. return 0;
  400. }
  401. /*
  402. * If you want to suspend, need to disable EDAC by removing it
  403. * from the device tree or defconfig.
  404. */
  405. #ifdef CONFIG_PM
  406. static int altr_sdram_prepare(struct device *dev)
  407. {
  408. pr_err("Suspend not allowed when EDAC is enabled.\n");
  409. return -EPERM;
  410. }
  411. static const struct dev_pm_ops altr_sdram_pm_ops = {
  412. .prepare = altr_sdram_prepare,
  413. };
  414. #endif
  415. static struct platform_driver altr_sdram_edac_driver = {
  416. .probe = altr_sdram_probe,
  417. .remove = altr_sdram_remove,
  418. .driver = {
  419. .name = "altr_sdram_edac",
  420. #ifdef CONFIG_PM
  421. .pm = &altr_sdram_pm_ops,
  422. #endif
  423. .of_match_table = altr_sdram_ctrl_of_match,
  424. },
  425. };
  426. module_platform_driver(altr_sdram_edac_driver);
  427. #endif /* CONFIG_EDAC_ALTERA_SDRAM */
  428. /************************* EDAC Parent Probe *************************/
  429. static const struct of_device_id altr_edac_device_of_match[];
  430. static const struct of_device_id altr_edac_of_match[] = {
  431. { .compatible = "altr,socfpga-ecc-manager" },
  432. {},
  433. };
  434. MODULE_DEVICE_TABLE(of, altr_edac_of_match);
  435. static int altr_edac_probe(struct platform_device *pdev)
  436. {
  437. of_platform_populate(pdev->dev.of_node, altr_edac_device_of_match,
  438. NULL, &pdev->dev);
  439. return 0;
  440. }
  441. static struct platform_driver altr_edac_driver = {
  442. .probe = altr_edac_probe,
  443. .driver = {
  444. .name = "socfpga_ecc_manager",
  445. .of_match_table = altr_edac_of_match,
  446. },
  447. };
  448. module_platform_driver(altr_edac_driver);
  449. /************************* EDAC Device Functions *************************/
  450. /*
  451. * EDAC Device Functions (shared between various IPs).
  452. * The discrete memories use the EDAC Device framework. The probe
  453. * and error handling functions are very similar between memories
  454. * so they are shared. The memory allocation and freeing for EDAC
  455. * trigger testing are different for each memory.
  456. */
  457. #ifdef CONFIG_EDAC_ALTERA_OCRAM
  458. static const struct edac_device_prv_data ocramecc_data;
  459. #endif
  460. #ifdef CONFIG_EDAC_ALTERA_L2C
  461. static const struct edac_device_prv_data l2ecc_data;
  462. #endif
  463. #ifdef CONFIG_EDAC_ALTERA_OCRAM
  464. static const struct edac_device_prv_data a10_ocramecc_data;
  465. #endif
  466. #ifdef CONFIG_EDAC_ALTERA_L2C
  467. static const struct edac_device_prv_data a10_l2ecc_data;
  468. #endif
  469. static irqreturn_t altr_edac_device_handler(int irq, void *dev_id)
  470. {
  471. irqreturn_t ret_value = IRQ_NONE;
  472. struct edac_device_ctl_info *dci = dev_id;
  473. struct altr_edac_device_dev *drvdata = dci->pvt_info;
  474. const struct edac_device_prv_data *priv = drvdata->data;
  475. if (irq == drvdata->sb_irq) {
  476. if (priv->ce_clear_mask)
  477. writel(priv->ce_clear_mask, drvdata->base);
  478. edac_device_handle_ce(dci, 0, 0, drvdata->edac_dev_name);
  479. ret_value = IRQ_HANDLED;
  480. } else if (irq == drvdata->db_irq) {
  481. if (priv->ue_clear_mask)
  482. writel(priv->ue_clear_mask, drvdata->base);
  483. edac_device_handle_ue(dci, 0, 0, drvdata->edac_dev_name);
  484. panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
  485. ret_value = IRQ_HANDLED;
  486. } else {
  487. WARN_ON(1);
  488. }
  489. return ret_value;
  490. }
  491. static ssize_t __maybe_unused
  492. altr_edac_device_trig(struct file *file, const char __user *user_buf,
  493. size_t count, loff_t *ppos)
  494. {
  495. u32 *ptemp, i, error_mask;
  496. int result = 0;
  497. u8 trig_type;
  498. unsigned long flags;
  499. struct edac_device_ctl_info *edac_dci = file->private_data;
  500. struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
  501. const struct edac_device_prv_data *priv = drvdata->data;
  502. void *generic_ptr = edac_dci->dev;
  503. if (!user_buf || get_user(trig_type, user_buf))
  504. return -EFAULT;
  505. if (!priv->alloc_mem)
  506. return -ENOMEM;
  507. /*
  508. * Note that generic_ptr is initialized to the device * but in
  509. * some alloc_functions, this is overridden and returns data.
  510. */
  511. ptemp = priv->alloc_mem(priv->trig_alloc_sz, &generic_ptr);
  512. if (!ptemp) {
  513. edac_printk(KERN_ERR, EDAC_DEVICE,
  514. "Inject: Buffer Allocation error\n");
  515. return -ENOMEM;
  516. }
  517. if (trig_type == ALTR_UE_TRIGGER_CHAR)
  518. error_mask = priv->ue_set_mask;
  519. else
  520. error_mask = priv->ce_set_mask;
  521. edac_printk(KERN_ALERT, EDAC_DEVICE,
  522. "Trigger Error Mask (0x%X)\n", error_mask);
  523. local_irq_save(flags);
  524. /* write ECC corrupted data out. */
  525. for (i = 0; i < (priv->trig_alloc_sz / sizeof(*ptemp)); i++) {
  526. /* Read data so we're in the correct state */
  527. rmb();
  528. if (READ_ONCE(ptemp[i]))
  529. result = -1;
  530. /* Toggle Error bit (it is latched), leave ECC enabled */
  531. writel(error_mask, (drvdata->base + priv->set_err_ofst));
  532. writel(priv->ecc_enable_mask, (drvdata->base +
  533. priv->set_err_ofst));
  534. ptemp[i] = i;
  535. }
  536. /* Ensure it has been written out */
  537. wmb();
  538. local_irq_restore(flags);
  539. if (result)
  540. edac_printk(KERN_ERR, EDAC_DEVICE, "Mem Not Cleared\n");
  541. /* Read out written data. ECC error caused here */
  542. for (i = 0; i < ALTR_TRIGGER_READ_WRD_CNT; i++)
  543. if (READ_ONCE(ptemp[i]) != i)
  544. edac_printk(KERN_ERR, EDAC_DEVICE,
  545. "Read doesn't match written data\n");
  546. if (priv->free_mem)
  547. priv->free_mem(ptemp, priv->trig_alloc_sz, generic_ptr);
  548. return count;
  549. }
  550. static const struct file_operations altr_edac_device_inject_fops __maybe_unused = {
  551. .open = simple_open,
  552. .write = altr_edac_device_trig,
  553. .llseek = generic_file_llseek,
  554. };
  555. static ssize_t __maybe_unused
  556. altr_edac_a10_device_trig(struct file *file, const char __user *user_buf,
  557. size_t count, loff_t *ppos);
  558. static const struct file_operations altr_edac_a10_device_inject_fops __maybe_unused = {
  559. .open = simple_open,
  560. .write = altr_edac_a10_device_trig,
  561. .llseek = generic_file_llseek,
  562. };
  563. static ssize_t __maybe_unused
  564. altr_edac_a10_device_trig2(struct file *file, const char __user *user_buf,
  565. size_t count, loff_t *ppos);
  566. static const struct file_operations altr_edac_a10_device_inject2_fops __maybe_unused = {
  567. .open = simple_open,
  568. .write = altr_edac_a10_device_trig2,
  569. .llseek = generic_file_llseek,
  570. };
  571. static void altr_create_edacdev_dbgfs(struct edac_device_ctl_info *edac_dci,
  572. const struct edac_device_prv_data *priv)
  573. {
  574. struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
  575. if (!IS_ENABLED(CONFIG_EDAC_DEBUG))
  576. return;
  577. drvdata->debugfs_dir = edac_debugfs_create_dir(drvdata->edac_dev_name);
  578. if (!drvdata->debugfs_dir)
  579. return;
  580. if (!edac_debugfs_create_file("altr_trigger", S_IWUSR,
  581. drvdata->debugfs_dir, edac_dci,
  582. priv->inject_fops))
  583. debugfs_remove_recursive(drvdata->debugfs_dir);
  584. }
  585. static const struct of_device_id altr_edac_device_of_match[] = {
  586. #ifdef CONFIG_EDAC_ALTERA_L2C
  587. { .compatible = "altr,socfpga-l2-ecc", .data = &l2ecc_data },
  588. #endif
  589. #ifdef CONFIG_EDAC_ALTERA_OCRAM
  590. { .compatible = "altr,socfpga-ocram-ecc", .data = &ocramecc_data },
  591. #endif
  592. {},
  593. };
  594. MODULE_DEVICE_TABLE(of, altr_edac_device_of_match);
  595. /*
  596. * altr_edac_device_probe()
  597. * This is a generic EDAC device driver that will support
  598. * various Altera memory devices such as the L2 cache ECC and
  599. * OCRAM ECC as well as the memories for other peripherals.
  600. * Module specific initialization is done by passing the
  601. * function index in the device tree.
  602. */
  603. static int altr_edac_device_probe(struct platform_device *pdev)
  604. {
  605. struct edac_device_ctl_info *dci;
  606. struct altr_edac_device_dev *drvdata;
  607. struct resource *r;
  608. int res = 0;
  609. struct device_node *np = pdev->dev.of_node;
  610. char *ecc_name = (char *)np->name;
  611. static int dev_instance;
  612. if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) {
  613. edac_printk(KERN_ERR, EDAC_DEVICE,
  614. "Unable to open devm\n");
  615. return -ENOMEM;
  616. }
  617. r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  618. if (!r) {
  619. edac_printk(KERN_ERR, EDAC_DEVICE,
  620. "Unable to get mem resource\n");
  621. res = -ENODEV;
  622. goto fail;
  623. }
  624. if (!devm_request_mem_region(&pdev->dev, r->start, resource_size(r),
  625. dev_name(&pdev->dev))) {
  626. edac_printk(KERN_ERR, EDAC_DEVICE,
  627. "%s:Error requesting mem region\n", ecc_name);
  628. res = -EBUSY;
  629. goto fail;
  630. }
  631. dci = edac_device_alloc_ctl_info(sizeof(*drvdata), ecc_name,
  632. 1, ecc_name, 1, 0, NULL, 0,
  633. dev_instance++);
  634. if (!dci) {
  635. edac_printk(KERN_ERR, EDAC_DEVICE,
  636. "%s: Unable to allocate EDAC device\n", ecc_name);
  637. res = -ENOMEM;
  638. goto fail;
  639. }
  640. drvdata = dci->pvt_info;
  641. dci->dev = &pdev->dev;
  642. platform_set_drvdata(pdev, dci);
  643. drvdata->edac_dev_name = ecc_name;
  644. drvdata->base = devm_ioremap(&pdev->dev, r->start, resource_size(r));
  645. if (!drvdata->base) {
  646. res = -ENOMEM;
  647. goto fail1;
  648. }
  649. /* Get driver specific data for this EDAC device */
  650. drvdata->data = of_match_node(altr_edac_device_of_match, np)->data;
  651. /* Check specific dependencies for the module */
  652. if (drvdata->data->setup) {
  653. res = drvdata->data->setup(drvdata);
  654. if (res)
  655. goto fail1;
  656. }
  657. drvdata->sb_irq = platform_get_irq(pdev, 0);
  658. res = devm_request_irq(&pdev->dev, drvdata->sb_irq,
  659. altr_edac_device_handler,
  660. 0, dev_name(&pdev->dev), dci);
  661. if (res)
  662. goto fail1;
  663. drvdata->db_irq = platform_get_irq(pdev, 1);
  664. res = devm_request_irq(&pdev->dev, drvdata->db_irq,
  665. altr_edac_device_handler,
  666. 0, dev_name(&pdev->dev), dci);
  667. if (res)
  668. goto fail1;
  669. dci->mod_name = "Altera ECC Manager";
  670. dci->dev_name = drvdata->edac_dev_name;
  671. res = edac_device_add_device(dci);
  672. if (res)
  673. goto fail1;
  674. altr_create_edacdev_dbgfs(dci, drvdata->data);
  675. devres_close_group(&pdev->dev, NULL);
  676. return 0;
  677. fail1:
  678. edac_device_free_ctl_info(dci);
  679. fail:
  680. devres_release_group(&pdev->dev, NULL);
  681. edac_printk(KERN_ERR, EDAC_DEVICE,
  682. "%s:Error setting up EDAC device: %d\n", ecc_name, res);
  683. return res;
  684. }
  685. static int altr_edac_device_remove(struct platform_device *pdev)
  686. {
  687. struct edac_device_ctl_info *dci = platform_get_drvdata(pdev);
  688. struct altr_edac_device_dev *drvdata = dci->pvt_info;
  689. debugfs_remove_recursive(drvdata->debugfs_dir);
  690. edac_device_del_device(&pdev->dev);
  691. edac_device_free_ctl_info(dci);
  692. return 0;
  693. }
  694. static struct platform_driver altr_edac_device_driver = {
  695. .probe = altr_edac_device_probe,
  696. .remove = altr_edac_device_remove,
  697. .driver = {
  698. .name = "altr_edac_device",
  699. .of_match_table = altr_edac_device_of_match,
  700. },
  701. };
  702. module_platform_driver(altr_edac_device_driver);
  703. /******************* Arria10 Device ECC Shared Functions *****************/
  704. /*
  705. * Test for memory's ECC dependencies upon entry because platform specific
  706. * startup should have initialized the memory and enabled the ECC.
  707. * Can't turn on ECC here because accessing un-initialized memory will
  708. * cause CE/UE errors possibly causing an ABORT.
  709. */
  710. static int __maybe_unused
  711. altr_check_ecc_deps(struct altr_edac_device_dev *device)
  712. {
  713. void __iomem *base = device->base;
  714. const struct edac_device_prv_data *prv = device->data;
  715. if (readl(base + prv->ecc_en_ofst) & prv->ecc_enable_mask)
  716. return 0;
  717. edac_printk(KERN_ERR, EDAC_DEVICE,
  718. "%s: No ECC present or ECC disabled.\n",
  719. device->edac_dev_name);
  720. return -ENODEV;
  721. }
  722. static irqreturn_t __maybe_unused altr_edac_a10_ecc_irq(int irq, void *dev_id)
  723. {
  724. struct altr_edac_device_dev *dci = dev_id;
  725. void __iomem *base = dci->base;
  726. if (irq == dci->sb_irq) {
  727. writel(ALTR_A10_ECC_SERRPENA,
  728. base + ALTR_A10_ECC_INTSTAT_OFST);
  729. edac_device_handle_ce(dci->edac_dev, 0, 0, dci->edac_dev_name);
  730. return IRQ_HANDLED;
  731. } else if (irq == dci->db_irq) {
  732. writel(ALTR_A10_ECC_DERRPENA,
  733. base + ALTR_A10_ECC_INTSTAT_OFST);
  734. edac_device_handle_ue(dci->edac_dev, 0, 0, dci->edac_dev_name);
  735. if (dci->data->panic)
  736. panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
  737. return IRQ_HANDLED;
  738. }
  739. WARN_ON(1);
  740. return IRQ_NONE;
  741. }
  742. /******************* Arria10 Memory Buffer Functions *********************/
  743. static inline int a10_get_irq_mask(struct device_node *np)
  744. {
  745. int irq;
  746. const u32 *handle = of_get_property(np, "interrupts", NULL);
  747. if (!handle)
  748. return -ENODEV;
  749. irq = be32_to_cpup(handle);
  750. return irq;
  751. }
  752. static inline void ecc_set_bits(u32 bit_mask, void __iomem *ioaddr)
  753. {
  754. u32 value = readl(ioaddr);
  755. value |= bit_mask;
  756. writel(value, ioaddr);
  757. }
  758. static inline void ecc_clear_bits(u32 bit_mask, void __iomem *ioaddr)
  759. {
  760. u32 value = readl(ioaddr);
  761. value &= ~bit_mask;
  762. writel(value, ioaddr);
  763. }
  764. static inline int ecc_test_bits(u32 bit_mask, void __iomem *ioaddr)
  765. {
  766. u32 value = readl(ioaddr);
  767. return (value & bit_mask) ? 1 : 0;
  768. }
  769. /*
  770. * This function uses the memory initialization block in the Arria10 ECC
  771. * controller to initialize/clear the entire memory data and ECC data.
  772. */
  773. static int __maybe_unused altr_init_memory_port(void __iomem *ioaddr, int port)
  774. {
  775. int limit = ALTR_A10_ECC_INIT_WATCHDOG_10US;
  776. u32 init_mask, stat_mask, clear_mask;
  777. int ret = 0;
  778. if (port) {
  779. init_mask = ALTR_A10_ECC_INITB;
  780. stat_mask = ALTR_A10_ECC_INITCOMPLETEB;
  781. clear_mask = ALTR_A10_ECC_ERRPENB_MASK;
  782. } else {
  783. init_mask = ALTR_A10_ECC_INITA;
  784. stat_mask = ALTR_A10_ECC_INITCOMPLETEA;
  785. clear_mask = ALTR_A10_ECC_ERRPENA_MASK;
  786. }
  787. ecc_set_bits(init_mask, (ioaddr + ALTR_A10_ECC_CTRL_OFST));
  788. while (limit--) {
  789. if (ecc_test_bits(stat_mask,
  790. (ioaddr + ALTR_A10_ECC_INITSTAT_OFST)))
  791. break;
  792. udelay(1);
  793. }
  794. if (limit < 0)
  795. ret = -EBUSY;
  796. /* Clear any pending ECC interrupts */
  797. writel(clear_mask, (ioaddr + ALTR_A10_ECC_INTSTAT_OFST));
  798. return ret;
  799. }
  800. static __init int __maybe_unused
  801. altr_init_a10_ecc_block(struct device_node *np, u32 irq_mask,
  802. u32 ecc_ctrl_en_mask, bool dual_port)
  803. {
  804. int ret = 0;
  805. void __iomem *ecc_block_base;
  806. struct regmap *ecc_mgr_map;
  807. char *ecc_name;
  808. struct device_node *np_eccmgr;
  809. ecc_name = (char *)np->name;
  810. /* Get the ECC Manager - parent of the device EDACs */
  811. np_eccmgr = of_get_parent(np);
  812. ecc_mgr_map =
  813. altr_sysmgr_regmap_lookup_by_phandle(np_eccmgr,
  814. "altr,sysmgr-syscon");
  815. of_node_put(np_eccmgr);
  816. if (IS_ERR(ecc_mgr_map)) {
  817. edac_printk(KERN_ERR, EDAC_DEVICE,
  818. "Unable to get syscon altr,sysmgr-syscon\n");
  819. return -ENODEV;
  820. }
  821. /* Map the ECC Block */
  822. ecc_block_base = of_iomap(np, 0);
  823. if (!ecc_block_base) {
  824. edac_printk(KERN_ERR, EDAC_DEVICE,
  825. "Unable to map %s ECC block\n", ecc_name);
  826. return -ENODEV;
  827. }
  828. /* Disable ECC */
  829. regmap_write(ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_SET_OFST, irq_mask);
  830. writel(ALTR_A10_ECC_SERRINTEN,
  831. (ecc_block_base + ALTR_A10_ECC_ERRINTENR_OFST));
  832. ecc_clear_bits(ecc_ctrl_en_mask,
  833. (ecc_block_base + ALTR_A10_ECC_CTRL_OFST));
  834. /* Ensure all writes complete */
  835. wmb();
  836. /* Use HW initialization block to initialize memory for ECC */
  837. ret = altr_init_memory_port(ecc_block_base, 0);
  838. if (ret) {
  839. edac_printk(KERN_ERR, EDAC_DEVICE,
  840. "ECC: cannot init %s PORTA memory\n", ecc_name);
  841. goto out;
  842. }
  843. if (dual_port) {
  844. ret = altr_init_memory_port(ecc_block_base, 1);
  845. if (ret) {
  846. edac_printk(KERN_ERR, EDAC_DEVICE,
  847. "ECC: cannot init %s PORTB memory\n",
  848. ecc_name);
  849. goto out;
  850. }
  851. }
  852. /* Interrupt mode set to every SBERR */
  853. regmap_write(ecc_mgr_map, ALTR_A10_ECC_INTMODE_OFST,
  854. ALTR_A10_ECC_INTMODE);
  855. /* Enable ECC */
  856. ecc_set_bits(ecc_ctrl_en_mask, (ecc_block_base +
  857. ALTR_A10_ECC_CTRL_OFST));
  858. writel(ALTR_A10_ECC_SERRINTEN,
  859. (ecc_block_base + ALTR_A10_ECC_ERRINTENS_OFST));
  860. regmap_write(ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_CLR_OFST, irq_mask);
  861. /* Ensure all writes complete */
  862. wmb();
  863. out:
  864. iounmap(ecc_block_base);
  865. return ret;
  866. }
  867. static int validate_parent_available(struct device_node *np);
  868. static const struct of_device_id altr_edac_a10_device_of_match[];
  869. static int __init __maybe_unused altr_init_a10_ecc_device_type(char *compat)
  870. {
  871. int irq;
  872. struct device_node *child, *np;
  873. np = of_find_compatible_node(NULL, NULL,
  874. "altr,socfpga-a10-ecc-manager");
  875. if (!np) {
  876. edac_printk(KERN_ERR, EDAC_DEVICE, "ECC Manager not found\n");
  877. return -ENODEV;
  878. }
  879. for_each_child_of_node(np, child) {
  880. const struct of_device_id *pdev_id;
  881. const struct edac_device_prv_data *prv;
  882. if (!of_device_is_available(child))
  883. continue;
  884. if (!of_device_is_compatible(child, compat))
  885. continue;
  886. if (validate_parent_available(child))
  887. continue;
  888. irq = a10_get_irq_mask(child);
  889. if (irq < 0)
  890. continue;
  891. /* Get matching node and check for valid result */
  892. pdev_id = of_match_node(altr_edac_a10_device_of_match, child);
  893. if (IS_ERR_OR_NULL(pdev_id))
  894. continue;
  895. /* Validate private data pointer before dereferencing */
  896. prv = pdev_id->data;
  897. if (!prv)
  898. continue;
  899. altr_init_a10_ecc_block(child, BIT(irq),
  900. prv->ecc_enable_mask, 0);
  901. }
  902. of_node_put(np);
  903. return 0;
  904. }
  905. /*********************** SDRAM EDAC Device Functions *********************/
  906. #ifdef CONFIG_EDAC_ALTERA_SDRAM
  907. /*
  908. * A legacy U-Boot bug only enabled memory mapped access to the ECC Enable
  909. * register if ECC is enabled. Linux checks the ECC Enable register to
  910. * determine ECC status.
  911. * Use an SMC call (which always works) to determine ECC enablement.
  912. */
  913. static int altr_s10_sdram_check_ecc_deps(struct altr_edac_device_dev *device)
  914. {
  915. const struct edac_device_prv_data *prv = device->data;
  916. unsigned long sdram_ecc_addr;
  917. struct arm_smccc_res result;
  918. struct device_node *np;
  919. phys_addr_t sdram_addr;
  920. u32 read_reg;
  921. int ret;
  922. np = of_find_compatible_node(NULL, NULL, "altr,sdr-ctl");
  923. if (!np)
  924. goto sdram_err;
  925. sdram_addr = of_translate_address(np, of_get_address(np, 0,
  926. NULL, NULL));
  927. of_node_put(np);
  928. sdram_ecc_addr = (unsigned long)sdram_addr + prv->ecc_en_ofst;
  929. arm_smccc_smc(INTEL_SIP_SMC_REG_READ, sdram_ecc_addr,
  930. 0, 0, 0, 0, 0, 0, &result);
  931. read_reg = (unsigned int)result.a1;
  932. ret = (int)result.a0;
  933. if (!ret && (read_reg & prv->ecc_enable_mask))
  934. return 0;
  935. sdram_err:
  936. edac_printk(KERN_ERR, EDAC_DEVICE,
  937. "%s: No ECC present or ECC disabled.\n",
  938. device->edac_dev_name);
  939. return -ENODEV;
  940. }
  941. static const struct edac_device_prv_data s10_sdramecc_data = {
  942. .setup = altr_s10_sdram_check_ecc_deps,
  943. .ce_clear_mask = ALTR_S10_ECC_SERRPENA,
  944. .ue_clear_mask = ALTR_S10_ECC_DERRPENA,
  945. .ecc_enable_mask = ALTR_S10_ECC_EN,
  946. .ecc_en_ofst = ALTR_S10_ECC_CTRL_SDRAM_OFST,
  947. .ce_set_mask = ALTR_S10_ECC_TSERRA,
  948. .ue_set_mask = ALTR_S10_ECC_TDERRA,
  949. .set_err_ofst = ALTR_S10_ECC_INTTEST_OFST,
  950. .ecc_irq_handler = altr_edac_a10_ecc_irq,
  951. .inject_fops = &altr_edac_a10_device_inject_fops,
  952. };
  953. #endif /* CONFIG_EDAC_ALTERA_SDRAM */
  954. /*********************** OCRAM EDAC Device Functions *********************/
  955. #ifdef CONFIG_EDAC_ALTERA_OCRAM
  956. static void *ocram_alloc_mem(size_t size, void **other)
  957. {
  958. struct device_node *np;
  959. struct gen_pool *gp;
  960. void *sram_addr;
  961. np = of_find_compatible_node(NULL, NULL, "altr,socfpga-ocram-ecc");
  962. if (!np)
  963. return NULL;
  964. gp = of_gen_pool_get(np, "iram", 0);
  965. of_node_put(np);
  966. if (!gp)
  967. return NULL;
  968. sram_addr = (void *)gen_pool_alloc(gp, size);
  969. if (!sram_addr)
  970. return NULL;
  971. memset(sram_addr, 0, size);
  972. /* Ensure data is written out */
  973. wmb();
  974. /* Remember this handle for freeing later */
  975. *other = gp;
  976. return sram_addr;
  977. }
  978. static void ocram_free_mem(void *p, size_t size, void *other)
  979. {
  980. gen_pool_free((struct gen_pool *)other, (unsigned long)p, size);
  981. }
  982. static const struct edac_device_prv_data ocramecc_data = {
  983. .setup = altr_check_ecc_deps,
  984. .ce_clear_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_SERR),
  985. .ue_clear_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_DERR),
  986. .alloc_mem = ocram_alloc_mem,
  987. .free_mem = ocram_free_mem,
  988. .ecc_enable_mask = ALTR_OCR_ECC_EN,
  989. .ecc_en_ofst = ALTR_OCR_ECC_REG_OFFSET,
  990. .ce_set_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_INJS),
  991. .ue_set_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_INJD),
  992. .set_err_ofst = ALTR_OCR_ECC_REG_OFFSET,
  993. .trig_alloc_sz = ALTR_TRIG_OCRAM_BYTE_SIZE,
  994. .inject_fops = &altr_edac_device_inject_fops,
  995. };
  996. static int __maybe_unused
  997. altr_check_ocram_deps_init(struct altr_edac_device_dev *device)
  998. {
  999. void __iomem *base = device->base;
  1000. int ret;
  1001. ret = altr_check_ecc_deps(device);
  1002. if (ret)
  1003. return ret;
  1004. /* Verify OCRAM has been initialized */
  1005. if (!ecc_test_bits(ALTR_A10_ECC_INITCOMPLETEA,
  1006. (base + ALTR_A10_ECC_INITSTAT_OFST)))
  1007. return -ENODEV;
  1008. /* Enable IRQ on Single Bit Error */
  1009. writel(ALTR_A10_ECC_SERRINTEN, (base + ALTR_A10_ECC_ERRINTENS_OFST));
  1010. /* Ensure all writes complete */
  1011. wmb();
  1012. return 0;
  1013. }
  1014. static const struct edac_device_prv_data a10_ocramecc_data = {
  1015. .setup = altr_check_ocram_deps_init,
  1016. .ce_clear_mask = ALTR_A10_ECC_SERRPENA,
  1017. .ue_clear_mask = ALTR_A10_ECC_DERRPENA,
  1018. .irq_status_mask = A10_SYSMGR_ECC_INTSTAT_OCRAM,
  1019. .ecc_enable_mask = ALTR_A10_OCRAM_ECC_EN_CTL,
  1020. .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
  1021. .ce_set_mask = ALTR_A10_ECC_TSERRA,
  1022. .ue_set_mask = ALTR_A10_ECC_TDERRA,
  1023. .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
  1024. .ecc_irq_handler = altr_edac_a10_ecc_irq,
  1025. .inject_fops = &altr_edac_a10_device_inject2_fops,
  1026. /*
  1027. * OCRAM panic on uncorrectable error because sleep/resume
  1028. * functions and FPGA contents are stored in OCRAM. Prefer
  1029. * a kernel panic over executing/loading corrupted data.
  1030. */
  1031. .panic = true,
  1032. };
  1033. #endif /* CONFIG_EDAC_ALTERA_OCRAM */
  1034. /********************* L2 Cache EDAC Device Functions ********************/
  1035. #ifdef CONFIG_EDAC_ALTERA_L2C
  1036. static void *l2_alloc_mem(size_t size, void **other)
  1037. {
  1038. struct device *dev = *other;
  1039. void *ptemp = devm_kzalloc(dev, size, GFP_KERNEL);
  1040. if (!ptemp)
  1041. return NULL;
  1042. /* Make sure everything is written out */
  1043. wmb();
  1044. /*
  1045. * Clean all cache levels up to LoC (includes L2)
  1046. * This ensures the corrupted data is written into
  1047. * L2 cache for readback test (which causes ECC error).
  1048. */
  1049. flush_cache_all();
  1050. return ptemp;
  1051. }
  1052. static void l2_free_mem(void *p, size_t size, void *other)
  1053. {
  1054. struct device *dev = other;
  1055. if (dev && p)
  1056. devm_kfree(dev, p);
  1057. }
  1058. /*
  1059. * altr_l2_check_deps()
  1060. * Test for L2 cache ECC dependencies upon entry because
  1061. * platform specific startup should have initialized the L2
  1062. * memory and enabled the ECC.
  1063. * Bail if ECC is not enabled.
  1064. * Note that L2 Cache Enable is forced at build time.
  1065. */
  1066. static int altr_l2_check_deps(struct altr_edac_device_dev *device)
  1067. {
  1068. void __iomem *base = device->base;
  1069. const struct edac_device_prv_data *prv = device->data;
  1070. if ((readl(base) & prv->ecc_enable_mask) ==
  1071. prv->ecc_enable_mask)
  1072. return 0;
  1073. edac_printk(KERN_ERR, EDAC_DEVICE,
  1074. "L2: No ECC present, or ECC disabled\n");
  1075. return -ENODEV;
  1076. }
  1077. static irqreturn_t altr_edac_a10_l2_irq(int irq, void *dev_id)
  1078. {
  1079. struct altr_edac_device_dev *dci = dev_id;
  1080. if (irq == dci->sb_irq) {
  1081. regmap_write(dci->edac->ecc_mgr_map,
  1082. A10_SYSGMR_MPU_CLEAR_L2_ECC_OFST,
  1083. A10_SYSGMR_MPU_CLEAR_L2_ECC_SB);
  1084. edac_device_handle_ce(dci->edac_dev, 0, 0, dci->edac_dev_name);
  1085. return IRQ_HANDLED;
  1086. } else if (irq == dci->db_irq) {
  1087. regmap_write(dci->edac->ecc_mgr_map,
  1088. A10_SYSGMR_MPU_CLEAR_L2_ECC_OFST,
  1089. A10_SYSGMR_MPU_CLEAR_L2_ECC_MB);
  1090. edac_device_handle_ue(dci->edac_dev, 0, 0, dci->edac_dev_name);
  1091. panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
  1092. return IRQ_HANDLED;
  1093. }
  1094. WARN_ON(1);
  1095. return IRQ_NONE;
  1096. }
  1097. static const struct edac_device_prv_data l2ecc_data = {
  1098. .setup = altr_l2_check_deps,
  1099. .ce_clear_mask = 0,
  1100. .ue_clear_mask = 0,
  1101. .alloc_mem = l2_alloc_mem,
  1102. .free_mem = l2_free_mem,
  1103. .ecc_enable_mask = ALTR_L2_ECC_EN,
  1104. .ce_set_mask = (ALTR_L2_ECC_EN | ALTR_L2_ECC_INJS),
  1105. .ue_set_mask = (ALTR_L2_ECC_EN | ALTR_L2_ECC_INJD),
  1106. .set_err_ofst = ALTR_L2_ECC_REG_OFFSET,
  1107. .trig_alloc_sz = ALTR_TRIG_L2C_BYTE_SIZE,
  1108. .inject_fops = &altr_edac_device_inject_fops,
  1109. };
  1110. static const struct edac_device_prv_data a10_l2ecc_data = {
  1111. .setup = altr_l2_check_deps,
  1112. .ce_clear_mask = ALTR_A10_L2_ECC_SERR_CLR,
  1113. .ue_clear_mask = ALTR_A10_L2_ECC_MERR_CLR,
  1114. .irq_status_mask = A10_SYSMGR_ECC_INTSTAT_L2,
  1115. .alloc_mem = l2_alloc_mem,
  1116. .free_mem = l2_free_mem,
  1117. .ecc_enable_mask = ALTR_A10_L2_ECC_EN_CTL,
  1118. .ce_set_mask = ALTR_A10_L2_ECC_CE_INJ_MASK,
  1119. .ue_set_mask = ALTR_A10_L2_ECC_UE_INJ_MASK,
  1120. .set_err_ofst = ALTR_A10_L2_ECC_INJ_OFST,
  1121. .ecc_irq_handler = altr_edac_a10_l2_irq,
  1122. .trig_alloc_sz = ALTR_TRIG_L2C_BYTE_SIZE,
  1123. .inject_fops = &altr_edac_device_inject_fops,
  1124. };
  1125. #endif /* CONFIG_EDAC_ALTERA_L2C */
  1126. /********************* Ethernet Device Functions ********************/
  1127. #ifdef CONFIG_EDAC_ALTERA_ETHERNET
  1128. static int __init socfpga_init_ethernet_ecc(struct altr_edac_device_dev *dev)
  1129. {
  1130. int ret;
  1131. ret = altr_init_a10_ecc_device_type("altr,socfpga-eth-mac-ecc");
  1132. if (ret)
  1133. return ret;
  1134. return altr_check_ecc_deps(dev);
  1135. }
  1136. static const struct edac_device_prv_data a10_enetecc_data = {
  1137. .setup = socfpga_init_ethernet_ecc,
  1138. .ce_clear_mask = ALTR_A10_ECC_SERRPENA,
  1139. .ue_clear_mask = ALTR_A10_ECC_DERRPENA,
  1140. .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
  1141. .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
  1142. .ce_set_mask = ALTR_A10_ECC_TSERRA,
  1143. .ue_set_mask = ALTR_A10_ECC_TDERRA,
  1144. .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
  1145. .ecc_irq_handler = altr_edac_a10_ecc_irq,
  1146. .inject_fops = &altr_edac_a10_device_inject2_fops,
  1147. };
  1148. #endif /* CONFIG_EDAC_ALTERA_ETHERNET */
  1149. /********************** NAND Device Functions **********************/
  1150. #ifdef CONFIG_EDAC_ALTERA_NAND
  1151. static int __init socfpga_init_nand_ecc(struct altr_edac_device_dev *device)
  1152. {
  1153. int ret;
  1154. ret = altr_init_a10_ecc_device_type("altr,socfpga-nand-ecc");
  1155. if (ret)
  1156. return ret;
  1157. return altr_check_ecc_deps(device);
  1158. }
  1159. static const struct edac_device_prv_data a10_nandecc_data = {
  1160. .setup = socfpga_init_nand_ecc,
  1161. .ce_clear_mask = ALTR_A10_ECC_SERRPENA,
  1162. .ue_clear_mask = ALTR_A10_ECC_DERRPENA,
  1163. .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
  1164. .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
  1165. .ce_set_mask = ALTR_A10_ECC_TSERRA,
  1166. .ue_set_mask = ALTR_A10_ECC_TDERRA,
  1167. .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
  1168. .ecc_irq_handler = altr_edac_a10_ecc_irq,
  1169. .inject_fops = &altr_edac_a10_device_inject_fops,
  1170. };
  1171. #endif /* CONFIG_EDAC_ALTERA_NAND */
  1172. /********************** DMA Device Functions **********************/
  1173. #ifdef CONFIG_EDAC_ALTERA_DMA
  1174. static int __init socfpga_init_dma_ecc(struct altr_edac_device_dev *device)
  1175. {
  1176. int ret;
  1177. ret = altr_init_a10_ecc_device_type("altr,socfpga-dma-ecc");
  1178. if (ret)
  1179. return ret;
  1180. return altr_check_ecc_deps(device);
  1181. }
  1182. static const struct edac_device_prv_data a10_dmaecc_data = {
  1183. .setup = socfpga_init_dma_ecc,
  1184. .ce_clear_mask = ALTR_A10_ECC_SERRPENA,
  1185. .ue_clear_mask = ALTR_A10_ECC_DERRPENA,
  1186. .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
  1187. .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
  1188. .ce_set_mask = ALTR_A10_ECC_TSERRA,
  1189. .ue_set_mask = ALTR_A10_ECC_TDERRA,
  1190. .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
  1191. .ecc_irq_handler = altr_edac_a10_ecc_irq,
  1192. .inject_fops = &altr_edac_a10_device_inject_fops,
  1193. };
  1194. #endif /* CONFIG_EDAC_ALTERA_DMA */
  1195. /********************** USB Device Functions **********************/
  1196. #ifdef CONFIG_EDAC_ALTERA_USB
  1197. static int __init socfpga_init_usb_ecc(struct altr_edac_device_dev *device)
  1198. {
  1199. int ret;
  1200. ret = altr_init_a10_ecc_device_type("altr,socfpga-usb-ecc");
  1201. if (ret)
  1202. return ret;
  1203. return altr_check_ecc_deps(device);
  1204. }
  1205. static const struct edac_device_prv_data a10_usbecc_data = {
  1206. .setup = socfpga_init_usb_ecc,
  1207. .ce_clear_mask = ALTR_A10_ECC_SERRPENA,
  1208. .ue_clear_mask = ALTR_A10_ECC_DERRPENA,
  1209. .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
  1210. .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
  1211. .ce_set_mask = ALTR_A10_ECC_TSERRA,
  1212. .ue_set_mask = ALTR_A10_ECC_TDERRA,
  1213. .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
  1214. .ecc_irq_handler = altr_edac_a10_ecc_irq,
  1215. .inject_fops = &altr_edac_a10_device_inject2_fops,
  1216. };
  1217. #endif /* CONFIG_EDAC_ALTERA_USB */
  1218. /********************** QSPI Device Functions **********************/
  1219. #ifdef CONFIG_EDAC_ALTERA_QSPI
  1220. static int __init socfpga_init_qspi_ecc(struct altr_edac_device_dev *device)
  1221. {
  1222. int ret;
  1223. ret = altr_init_a10_ecc_device_type("altr,socfpga-qspi-ecc");
  1224. if (ret)
  1225. return ret;
  1226. return altr_check_ecc_deps(device);
  1227. }
  1228. static const struct edac_device_prv_data a10_qspiecc_data = {
  1229. .setup = socfpga_init_qspi_ecc,
  1230. .ce_clear_mask = ALTR_A10_ECC_SERRPENA,
  1231. .ue_clear_mask = ALTR_A10_ECC_DERRPENA,
  1232. .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
  1233. .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
  1234. .ce_set_mask = ALTR_A10_ECC_TSERRA,
  1235. .ue_set_mask = ALTR_A10_ECC_TDERRA,
  1236. .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
  1237. .ecc_irq_handler = altr_edac_a10_ecc_irq,
  1238. .inject_fops = &altr_edac_a10_device_inject_fops,
  1239. };
  1240. #endif /* CONFIG_EDAC_ALTERA_QSPI */
  1241. /********************* SDMMC Device Functions **********************/
  1242. #ifdef CONFIG_EDAC_ALTERA_SDMMC
  1243. static const struct edac_device_prv_data a10_sdmmceccb_data;
  1244. static int altr_portb_setup(struct altr_edac_device_dev *device)
  1245. {
  1246. struct edac_device_ctl_info *dci;
  1247. struct altr_edac_device_dev *altdev;
  1248. char *ecc_name = "sdmmcb-ecc";
  1249. int edac_idx, rc;
  1250. struct device_node *np;
  1251. const struct edac_device_prv_data *prv = &a10_sdmmceccb_data;
  1252. rc = altr_check_ecc_deps(device);
  1253. if (rc)
  1254. return rc;
  1255. np = of_find_compatible_node(NULL, NULL, "altr,socfpga-sdmmc-ecc");
  1256. if (!np) {
  1257. edac_printk(KERN_WARNING, EDAC_DEVICE, "SDMMC node not found\n");
  1258. return -ENODEV;
  1259. }
  1260. /* Create the PortB EDAC device */
  1261. edac_idx = edac_device_alloc_index();
  1262. dci = edac_device_alloc_ctl_info(sizeof(*altdev), ecc_name, 1,
  1263. ecc_name, 1, 0, NULL, 0, edac_idx);
  1264. if (!dci) {
  1265. edac_printk(KERN_ERR, EDAC_DEVICE,
  1266. "%s: Unable to allocate PortB EDAC device\n",
  1267. ecc_name);
  1268. return -ENOMEM;
  1269. }
  1270. /* Initialize the PortB EDAC device structure from PortA structure */
  1271. altdev = dci->pvt_info;
  1272. *altdev = *device;
  1273. if (!devres_open_group(&altdev->ddev, altr_portb_setup, GFP_KERNEL))
  1274. return -ENOMEM;
  1275. /* Update PortB specific values */
  1276. altdev->edac_dev_name = ecc_name;
  1277. altdev->edac_idx = edac_idx;
  1278. altdev->edac_dev = dci;
  1279. altdev->data = prv;
  1280. dci->dev = &altdev->ddev;
  1281. dci->ctl_name = "Altera ECC Manager";
  1282. dci->mod_name = ecc_name;
  1283. dci->dev_name = ecc_name;
  1284. /*
  1285. * Update the PortB IRQs - A10 has 4, S10 has 2, Index accordingly
  1286. *
  1287. * FIXME: Instead of ifdefs with different architectures the driver
  1288. * should properly use compatibles.
  1289. */
  1290. #ifdef CONFIG_64BIT
  1291. altdev->sb_irq = irq_of_parse_and_map(np, 1);
  1292. #else
  1293. altdev->sb_irq = irq_of_parse_and_map(np, 2);
  1294. #endif
  1295. if (!altdev->sb_irq) {
  1296. edac_printk(KERN_ERR, EDAC_DEVICE, "Error PortB SBIRQ alloc\n");
  1297. rc = -ENODEV;
  1298. goto err_release_group_1;
  1299. }
  1300. rc = devm_request_irq(&altdev->ddev, altdev->sb_irq,
  1301. prv->ecc_irq_handler,
  1302. IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
  1303. ecc_name, altdev);
  1304. if (rc) {
  1305. edac_printk(KERN_ERR, EDAC_DEVICE, "PortB SBERR IRQ error\n");
  1306. goto err_release_group_1;
  1307. }
  1308. #ifdef CONFIG_64BIT
  1309. /* Use IRQ to determine SError origin instead of assigning IRQ */
  1310. rc = of_property_read_u32_index(np, "interrupts", 1, &altdev->db_irq);
  1311. if (rc) {
  1312. edac_printk(KERN_ERR, EDAC_DEVICE,
  1313. "Error PortB DBIRQ alloc\n");
  1314. goto err_release_group_1;
  1315. }
  1316. #else
  1317. altdev->db_irq = irq_of_parse_and_map(np, 3);
  1318. if (!altdev->db_irq) {
  1319. edac_printk(KERN_ERR, EDAC_DEVICE, "Error PortB DBIRQ alloc\n");
  1320. rc = -ENODEV;
  1321. goto err_release_group_1;
  1322. }
  1323. rc = devm_request_irq(&altdev->ddev, altdev->db_irq,
  1324. prv->ecc_irq_handler,
  1325. IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
  1326. ecc_name, altdev);
  1327. if (rc) {
  1328. edac_printk(KERN_ERR, EDAC_DEVICE, "PortB DBERR IRQ error\n");
  1329. goto err_release_group_1;
  1330. }
  1331. #endif
  1332. rc = edac_device_add_device(dci);
  1333. if (rc) {
  1334. edac_printk(KERN_ERR, EDAC_DEVICE,
  1335. "edac_device_add_device portB failed\n");
  1336. rc = -ENOMEM;
  1337. goto err_release_group_1;
  1338. }
  1339. altr_create_edacdev_dbgfs(dci, prv);
  1340. list_add(&altdev->next, &altdev->edac->a10_ecc_devices);
  1341. devres_remove_group(&altdev->ddev, altr_portb_setup);
  1342. return 0;
  1343. err_release_group_1:
  1344. edac_device_free_ctl_info(dci);
  1345. devres_release_group(&altdev->ddev, altr_portb_setup);
  1346. edac_printk(KERN_ERR, EDAC_DEVICE,
  1347. "%s:Error setting up EDAC device: %d\n", ecc_name, rc);
  1348. return rc;
  1349. }
  1350. static int __init socfpga_init_sdmmc_ecc(struct altr_edac_device_dev *device)
  1351. {
  1352. int rc = -ENODEV;
  1353. struct device_node *child;
  1354. child = of_find_compatible_node(NULL, NULL, "altr,socfpga-sdmmc-ecc");
  1355. if (!child)
  1356. return -ENODEV;
  1357. if (!of_device_is_available(child))
  1358. goto exit;
  1359. if (validate_parent_available(child))
  1360. goto exit;
  1361. /* Init portB */
  1362. rc = altr_init_a10_ecc_block(child, ALTR_A10_SDMMC_IRQ_MASK,
  1363. a10_sdmmceccb_data.ecc_enable_mask, 1);
  1364. if (rc)
  1365. goto exit;
  1366. /* Setup portB */
  1367. return altr_portb_setup(device);
  1368. exit:
  1369. of_node_put(child);
  1370. return rc;
  1371. }
  1372. static irqreturn_t altr_edac_a10_ecc_irq_portb(int irq, void *dev_id)
  1373. {
  1374. struct altr_edac_device_dev *ad = dev_id;
  1375. void __iomem *base = ad->base;
  1376. const struct edac_device_prv_data *priv = ad->data;
  1377. if (irq == ad->sb_irq) {
  1378. writel(priv->ce_clear_mask,
  1379. base + ALTR_A10_ECC_INTSTAT_OFST);
  1380. edac_device_handle_ce(ad->edac_dev, 0, 0, ad->edac_dev_name);
  1381. return IRQ_HANDLED;
  1382. } else if (irq == ad->db_irq) {
  1383. writel(priv->ue_clear_mask,
  1384. base + ALTR_A10_ECC_INTSTAT_OFST);
  1385. edac_device_handle_ue(ad->edac_dev, 0, 0, ad->edac_dev_name);
  1386. return IRQ_HANDLED;
  1387. }
  1388. WARN_ONCE(1, "Unhandled IRQ%d on Port B.", irq);
  1389. return IRQ_NONE;
  1390. }
  1391. static const struct edac_device_prv_data a10_sdmmcecca_data = {
  1392. .setup = socfpga_init_sdmmc_ecc,
  1393. .ce_clear_mask = ALTR_A10_ECC_SERRPENA,
  1394. .ue_clear_mask = ALTR_A10_ECC_DERRPENA,
  1395. .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
  1396. .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
  1397. .ce_set_mask = ALTR_A10_ECC_SERRPENA,
  1398. .ue_set_mask = ALTR_A10_ECC_DERRPENA,
  1399. .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
  1400. .ecc_irq_handler = altr_edac_a10_ecc_irq,
  1401. .inject_fops = &altr_edac_a10_device_inject_fops,
  1402. };
  1403. static const struct edac_device_prv_data a10_sdmmceccb_data = {
  1404. .setup = socfpga_init_sdmmc_ecc,
  1405. .ce_clear_mask = ALTR_A10_ECC_SERRPENB,
  1406. .ue_clear_mask = ALTR_A10_ECC_DERRPENB,
  1407. .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
  1408. .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
  1409. .ce_set_mask = ALTR_A10_ECC_TSERRB,
  1410. .ue_set_mask = ALTR_A10_ECC_TDERRB,
  1411. .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
  1412. .ecc_irq_handler = altr_edac_a10_ecc_irq_portb,
  1413. .inject_fops = &altr_edac_a10_device_inject_fops,
  1414. };
  1415. #endif /* CONFIG_EDAC_ALTERA_SDMMC */
  1416. /********************* Arria10 EDAC Device Functions *************************/
  1417. static const struct of_device_id altr_edac_a10_device_of_match[] = {
  1418. #ifdef CONFIG_EDAC_ALTERA_L2C
  1419. { .compatible = "altr,socfpga-a10-l2-ecc", .data = &a10_l2ecc_data },
  1420. #endif
  1421. #ifdef CONFIG_EDAC_ALTERA_OCRAM
  1422. { .compatible = "altr,socfpga-a10-ocram-ecc",
  1423. .data = &a10_ocramecc_data },
  1424. #endif
  1425. #ifdef CONFIG_EDAC_ALTERA_ETHERNET
  1426. { .compatible = "altr,socfpga-eth-mac-ecc",
  1427. .data = &a10_enetecc_data },
  1428. #endif
  1429. #ifdef CONFIG_EDAC_ALTERA_NAND
  1430. { .compatible = "altr,socfpga-nand-ecc", .data = &a10_nandecc_data },
  1431. #endif
  1432. #ifdef CONFIG_EDAC_ALTERA_DMA
  1433. { .compatible = "altr,socfpga-dma-ecc", .data = &a10_dmaecc_data },
  1434. #endif
  1435. #ifdef CONFIG_EDAC_ALTERA_USB
  1436. { .compatible = "altr,socfpga-usb-ecc", .data = &a10_usbecc_data },
  1437. #endif
  1438. #ifdef CONFIG_EDAC_ALTERA_QSPI
  1439. { .compatible = "altr,socfpga-qspi-ecc", .data = &a10_qspiecc_data },
  1440. #endif
  1441. #ifdef CONFIG_EDAC_ALTERA_SDMMC
  1442. { .compatible = "altr,socfpga-sdmmc-ecc", .data = &a10_sdmmcecca_data },
  1443. #endif
  1444. #ifdef CONFIG_EDAC_ALTERA_SDRAM
  1445. { .compatible = "altr,sdram-edac-s10", .data = &s10_sdramecc_data },
  1446. #endif
  1447. {},
  1448. };
  1449. MODULE_DEVICE_TABLE(of, altr_edac_a10_device_of_match);
  1450. /*
  1451. * The Arria10 EDAC Device Functions differ from the Cyclone5/Arria5
  1452. * because 2 IRQs are shared among the all ECC peripherals. The ECC
  1453. * manager manages the IRQs and the children.
  1454. * Based on xgene_edac.c peripheral code.
  1455. */
  1456. static ssize_t __maybe_unused
  1457. altr_edac_a10_device_trig(struct file *file, const char __user *user_buf,
  1458. size_t count, loff_t *ppos)
  1459. {
  1460. struct edac_device_ctl_info *edac_dci = file->private_data;
  1461. struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
  1462. const struct edac_device_prv_data *priv = drvdata->data;
  1463. void __iomem *set_addr = (drvdata->base + priv->set_err_ofst);
  1464. unsigned long flags;
  1465. u8 trig_type;
  1466. if (!user_buf || get_user(trig_type, user_buf))
  1467. return -EFAULT;
  1468. local_irq_save(flags);
  1469. if (trig_type == ALTR_UE_TRIGGER_CHAR)
  1470. writel(priv->ue_set_mask, set_addr);
  1471. else
  1472. writel(priv->ce_set_mask, set_addr);
  1473. /* Ensure the interrupt test bits are set */
  1474. wmb();
  1475. local_irq_restore(flags);
  1476. return count;
  1477. }
  1478. /*
  1479. * The Stratix10 EDAC Error Injection Functions differ from Arria10
  1480. * slightly. A few Arria10 peripherals can use this injection function.
  1481. * Inject the error into the memory and then readback to trigger the IRQ.
  1482. */
  1483. static ssize_t __maybe_unused
  1484. altr_edac_a10_device_trig2(struct file *file, const char __user *user_buf,
  1485. size_t count, loff_t *ppos)
  1486. {
  1487. struct edac_device_ctl_info *edac_dci = file->private_data;
  1488. struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
  1489. const struct edac_device_prv_data *priv = drvdata->data;
  1490. void __iomem *set_addr = (drvdata->base + priv->set_err_ofst);
  1491. unsigned long flags;
  1492. u8 trig_type;
  1493. if (!user_buf || get_user(trig_type, user_buf))
  1494. return -EFAULT;
  1495. local_irq_save(flags);
  1496. if (trig_type == ALTR_UE_TRIGGER_CHAR) {
  1497. writel(priv->ue_set_mask, set_addr);
  1498. } else {
  1499. /* Setup read/write of 4 bytes */
  1500. writel(ECC_WORD_WRITE, drvdata->base + ECC_BLK_DBYTECTRL_OFST);
  1501. /* Setup Address to 0 */
  1502. writel(0, drvdata->base + ECC_BLK_ADDRESS_OFST);
  1503. /* Setup accctrl to read & ecc & data override */
  1504. writel(ECC_READ_EDOVR, drvdata->base + ECC_BLK_ACCCTRL_OFST);
  1505. /* Kick it. */
  1506. writel(ECC_XACT_KICK, drvdata->base + ECC_BLK_STARTACC_OFST);
  1507. /* Setup write for single bit change */
  1508. writel(readl(drvdata->base + ECC_BLK_RDATA0_OFST) ^ 0x1,
  1509. drvdata->base + ECC_BLK_WDATA0_OFST);
  1510. writel(readl(drvdata->base + ECC_BLK_RDATA1_OFST),
  1511. drvdata->base + ECC_BLK_WDATA1_OFST);
  1512. writel(readl(drvdata->base + ECC_BLK_RDATA2_OFST),
  1513. drvdata->base + ECC_BLK_WDATA2_OFST);
  1514. writel(readl(drvdata->base + ECC_BLK_RDATA3_OFST),
  1515. drvdata->base + ECC_BLK_WDATA3_OFST);
  1516. /* Copy Read ECC to Write ECC */
  1517. writel(readl(drvdata->base + ECC_BLK_RECC0_OFST),
  1518. drvdata->base + ECC_BLK_WECC0_OFST);
  1519. writel(readl(drvdata->base + ECC_BLK_RECC1_OFST),
  1520. drvdata->base + ECC_BLK_WECC1_OFST);
  1521. /* Setup accctrl to write & ecc override & data override */
  1522. writel(ECC_WRITE_EDOVR, drvdata->base + ECC_BLK_ACCCTRL_OFST);
  1523. /* Kick it. */
  1524. writel(ECC_XACT_KICK, drvdata->base + ECC_BLK_STARTACC_OFST);
  1525. /* Setup accctrl to read & ecc overwrite & data overwrite */
  1526. writel(ECC_READ_EDOVR, drvdata->base + ECC_BLK_ACCCTRL_OFST);
  1527. /* Kick it. */
  1528. writel(ECC_XACT_KICK, drvdata->base + ECC_BLK_STARTACC_OFST);
  1529. }
  1530. /* Ensure the interrupt test bits are set */
  1531. wmb();
  1532. local_irq_restore(flags);
  1533. return count;
  1534. }
  1535. static void altr_edac_a10_irq_handler(struct irq_desc *desc)
  1536. {
  1537. int dberr, bit, sm_offset, irq_status;
  1538. struct altr_arria10_edac *edac = irq_desc_get_handler_data(desc);
  1539. struct irq_chip *chip = irq_desc_get_chip(desc);
  1540. int irq = irq_desc_get_irq(desc);
  1541. unsigned long bits;
  1542. dberr = (irq == edac->db_irq) ? 1 : 0;
  1543. sm_offset = dberr ? A10_SYSMGR_ECC_INTSTAT_DERR_OFST :
  1544. A10_SYSMGR_ECC_INTSTAT_SERR_OFST;
  1545. chained_irq_enter(chip, desc);
  1546. regmap_read(edac->ecc_mgr_map, sm_offset, &irq_status);
  1547. bits = irq_status;
  1548. for_each_set_bit(bit, &bits, 32)
  1549. generic_handle_domain_irq(edac->domain, dberr * 32 + bit);
  1550. chained_irq_exit(chip, desc);
  1551. }
  1552. static int validate_parent_available(struct device_node *np)
  1553. {
  1554. struct device_node *parent;
  1555. int ret = 0;
  1556. /* SDRAM must be present for Linux (implied parent) */
  1557. if (of_device_is_compatible(np, "altr,sdram-edac-s10"))
  1558. return 0;
  1559. /* Ensure parent device is enabled if parent node exists */
  1560. parent = of_parse_phandle(np, "altr,ecc-parent", 0);
  1561. if (parent && !of_device_is_available(parent))
  1562. ret = -ENODEV;
  1563. of_node_put(parent);
  1564. return ret;
  1565. }
  1566. static int get_s10_sdram_edac_resource(struct device_node *np,
  1567. struct resource *res)
  1568. {
  1569. struct device_node *parent;
  1570. int ret;
  1571. parent = of_parse_phandle(np, "altr,sdr-syscon", 0);
  1572. if (!parent)
  1573. return -ENODEV;
  1574. ret = of_address_to_resource(parent, 0, res);
  1575. of_node_put(parent);
  1576. return ret;
  1577. }
  1578. static int altr_edac_a10_device_add(struct altr_arria10_edac *edac,
  1579. struct device_node *np)
  1580. {
  1581. struct edac_device_ctl_info *dci;
  1582. struct altr_edac_device_dev *altdev;
  1583. char *ecc_name = (char *)np->name;
  1584. struct resource res;
  1585. int edac_idx;
  1586. int rc = 0;
  1587. const struct edac_device_prv_data *prv;
  1588. /* Get matching node and check for valid result */
  1589. const struct of_device_id *pdev_id =
  1590. of_match_node(altr_edac_a10_device_of_match, np);
  1591. if (IS_ERR_OR_NULL(pdev_id))
  1592. return -ENODEV;
  1593. /* Get driver specific data for this EDAC device */
  1594. prv = pdev_id->data;
  1595. if (IS_ERR_OR_NULL(prv))
  1596. return -ENODEV;
  1597. if (validate_parent_available(np))
  1598. return -ENODEV;
  1599. if (!devres_open_group(edac->dev, altr_edac_a10_device_add, GFP_KERNEL))
  1600. return -ENOMEM;
  1601. if (of_device_is_compatible(np, "altr,sdram-edac-s10"))
  1602. rc = get_s10_sdram_edac_resource(np, &res);
  1603. else
  1604. rc = of_address_to_resource(np, 0, &res);
  1605. if (rc < 0) {
  1606. edac_printk(KERN_ERR, EDAC_DEVICE,
  1607. "%s: no resource address\n", ecc_name);
  1608. goto err_release_group;
  1609. }
  1610. edac_idx = edac_device_alloc_index();
  1611. dci = edac_device_alloc_ctl_info(sizeof(*altdev), ecc_name,
  1612. 1, ecc_name, 1, 0, NULL, 0,
  1613. edac_idx);
  1614. if (!dci) {
  1615. edac_printk(KERN_ERR, EDAC_DEVICE,
  1616. "%s: Unable to allocate EDAC device\n", ecc_name);
  1617. rc = -ENOMEM;
  1618. goto err_release_group;
  1619. }
  1620. altdev = dci->pvt_info;
  1621. dci->dev = edac->dev;
  1622. altdev->edac_dev_name = ecc_name;
  1623. altdev->edac_idx = edac_idx;
  1624. altdev->edac = edac;
  1625. altdev->edac_dev = dci;
  1626. altdev->data = prv;
  1627. altdev->ddev = *edac->dev;
  1628. dci->dev = &altdev->ddev;
  1629. dci->ctl_name = "Altera ECC Manager";
  1630. dci->mod_name = ecc_name;
  1631. dci->dev_name = ecc_name;
  1632. altdev->base = devm_ioremap_resource(edac->dev, &res);
  1633. if (IS_ERR(altdev->base)) {
  1634. rc = PTR_ERR(altdev->base);
  1635. goto err_release_group1;
  1636. }
  1637. /* Check specific dependencies for the module */
  1638. if (altdev->data->setup) {
  1639. rc = altdev->data->setup(altdev);
  1640. if (rc)
  1641. goto err_release_group1;
  1642. }
  1643. altdev->sb_irq = irq_of_parse_and_map(np, 0);
  1644. if (!altdev->sb_irq) {
  1645. edac_printk(KERN_ERR, EDAC_DEVICE, "Error allocating SBIRQ\n");
  1646. rc = -ENODEV;
  1647. goto err_release_group1;
  1648. }
  1649. rc = devm_request_irq(edac->dev, altdev->sb_irq, prv->ecc_irq_handler,
  1650. IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
  1651. ecc_name, altdev);
  1652. if (rc) {
  1653. edac_printk(KERN_ERR, EDAC_DEVICE, "No SBERR IRQ resource\n");
  1654. goto err_release_group1;
  1655. }
  1656. #ifdef CONFIG_64BIT
  1657. /* Use IRQ to determine SError origin instead of assigning IRQ */
  1658. rc = of_property_read_u32_index(np, "interrupts", 0, &altdev->db_irq);
  1659. if (rc) {
  1660. edac_printk(KERN_ERR, EDAC_DEVICE,
  1661. "Unable to parse DB IRQ index\n");
  1662. goto err_release_group1;
  1663. }
  1664. #else
  1665. altdev->db_irq = irq_of_parse_and_map(np, 1);
  1666. if (!altdev->db_irq) {
  1667. edac_printk(KERN_ERR, EDAC_DEVICE, "Error allocating DBIRQ\n");
  1668. rc = -ENODEV;
  1669. goto err_release_group1;
  1670. }
  1671. rc = devm_request_irq(edac->dev, altdev->db_irq, prv->ecc_irq_handler,
  1672. IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
  1673. ecc_name, altdev);
  1674. if (rc) {
  1675. edac_printk(KERN_ERR, EDAC_DEVICE, "No DBERR IRQ resource\n");
  1676. goto err_release_group1;
  1677. }
  1678. #endif
  1679. rc = edac_device_add_device(dci);
  1680. if (rc) {
  1681. dev_err(edac->dev, "edac_device_add_device failed\n");
  1682. rc = -ENOMEM;
  1683. goto err_release_group1;
  1684. }
  1685. altr_create_edacdev_dbgfs(dci, prv);
  1686. list_add(&altdev->next, &edac->a10_ecc_devices);
  1687. devres_remove_group(edac->dev, altr_edac_a10_device_add);
  1688. return 0;
  1689. err_release_group1:
  1690. edac_device_free_ctl_info(dci);
  1691. err_release_group:
  1692. devres_release_group(edac->dev, NULL);
  1693. edac_printk(KERN_ERR, EDAC_DEVICE,
  1694. "%s:Error setting up EDAC device: %d\n", ecc_name, rc);
  1695. return rc;
  1696. }
  1697. static void a10_eccmgr_irq_mask(struct irq_data *d)
  1698. {
  1699. struct altr_arria10_edac *edac = irq_data_get_irq_chip_data(d);
  1700. regmap_write(edac->ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_SET_OFST,
  1701. BIT(d->hwirq));
  1702. }
  1703. static void a10_eccmgr_irq_unmask(struct irq_data *d)
  1704. {
  1705. struct altr_arria10_edac *edac = irq_data_get_irq_chip_data(d);
  1706. regmap_write(edac->ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_CLR_OFST,
  1707. BIT(d->hwirq));
  1708. }
  1709. static int a10_eccmgr_irqdomain_map(struct irq_domain *d, unsigned int irq,
  1710. irq_hw_number_t hwirq)
  1711. {
  1712. struct altr_arria10_edac *edac = d->host_data;
  1713. irq_set_chip_and_handler(irq, &edac->irq_chip, handle_simple_irq);
  1714. irq_set_chip_data(irq, edac);
  1715. irq_set_noprobe(irq);
  1716. return 0;
  1717. }
  1718. static const struct irq_domain_ops a10_eccmgr_ic_ops = {
  1719. .map = a10_eccmgr_irqdomain_map,
  1720. .xlate = irq_domain_xlate_twocell,
  1721. };
  1722. /************** Stratix 10 EDAC Double Bit Error Handler ************/
  1723. #define to_a10edac(p, m) container_of(p, struct altr_arria10_edac, m)
  1724. #ifdef CONFIG_64BIT
  1725. /* panic routine issues reboot on non-zero panic_timeout */
  1726. extern int panic_timeout;
  1727. /*
  1728. * The double bit error is handled through SError which is fatal. This is
  1729. * called as a panic notifier to printout ECC error info as part of the panic.
  1730. */
  1731. static int s10_edac_dberr_handler(struct notifier_block *this,
  1732. unsigned long event, void *ptr)
  1733. {
  1734. struct altr_arria10_edac *edac = to_a10edac(this, panic_notifier);
  1735. int err_addr, dberror;
  1736. regmap_read(edac->ecc_mgr_map, S10_SYSMGR_ECC_INTSTAT_DERR_OFST,
  1737. &dberror);
  1738. regmap_write(edac->ecc_mgr_map, S10_SYSMGR_UE_VAL_OFST, dberror);
  1739. if (dberror & S10_DBE_IRQ_MASK) {
  1740. struct list_head *position;
  1741. struct altr_edac_device_dev *ed;
  1742. struct arm_smccc_res result;
  1743. /* Find the matching DBE in the list of devices */
  1744. list_for_each(position, &edac->a10_ecc_devices) {
  1745. ed = list_entry(position, struct altr_edac_device_dev,
  1746. next);
  1747. if (!(BIT(ed->db_irq) & dberror))
  1748. continue;
  1749. writel(ALTR_A10_ECC_DERRPENA,
  1750. ed->base + ALTR_A10_ECC_INTSTAT_OFST);
  1751. err_addr = readl(ed->base + ALTR_S10_DERR_ADDRA_OFST);
  1752. regmap_write(edac->ecc_mgr_map,
  1753. S10_SYSMGR_UE_ADDR_OFST, err_addr);
  1754. edac_printk(KERN_ERR, EDAC_DEVICE,
  1755. "EDAC: [Fatal DBE on %s @ 0x%08X]\n",
  1756. ed->edac_dev_name, err_addr);
  1757. break;
  1758. }
  1759. /* Notify the System through SMC. Reboot delay = 1 second */
  1760. panic_timeout = 1;
  1761. arm_smccc_smc(INTEL_SIP_SMC_ECC_DBE, dberror, 0, 0, 0, 0,
  1762. 0, 0, &result);
  1763. }
  1764. return NOTIFY_DONE;
  1765. }
  1766. #endif
  1767. /****************** Arria 10 EDAC Probe Function *********************/
  1768. static int altr_edac_a10_probe(struct platform_device *pdev)
  1769. {
  1770. struct altr_arria10_edac *edac;
  1771. struct device_node *child;
  1772. edac = devm_kzalloc(&pdev->dev, sizeof(*edac), GFP_KERNEL);
  1773. if (!edac)
  1774. return -ENOMEM;
  1775. edac->dev = &pdev->dev;
  1776. platform_set_drvdata(pdev, edac);
  1777. INIT_LIST_HEAD(&edac->a10_ecc_devices);
  1778. edac->ecc_mgr_map =
  1779. altr_sysmgr_regmap_lookup_by_phandle(pdev->dev.of_node,
  1780. "altr,sysmgr-syscon");
  1781. if (IS_ERR(edac->ecc_mgr_map)) {
  1782. edac_printk(KERN_ERR, EDAC_DEVICE,
  1783. "Unable to get syscon altr,sysmgr-syscon\n");
  1784. return PTR_ERR(edac->ecc_mgr_map);
  1785. }
  1786. edac->irq_chip.name = pdev->dev.of_node->name;
  1787. edac->irq_chip.irq_mask = a10_eccmgr_irq_mask;
  1788. edac->irq_chip.irq_unmask = a10_eccmgr_irq_unmask;
  1789. edac->domain = irq_domain_add_linear(pdev->dev.of_node, 64,
  1790. &a10_eccmgr_ic_ops, edac);
  1791. if (!edac->domain) {
  1792. dev_err(&pdev->dev, "Error adding IRQ domain\n");
  1793. return -ENOMEM;
  1794. }
  1795. edac->sb_irq = platform_get_irq(pdev, 0);
  1796. if (edac->sb_irq < 0) {
  1797. dev_err(&pdev->dev, "No SBERR IRQ resource\n");
  1798. return edac->sb_irq;
  1799. }
  1800. irq_set_chained_handler_and_data(edac->sb_irq,
  1801. altr_edac_a10_irq_handler,
  1802. edac);
  1803. #ifdef CONFIG_64BIT
  1804. {
  1805. int dberror, err_addr;
  1806. edac->panic_notifier.notifier_call = s10_edac_dberr_handler;
  1807. atomic_notifier_chain_register(&panic_notifier_list,
  1808. &edac->panic_notifier);
  1809. /* Printout a message if uncorrectable error previously. */
  1810. regmap_read(edac->ecc_mgr_map, S10_SYSMGR_UE_VAL_OFST,
  1811. &dberror);
  1812. if (dberror) {
  1813. regmap_read(edac->ecc_mgr_map, S10_SYSMGR_UE_ADDR_OFST,
  1814. &err_addr);
  1815. edac_printk(KERN_ERR, EDAC_DEVICE,
  1816. "Previous Boot UE detected[0x%X] @ 0x%X\n",
  1817. dberror, err_addr);
  1818. /* Reset the sticky registers */
  1819. regmap_write(edac->ecc_mgr_map,
  1820. S10_SYSMGR_UE_VAL_OFST, 0);
  1821. regmap_write(edac->ecc_mgr_map,
  1822. S10_SYSMGR_UE_ADDR_OFST, 0);
  1823. }
  1824. }
  1825. #else
  1826. edac->db_irq = platform_get_irq(pdev, 1);
  1827. if (edac->db_irq < 0) {
  1828. dev_err(&pdev->dev, "No DBERR IRQ resource\n");
  1829. return edac->db_irq;
  1830. }
  1831. irq_set_chained_handler_and_data(edac->db_irq,
  1832. altr_edac_a10_irq_handler, edac);
  1833. #endif
  1834. for_each_child_of_node(pdev->dev.of_node, child) {
  1835. if (!of_device_is_available(child))
  1836. continue;
  1837. if (of_match_node(altr_edac_a10_device_of_match, child))
  1838. altr_edac_a10_device_add(edac, child);
  1839. #ifdef CONFIG_EDAC_ALTERA_SDRAM
  1840. else if (of_device_is_compatible(child, "altr,sdram-edac-a10"))
  1841. of_platform_populate(pdev->dev.of_node,
  1842. altr_sdram_ctrl_of_match,
  1843. NULL, &pdev->dev);
  1844. #endif
  1845. }
  1846. return 0;
  1847. }
  1848. static const struct of_device_id altr_edac_a10_of_match[] = {
  1849. { .compatible = "altr,socfpga-a10-ecc-manager" },
  1850. { .compatible = "altr,socfpga-s10-ecc-manager" },
  1851. {},
  1852. };
  1853. MODULE_DEVICE_TABLE(of, altr_edac_a10_of_match);
  1854. static struct platform_driver altr_edac_a10_driver = {
  1855. .probe = altr_edac_a10_probe,
  1856. .driver = {
  1857. .name = "socfpga_a10_ecc_manager",
  1858. .of_match_table = altr_edac_a10_of_match,
  1859. },
  1860. };
  1861. module_platform_driver(altr_edac_a10_driver);
  1862. MODULE_LICENSE("GPL v2");
  1863. MODULE_AUTHOR("Thor Thayer");
  1864. MODULE_DESCRIPTION("EDAC Driver for Altera Memories");