omap-dma.c 47 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * OMAP DMAengine support
  4. */
  5. #include <linux/cpu_pm.h>
  6. #include <linux/delay.h>
  7. #include <linux/dmaengine.h>
  8. #include <linux/dma-mapping.h>
  9. #include <linux/dmapool.h>
  10. #include <linux/err.h>
  11. #include <linux/init.h>
  12. #include <linux/interrupt.h>
  13. #include <linux/list.h>
  14. #include <linux/module.h>
  15. #include <linux/omap-dma.h>
  16. #include <linux/platform_device.h>
  17. #include <linux/slab.h>
  18. #include <linux/spinlock.h>
  19. #include <linux/of_dma.h>
  20. #include <linux/of_device.h>
  21. #include "../virt-dma.h"
  22. #define OMAP_SDMA_REQUESTS 127
  23. #define OMAP_SDMA_CHANNELS 32
  24. struct omap_dma_config {
  25. int lch_end;
  26. unsigned int rw_priority:1;
  27. unsigned int needs_busy_check:1;
  28. unsigned int may_lose_context:1;
  29. unsigned int needs_lch_clear:1;
  30. };
  31. struct omap_dma_context {
  32. u32 irqenable_l0;
  33. u32 irqenable_l1;
  34. u32 ocp_sysconfig;
  35. u32 gcr;
  36. };
  37. struct omap_dmadev {
  38. struct dma_device ddev;
  39. spinlock_t lock;
  40. void __iomem *base;
  41. const struct omap_dma_reg *reg_map;
  42. struct omap_system_dma_plat_info *plat;
  43. const struct omap_dma_config *cfg;
  44. struct notifier_block nb;
  45. struct omap_dma_context context;
  46. int lch_count;
  47. DECLARE_BITMAP(lch_bitmap, OMAP_SDMA_CHANNELS);
  48. struct mutex lch_lock; /* for assigning logical channels */
  49. bool legacy;
  50. bool ll123_supported;
  51. struct dma_pool *desc_pool;
  52. unsigned dma_requests;
  53. spinlock_t irq_lock;
  54. uint32_t irq_enable_mask;
  55. struct omap_chan **lch_map;
  56. };
  57. struct omap_chan {
  58. struct virt_dma_chan vc;
  59. void __iomem *channel_base;
  60. const struct omap_dma_reg *reg_map;
  61. uint32_t ccr;
  62. struct dma_slave_config cfg;
  63. unsigned dma_sig;
  64. bool cyclic;
  65. bool paused;
  66. bool running;
  67. int dma_ch;
  68. struct omap_desc *desc;
  69. unsigned sgidx;
  70. };
  71. #define DESC_NXT_SV_REFRESH (0x1 << 24)
  72. #define DESC_NXT_SV_REUSE (0x2 << 24)
  73. #define DESC_NXT_DV_REFRESH (0x1 << 26)
  74. #define DESC_NXT_DV_REUSE (0x2 << 26)
  75. #define DESC_NTYPE_TYPE2 (0x2 << 29)
  76. /* Type 2 descriptor with Source or Destination address update */
  77. struct omap_type2_desc {
  78. uint32_t next_desc;
  79. uint32_t en;
  80. uint32_t addr; /* src or dst */
  81. uint16_t fn;
  82. uint16_t cicr;
  83. int16_t cdei;
  84. int16_t csei;
  85. int32_t cdfi;
  86. int32_t csfi;
  87. } __packed;
  88. struct omap_sg {
  89. dma_addr_t addr;
  90. uint32_t en; /* number of elements (24-bit) */
  91. uint32_t fn; /* number of frames (16-bit) */
  92. int32_t fi; /* for double indexing */
  93. int16_t ei; /* for double indexing */
  94. /* Linked list */
  95. struct omap_type2_desc *t2_desc;
  96. dma_addr_t t2_desc_paddr;
  97. };
  98. struct omap_desc {
  99. struct virt_dma_desc vd;
  100. bool using_ll;
  101. enum dma_transfer_direction dir;
  102. dma_addr_t dev_addr;
  103. bool polled;
  104. int32_t fi; /* for OMAP_DMA_SYNC_PACKET / double indexing */
  105. int16_t ei; /* for double indexing */
  106. uint8_t es; /* CSDP_DATA_TYPE_xxx */
  107. uint32_t ccr; /* CCR value */
  108. uint16_t clnk_ctrl; /* CLNK_CTRL value */
  109. uint16_t cicr; /* CICR value */
  110. uint32_t csdp; /* CSDP value */
  111. unsigned sglen;
  112. struct omap_sg sg[];
  113. };
  114. enum {
  115. CAPS_0_SUPPORT_LL123 = BIT(20), /* Linked List type1/2/3 */
  116. CAPS_0_SUPPORT_LL4 = BIT(21), /* Linked List type4 */
  117. CCR_FS = BIT(5),
  118. CCR_READ_PRIORITY = BIT(6),
  119. CCR_ENABLE = BIT(7),
  120. CCR_AUTO_INIT = BIT(8), /* OMAP1 only */
  121. CCR_REPEAT = BIT(9), /* OMAP1 only */
  122. CCR_OMAP31_DISABLE = BIT(10), /* OMAP1 only */
  123. CCR_SUSPEND_SENSITIVE = BIT(8), /* OMAP2+ only */
  124. CCR_RD_ACTIVE = BIT(9), /* OMAP2+ only */
  125. CCR_WR_ACTIVE = BIT(10), /* OMAP2+ only */
  126. CCR_SRC_AMODE_CONSTANT = 0 << 12,
  127. CCR_SRC_AMODE_POSTINC = 1 << 12,
  128. CCR_SRC_AMODE_SGLIDX = 2 << 12,
  129. CCR_SRC_AMODE_DBLIDX = 3 << 12,
  130. CCR_DST_AMODE_CONSTANT = 0 << 14,
  131. CCR_DST_AMODE_POSTINC = 1 << 14,
  132. CCR_DST_AMODE_SGLIDX = 2 << 14,
  133. CCR_DST_AMODE_DBLIDX = 3 << 14,
  134. CCR_CONSTANT_FILL = BIT(16),
  135. CCR_TRANSPARENT_COPY = BIT(17),
  136. CCR_BS = BIT(18),
  137. CCR_SUPERVISOR = BIT(22),
  138. CCR_PREFETCH = BIT(23),
  139. CCR_TRIGGER_SRC = BIT(24),
  140. CCR_BUFFERING_DISABLE = BIT(25),
  141. CCR_WRITE_PRIORITY = BIT(26),
  142. CCR_SYNC_ELEMENT = 0,
  143. CCR_SYNC_FRAME = CCR_FS,
  144. CCR_SYNC_BLOCK = CCR_BS,
  145. CCR_SYNC_PACKET = CCR_BS | CCR_FS,
  146. CSDP_DATA_TYPE_8 = 0,
  147. CSDP_DATA_TYPE_16 = 1,
  148. CSDP_DATA_TYPE_32 = 2,
  149. CSDP_SRC_PORT_EMIFF = 0 << 2, /* OMAP1 only */
  150. CSDP_SRC_PORT_EMIFS = 1 << 2, /* OMAP1 only */
  151. CSDP_SRC_PORT_OCP_T1 = 2 << 2, /* OMAP1 only */
  152. CSDP_SRC_PORT_TIPB = 3 << 2, /* OMAP1 only */
  153. CSDP_SRC_PORT_OCP_T2 = 4 << 2, /* OMAP1 only */
  154. CSDP_SRC_PORT_MPUI = 5 << 2, /* OMAP1 only */
  155. CSDP_SRC_PACKED = BIT(6),
  156. CSDP_SRC_BURST_1 = 0 << 7,
  157. CSDP_SRC_BURST_16 = 1 << 7,
  158. CSDP_SRC_BURST_32 = 2 << 7,
  159. CSDP_SRC_BURST_64 = 3 << 7,
  160. CSDP_DST_PORT_EMIFF = 0 << 9, /* OMAP1 only */
  161. CSDP_DST_PORT_EMIFS = 1 << 9, /* OMAP1 only */
  162. CSDP_DST_PORT_OCP_T1 = 2 << 9, /* OMAP1 only */
  163. CSDP_DST_PORT_TIPB = 3 << 9, /* OMAP1 only */
  164. CSDP_DST_PORT_OCP_T2 = 4 << 9, /* OMAP1 only */
  165. CSDP_DST_PORT_MPUI = 5 << 9, /* OMAP1 only */
  166. CSDP_DST_PACKED = BIT(13),
  167. CSDP_DST_BURST_1 = 0 << 14,
  168. CSDP_DST_BURST_16 = 1 << 14,
  169. CSDP_DST_BURST_32 = 2 << 14,
  170. CSDP_DST_BURST_64 = 3 << 14,
  171. CSDP_WRITE_NON_POSTED = 0 << 16,
  172. CSDP_WRITE_POSTED = 1 << 16,
  173. CSDP_WRITE_LAST_NON_POSTED = 2 << 16,
  174. CICR_TOUT_IE = BIT(0), /* OMAP1 only */
  175. CICR_DROP_IE = BIT(1),
  176. CICR_HALF_IE = BIT(2),
  177. CICR_FRAME_IE = BIT(3),
  178. CICR_LAST_IE = BIT(4),
  179. CICR_BLOCK_IE = BIT(5),
  180. CICR_PKT_IE = BIT(7), /* OMAP2+ only */
  181. CICR_TRANS_ERR_IE = BIT(8), /* OMAP2+ only */
  182. CICR_SUPERVISOR_ERR_IE = BIT(10), /* OMAP2+ only */
  183. CICR_MISALIGNED_ERR_IE = BIT(11), /* OMAP2+ only */
  184. CICR_DRAIN_IE = BIT(12), /* OMAP2+ only */
  185. CICR_SUPER_BLOCK_IE = BIT(14), /* OMAP2+ only */
  186. CLNK_CTRL_ENABLE_LNK = BIT(15),
  187. CDP_DST_VALID_INC = 0 << 0,
  188. CDP_DST_VALID_RELOAD = 1 << 0,
  189. CDP_DST_VALID_REUSE = 2 << 0,
  190. CDP_SRC_VALID_INC = 0 << 2,
  191. CDP_SRC_VALID_RELOAD = 1 << 2,
  192. CDP_SRC_VALID_REUSE = 2 << 2,
  193. CDP_NTYPE_TYPE1 = 1 << 4,
  194. CDP_NTYPE_TYPE2 = 2 << 4,
  195. CDP_NTYPE_TYPE3 = 3 << 4,
  196. CDP_TMODE_NORMAL = 0 << 8,
  197. CDP_TMODE_LLIST = 1 << 8,
  198. CDP_FAST = BIT(10),
  199. };
  200. static const unsigned es_bytes[] = {
  201. [CSDP_DATA_TYPE_8] = 1,
  202. [CSDP_DATA_TYPE_16] = 2,
  203. [CSDP_DATA_TYPE_32] = 4,
  204. };
  205. static bool omap_dma_filter_fn(struct dma_chan *chan, void *param);
  206. static struct of_dma_filter_info omap_dma_info = {
  207. .filter_fn = omap_dma_filter_fn,
  208. };
  209. static inline struct omap_dmadev *to_omap_dma_dev(struct dma_device *d)
  210. {
  211. return container_of(d, struct omap_dmadev, ddev);
  212. }
  213. static inline struct omap_chan *to_omap_dma_chan(struct dma_chan *c)
  214. {
  215. return container_of(c, struct omap_chan, vc.chan);
  216. }
  217. static inline struct omap_desc *to_omap_dma_desc(struct dma_async_tx_descriptor *t)
  218. {
  219. return container_of(t, struct omap_desc, vd.tx);
  220. }
  221. static void omap_dma_desc_free(struct virt_dma_desc *vd)
  222. {
  223. struct omap_desc *d = to_omap_dma_desc(&vd->tx);
  224. if (d->using_ll) {
  225. struct omap_dmadev *od = to_omap_dma_dev(vd->tx.chan->device);
  226. int i;
  227. for (i = 0; i < d->sglen; i++) {
  228. if (d->sg[i].t2_desc)
  229. dma_pool_free(od->desc_pool, d->sg[i].t2_desc,
  230. d->sg[i].t2_desc_paddr);
  231. }
  232. }
  233. kfree(d);
  234. }
  235. static void omap_dma_fill_type2_desc(struct omap_desc *d, int idx,
  236. enum dma_transfer_direction dir, bool last)
  237. {
  238. struct omap_sg *sg = &d->sg[idx];
  239. struct omap_type2_desc *t2_desc = sg->t2_desc;
  240. if (idx)
  241. d->sg[idx - 1].t2_desc->next_desc = sg->t2_desc_paddr;
  242. if (last)
  243. t2_desc->next_desc = 0xfffffffc;
  244. t2_desc->en = sg->en;
  245. t2_desc->addr = sg->addr;
  246. t2_desc->fn = sg->fn & 0xffff;
  247. t2_desc->cicr = d->cicr;
  248. if (!last)
  249. t2_desc->cicr &= ~CICR_BLOCK_IE;
  250. switch (dir) {
  251. case DMA_DEV_TO_MEM:
  252. t2_desc->cdei = sg->ei;
  253. t2_desc->csei = d->ei;
  254. t2_desc->cdfi = sg->fi;
  255. t2_desc->csfi = d->fi;
  256. t2_desc->en |= DESC_NXT_DV_REFRESH;
  257. t2_desc->en |= DESC_NXT_SV_REUSE;
  258. break;
  259. case DMA_MEM_TO_DEV:
  260. t2_desc->cdei = d->ei;
  261. t2_desc->csei = sg->ei;
  262. t2_desc->cdfi = d->fi;
  263. t2_desc->csfi = sg->fi;
  264. t2_desc->en |= DESC_NXT_SV_REFRESH;
  265. t2_desc->en |= DESC_NXT_DV_REUSE;
  266. break;
  267. default:
  268. return;
  269. }
  270. t2_desc->en |= DESC_NTYPE_TYPE2;
  271. }
  272. static void omap_dma_write(uint32_t val, unsigned type, void __iomem *addr)
  273. {
  274. switch (type) {
  275. case OMAP_DMA_REG_16BIT:
  276. writew_relaxed(val, addr);
  277. break;
  278. case OMAP_DMA_REG_2X16BIT:
  279. writew_relaxed(val, addr);
  280. writew_relaxed(val >> 16, addr + 2);
  281. break;
  282. case OMAP_DMA_REG_32BIT:
  283. writel_relaxed(val, addr);
  284. break;
  285. default:
  286. WARN_ON(1);
  287. }
  288. }
  289. static unsigned omap_dma_read(unsigned type, void __iomem *addr)
  290. {
  291. unsigned val;
  292. switch (type) {
  293. case OMAP_DMA_REG_16BIT:
  294. val = readw_relaxed(addr);
  295. break;
  296. case OMAP_DMA_REG_2X16BIT:
  297. val = readw_relaxed(addr);
  298. val |= readw_relaxed(addr + 2) << 16;
  299. break;
  300. case OMAP_DMA_REG_32BIT:
  301. val = readl_relaxed(addr);
  302. break;
  303. default:
  304. WARN_ON(1);
  305. val = 0;
  306. }
  307. return val;
  308. }
  309. static void omap_dma_glbl_write(struct omap_dmadev *od, unsigned reg, unsigned val)
  310. {
  311. const struct omap_dma_reg *r = od->reg_map + reg;
  312. WARN_ON(r->stride);
  313. omap_dma_write(val, r->type, od->base + r->offset);
  314. }
  315. static unsigned omap_dma_glbl_read(struct omap_dmadev *od, unsigned reg)
  316. {
  317. const struct omap_dma_reg *r = od->reg_map + reg;
  318. WARN_ON(r->stride);
  319. return omap_dma_read(r->type, od->base + r->offset);
  320. }
  321. static void omap_dma_chan_write(struct omap_chan *c, unsigned reg, unsigned val)
  322. {
  323. const struct omap_dma_reg *r = c->reg_map + reg;
  324. omap_dma_write(val, r->type, c->channel_base + r->offset);
  325. }
  326. static unsigned omap_dma_chan_read(struct omap_chan *c, unsigned reg)
  327. {
  328. const struct omap_dma_reg *r = c->reg_map + reg;
  329. return omap_dma_read(r->type, c->channel_base + r->offset);
  330. }
  331. static void omap_dma_clear_csr(struct omap_chan *c)
  332. {
  333. if (dma_omap1())
  334. omap_dma_chan_read(c, CSR);
  335. else
  336. omap_dma_chan_write(c, CSR, ~0);
  337. }
  338. static unsigned omap_dma_get_csr(struct omap_chan *c)
  339. {
  340. unsigned val = omap_dma_chan_read(c, CSR);
  341. if (!dma_omap1())
  342. omap_dma_chan_write(c, CSR, val);
  343. return val;
  344. }
  345. static void omap_dma_clear_lch(struct omap_dmadev *od, int lch)
  346. {
  347. struct omap_chan *c;
  348. int i;
  349. c = od->lch_map[lch];
  350. if (!c)
  351. return;
  352. for (i = CSDP; i <= od->cfg->lch_end; i++)
  353. omap_dma_chan_write(c, i, 0);
  354. }
  355. static void omap_dma_assign(struct omap_dmadev *od, struct omap_chan *c,
  356. unsigned lch)
  357. {
  358. c->channel_base = od->base + od->plat->channel_stride * lch;
  359. od->lch_map[lch] = c;
  360. }
  361. static void omap_dma_start(struct omap_chan *c, struct omap_desc *d)
  362. {
  363. struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
  364. uint16_t cicr = d->cicr;
  365. if (__dma_omap15xx(od->plat->dma_attr))
  366. omap_dma_chan_write(c, CPC, 0);
  367. else
  368. omap_dma_chan_write(c, CDAC, 0);
  369. omap_dma_clear_csr(c);
  370. if (d->using_ll) {
  371. uint32_t cdp = CDP_TMODE_LLIST | CDP_NTYPE_TYPE2 | CDP_FAST;
  372. if (d->dir == DMA_DEV_TO_MEM)
  373. cdp |= (CDP_DST_VALID_RELOAD | CDP_SRC_VALID_REUSE);
  374. else
  375. cdp |= (CDP_DST_VALID_REUSE | CDP_SRC_VALID_RELOAD);
  376. omap_dma_chan_write(c, CDP, cdp);
  377. omap_dma_chan_write(c, CNDP, d->sg[0].t2_desc_paddr);
  378. omap_dma_chan_write(c, CCDN, 0);
  379. omap_dma_chan_write(c, CCFN, 0xffff);
  380. omap_dma_chan_write(c, CCEN, 0xffffff);
  381. cicr &= ~CICR_BLOCK_IE;
  382. } else if (od->ll123_supported) {
  383. omap_dma_chan_write(c, CDP, 0);
  384. }
  385. /* Enable interrupts */
  386. omap_dma_chan_write(c, CICR, cicr);
  387. /* Enable channel */
  388. omap_dma_chan_write(c, CCR, d->ccr | CCR_ENABLE);
  389. c->running = true;
  390. }
  391. static void omap_dma_drain_chan(struct omap_chan *c)
  392. {
  393. int i;
  394. u32 val;
  395. /* Wait for sDMA FIFO to drain */
  396. for (i = 0; ; i++) {
  397. val = omap_dma_chan_read(c, CCR);
  398. if (!(val & (CCR_RD_ACTIVE | CCR_WR_ACTIVE)))
  399. break;
  400. if (i > 100)
  401. break;
  402. udelay(5);
  403. }
  404. if (val & (CCR_RD_ACTIVE | CCR_WR_ACTIVE))
  405. dev_err(c->vc.chan.device->dev,
  406. "DMA drain did not complete on lch %d\n",
  407. c->dma_ch);
  408. }
  409. static int omap_dma_stop(struct omap_chan *c)
  410. {
  411. struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
  412. uint32_t val;
  413. /* disable irq */
  414. omap_dma_chan_write(c, CICR, 0);
  415. omap_dma_clear_csr(c);
  416. val = omap_dma_chan_read(c, CCR);
  417. if (od->plat->errata & DMA_ERRATA_i541 && val & CCR_TRIGGER_SRC) {
  418. uint32_t sysconfig;
  419. sysconfig = omap_dma_glbl_read(od, OCP_SYSCONFIG);
  420. val = sysconfig & ~DMA_SYSCONFIG_MIDLEMODE_MASK;
  421. val |= DMA_SYSCONFIG_MIDLEMODE(DMA_IDLEMODE_NO_IDLE);
  422. omap_dma_glbl_write(od, OCP_SYSCONFIG, val);
  423. val = omap_dma_chan_read(c, CCR);
  424. val &= ~CCR_ENABLE;
  425. omap_dma_chan_write(c, CCR, val);
  426. if (!(c->ccr & CCR_BUFFERING_DISABLE))
  427. omap_dma_drain_chan(c);
  428. omap_dma_glbl_write(od, OCP_SYSCONFIG, sysconfig);
  429. } else {
  430. if (!(val & CCR_ENABLE))
  431. return -EINVAL;
  432. val &= ~CCR_ENABLE;
  433. omap_dma_chan_write(c, CCR, val);
  434. if (!(c->ccr & CCR_BUFFERING_DISABLE))
  435. omap_dma_drain_chan(c);
  436. }
  437. mb();
  438. if (!__dma_omap15xx(od->plat->dma_attr) && c->cyclic) {
  439. val = omap_dma_chan_read(c, CLNK_CTRL);
  440. if (dma_omap1())
  441. val |= 1 << 14; /* set the STOP_LNK bit */
  442. else
  443. val &= ~CLNK_CTRL_ENABLE_LNK;
  444. omap_dma_chan_write(c, CLNK_CTRL, val);
  445. }
  446. c->running = false;
  447. return 0;
  448. }
  449. static void omap_dma_start_sg(struct omap_chan *c, struct omap_desc *d)
  450. {
  451. struct omap_sg *sg = d->sg + c->sgidx;
  452. unsigned cxsa, cxei, cxfi;
  453. if (d->dir == DMA_DEV_TO_MEM || d->dir == DMA_MEM_TO_MEM) {
  454. cxsa = CDSA;
  455. cxei = CDEI;
  456. cxfi = CDFI;
  457. } else {
  458. cxsa = CSSA;
  459. cxei = CSEI;
  460. cxfi = CSFI;
  461. }
  462. omap_dma_chan_write(c, cxsa, sg->addr);
  463. omap_dma_chan_write(c, cxei, sg->ei);
  464. omap_dma_chan_write(c, cxfi, sg->fi);
  465. omap_dma_chan_write(c, CEN, sg->en);
  466. omap_dma_chan_write(c, CFN, sg->fn);
  467. omap_dma_start(c, d);
  468. c->sgidx++;
  469. }
  470. static void omap_dma_start_desc(struct omap_chan *c)
  471. {
  472. struct virt_dma_desc *vd = vchan_next_desc(&c->vc);
  473. struct omap_desc *d;
  474. unsigned cxsa, cxei, cxfi;
  475. if (!vd) {
  476. c->desc = NULL;
  477. return;
  478. }
  479. list_del(&vd->node);
  480. c->desc = d = to_omap_dma_desc(&vd->tx);
  481. c->sgidx = 0;
  482. /*
  483. * This provides the necessary barrier to ensure data held in
  484. * DMA coherent memory is visible to the DMA engine prior to
  485. * the transfer starting.
  486. */
  487. mb();
  488. omap_dma_chan_write(c, CCR, d->ccr);
  489. if (dma_omap1())
  490. omap_dma_chan_write(c, CCR2, d->ccr >> 16);
  491. if (d->dir == DMA_DEV_TO_MEM || d->dir == DMA_MEM_TO_MEM) {
  492. cxsa = CSSA;
  493. cxei = CSEI;
  494. cxfi = CSFI;
  495. } else {
  496. cxsa = CDSA;
  497. cxei = CDEI;
  498. cxfi = CDFI;
  499. }
  500. omap_dma_chan_write(c, cxsa, d->dev_addr);
  501. omap_dma_chan_write(c, cxei, d->ei);
  502. omap_dma_chan_write(c, cxfi, d->fi);
  503. omap_dma_chan_write(c, CSDP, d->csdp);
  504. omap_dma_chan_write(c, CLNK_CTRL, d->clnk_ctrl);
  505. omap_dma_start_sg(c, d);
  506. }
  507. static void omap_dma_callback(int ch, u16 status, void *data)
  508. {
  509. struct omap_chan *c = data;
  510. struct omap_desc *d;
  511. unsigned long flags;
  512. spin_lock_irqsave(&c->vc.lock, flags);
  513. d = c->desc;
  514. if (d) {
  515. if (c->cyclic) {
  516. vchan_cyclic_callback(&d->vd);
  517. } else if (d->using_ll || c->sgidx == d->sglen) {
  518. omap_dma_start_desc(c);
  519. vchan_cookie_complete(&d->vd);
  520. } else {
  521. omap_dma_start_sg(c, d);
  522. }
  523. }
  524. spin_unlock_irqrestore(&c->vc.lock, flags);
  525. }
  526. static irqreturn_t omap_dma_irq(int irq, void *devid)
  527. {
  528. struct omap_dmadev *od = devid;
  529. unsigned status, channel;
  530. spin_lock(&od->irq_lock);
  531. status = omap_dma_glbl_read(od, IRQSTATUS_L1);
  532. status &= od->irq_enable_mask;
  533. if (status == 0) {
  534. spin_unlock(&od->irq_lock);
  535. return IRQ_NONE;
  536. }
  537. while ((channel = ffs(status)) != 0) {
  538. unsigned mask, csr;
  539. struct omap_chan *c;
  540. channel -= 1;
  541. mask = BIT(channel);
  542. status &= ~mask;
  543. c = od->lch_map[channel];
  544. if (c == NULL) {
  545. /* This should never happen */
  546. dev_err(od->ddev.dev, "invalid channel %u\n", channel);
  547. continue;
  548. }
  549. csr = omap_dma_get_csr(c);
  550. omap_dma_glbl_write(od, IRQSTATUS_L1, mask);
  551. omap_dma_callback(channel, csr, c);
  552. }
  553. spin_unlock(&od->irq_lock);
  554. return IRQ_HANDLED;
  555. }
  556. static int omap_dma_get_lch(struct omap_dmadev *od, int *lch)
  557. {
  558. int channel;
  559. mutex_lock(&od->lch_lock);
  560. channel = find_first_zero_bit(od->lch_bitmap, od->lch_count);
  561. if (channel >= od->lch_count)
  562. goto out_busy;
  563. set_bit(channel, od->lch_bitmap);
  564. mutex_unlock(&od->lch_lock);
  565. omap_dma_clear_lch(od, channel);
  566. *lch = channel;
  567. return 0;
  568. out_busy:
  569. mutex_unlock(&od->lch_lock);
  570. *lch = -EINVAL;
  571. return -EBUSY;
  572. }
  573. static void omap_dma_put_lch(struct omap_dmadev *od, int lch)
  574. {
  575. omap_dma_clear_lch(od, lch);
  576. mutex_lock(&od->lch_lock);
  577. clear_bit(lch, od->lch_bitmap);
  578. mutex_unlock(&od->lch_lock);
  579. }
  580. static inline bool omap_dma_legacy(struct omap_dmadev *od)
  581. {
  582. return IS_ENABLED(CONFIG_ARCH_OMAP1) && od->legacy;
  583. }
  584. static int omap_dma_alloc_chan_resources(struct dma_chan *chan)
  585. {
  586. struct omap_dmadev *od = to_omap_dma_dev(chan->device);
  587. struct omap_chan *c = to_omap_dma_chan(chan);
  588. struct device *dev = od->ddev.dev;
  589. int ret;
  590. if (omap_dma_legacy(od)) {
  591. ret = omap_request_dma(c->dma_sig, "DMA engine",
  592. omap_dma_callback, c, &c->dma_ch);
  593. } else {
  594. ret = omap_dma_get_lch(od, &c->dma_ch);
  595. }
  596. dev_dbg(dev, "allocating channel %u for %u\n", c->dma_ch, c->dma_sig);
  597. if (ret >= 0) {
  598. omap_dma_assign(od, c, c->dma_ch);
  599. if (!omap_dma_legacy(od)) {
  600. unsigned val;
  601. spin_lock_irq(&od->irq_lock);
  602. val = BIT(c->dma_ch);
  603. omap_dma_glbl_write(od, IRQSTATUS_L1, val);
  604. od->irq_enable_mask |= val;
  605. omap_dma_glbl_write(od, IRQENABLE_L1, od->irq_enable_mask);
  606. val = omap_dma_glbl_read(od, IRQENABLE_L0);
  607. val &= ~BIT(c->dma_ch);
  608. omap_dma_glbl_write(od, IRQENABLE_L0, val);
  609. spin_unlock_irq(&od->irq_lock);
  610. }
  611. }
  612. if (dma_omap1()) {
  613. if (__dma_omap16xx(od->plat->dma_attr)) {
  614. c->ccr = CCR_OMAP31_DISABLE;
  615. /* Duplicate what plat-omap/dma.c does */
  616. c->ccr |= c->dma_ch + 1;
  617. } else {
  618. c->ccr = c->dma_sig & 0x1f;
  619. }
  620. } else {
  621. c->ccr = c->dma_sig & 0x1f;
  622. c->ccr |= (c->dma_sig & ~0x1f) << 14;
  623. }
  624. if (od->plat->errata & DMA_ERRATA_IFRAME_BUFFERING)
  625. c->ccr |= CCR_BUFFERING_DISABLE;
  626. return ret;
  627. }
  628. static void omap_dma_free_chan_resources(struct dma_chan *chan)
  629. {
  630. struct omap_dmadev *od = to_omap_dma_dev(chan->device);
  631. struct omap_chan *c = to_omap_dma_chan(chan);
  632. if (!omap_dma_legacy(od)) {
  633. spin_lock_irq(&od->irq_lock);
  634. od->irq_enable_mask &= ~BIT(c->dma_ch);
  635. omap_dma_glbl_write(od, IRQENABLE_L1, od->irq_enable_mask);
  636. spin_unlock_irq(&od->irq_lock);
  637. }
  638. c->channel_base = NULL;
  639. od->lch_map[c->dma_ch] = NULL;
  640. vchan_free_chan_resources(&c->vc);
  641. if (omap_dma_legacy(od))
  642. omap_free_dma(c->dma_ch);
  643. else
  644. omap_dma_put_lch(od, c->dma_ch);
  645. dev_dbg(od->ddev.dev, "freeing channel %u used for %u\n", c->dma_ch,
  646. c->dma_sig);
  647. c->dma_sig = 0;
  648. }
  649. static size_t omap_dma_sg_size(struct omap_sg *sg)
  650. {
  651. return sg->en * sg->fn;
  652. }
  653. static size_t omap_dma_desc_size(struct omap_desc *d)
  654. {
  655. unsigned i;
  656. size_t size;
  657. for (size = i = 0; i < d->sglen; i++)
  658. size += omap_dma_sg_size(&d->sg[i]);
  659. return size * es_bytes[d->es];
  660. }
  661. static size_t omap_dma_desc_size_pos(struct omap_desc *d, dma_addr_t addr)
  662. {
  663. unsigned i;
  664. size_t size, es_size = es_bytes[d->es];
  665. for (size = i = 0; i < d->sglen; i++) {
  666. size_t this_size = omap_dma_sg_size(&d->sg[i]) * es_size;
  667. if (size)
  668. size += this_size;
  669. else if (addr >= d->sg[i].addr &&
  670. addr < d->sg[i].addr + this_size)
  671. size += d->sg[i].addr + this_size - addr;
  672. }
  673. return size;
  674. }
  675. /*
  676. * OMAP 3.2/3.3 erratum: sometimes 0 is returned if CSAC/CDAC is
  677. * read before the DMA controller finished disabling the channel.
  678. */
  679. static uint32_t omap_dma_chan_read_3_3(struct omap_chan *c, unsigned reg)
  680. {
  681. struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
  682. uint32_t val;
  683. val = omap_dma_chan_read(c, reg);
  684. if (val == 0 && od->plat->errata & DMA_ERRATA_3_3)
  685. val = omap_dma_chan_read(c, reg);
  686. return val;
  687. }
  688. static dma_addr_t omap_dma_get_src_pos(struct omap_chan *c)
  689. {
  690. struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
  691. dma_addr_t addr, cdac;
  692. if (__dma_omap15xx(od->plat->dma_attr)) {
  693. addr = omap_dma_chan_read(c, CPC);
  694. } else {
  695. addr = omap_dma_chan_read_3_3(c, CSAC);
  696. cdac = omap_dma_chan_read_3_3(c, CDAC);
  697. /*
  698. * CDAC == 0 indicates that the DMA transfer on the channel has
  699. * not been started (no data has been transferred so far).
  700. * Return the programmed source start address in this case.
  701. */
  702. if (cdac == 0)
  703. addr = omap_dma_chan_read(c, CSSA);
  704. }
  705. if (dma_omap1())
  706. addr |= omap_dma_chan_read(c, CSSA) & 0xffff0000;
  707. return addr;
  708. }
  709. static dma_addr_t omap_dma_get_dst_pos(struct omap_chan *c)
  710. {
  711. struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
  712. dma_addr_t addr;
  713. if (__dma_omap15xx(od->plat->dma_attr)) {
  714. addr = omap_dma_chan_read(c, CPC);
  715. } else {
  716. addr = omap_dma_chan_read_3_3(c, CDAC);
  717. /*
  718. * CDAC == 0 indicates that the DMA transfer on the channel
  719. * has not been started (no data has been transferred so
  720. * far). Return the programmed destination start address in
  721. * this case.
  722. */
  723. if (addr == 0)
  724. addr = omap_dma_chan_read(c, CDSA);
  725. }
  726. if (dma_omap1())
  727. addr |= omap_dma_chan_read(c, CDSA) & 0xffff0000;
  728. return addr;
  729. }
  730. static enum dma_status omap_dma_tx_status(struct dma_chan *chan,
  731. dma_cookie_t cookie, struct dma_tx_state *txstate)
  732. {
  733. struct omap_chan *c = to_omap_dma_chan(chan);
  734. enum dma_status ret;
  735. unsigned long flags;
  736. struct omap_desc *d = NULL;
  737. ret = dma_cookie_status(chan, cookie, txstate);
  738. if (ret == DMA_COMPLETE)
  739. return ret;
  740. spin_lock_irqsave(&c->vc.lock, flags);
  741. if (c->desc && c->desc->vd.tx.cookie == cookie)
  742. d = c->desc;
  743. if (!txstate)
  744. goto out;
  745. if (d) {
  746. dma_addr_t pos;
  747. if (d->dir == DMA_MEM_TO_DEV)
  748. pos = omap_dma_get_src_pos(c);
  749. else if (d->dir == DMA_DEV_TO_MEM || d->dir == DMA_MEM_TO_MEM)
  750. pos = omap_dma_get_dst_pos(c);
  751. else
  752. pos = 0;
  753. txstate->residue = omap_dma_desc_size_pos(d, pos);
  754. } else {
  755. struct virt_dma_desc *vd = vchan_find_desc(&c->vc, cookie);
  756. if (vd)
  757. txstate->residue = omap_dma_desc_size(
  758. to_omap_dma_desc(&vd->tx));
  759. else
  760. txstate->residue = 0;
  761. }
  762. out:
  763. if (ret == DMA_IN_PROGRESS && c->paused) {
  764. ret = DMA_PAUSED;
  765. } else if (d && d->polled && c->running) {
  766. uint32_t ccr = omap_dma_chan_read(c, CCR);
  767. /*
  768. * The channel is no longer active, set the return value
  769. * accordingly and mark it as completed
  770. */
  771. if (!(ccr & CCR_ENABLE)) {
  772. ret = DMA_COMPLETE;
  773. omap_dma_start_desc(c);
  774. vchan_cookie_complete(&d->vd);
  775. }
  776. }
  777. spin_unlock_irqrestore(&c->vc.lock, flags);
  778. return ret;
  779. }
  780. static void omap_dma_issue_pending(struct dma_chan *chan)
  781. {
  782. struct omap_chan *c = to_omap_dma_chan(chan);
  783. unsigned long flags;
  784. spin_lock_irqsave(&c->vc.lock, flags);
  785. if (vchan_issue_pending(&c->vc) && !c->desc)
  786. omap_dma_start_desc(c);
  787. spin_unlock_irqrestore(&c->vc.lock, flags);
  788. }
  789. static struct dma_async_tx_descriptor *omap_dma_prep_slave_sg(
  790. struct dma_chan *chan, struct scatterlist *sgl, unsigned sglen,
  791. enum dma_transfer_direction dir, unsigned long tx_flags, void *context)
  792. {
  793. struct omap_dmadev *od = to_omap_dma_dev(chan->device);
  794. struct omap_chan *c = to_omap_dma_chan(chan);
  795. enum dma_slave_buswidth dev_width;
  796. struct scatterlist *sgent;
  797. struct omap_desc *d;
  798. dma_addr_t dev_addr;
  799. unsigned i, es, en, frame_bytes;
  800. bool ll_failed = false;
  801. u32 burst;
  802. u32 port_window, port_window_bytes;
  803. if (dir == DMA_DEV_TO_MEM) {
  804. dev_addr = c->cfg.src_addr;
  805. dev_width = c->cfg.src_addr_width;
  806. burst = c->cfg.src_maxburst;
  807. port_window = c->cfg.src_port_window_size;
  808. } else if (dir == DMA_MEM_TO_DEV) {
  809. dev_addr = c->cfg.dst_addr;
  810. dev_width = c->cfg.dst_addr_width;
  811. burst = c->cfg.dst_maxburst;
  812. port_window = c->cfg.dst_port_window_size;
  813. } else {
  814. dev_err(chan->device->dev, "%s: bad direction?\n", __func__);
  815. return NULL;
  816. }
  817. /* Bus width translates to the element size (ES) */
  818. switch (dev_width) {
  819. case DMA_SLAVE_BUSWIDTH_1_BYTE:
  820. es = CSDP_DATA_TYPE_8;
  821. break;
  822. case DMA_SLAVE_BUSWIDTH_2_BYTES:
  823. es = CSDP_DATA_TYPE_16;
  824. break;
  825. case DMA_SLAVE_BUSWIDTH_4_BYTES:
  826. es = CSDP_DATA_TYPE_32;
  827. break;
  828. default: /* not reached */
  829. return NULL;
  830. }
  831. /* Now allocate and setup the descriptor. */
  832. d = kzalloc(struct_size(d, sg, sglen), GFP_ATOMIC);
  833. if (!d)
  834. return NULL;
  835. d->dir = dir;
  836. d->dev_addr = dev_addr;
  837. d->es = es;
  838. /* When the port_window is used, one frame must cover the window */
  839. if (port_window) {
  840. burst = port_window;
  841. port_window_bytes = port_window * es_bytes[es];
  842. d->ei = 1;
  843. /*
  844. * One frame covers the port_window and by configure
  845. * the source frame index to be -1 * (port_window - 1)
  846. * we instruct the sDMA that after a frame is processed
  847. * it should move back to the start of the window.
  848. */
  849. d->fi = -(port_window_bytes - 1);
  850. }
  851. d->ccr = c->ccr | CCR_SYNC_FRAME;
  852. if (dir == DMA_DEV_TO_MEM) {
  853. d->csdp = CSDP_DST_BURST_64 | CSDP_DST_PACKED;
  854. d->ccr |= CCR_DST_AMODE_POSTINC;
  855. if (port_window) {
  856. d->ccr |= CCR_SRC_AMODE_DBLIDX;
  857. if (port_window_bytes >= 64)
  858. d->csdp |= CSDP_SRC_BURST_64;
  859. else if (port_window_bytes >= 32)
  860. d->csdp |= CSDP_SRC_BURST_32;
  861. else if (port_window_bytes >= 16)
  862. d->csdp |= CSDP_SRC_BURST_16;
  863. } else {
  864. d->ccr |= CCR_SRC_AMODE_CONSTANT;
  865. }
  866. } else {
  867. d->csdp = CSDP_SRC_BURST_64 | CSDP_SRC_PACKED;
  868. d->ccr |= CCR_SRC_AMODE_POSTINC;
  869. if (port_window) {
  870. d->ccr |= CCR_DST_AMODE_DBLIDX;
  871. if (port_window_bytes >= 64)
  872. d->csdp |= CSDP_DST_BURST_64;
  873. else if (port_window_bytes >= 32)
  874. d->csdp |= CSDP_DST_BURST_32;
  875. else if (port_window_bytes >= 16)
  876. d->csdp |= CSDP_DST_BURST_16;
  877. } else {
  878. d->ccr |= CCR_DST_AMODE_CONSTANT;
  879. }
  880. }
  881. d->cicr = CICR_DROP_IE | CICR_BLOCK_IE;
  882. d->csdp |= es;
  883. if (dma_omap1()) {
  884. d->cicr |= CICR_TOUT_IE;
  885. if (dir == DMA_DEV_TO_MEM)
  886. d->csdp |= CSDP_DST_PORT_EMIFF | CSDP_SRC_PORT_TIPB;
  887. else
  888. d->csdp |= CSDP_DST_PORT_TIPB | CSDP_SRC_PORT_EMIFF;
  889. } else {
  890. if (dir == DMA_DEV_TO_MEM)
  891. d->ccr |= CCR_TRIGGER_SRC;
  892. d->cicr |= CICR_MISALIGNED_ERR_IE | CICR_TRANS_ERR_IE;
  893. if (port_window)
  894. d->csdp |= CSDP_WRITE_LAST_NON_POSTED;
  895. }
  896. if (od->plat->errata & DMA_ERRATA_PARALLEL_CHANNELS)
  897. d->clnk_ctrl = c->dma_ch;
  898. /*
  899. * Build our scatterlist entries: each contains the address,
  900. * the number of elements (EN) in each frame, and the number of
  901. * frames (FN). Number of bytes for this entry = ES * EN * FN.
  902. *
  903. * Burst size translates to number of elements with frame sync.
  904. * Note: DMA engine defines burst to be the number of dev-width
  905. * transfers.
  906. */
  907. en = burst;
  908. frame_bytes = es_bytes[es] * en;
  909. if (sglen >= 2)
  910. d->using_ll = od->ll123_supported;
  911. for_each_sg(sgl, sgent, sglen, i) {
  912. struct omap_sg *osg = &d->sg[i];
  913. osg->addr = sg_dma_address(sgent);
  914. osg->en = en;
  915. osg->fn = sg_dma_len(sgent) / frame_bytes;
  916. if (d->using_ll) {
  917. osg->t2_desc = dma_pool_alloc(od->desc_pool, GFP_ATOMIC,
  918. &osg->t2_desc_paddr);
  919. if (!osg->t2_desc) {
  920. dev_err(chan->device->dev,
  921. "t2_desc[%d] allocation failed\n", i);
  922. ll_failed = true;
  923. d->using_ll = false;
  924. continue;
  925. }
  926. omap_dma_fill_type2_desc(d, i, dir, (i == sglen - 1));
  927. }
  928. }
  929. d->sglen = sglen;
  930. /* Release the dma_pool entries if one allocation failed */
  931. if (ll_failed) {
  932. for (i = 0; i < d->sglen; i++) {
  933. struct omap_sg *osg = &d->sg[i];
  934. if (osg->t2_desc) {
  935. dma_pool_free(od->desc_pool, osg->t2_desc,
  936. osg->t2_desc_paddr);
  937. osg->t2_desc = NULL;
  938. }
  939. }
  940. }
  941. return vchan_tx_prep(&c->vc, &d->vd, tx_flags);
  942. }
  943. static struct dma_async_tx_descriptor *omap_dma_prep_dma_cyclic(
  944. struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
  945. size_t period_len, enum dma_transfer_direction dir, unsigned long flags)
  946. {
  947. struct omap_dmadev *od = to_omap_dma_dev(chan->device);
  948. struct omap_chan *c = to_omap_dma_chan(chan);
  949. enum dma_slave_buswidth dev_width;
  950. struct omap_desc *d;
  951. dma_addr_t dev_addr;
  952. unsigned es;
  953. u32 burst;
  954. if (dir == DMA_DEV_TO_MEM) {
  955. dev_addr = c->cfg.src_addr;
  956. dev_width = c->cfg.src_addr_width;
  957. burst = c->cfg.src_maxburst;
  958. } else if (dir == DMA_MEM_TO_DEV) {
  959. dev_addr = c->cfg.dst_addr;
  960. dev_width = c->cfg.dst_addr_width;
  961. burst = c->cfg.dst_maxburst;
  962. } else {
  963. dev_err(chan->device->dev, "%s: bad direction?\n", __func__);
  964. return NULL;
  965. }
  966. /* Bus width translates to the element size (ES) */
  967. switch (dev_width) {
  968. case DMA_SLAVE_BUSWIDTH_1_BYTE:
  969. es = CSDP_DATA_TYPE_8;
  970. break;
  971. case DMA_SLAVE_BUSWIDTH_2_BYTES:
  972. es = CSDP_DATA_TYPE_16;
  973. break;
  974. case DMA_SLAVE_BUSWIDTH_4_BYTES:
  975. es = CSDP_DATA_TYPE_32;
  976. break;
  977. default: /* not reached */
  978. return NULL;
  979. }
  980. /* Now allocate and setup the descriptor. */
  981. d = kzalloc(sizeof(*d) + sizeof(d->sg[0]), GFP_ATOMIC);
  982. if (!d)
  983. return NULL;
  984. d->dir = dir;
  985. d->dev_addr = dev_addr;
  986. d->fi = burst;
  987. d->es = es;
  988. d->sg[0].addr = buf_addr;
  989. d->sg[0].en = period_len / es_bytes[es];
  990. d->sg[0].fn = buf_len / period_len;
  991. d->sglen = 1;
  992. d->ccr = c->ccr;
  993. if (dir == DMA_DEV_TO_MEM)
  994. d->ccr |= CCR_DST_AMODE_POSTINC | CCR_SRC_AMODE_CONSTANT;
  995. else
  996. d->ccr |= CCR_DST_AMODE_CONSTANT | CCR_SRC_AMODE_POSTINC;
  997. d->cicr = CICR_DROP_IE;
  998. if (flags & DMA_PREP_INTERRUPT)
  999. d->cicr |= CICR_FRAME_IE;
  1000. d->csdp = es;
  1001. if (dma_omap1()) {
  1002. d->cicr |= CICR_TOUT_IE;
  1003. if (dir == DMA_DEV_TO_MEM)
  1004. d->csdp |= CSDP_DST_PORT_EMIFF | CSDP_SRC_PORT_MPUI;
  1005. else
  1006. d->csdp |= CSDP_DST_PORT_MPUI | CSDP_SRC_PORT_EMIFF;
  1007. } else {
  1008. if (burst)
  1009. d->ccr |= CCR_SYNC_PACKET;
  1010. else
  1011. d->ccr |= CCR_SYNC_ELEMENT;
  1012. if (dir == DMA_DEV_TO_MEM) {
  1013. d->ccr |= CCR_TRIGGER_SRC;
  1014. d->csdp |= CSDP_DST_PACKED;
  1015. } else {
  1016. d->csdp |= CSDP_SRC_PACKED;
  1017. }
  1018. d->cicr |= CICR_MISALIGNED_ERR_IE | CICR_TRANS_ERR_IE;
  1019. d->csdp |= CSDP_DST_BURST_64 | CSDP_SRC_BURST_64;
  1020. }
  1021. if (__dma_omap15xx(od->plat->dma_attr))
  1022. d->ccr |= CCR_AUTO_INIT | CCR_REPEAT;
  1023. else
  1024. d->clnk_ctrl = c->dma_ch | CLNK_CTRL_ENABLE_LNK;
  1025. c->cyclic = true;
  1026. return vchan_tx_prep(&c->vc, &d->vd, flags);
  1027. }
  1028. static struct dma_async_tx_descriptor *omap_dma_prep_dma_memcpy(
  1029. struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
  1030. size_t len, unsigned long tx_flags)
  1031. {
  1032. struct omap_chan *c = to_omap_dma_chan(chan);
  1033. struct omap_desc *d;
  1034. uint8_t data_type;
  1035. d = kzalloc(sizeof(*d) + sizeof(d->sg[0]), GFP_ATOMIC);
  1036. if (!d)
  1037. return NULL;
  1038. data_type = __ffs((src | dest | len));
  1039. if (data_type > CSDP_DATA_TYPE_32)
  1040. data_type = CSDP_DATA_TYPE_32;
  1041. d->dir = DMA_MEM_TO_MEM;
  1042. d->dev_addr = src;
  1043. d->fi = 0;
  1044. d->es = data_type;
  1045. d->sg[0].en = len / BIT(data_type);
  1046. d->sg[0].fn = 1;
  1047. d->sg[0].addr = dest;
  1048. d->sglen = 1;
  1049. d->ccr = c->ccr;
  1050. d->ccr |= CCR_DST_AMODE_POSTINC | CCR_SRC_AMODE_POSTINC;
  1051. if (tx_flags & DMA_PREP_INTERRUPT)
  1052. d->cicr |= CICR_FRAME_IE;
  1053. else
  1054. d->polled = true;
  1055. d->csdp = data_type;
  1056. if (dma_omap1()) {
  1057. d->cicr |= CICR_TOUT_IE;
  1058. d->csdp |= CSDP_DST_PORT_EMIFF | CSDP_SRC_PORT_EMIFF;
  1059. } else {
  1060. d->csdp |= CSDP_DST_PACKED | CSDP_SRC_PACKED;
  1061. d->cicr |= CICR_MISALIGNED_ERR_IE | CICR_TRANS_ERR_IE;
  1062. d->csdp |= CSDP_DST_BURST_64 | CSDP_SRC_BURST_64;
  1063. }
  1064. return vchan_tx_prep(&c->vc, &d->vd, tx_flags);
  1065. }
  1066. static struct dma_async_tx_descriptor *omap_dma_prep_dma_interleaved(
  1067. struct dma_chan *chan, struct dma_interleaved_template *xt,
  1068. unsigned long flags)
  1069. {
  1070. struct omap_chan *c = to_omap_dma_chan(chan);
  1071. struct omap_desc *d;
  1072. struct omap_sg *sg;
  1073. uint8_t data_type;
  1074. size_t src_icg, dst_icg;
  1075. /* Slave mode is not supported */
  1076. if (is_slave_direction(xt->dir))
  1077. return NULL;
  1078. if (xt->frame_size != 1 || xt->numf == 0)
  1079. return NULL;
  1080. d = kzalloc(sizeof(*d) + sizeof(d->sg[0]), GFP_ATOMIC);
  1081. if (!d)
  1082. return NULL;
  1083. data_type = __ffs((xt->src_start | xt->dst_start | xt->sgl[0].size));
  1084. if (data_type > CSDP_DATA_TYPE_32)
  1085. data_type = CSDP_DATA_TYPE_32;
  1086. sg = &d->sg[0];
  1087. d->dir = DMA_MEM_TO_MEM;
  1088. d->dev_addr = xt->src_start;
  1089. d->es = data_type;
  1090. sg->en = xt->sgl[0].size / BIT(data_type);
  1091. sg->fn = xt->numf;
  1092. sg->addr = xt->dst_start;
  1093. d->sglen = 1;
  1094. d->ccr = c->ccr;
  1095. src_icg = dmaengine_get_src_icg(xt, &xt->sgl[0]);
  1096. dst_icg = dmaengine_get_dst_icg(xt, &xt->sgl[0]);
  1097. if (src_icg) {
  1098. d->ccr |= CCR_SRC_AMODE_DBLIDX;
  1099. d->ei = 1;
  1100. d->fi = src_icg + 1;
  1101. } else if (xt->src_inc) {
  1102. d->ccr |= CCR_SRC_AMODE_POSTINC;
  1103. d->fi = 0;
  1104. } else {
  1105. dev_err(chan->device->dev,
  1106. "%s: SRC constant addressing is not supported\n",
  1107. __func__);
  1108. kfree(d);
  1109. return NULL;
  1110. }
  1111. if (dst_icg) {
  1112. d->ccr |= CCR_DST_AMODE_DBLIDX;
  1113. sg->ei = 1;
  1114. sg->fi = dst_icg + 1;
  1115. } else if (xt->dst_inc) {
  1116. d->ccr |= CCR_DST_AMODE_POSTINC;
  1117. sg->fi = 0;
  1118. } else {
  1119. dev_err(chan->device->dev,
  1120. "%s: DST constant addressing is not supported\n",
  1121. __func__);
  1122. kfree(d);
  1123. return NULL;
  1124. }
  1125. d->cicr = CICR_DROP_IE | CICR_FRAME_IE;
  1126. d->csdp = data_type;
  1127. if (dma_omap1()) {
  1128. d->cicr |= CICR_TOUT_IE;
  1129. d->csdp |= CSDP_DST_PORT_EMIFF | CSDP_SRC_PORT_EMIFF;
  1130. } else {
  1131. d->csdp |= CSDP_DST_PACKED | CSDP_SRC_PACKED;
  1132. d->cicr |= CICR_MISALIGNED_ERR_IE | CICR_TRANS_ERR_IE;
  1133. d->csdp |= CSDP_DST_BURST_64 | CSDP_SRC_BURST_64;
  1134. }
  1135. return vchan_tx_prep(&c->vc, &d->vd, flags);
  1136. }
  1137. static int omap_dma_slave_config(struct dma_chan *chan, struct dma_slave_config *cfg)
  1138. {
  1139. struct omap_chan *c = to_omap_dma_chan(chan);
  1140. if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
  1141. cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
  1142. return -EINVAL;
  1143. if (cfg->src_maxburst > chan->device->max_burst ||
  1144. cfg->dst_maxburst > chan->device->max_burst)
  1145. return -EINVAL;
  1146. memcpy(&c->cfg, cfg, sizeof(c->cfg));
  1147. return 0;
  1148. }
  1149. static int omap_dma_terminate_all(struct dma_chan *chan)
  1150. {
  1151. struct omap_chan *c = to_omap_dma_chan(chan);
  1152. unsigned long flags;
  1153. LIST_HEAD(head);
  1154. spin_lock_irqsave(&c->vc.lock, flags);
  1155. /*
  1156. * Stop DMA activity: we assume the callback will not be called
  1157. * after omap_dma_stop() returns (even if it does, it will see
  1158. * c->desc is NULL and exit.)
  1159. */
  1160. if (c->desc) {
  1161. vchan_terminate_vdesc(&c->desc->vd);
  1162. c->desc = NULL;
  1163. /* Avoid stopping the dma twice */
  1164. if (!c->paused)
  1165. omap_dma_stop(c);
  1166. }
  1167. c->cyclic = false;
  1168. c->paused = false;
  1169. vchan_get_all_descriptors(&c->vc, &head);
  1170. spin_unlock_irqrestore(&c->vc.lock, flags);
  1171. vchan_dma_desc_free_list(&c->vc, &head);
  1172. return 0;
  1173. }
  1174. static void omap_dma_synchronize(struct dma_chan *chan)
  1175. {
  1176. struct omap_chan *c = to_omap_dma_chan(chan);
  1177. vchan_synchronize(&c->vc);
  1178. }
  1179. static int omap_dma_pause(struct dma_chan *chan)
  1180. {
  1181. struct omap_chan *c = to_omap_dma_chan(chan);
  1182. struct omap_dmadev *od = to_omap_dma_dev(chan->device);
  1183. unsigned long flags;
  1184. int ret = -EINVAL;
  1185. bool can_pause = false;
  1186. spin_lock_irqsave(&od->irq_lock, flags);
  1187. if (!c->desc)
  1188. goto out;
  1189. if (c->cyclic)
  1190. can_pause = true;
  1191. /*
  1192. * We do not allow DMA_MEM_TO_DEV transfers to be paused.
  1193. * From the AM572x TRM, 16.1.4.18 Disabling a Channel During Transfer:
  1194. * "When a channel is disabled during a transfer, the channel undergoes
  1195. * an abort, unless it is hardware-source-synchronized …".
  1196. * A source-synchronised channel is one where the fetching of data is
  1197. * under control of the device. In other words, a device-to-memory
  1198. * transfer. So, a destination-synchronised channel (which would be a
  1199. * memory-to-device transfer) undergoes an abort if the CCR_ENABLE
  1200. * bit is cleared.
  1201. * From 16.1.4.20.4.6.2 Abort: "If an abort trigger occurs, the channel
  1202. * aborts immediately after completion of current read/write
  1203. * transactions and then the FIFO is cleaned up." The term "cleaned up"
  1204. * is not defined. TI recommends to check that RD_ACTIVE and WR_ACTIVE
  1205. * are both clear _before_ disabling the channel, otherwise data loss
  1206. * will occur.
  1207. * The problem is that if the channel is active, then device activity
  1208. * can result in DMA activity starting between reading those as both
  1209. * clear and the write to DMA_CCR to clear the enable bit hitting the
  1210. * hardware. If the DMA hardware can't drain the data in its FIFO to the
  1211. * destination, then data loss "might" occur (say if we write to an UART
  1212. * and the UART is not accepting any further data).
  1213. */
  1214. else if (c->desc->dir == DMA_DEV_TO_MEM)
  1215. can_pause = true;
  1216. if (can_pause && !c->paused) {
  1217. ret = omap_dma_stop(c);
  1218. if (!ret)
  1219. c->paused = true;
  1220. }
  1221. out:
  1222. spin_unlock_irqrestore(&od->irq_lock, flags);
  1223. return ret;
  1224. }
  1225. static int omap_dma_resume(struct dma_chan *chan)
  1226. {
  1227. struct omap_chan *c = to_omap_dma_chan(chan);
  1228. struct omap_dmadev *od = to_omap_dma_dev(chan->device);
  1229. unsigned long flags;
  1230. int ret = -EINVAL;
  1231. spin_lock_irqsave(&od->irq_lock, flags);
  1232. if (c->paused && c->desc) {
  1233. mb();
  1234. /* Restore channel link register */
  1235. omap_dma_chan_write(c, CLNK_CTRL, c->desc->clnk_ctrl);
  1236. omap_dma_start(c, c->desc);
  1237. c->paused = false;
  1238. ret = 0;
  1239. }
  1240. spin_unlock_irqrestore(&od->irq_lock, flags);
  1241. return ret;
  1242. }
  1243. static int omap_dma_chan_init(struct omap_dmadev *od)
  1244. {
  1245. struct omap_chan *c;
  1246. c = kzalloc(sizeof(*c), GFP_KERNEL);
  1247. if (!c)
  1248. return -ENOMEM;
  1249. c->reg_map = od->reg_map;
  1250. c->vc.desc_free = omap_dma_desc_free;
  1251. vchan_init(&c->vc, &od->ddev);
  1252. return 0;
  1253. }
  1254. static void omap_dma_free(struct omap_dmadev *od)
  1255. {
  1256. while (!list_empty(&od->ddev.channels)) {
  1257. struct omap_chan *c = list_first_entry(&od->ddev.channels,
  1258. struct omap_chan, vc.chan.device_node);
  1259. list_del(&c->vc.chan.device_node);
  1260. tasklet_kill(&c->vc.task);
  1261. kfree(c);
  1262. }
  1263. }
  1264. /* Currently used by omap2 & 3 to block deeper SoC idle states */
  1265. static bool omap_dma_busy(struct omap_dmadev *od)
  1266. {
  1267. struct omap_chan *c;
  1268. int lch = -1;
  1269. while (1) {
  1270. lch = find_next_bit(od->lch_bitmap, od->lch_count, lch + 1);
  1271. if (lch >= od->lch_count)
  1272. break;
  1273. c = od->lch_map[lch];
  1274. if (!c)
  1275. continue;
  1276. if (omap_dma_chan_read(c, CCR) & CCR_ENABLE)
  1277. return true;
  1278. }
  1279. return false;
  1280. }
  1281. /* Currently only used for omap2. For omap1, also a check for lcd_dma is needed */
  1282. static int omap_dma_busy_notifier(struct notifier_block *nb,
  1283. unsigned long cmd, void *v)
  1284. {
  1285. struct omap_dmadev *od;
  1286. od = container_of(nb, struct omap_dmadev, nb);
  1287. switch (cmd) {
  1288. case CPU_CLUSTER_PM_ENTER:
  1289. if (omap_dma_busy(od))
  1290. return NOTIFY_BAD;
  1291. break;
  1292. case CPU_CLUSTER_PM_ENTER_FAILED:
  1293. case CPU_CLUSTER_PM_EXIT:
  1294. break;
  1295. }
  1296. return NOTIFY_OK;
  1297. }
  1298. /*
  1299. * We are using IRQENABLE_L1, and legacy DMA code was using IRQENABLE_L0.
  1300. * As the DSP may be using IRQENABLE_L2 and L3, let's not touch those for
  1301. * now. Context save seems to be only currently needed on omap3.
  1302. */
  1303. static void omap_dma_context_save(struct omap_dmadev *od)
  1304. {
  1305. od->context.irqenable_l0 = omap_dma_glbl_read(od, IRQENABLE_L0);
  1306. od->context.irqenable_l1 = omap_dma_glbl_read(od, IRQENABLE_L1);
  1307. od->context.ocp_sysconfig = omap_dma_glbl_read(od, OCP_SYSCONFIG);
  1308. od->context.gcr = omap_dma_glbl_read(od, GCR);
  1309. }
  1310. static void omap_dma_context_restore(struct omap_dmadev *od)
  1311. {
  1312. int i;
  1313. omap_dma_glbl_write(od, GCR, od->context.gcr);
  1314. omap_dma_glbl_write(od, OCP_SYSCONFIG, od->context.ocp_sysconfig);
  1315. omap_dma_glbl_write(od, IRQENABLE_L0, od->context.irqenable_l0);
  1316. omap_dma_glbl_write(od, IRQENABLE_L1, od->context.irqenable_l1);
  1317. /* Clear IRQSTATUS_L0 as legacy DMA code is no longer doing it */
  1318. if (od->plat->errata & DMA_ROMCODE_BUG)
  1319. omap_dma_glbl_write(od, IRQSTATUS_L0, 0);
  1320. /* Clear dma channels */
  1321. for (i = 0; i < od->lch_count; i++)
  1322. omap_dma_clear_lch(od, i);
  1323. }
  1324. /* Currently only used for omap3 */
  1325. static int omap_dma_context_notifier(struct notifier_block *nb,
  1326. unsigned long cmd, void *v)
  1327. {
  1328. struct omap_dmadev *od;
  1329. od = container_of(nb, struct omap_dmadev, nb);
  1330. switch (cmd) {
  1331. case CPU_CLUSTER_PM_ENTER:
  1332. if (omap_dma_busy(od))
  1333. return NOTIFY_BAD;
  1334. omap_dma_context_save(od);
  1335. break;
  1336. case CPU_CLUSTER_PM_ENTER_FAILED: /* No need to restore context */
  1337. break;
  1338. case CPU_CLUSTER_PM_EXIT:
  1339. omap_dma_context_restore(od);
  1340. break;
  1341. }
  1342. return NOTIFY_OK;
  1343. }
  1344. static void omap_dma_init_gcr(struct omap_dmadev *od, int arb_rate,
  1345. int max_fifo_depth, int tparams)
  1346. {
  1347. u32 val;
  1348. /* Set only for omap2430 and later */
  1349. if (!od->cfg->rw_priority)
  1350. return;
  1351. if (max_fifo_depth == 0)
  1352. max_fifo_depth = 1;
  1353. if (arb_rate == 0)
  1354. arb_rate = 1;
  1355. val = 0xff & max_fifo_depth;
  1356. val |= (0x3 & tparams) << 12;
  1357. val |= (arb_rate & 0xff) << 16;
  1358. omap_dma_glbl_write(od, GCR, val);
  1359. }
  1360. #define OMAP_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
  1361. BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
  1362. BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
  1363. /*
  1364. * No flags currently set for default configuration as omap1 is still
  1365. * using platform data.
  1366. */
  1367. static const struct omap_dma_config default_cfg;
  1368. static int omap_dma_probe(struct platform_device *pdev)
  1369. {
  1370. const struct omap_dma_config *conf;
  1371. struct omap_dmadev *od;
  1372. struct resource *res;
  1373. int rc, i, irq;
  1374. u32 val;
  1375. od = devm_kzalloc(&pdev->dev, sizeof(*od), GFP_KERNEL);
  1376. if (!od)
  1377. return -ENOMEM;
  1378. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1379. od->base = devm_ioremap_resource(&pdev->dev, res);
  1380. if (IS_ERR(od->base))
  1381. return PTR_ERR(od->base);
  1382. conf = of_device_get_match_data(&pdev->dev);
  1383. if (conf) {
  1384. od->cfg = conf;
  1385. od->plat = dev_get_platdata(&pdev->dev);
  1386. if (!od->plat) {
  1387. dev_err(&pdev->dev, "omap_system_dma_plat_info is missing");
  1388. return -ENODEV;
  1389. }
  1390. } else if (IS_ENABLED(CONFIG_ARCH_OMAP1)) {
  1391. od->cfg = &default_cfg;
  1392. od->plat = omap_get_plat_info();
  1393. if (!od->plat)
  1394. return -EPROBE_DEFER;
  1395. } else {
  1396. return -ENODEV;
  1397. }
  1398. od->reg_map = od->plat->reg_map;
  1399. dma_cap_set(DMA_SLAVE, od->ddev.cap_mask);
  1400. dma_cap_set(DMA_CYCLIC, od->ddev.cap_mask);
  1401. dma_cap_set(DMA_MEMCPY, od->ddev.cap_mask);
  1402. dma_cap_set(DMA_INTERLEAVE, od->ddev.cap_mask);
  1403. od->ddev.device_alloc_chan_resources = omap_dma_alloc_chan_resources;
  1404. od->ddev.device_free_chan_resources = omap_dma_free_chan_resources;
  1405. od->ddev.device_tx_status = omap_dma_tx_status;
  1406. od->ddev.device_issue_pending = omap_dma_issue_pending;
  1407. od->ddev.device_prep_slave_sg = omap_dma_prep_slave_sg;
  1408. od->ddev.device_prep_dma_cyclic = omap_dma_prep_dma_cyclic;
  1409. od->ddev.device_prep_dma_memcpy = omap_dma_prep_dma_memcpy;
  1410. od->ddev.device_prep_interleaved_dma = omap_dma_prep_dma_interleaved;
  1411. od->ddev.device_config = omap_dma_slave_config;
  1412. od->ddev.device_pause = omap_dma_pause;
  1413. od->ddev.device_resume = omap_dma_resume;
  1414. od->ddev.device_terminate_all = omap_dma_terminate_all;
  1415. od->ddev.device_synchronize = omap_dma_synchronize;
  1416. od->ddev.src_addr_widths = OMAP_DMA_BUSWIDTHS;
  1417. od->ddev.dst_addr_widths = OMAP_DMA_BUSWIDTHS;
  1418. od->ddev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
  1419. if (__dma_omap15xx(od->plat->dma_attr))
  1420. od->ddev.residue_granularity =
  1421. DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
  1422. else
  1423. od->ddev.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
  1424. od->ddev.max_burst = SZ_16M - 1; /* CCEN: 24bit unsigned */
  1425. od->ddev.dev = &pdev->dev;
  1426. INIT_LIST_HEAD(&od->ddev.channels);
  1427. mutex_init(&od->lch_lock);
  1428. spin_lock_init(&od->lock);
  1429. spin_lock_init(&od->irq_lock);
  1430. /* Number of DMA requests */
  1431. od->dma_requests = OMAP_SDMA_REQUESTS;
  1432. if (pdev->dev.of_node && of_property_read_u32(pdev->dev.of_node,
  1433. "dma-requests",
  1434. &od->dma_requests)) {
  1435. dev_info(&pdev->dev,
  1436. "Missing dma-requests property, using %u.\n",
  1437. OMAP_SDMA_REQUESTS);
  1438. }
  1439. /* Number of available logical channels */
  1440. if (!pdev->dev.of_node) {
  1441. od->lch_count = od->plat->dma_attr->lch_count;
  1442. if (unlikely(!od->lch_count))
  1443. od->lch_count = OMAP_SDMA_CHANNELS;
  1444. } else if (of_property_read_u32(pdev->dev.of_node, "dma-channels",
  1445. &od->lch_count)) {
  1446. dev_info(&pdev->dev,
  1447. "Missing dma-channels property, using %u.\n",
  1448. OMAP_SDMA_CHANNELS);
  1449. od->lch_count = OMAP_SDMA_CHANNELS;
  1450. }
  1451. /* Mask of allowed logical channels */
  1452. if (pdev->dev.of_node && !of_property_read_u32(pdev->dev.of_node,
  1453. "dma-channel-mask",
  1454. &val)) {
  1455. /* Tag channels not in mask as reserved */
  1456. val = ~val;
  1457. bitmap_from_arr32(od->lch_bitmap, &val, od->lch_count);
  1458. }
  1459. if (od->plat->dma_attr->dev_caps & HS_CHANNELS_RESERVED)
  1460. bitmap_set(od->lch_bitmap, 0, 2);
  1461. od->lch_map = devm_kcalloc(&pdev->dev, od->lch_count,
  1462. sizeof(*od->lch_map),
  1463. GFP_KERNEL);
  1464. if (!od->lch_map)
  1465. return -ENOMEM;
  1466. for (i = 0; i < od->dma_requests; i++) {
  1467. rc = omap_dma_chan_init(od);
  1468. if (rc) {
  1469. omap_dma_free(od);
  1470. return rc;
  1471. }
  1472. }
  1473. irq = platform_get_irq(pdev, 1);
  1474. if (irq <= 0) {
  1475. dev_info(&pdev->dev, "failed to get L1 IRQ: %d\n", irq);
  1476. od->legacy = true;
  1477. } else {
  1478. /* Disable all interrupts */
  1479. od->irq_enable_mask = 0;
  1480. omap_dma_glbl_write(od, IRQENABLE_L1, 0);
  1481. rc = devm_request_irq(&pdev->dev, irq, omap_dma_irq,
  1482. IRQF_SHARED, "omap-dma-engine", od);
  1483. if (rc) {
  1484. omap_dma_free(od);
  1485. return rc;
  1486. }
  1487. }
  1488. if (omap_dma_glbl_read(od, CAPS_0) & CAPS_0_SUPPORT_LL123)
  1489. od->ll123_supported = true;
  1490. od->ddev.filter.map = od->plat->slave_map;
  1491. od->ddev.filter.mapcnt = od->plat->slavecnt;
  1492. od->ddev.filter.fn = omap_dma_filter_fn;
  1493. if (od->ll123_supported) {
  1494. od->desc_pool = dma_pool_create(dev_name(&pdev->dev),
  1495. &pdev->dev,
  1496. sizeof(struct omap_type2_desc),
  1497. 4, 0);
  1498. if (!od->desc_pool) {
  1499. dev_err(&pdev->dev,
  1500. "unable to allocate descriptor pool\n");
  1501. od->ll123_supported = false;
  1502. }
  1503. }
  1504. rc = dma_async_device_register(&od->ddev);
  1505. if (rc) {
  1506. pr_warn("OMAP-DMA: failed to register slave DMA engine device: %d\n",
  1507. rc);
  1508. omap_dma_free(od);
  1509. return rc;
  1510. }
  1511. platform_set_drvdata(pdev, od);
  1512. if (pdev->dev.of_node) {
  1513. omap_dma_info.dma_cap = od->ddev.cap_mask;
  1514. /* Device-tree DMA controller registration */
  1515. rc = of_dma_controller_register(pdev->dev.of_node,
  1516. of_dma_simple_xlate, &omap_dma_info);
  1517. if (rc) {
  1518. pr_warn("OMAP-DMA: failed to register DMA controller\n");
  1519. dma_async_device_unregister(&od->ddev);
  1520. omap_dma_free(od);
  1521. }
  1522. }
  1523. omap_dma_init_gcr(od, DMA_DEFAULT_ARB_RATE, DMA_DEFAULT_FIFO_DEPTH, 0);
  1524. if (od->cfg->needs_busy_check) {
  1525. od->nb.notifier_call = omap_dma_busy_notifier;
  1526. cpu_pm_register_notifier(&od->nb);
  1527. } else if (od->cfg->may_lose_context) {
  1528. od->nb.notifier_call = omap_dma_context_notifier;
  1529. cpu_pm_register_notifier(&od->nb);
  1530. }
  1531. dev_info(&pdev->dev, "OMAP DMA engine driver%s\n",
  1532. od->ll123_supported ? " (LinkedList1/2/3 supported)" : "");
  1533. return rc;
  1534. }
  1535. static int omap_dma_remove(struct platform_device *pdev)
  1536. {
  1537. struct omap_dmadev *od = platform_get_drvdata(pdev);
  1538. int irq;
  1539. if (od->cfg->may_lose_context)
  1540. cpu_pm_unregister_notifier(&od->nb);
  1541. if (pdev->dev.of_node)
  1542. of_dma_controller_free(pdev->dev.of_node);
  1543. irq = platform_get_irq(pdev, 1);
  1544. devm_free_irq(&pdev->dev, irq, od);
  1545. dma_async_device_unregister(&od->ddev);
  1546. if (!omap_dma_legacy(od)) {
  1547. /* Disable all interrupts */
  1548. omap_dma_glbl_write(od, IRQENABLE_L0, 0);
  1549. }
  1550. if (od->ll123_supported)
  1551. dma_pool_destroy(od->desc_pool);
  1552. omap_dma_free(od);
  1553. return 0;
  1554. }
  1555. static const struct omap_dma_config omap2420_data = {
  1556. .lch_end = CCFN,
  1557. .rw_priority = true,
  1558. .needs_lch_clear = true,
  1559. .needs_busy_check = true,
  1560. };
  1561. static const struct omap_dma_config omap2430_data = {
  1562. .lch_end = CCFN,
  1563. .rw_priority = true,
  1564. .needs_lch_clear = true,
  1565. };
  1566. static const struct omap_dma_config omap3430_data = {
  1567. .lch_end = CCFN,
  1568. .rw_priority = true,
  1569. .needs_lch_clear = true,
  1570. .may_lose_context = true,
  1571. };
  1572. static const struct omap_dma_config omap3630_data = {
  1573. .lch_end = CCDN,
  1574. .rw_priority = true,
  1575. .needs_lch_clear = true,
  1576. .may_lose_context = true,
  1577. };
  1578. static const struct omap_dma_config omap4_data = {
  1579. .lch_end = CCDN,
  1580. .rw_priority = true,
  1581. .needs_lch_clear = true,
  1582. };
  1583. static const struct of_device_id omap_dma_match[] = {
  1584. { .compatible = "ti,omap2420-sdma", .data = &omap2420_data, },
  1585. { .compatible = "ti,omap2430-sdma", .data = &omap2430_data, },
  1586. { .compatible = "ti,omap3430-sdma", .data = &omap3430_data, },
  1587. { .compatible = "ti,omap3630-sdma", .data = &omap3630_data, },
  1588. { .compatible = "ti,omap4430-sdma", .data = &omap4_data, },
  1589. {},
  1590. };
  1591. MODULE_DEVICE_TABLE(of, omap_dma_match);
  1592. static struct platform_driver omap_dma_driver = {
  1593. .probe = omap_dma_probe,
  1594. .remove = omap_dma_remove,
  1595. .driver = {
  1596. .name = "omap-dma-engine",
  1597. .of_match_table = omap_dma_match,
  1598. },
  1599. };
  1600. static bool omap_dma_filter_fn(struct dma_chan *chan, void *param)
  1601. {
  1602. if (chan->device->dev->driver == &omap_dma_driver.driver) {
  1603. struct omap_dmadev *od = to_omap_dma_dev(chan->device);
  1604. struct omap_chan *c = to_omap_dma_chan(chan);
  1605. unsigned req = *(unsigned *)param;
  1606. if (req <= od->dma_requests) {
  1607. c->dma_sig = req;
  1608. return true;
  1609. }
  1610. }
  1611. return false;
  1612. }
  1613. static int omap_dma_init(void)
  1614. {
  1615. return platform_driver_register(&omap_dma_driver);
  1616. }
  1617. subsys_initcall(omap_dma_init);
  1618. static void __exit omap_dma_exit(void)
  1619. {
  1620. platform_driver_unregister(&omap_dma_driver);
  1621. }
  1622. module_exit(omap_dma_exit);
  1623. MODULE_AUTHOR("Russell King");
  1624. MODULE_LICENSE("GPL");