k3-udma.c 141 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Copyright (C) 2019 Texas Instruments Incorporated - http://www.ti.com
  4. * Author: Peter Ujfalusi <[email protected]>
  5. */
  6. #include <linux/kernel.h>
  7. #include <linux/delay.h>
  8. #include <linux/dmaengine.h>
  9. #include <linux/dma-mapping.h>
  10. #include <linux/dmapool.h>
  11. #include <linux/err.h>
  12. #include <linux/init.h>
  13. #include <linux/interrupt.h>
  14. #include <linux/list.h>
  15. #include <linux/platform_device.h>
  16. #include <linux/slab.h>
  17. #include <linux/spinlock.h>
  18. #include <linux/sys_soc.h>
  19. #include <linux/of.h>
  20. #include <linux/of_dma.h>
  21. #include <linux/of_device.h>
  22. #include <linux/of_irq.h>
  23. #include <linux/workqueue.h>
  24. #include <linux/completion.h>
  25. #include <linux/soc/ti/k3-ringacc.h>
  26. #include <linux/soc/ti/ti_sci_protocol.h>
  27. #include <linux/soc/ti/ti_sci_inta_msi.h>
  28. #include <linux/dma/k3-event-router.h>
  29. #include <linux/dma/ti-cppi5.h>
  30. #include "../virt-dma.h"
  31. #include "k3-udma.h"
  32. #include "k3-psil-priv.h"
  33. struct udma_static_tr {
  34. u8 elsize; /* RPSTR0 */
  35. u16 elcnt; /* RPSTR0 */
  36. u16 bstcnt; /* RPSTR1 */
  37. };
  38. #define K3_UDMA_MAX_RFLOWS 1024
  39. #define K3_UDMA_DEFAULT_RING_SIZE 16
  40. /* How SRC/DST tag should be updated by UDMA in the descriptor's Word 3 */
  41. #define UDMA_RFLOW_SRCTAG_NONE 0
  42. #define UDMA_RFLOW_SRCTAG_CFG_TAG 1
  43. #define UDMA_RFLOW_SRCTAG_FLOW_ID 2
  44. #define UDMA_RFLOW_SRCTAG_SRC_TAG 4
  45. #define UDMA_RFLOW_DSTTAG_NONE 0
  46. #define UDMA_RFLOW_DSTTAG_CFG_TAG 1
  47. #define UDMA_RFLOW_DSTTAG_FLOW_ID 2
  48. #define UDMA_RFLOW_DSTTAG_DST_TAG_LO 4
  49. #define UDMA_RFLOW_DSTTAG_DST_TAG_HI 5
  50. struct udma_chan;
  51. enum k3_dma_type {
  52. DMA_TYPE_UDMA = 0,
  53. DMA_TYPE_BCDMA,
  54. DMA_TYPE_PKTDMA,
  55. };
  56. enum udma_mmr {
  57. MMR_GCFG = 0,
  58. MMR_BCHANRT,
  59. MMR_RCHANRT,
  60. MMR_TCHANRT,
  61. MMR_LAST,
  62. };
  63. static const char * const mmr_names[] = {
  64. [MMR_GCFG] = "gcfg",
  65. [MMR_BCHANRT] = "bchanrt",
  66. [MMR_RCHANRT] = "rchanrt",
  67. [MMR_TCHANRT] = "tchanrt",
  68. };
  69. struct udma_tchan {
  70. void __iomem *reg_rt;
  71. int id;
  72. struct k3_ring *t_ring; /* Transmit ring */
  73. struct k3_ring *tc_ring; /* Transmit Completion ring */
  74. int tflow_id; /* applicable only for PKTDMA */
  75. };
  76. #define udma_bchan udma_tchan
  77. struct udma_rflow {
  78. int id;
  79. struct k3_ring *fd_ring; /* Free Descriptor ring */
  80. struct k3_ring *r_ring; /* Receive ring */
  81. };
  82. struct udma_rchan {
  83. void __iomem *reg_rt;
  84. int id;
  85. };
  86. struct udma_oes_offsets {
  87. /* K3 UDMA Output Event Offset */
  88. u32 udma_rchan;
  89. /* BCDMA Output Event Offsets */
  90. u32 bcdma_bchan_data;
  91. u32 bcdma_bchan_ring;
  92. u32 bcdma_tchan_data;
  93. u32 bcdma_tchan_ring;
  94. u32 bcdma_rchan_data;
  95. u32 bcdma_rchan_ring;
  96. /* PKTDMA Output Event Offsets */
  97. u32 pktdma_tchan_flow;
  98. u32 pktdma_rchan_flow;
  99. };
  100. #define UDMA_FLAG_PDMA_ACC32 BIT(0)
  101. #define UDMA_FLAG_PDMA_BURST BIT(1)
  102. #define UDMA_FLAG_TDTYPE BIT(2)
  103. #define UDMA_FLAG_BURST_SIZE BIT(3)
  104. #define UDMA_FLAGS_J7_CLASS (UDMA_FLAG_PDMA_ACC32 | \
  105. UDMA_FLAG_PDMA_BURST | \
  106. UDMA_FLAG_TDTYPE | \
  107. UDMA_FLAG_BURST_SIZE)
  108. struct udma_match_data {
  109. enum k3_dma_type type;
  110. u32 psil_base;
  111. bool enable_memcpy_support;
  112. u32 flags;
  113. u32 statictr_z_mask;
  114. u8 burst_size[3];
  115. };
  116. struct udma_soc_data {
  117. struct udma_oes_offsets oes;
  118. u32 bcdma_trigger_event_offset;
  119. };
  120. struct udma_hwdesc {
  121. size_t cppi5_desc_size;
  122. void *cppi5_desc_vaddr;
  123. dma_addr_t cppi5_desc_paddr;
  124. /* TR descriptor internal pointers */
  125. void *tr_req_base;
  126. struct cppi5_tr_resp_t *tr_resp_base;
  127. };
  128. struct udma_rx_flush {
  129. struct udma_hwdesc hwdescs[2];
  130. size_t buffer_size;
  131. void *buffer_vaddr;
  132. dma_addr_t buffer_paddr;
  133. };
  134. struct udma_tpl {
  135. u8 levels;
  136. u32 start_idx[3];
  137. };
  138. struct udma_dev {
  139. struct dma_device ddev;
  140. struct device *dev;
  141. void __iomem *mmrs[MMR_LAST];
  142. const struct udma_match_data *match_data;
  143. const struct udma_soc_data *soc_data;
  144. struct udma_tpl bchan_tpl;
  145. struct udma_tpl tchan_tpl;
  146. struct udma_tpl rchan_tpl;
  147. size_t desc_align; /* alignment to use for descriptors */
  148. struct udma_tisci_rm tisci_rm;
  149. struct k3_ringacc *ringacc;
  150. struct work_struct purge_work;
  151. struct list_head desc_to_purge;
  152. spinlock_t lock;
  153. struct udma_rx_flush rx_flush;
  154. int bchan_cnt;
  155. int tchan_cnt;
  156. int echan_cnt;
  157. int rchan_cnt;
  158. int rflow_cnt;
  159. int tflow_cnt;
  160. unsigned long *bchan_map;
  161. unsigned long *tchan_map;
  162. unsigned long *rchan_map;
  163. unsigned long *rflow_gp_map;
  164. unsigned long *rflow_gp_map_allocated;
  165. unsigned long *rflow_in_use;
  166. unsigned long *tflow_map;
  167. struct udma_bchan *bchans;
  168. struct udma_tchan *tchans;
  169. struct udma_rchan *rchans;
  170. struct udma_rflow *rflows;
  171. struct udma_chan *channels;
  172. u32 psil_base;
  173. u32 atype;
  174. u32 asel;
  175. };
  176. struct udma_desc {
  177. struct virt_dma_desc vd;
  178. bool terminated;
  179. enum dma_transfer_direction dir;
  180. struct udma_static_tr static_tr;
  181. u32 residue;
  182. unsigned int sglen;
  183. unsigned int desc_idx; /* Only used for cyclic in packet mode */
  184. unsigned int tr_idx;
  185. u32 metadata_size;
  186. void *metadata; /* pointer to provided metadata buffer (EPIP, PSdata) */
  187. unsigned int hwdesc_count;
  188. struct udma_hwdesc hwdesc[];
  189. };
  190. enum udma_chan_state {
  191. UDMA_CHAN_IS_IDLE = 0, /* not active, no teardown is in progress */
  192. UDMA_CHAN_IS_ACTIVE, /* Normal operation */
  193. UDMA_CHAN_IS_TERMINATING, /* channel is being terminated */
  194. };
  195. struct udma_tx_drain {
  196. struct delayed_work work;
  197. ktime_t tstamp;
  198. u32 residue;
  199. };
  200. struct udma_chan_config {
  201. bool pkt_mode; /* TR or packet */
  202. bool needs_epib; /* EPIB is needed for the communication or not */
  203. u32 psd_size; /* size of Protocol Specific Data */
  204. u32 metadata_size; /* (needs_epib ? 16:0) + psd_size */
  205. u32 hdesc_size; /* Size of a packet descriptor in packet mode */
  206. bool notdpkt; /* Suppress sending TDC packet */
  207. int remote_thread_id;
  208. u32 atype;
  209. u32 asel;
  210. u32 src_thread;
  211. u32 dst_thread;
  212. enum psil_endpoint_type ep_type;
  213. bool enable_acc32;
  214. bool enable_burst;
  215. enum udma_tp_level channel_tpl; /* Channel Throughput Level */
  216. u32 tr_trigger_type;
  217. unsigned long tx_flags;
  218. /* PKDMA mapped channel */
  219. int mapped_channel_id;
  220. /* PKTDMA default tflow or rflow for mapped channel */
  221. int default_flow_id;
  222. enum dma_transfer_direction dir;
  223. };
  224. struct udma_chan {
  225. struct virt_dma_chan vc;
  226. struct dma_slave_config cfg;
  227. struct udma_dev *ud;
  228. struct device *dma_dev;
  229. struct udma_desc *desc;
  230. struct udma_desc *terminated_desc;
  231. struct udma_static_tr static_tr;
  232. char *name;
  233. struct udma_bchan *bchan;
  234. struct udma_tchan *tchan;
  235. struct udma_rchan *rchan;
  236. struct udma_rflow *rflow;
  237. bool psil_paired;
  238. int irq_num_ring;
  239. int irq_num_udma;
  240. bool cyclic;
  241. bool paused;
  242. enum udma_chan_state state;
  243. struct completion teardown_completed;
  244. struct udma_tx_drain tx_drain;
  245. /* Channel configuration parameters */
  246. struct udma_chan_config config;
  247. /* dmapool for packet mode descriptors */
  248. bool use_dma_pool;
  249. struct dma_pool *hdesc_pool;
  250. u32 id;
  251. };
  252. static inline struct udma_dev *to_udma_dev(struct dma_device *d)
  253. {
  254. return container_of(d, struct udma_dev, ddev);
  255. }
  256. static inline struct udma_chan *to_udma_chan(struct dma_chan *c)
  257. {
  258. return container_of(c, struct udma_chan, vc.chan);
  259. }
  260. static inline struct udma_desc *to_udma_desc(struct dma_async_tx_descriptor *t)
  261. {
  262. return container_of(t, struct udma_desc, vd.tx);
  263. }
  264. /* Generic register access functions */
  265. static inline u32 udma_read(void __iomem *base, int reg)
  266. {
  267. return readl(base + reg);
  268. }
  269. static inline void udma_write(void __iomem *base, int reg, u32 val)
  270. {
  271. writel(val, base + reg);
  272. }
  273. static inline void udma_update_bits(void __iomem *base, int reg,
  274. u32 mask, u32 val)
  275. {
  276. u32 tmp, orig;
  277. orig = readl(base + reg);
  278. tmp = orig & ~mask;
  279. tmp |= (val & mask);
  280. if (tmp != orig)
  281. writel(tmp, base + reg);
  282. }
  283. /* TCHANRT */
  284. static inline u32 udma_tchanrt_read(struct udma_chan *uc, int reg)
  285. {
  286. if (!uc->tchan)
  287. return 0;
  288. return udma_read(uc->tchan->reg_rt, reg);
  289. }
  290. static inline void udma_tchanrt_write(struct udma_chan *uc, int reg, u32 val)
  291. {
  292. if (!uc->tchan)
  293. return;
  294. udma_write(uc->tchan->reg_rt, reg, val);
  295. }
  296. static inline void udma_tchanrt_update_bits(struct udma_chan *uc, int reg,
  297. u32 mask, u32 val)
  298. {
  299. if (!uc->tchan)
  300. return;
  301. udma_update_bits(uc->tchan->reg_rt, reg, mask, val);
  302. }
  303. /* RCHANRT */
  304. static inline u32 udma_rchanrt_read(struct udma_chan *uc, int reg)
  305. {
  306. if (!uc->rchan)
  307. return 0;
  308. return udma_read(uc->rchan->reg_rt, reg);
  309. }
  310. static inline void udma_rchanrt_write(struct udma_chan *uc, int reg, u32 val)
  311. {
  312. if (!uc->rchan)
  313. return;
  314. udma_write(uc->rchan->reg_rt, reg, val);
  315. }
  316. static inline void udma_rchanrt_update_bits(struct udma_chan *uc, int reg,
  317. u32 mask, u32 val)
  318. {
  319. if (!uc->rchan)
  320. return;
  321. udma_update_bits(uc->rchan->reg_rt, reg, mask, val);
  322. }
  323. static int navss_psil_pair(struct udma_dev *ud, u32 src_thread, u32 dst_thread)
  324. {
  325. struct udma_tisci_rm *tisci_rm = &ud->tisci_rm;
  326. dst_thread |= K3_PSIL_DST_THREAD_ID_OFFSET;
  327. return tisci_rm->tisci_psil_ops->pair(tisci_rm->tisci,
  328. tisci_rm->tisci_navss_dev_id,
  329. src_thread, dst_thread);
  330. }
  331. static int navss_psil_unpair(struct udma_dev *ud, u32 src_thread,
  332. u32 dst_thread)
  333. {
  334. struct udma_tisci_rm *tisci_rm = &ud->tisci_rm;
  335. dst_thread |= K3_PSIL_DST_THREAD_ID_OFFSET;
  336. return tisci_rm->tisci_psil_ops->unpair(tisci_rm->tisci,
  337. tisci_rm->tisci_navss_dev_id,
  338. src_thread, dst_thread);
  339. }
  340. static void k3_configure_chan_coherency(struct dma_chan *chan, u32 asel)
  341. {
  342. struct device *chan_dev = &chan->dev->device;
  343. if (asel == 0) {
  344. /* No special handling for the channel */
  345. chan->dev->chan_dma_dev = false;
  346. chan_dev->dma_coherent = false;
  347. chan_dev->dma_parms = NULL;
  348. } else if (asel == 14 || asel == 15) {
  349. chan->dev->chan_dma_dev = true;
  350. chan_dev->dma_coherent = true;
  351. dma_coerce_mask_and_coherent(chan_dev, DMA_BIT_MASK(48));
  352. chan_dev->dma_parms = chan_dev->parent->dma_parms;
  353. } else {
  354. dev_warn(chan->device->dev, "Invalid ASEL value: %u\n", asel);
  355. chan_dev->dma_coherent = false;
  356. chan_dev->dma_parms = NULL;
  357. }
  358. }
  359. static u8 udma_get_chan_tpl_index(struct udma_tpl *tpl_map, int chan_id)
  360. {
  361. int i;
  362. for (i = 0; i < tpl_map->levels; i++) {
  363. if (chan_id >= tpl_map->start_idx[i])
  364. return i;
  365. }
  366. return 0;
  367. }
  368. static void udma_reset_uchan(struct udma_chan *uc)
  369. {
  370. memset(&uc->config, 0, sizeof(uc->config));
  371. uc->config.remote_thread_id = -1;
  372. uc->config.mapped_channel_id = -1;
  373. uc->config.default_flow_id = -1;
  374. uc->state = UDMA_CHAN_IS_IDLE;
  375. }
  376. static void udma_dump_chan_stdata(struct udma_chan *uc)
  377. {
  378. struct device *dev = uc->ud->dev;
  379. u32 offset;
  380. int i;
  381. if (uc->config.dir == DMA_MEM_TO_DEV || uc->config.dir == DMA_MEM_TO_MEM) {
  382. dev_dbg(dev, "TCHAN State data:\n");
  383. for (i = 0; i < 32; i++) {
  384. offset = UDMA_CHAN_RT_STDATA_REG + i * 4;
  385. dev_dbg(dev, "TRT_STDATA[%02d]: 0x%08x\n", i,
  386. udma_tchanrt_read(uc, offset));
  387. }
  388. }
  389. if (uc->config.dir == DMA_DEV_TO_MEM || uc->config.dir == DMA_MEM_TO_MEM) {
  390. dev_dbg(dev, "RCHAN State data:\n");
  391. for (i = 0; i < 32; i++) {
  392. offset = UDMA_CHAN_RT_STDATA_REG + i * 4;
  393. dev_dbg(dev, "RRT_STDATA[%02d]: 0x%08x\n", i,
  394. udma_rchanrt_read(uc, offset));
  395. }
  396. }
  397. }
  398. static inline dma_addr_t udma_curr_cppi5_desc_paddr(struct udma_desc *d,
  399. int idx)
  400. {
  401. return d->hwdesc[idx].cppi5_desc_paddr;
  402. }
  403. static inline void *udma_curr_cppi5_desc_vaddr(struct udma_desc *d, int idx)
  404. {
  405. return d->hwdesc[idx].cppi5_desc_vaddr;
  406. }
  407. static struct udma_desc *udma_udma_desc_from_paddr(struct udma_chan *uc,
  408. dma_addr_t paddr)
  409. {
  410. struct udma_desc *d = uc->terminated_desc;
  411. if (d) {
  412. dma_addr_t desc_paddr = udma_curr_cppi5_desc_paddr(d,
  413. d->desc_idx);
  414. if (desc_paddr != paddr)
  415. d = NULL;
  416. }
  417. if (!d) {
  418. d = uc->desc;
  419. if (d) {
  420. dma_addr_t desc_paddr = udma_curr_cppi5_desc_paddr(d,
  421. d->desc_idx);
  422. if (desc_paddr != paddr)
  423. d = NULL;
  424. }
  425. }
  426. return d;
  427. }
  428. static void udma_free_hwdesc(struct udma_chan *uc, struct udma_desc *d)
  429. {
  430. if (uc->use_dma_pool) {
  431. int i;
  432. for (i = 0; i < d->hwdesc_count; i++) {
  433. if (!d->hwdesc[i].cppi5_desc_vaddr)
  434. continue;
  435. dma_pool_free(uc->hdesc_pool,
  436. d->hwdesc[i].cppi5_desc_vaddr,
  437. d->hwdesc[i].cppi5_desc_paddr);
  438. d->hwdesc[i].cppi5_desc_vaddr = NULL;
  439. }
  440. } else if (d->hwdesc[0].cppi5_desc_vaddr) {
  441. dma_free_coherent(uc->dma_dev, d->hwdesc[0].cppi5_desc_size,
  442. d->hwdesc[0].cppi5_desc_vaddr,
  443. d->hwdesc[0].cppi5_desc_paddr);
  444. d->hwdesc[0].cppi5_desc_vaddr = NULL;
  445. }
  446. }
  447. static void udma_purge_desc_work(struct work_struct *work)
  448. {
  449. struct udma_dev *ud = container_of(work, typeof(*ud), purge_work);
  450. struct virt_dma_desc *vd, *_vd;
  451. unsigned long flags;
  452. LIST_HEAD(head);
  453. spin_lock_irqsave(&ud->lock, flags);
  454. list_splice_tail_init(&ud->desc_to_purge, &head);
  455. spin_unlock_irqrestore(&ud->lock, flags);
  456. list_for_each_entry_safe(vd, _vd, &head, node) {
  457. struct udma_chan *uc = to_udma_chan(vd->tx.chan);
  458. struct udma_desc *d = to_udma_desc(&vd->tx);
  459. udma_free_hwdesc(uc, d);
  460. list_del(&vd->node);
  461. kfree(d);
  462. }
  463. /* If more to purge, schedule the work again */
  464. if (!list_empty(&ud->desc_to_purge))
  465. schedule_work(&ud->purge_work);
  466. }
  467. static void udma_desc_free(struct virt_dma_desc *vd)
  468. {
  469. struct udma_dev *ud = to_udma_dev(vd->tx.chan->device);
  470. struct udma_chan *uc = to_udma_chan(vd->tx.chan);
  471. struct udma_desc *d = to_udma_desc(&vd->tx);
  472. unsigned long flags;
  473. if (uc->terminated_desc == d)
  474. uc->terminated_desc = NULL;
  475. if (uc->use_dma_pool) {
  476. udma_free_hwdesc(uc, d);
  477. kfree(d);
  478. return;
  479. }
  480. spin_lock_irqsave(&ud->lock, flags);
  481. list_add_tail(&vd->node, &ud->desc_to_purge);
  482. spin_unlock_irqrestore(&ud->lock, flags);
  483. schedule_work(&ud->purge_work);
  484. }
  485. static bool udma_is_chan_running(struct udma_chan *uc)
  486. {
  487. u32 trt_ctl = 0;
  488. u32 rrt_ctl = 0;
  489. if (uc->tchan)
  490. trt_ctl = udma_tchanrt_read(uc, UDMA_CHAN_RT_CTL_REG);
  491. if (uc->rchan)
  492. rrt_ctl = udma_rchanrt_read(uc, UDMA_CHAN_RT_CTL_REG);
  493. if (trt_ctl & UDMA_CHAN_RT_CTL_EN || rrt_ctl & UDMA_CHAN_RT_CTL_EN)
  494. return true;
  495. return false;
  496. }
  497. static bool udma_is_chan_paused(struct udma_chan *uc)
  498. {
  499. u32 val, pause_mask;
  500. switch (uc->config.dir) {
  501. case DMA_DEV_TO_MEM:
  502. val = udma_rchanrt_read(uc, UDMA_CHAN_RT_PEER_RT_EN_REG);
  503. pause_mask = UDMA_PEER_RT_EN_PAUSE;
  504. break;
  505. case DMA_MEM_TO_DEV:
  506. val = udma_tchanrt_read(uc, UDMA_CHAN_RT_PEER_RT_EN_REG);
  507. pause_mask = UDMA_PEER_RT_EN_PAUSE;
  508. break;
  509. case DMA_MEM_TO_MEM:
  510. val = udma_tchanrt_read(uc, UDMA_CHAN_RT_CTL_REG);
  511. pause_mask = UDMA_CHAN_RT_CTL_PAUSE;
  512. break;
  513. default:
  514. return false;
  515. }
  516. if (val & pause_mask)
  517. return true;
  518. return false;
  519. }
  520. static inline dma_addr_t udma_get_rx_flush_hwdesc_paddr(struct udma_chan *uc)
  521. {
  522. return uc->ud->rx_flush.hwdescs[uc->config.pkt_mode].cppi5_desc_paddr;
  523. }
  524. static int udma_push_to_ring(struct udma_chan *uc, int idx)
  525. {
  526. struct udma_desc *d = uc->desc;
  527. struct k3_ring *ring = NULL;
  528. dma_addr_t paddr;
  529. switch (uc->config.dir) {
  530. case DMA_DEV_TO_MEM:
  531. ring = uc->rflow->fd_ring;
  532. break;
  533. case DMA_MEM_TO_DEV:
  534. case DMA_MEM_TO_MEM:
  535. ring = uc->tchan->t_ring;
  536. break;
  537. default:
  538. return -EINVAL;
  539. }
  540. /* RX flush packet: idx == -1 is only passed in case of DEV_TO_MEM */
  541. if (idx == -1) {
  542. paddr = udma_get_rx_flush_hwdesc_paddr(uc);
  543. } else {
  544. paddr = udma_curr_cppi5_desc_paddr(d, idx);
  545. wmb(); /* Ensure that writes are not moved over this point */
  546. }
  547. return k3_ringacc_ring_push(ring, &paddr);
  548. }
  549. static bool udma_desc_is_rx_flush(struct udma_chan *uc, dma_addr_t addr)
  550. {
  551. if (uc->config.dir != DMA_DEV_TO_MEM)
  552. return false;
  553. if (addr == udma_get_rx_flush_hwdesc_paddr(uc))
  554. return true;
  555. return false;
  556. }
  557. static int udma_pop_from_ring(struct udma_chan *uc, dma_addr_t *addr)
  558. {
  559. struct k3_ring *ring = NULL;
  560. int ret;
  561. switch (uc->config.dir) {
  562. case DMA_DEV_TO_MEM:
  563. ring = uc->rflow->r_ring;
  564. break;
  565. case DMA_MEM_TO_DEV:
  566. case DMA_MEM_TO_MEM:
  567. ring = uc->tchan->tc_ring;
  568. break;
  569. default:
  570. return -ENOENT;
  571. }
  572. ret = k3_ringacc_ring_pop(ring, addr);
  573. if (ret)
  574. return ret;
  575. rmb(); /* Ensure that reads are not moved before this point */
  576. /* Teardown completion */
  577. if (cppi5_desc_is_tdcm(*addr))
  578. return 0;
  579. /* Check for flush descriptor */
  580. if (udma_desc_is_rx_flush(uc, *addr))
  581. return -ENOENT;
  582. return 0;
  583. }
  584. static void udma_reset_rings(struct udma_chan *uc)
  585. {
  586. struct k3_ring *ring1 = NULL;
  587. struct k3_ring *ring2 = NULL;
  588. switch (uc->config.dir) {
  589. case DMA_DEV_TO_MEM:
  590. if (uc->rchan) {
  591. ring1 = uc->rflow->fd_ring;
  592. ring2 = uc->rflow->r_ring;
  593. }
  594. break;
  595. case DMA_MEM_TO_DEV:
  596. case DMA_MEM_TO_MEM:
  597. if (uc->tchan) {
  598. ring1 = uc->tchan->t_ring;
  599. ring2 = uc->tchan->tc_ring;
  600. }
  601. break;
  602. default:
  603. break;
  604. }
  605. if (ring1)
  606. k3_ringacc_ring_reset_dma(ring1,
  607. k3_ringacc_ring_get_occ(ring1));
  608. if (ring2)
  609. k3_ringacc_ring_reset(ring2);
  610. /* make sure we are not leaking memory by stalled descriptor */
  611. if (uc->terminated_desc) {
  612. udma_desc_free(&uc->terminated_desc->vd);
  613. uc->terminated_desc = NULL;
  614. }
  615. }
  616. static void udma_decrement_byte_counters(struct udma_chan *uc, u32 val)
  617. {
  618. if (uc->desc->dir == DMA_DEV_TO_MEM) {
  619. udma_rchanrt_write(uc, UDMA_CHAN_RT_BCNT_REG, val);
  620. udma_rchanrt_write(uc, UDMA_CHAN_RT_SBCNT_REG, val);
  621. if (uc->config.ep_type != PSIL_EP_NATIVE)
  622. udma_rchanrt_write(uc, UDMA_CHAN_RT_PEER_BCNT_REG, val);
  623. } else {
  624. udma_tchanrt_write(uc, UDMA_CHAN_RT_BCNT_REG, val);
  625. udma_tchanrt_write(uc, UDMA_CHAN_RT_SBCNT_REG, val);
  626. if (!uc->bchan && uc->config.ep_type != PSIL_EP_NATIVE)
  627. udma_tchanrt_write(uc, UDMA_CHAN_RT_PEER_BCNT_REG, val);
  628. }
  629. }
  630. static void udma_reset_counters(struct udma_chan *uc)
  631. {
  632. u32 val;
  633. if (uc->tchan) {
  634. val = udma_tchanrt_read(uc, UDMA_CHAN_RT_BCNT_REG);
  635. udma_tchanrt_write(uc, UDMA_CHAN_RT_BCNT_REG, val);
  636. val = udma_tchanrt_read(uc, UDMA_CHAN_RT_SBCNT_REG);
  637. udma_tchanrt_write(uc, UDMA_CHAN_RT_SBCNT_REG, val);
  638. val = udma_tchanrt_read(uc, UDMA_CHAN_RT_PCNT_REG);
  639. udma_tchanrt_write(uc, UDMA_CHAN_RT_PCNT_REG, val);
  640. if (!uc->bchan) {
  641. val = udma_tchanrt_read(uc, UDMA_CHAN_RT_PEER_BCNT_REG);
  642. udma_tchanrt_write(uc, UDMA_CHAN_RT_PEER_BCNT_REG, val);
  643. }
  644. }
  645. if (uc->rchan) {
  646. val = udma_rchanrt_read(uc, UDMA_CHAN_RT_BCNT_REG);
  647. udma_rchanrt_write(uc, UDMA_CHAN_RT_BCNT_REG, val);
  648. val = udma_rchanrt_read(uc, UDMA_CHAN_RT_SBCNT_REG);
  649. udma_rchanrt_write(uc, UDMA_CHAN_RT_SBCNT_REG, val);
  650. val = udma_rchanrt_read(uc, UDMA_CHAN_RT_PCNT_REG);
  651. udma_rchanrt_write(uc, UDMA_CHAN_RT_PCNT_REG, val);
  652. val = udma_rchanrt_read(uc, UDMA_CHAN_RT_PEER_BCNT_REG);
  653. udma_rchanrt_write(uc, UDMA_CHAN_RT_PEER_BCNT_REG, val);
  654. }
  655. }
  656. static int udma_reset_chan(struct udma_chan *uc, bool hard)
  657. {
  658. switch (uc->config.dir) {
  659. case DMA_DEV_TO_MEM:
  660. udma_rchanrt_write(uc, UDMA_CHAN_RT_PEER_RT_EN_REG, 0);
  661. udma_rchanrt_write(uc, UDMA_CHAN_RT_CTL_REG, 0);
  662. break;
  663. case DMA_MEM_TO_DEV:
  664. udma_tchanrt_write(uc, UDMA_CHAN_RT_CTL_REG, 0);
  665. udma_tchanrt_write(uc, UDMA_CHAN_RT_PEER_RT_EN_REG, 0);
  666. break;
  667. case DMA_MEM_TO_MEM:
  668. udma_rchanrt_write(uc, UDMA_CHAN_RT_CTL_REG, 0);
  669. udma_tchanrt_write(uc, UDMA_CHAN_RT_CTL_REG, 0);
  670. break;
  671. default:
  672. return -EINVAL;
  673. }
  674. /* Reset all counters */
  675. udma_reset_counters(uc);
  676. /* Hard reset: re-initialize the channel to reset */
  677. if (hard) {
  678. struct udma_chan_config ucc_backup;
  679. int ret;
  680. memcpy(&ucc_backup, &uc->config, sizeof(uc->config));
  681. uc->ud->ddev.device_free_chan_resources(&uc->vc.chan);
  682. /* restore the channel configuration */
  683. memcpy(&uc->config, &ucc_backup, sizeof(uc->config));
  684. ret = uc->ud->ddev.device_alloc_chan_resources(&uc->vc.chan);
  685. if (ret)
  686. return ret;
  687. /*
  688. * Setting forced teardown after forced reset helps recovering
  689. * the rchan.
  690. */
  691. if (uc->config.dir == DMA_DEV_TO_MEM)
  692. udma_rchanrt_write(uc, UDMA_CHAN_RT_CTL_REG,
  693. UDMA_CHAN_RT_CTL_EN |
  694. UDMA_CHAN_RT_CTL_TDOWN |
  695. UDMA_CHAN_RT_CTL_FTDOWN);
  696. }
  697. uc->state = UDMA_CHAN_IS_IDLE;
  698. return 0;
  699. }
  700. static void udma_start_desc(struct udma_chan *uc)
  701. {
  702. struct udma_chan_config *ucc = &uc->config;
  703. if (uc->ud->match_data->type == DMA_TYPE_UDMA && ucc->pkt_mode &&
  704. (uc->cyclic || ucc->dir == DMA_DEV_TO_MEM)) {
  705. int i;
  706. /*
  707. * UDMA only: Push all descriptors to ring for packet mode
  708. * cyclic or RX
  709. * PKTDMA supports pre-linked descriptor and cyclic is not
  710. * supported
  711. */
  712. for (i = 0; i < uc->desc->sglen; i++)
  713. udma_push_to_ring(uc, i);
  714. } else {
  715. udma_push_to_ring(uc, 0);
  716. }
  717. }
  718. static bool udma_chan_needs_reconfiguration(struct udma_chan *uc)
  719. {
  720. /* Only PDMAs have staticTR */
  721. if (uc->config.ep_type == PSIL_EP_NATIVE)
  722. return false;
  723. /* Check if the staticTR configuration has changed for TX */
  724. if (memcmp(&uc->static_tr, &uc->desc->static_tr, sizeof(uc->static_tr)))
  725. return true;
  726. return false;
  727. }
  728. static int udma_start(struct udma_chan *uc)
  729. {
  730. struct virt_dma_desc *vd = vchan_next_desc(&uc->vc);
  731. if (!vd) {
  732. uc->desc = NULL;
  733. return -ENOENT;
  734. }
  735. list_del(&vd->node);
  736. uc->desc = to_udma_desc(&vd->tx);
  737. /* Channel is already running and does not need reconfiguration */
  738. if (udma_is_chan_running(uc) && !udma_chan_needs_reconfiguration(uc)) {
  739. udma_start_desc(uc);
  740. goto out;
  741. }
  742. /* Make sure that we clear the teardown bit, if it is set */
  743. udma_reset_chan(uc, false);
  744. /* Push descriptors before we start the channel */
  745. udma_start_desc(uc);
  746. switch (uc->desc->dir) {
  747. case DMA_DEV_TO_MEM:
  748. /* Config remote TR */
  749. if (uc->config.ep_type == PSIL_EP_PDMA_XY) {
  750. u32 val = PDMA_STATIC_TR_Y(uc->desc->static_tr.elcnt) |
  751. PDMA_STATIC_TR_X(uc->desc->static_tr.elsize);
  752. const struct udma_match_data *match_data =
  753. uc->ud->match_data;
  754. if (uc->config.enable_acc32)
  755. val |= PDMA_STATIC_TR_XY_ACC32;
  756. if (uc->config.enable_burst)
  757. val |= PDMA_STATIC_TR_XY_BURST;
  758. udma_rchanrt_write(uc,
  759. UDMA_CHAN_RT_PEER_STATIC_TR_XY_REG,
  760. val);
  761. udma_rchanrt_write(uc,
  762. UDMA_CHAN_RT_PEER_STATIC_TR_Z_REG,
  763. PDMA_STATIC_TR_Z(uc->desc->static_tr.bstcnt,
  764. match_data->statictr_z_mask));
  765. /* save the current staticTR configuration */
  766. memcpy(&uc->static_tr, &uc->desc->static_tr,
  767. sizeof(uc->static_tr));
  768. }
  769. udma_rchanrt_write(uc, UDMA_CHAN_RT_CTL_REG,
  770. UDMA_CHAN_RT_CTL_EN);
  771. /* Enable remote */
  772. udma_rchanrt_write(uc, UDMA_CHAN_RT_PEER_RT_EN_REG,
  773. UDMA_PEER_RT_EN_ENABLE);
  774. break;
  775. case DMA_MEM_TO_DEV:
  776. /* Config remote TR */
  777. if (uc->config.ep_type == PSIL_EP_PDMA_XY) {
  778. u32 val = PDMA_STATIC_TR_Y(uc->desc->static_tr.elcnt) |
  779. PDMA_STATIC_TR_X(uc->desc->static_tr.elsize);
  780. if (uc->config.enable_acc32)
  781. val |= PDMA_STATIC_TR_XY_ACC32;
  782. if (uc->config.enable_burst)
  783. val |= PDMA_STATIC_TR_XY_BURST;
  784. udma_tchanrt_write(uc,
  785. UDMA_CHAN_RT_PEER_STATIC_TR_XY_REG,
  786. val);
  787. /* save the current staticTR configuration */
  788. memcpy(&uc->static_tr, &uc->desc->static_tr,
  789. sizeof(uc->static_tr));
  790. }
  791. /* Enable remote */
  792. udma_tchanrt_write(uc, UDMA_CHAN_RT_PEER_RT_EN_REG,
  793. UDMA_PEER_RT_EN_ENABLE);
  794. udma_tchanrt_write(uc, UDMA_CHAN_RT_CTL_REG,
  795. UDMA_CHAN_RT_CTL_EN);
  796. break;
  797. case DMA_MEM_TO_MEM:
  798. udma_rchanrt_write(uc, UDMA_CHAN_RT_CTL_REG,
  799. UDMA_CHAN_RT_CTL_EN);
  800. udma_tchanrt_write(uc, UDMA_CHAN_RT_CTL_REG,
  801. UDMA_CHAN_RT_CTL_EN);
  802. break;
  803. default:
  804. return -EINVAL;
  805. }
  806. uc->state = UDMA_CHAN_IS_ACTIVE;
  807. out:
  808. return 0;
  809. }
  810. static int udma_stop(struct udma_chan *uc)
  811. {
  812. enum udma_chan_state old_state = uc->state;
  813. uc->state = UDMA_CHAN_IS_TERMINATING;
  814. reinit_completion(&uc->teardown_completed);
  815. switch (uc->config.dir) {
  816. case DMA_DEV_TO_MEM:
  817. if (!uc->cyclic && !uc->desc)
  818. udma_push_to_ring(uc, -1);
  819. udma_rchanrt_write(uc, UDMA_CHAN_RT_PEER_RT_EN_REG,
  820. UDMA_PEER_RT_EN_ENABLE |
  821. UDMA_PEER_RT_EN_TEARDOWN);
  822. break;
  823. case DMA_MEM_TO_DEV:
  824. udma_tchanrt_write(uc, UDMA_CHAN_RT_PEER_RT_EN_REG,
  825. UDMA_PEER_RT_EN_ENABLE |
  826. UDMA_PEER_RT_EN_FLUSH);
  827. udma_tchanrt_write(uc, UDMA_CHAN_RT_CTL_REG,
  828. UDMA_CHAN_RT_CTL_EN |
  829. UDMA_CHAN_RT_CTL_TDOWN);
  830. break;
  831. case DMA_MEM_TO_MEM:
  832. udma_tchanrt_write(uc, UDMA_CHAN_RT_CTL_REG,
  833. UDMA_CHAN_RT_CTL_EN |
  834. UDMA_CHAN_RT_CTL_TDOWN);
  835. break;
  836. default:
  837. uc->state = old_state;
  838. complete_all(&uc->teardown_completed);
  839. return -EINVAL;
  840. }
  841. return 0;
  842. }
  843. static void udma_cyclic_packet_elapsed(struct udma_chan *uc)
  844. {
  845. struct udma_desc *d = uc->desc;
  846. struct cppi5_host_desc_t *h_desc;
  847. h_desc = d->hwdesc[d->desc_idx].cppi5_desc_vaddr;
  848. cppi5_hdesc_reset_to_original(h_desc);
  849. udma_push_to_ring(uc, d->desc_idx);
  850. d->desc_idx = (d->desc_idx + 1) % d->sglen;
  851. }
  852. static inline void udma_fetch_epib(struct udma_chan *uc, struct udma_desc *d)
  853. {
  854. struct cppi5_host_desc_t *h_desc = d->hwdesc[0].cppi5_desc_vaddr;
  855. memcpy(d->metadata, h_desc->epib, d->metadata_size);
  856. }
  857. static bool udma_is_desc_really_done(struct udma_chan *uc, struct udma_desc *d)
  858. {
  859. u32 peer_bcnt, bcnt;
  860. /*
  861. * Only TX towards PDMA is affected.
  862. * If DMA_PREP_INTERRUPT is not set by consumer then skip the transfer
  863. * completion calculation, consumer must ensure that there is no stale
  864. * data in DMA fabric in this case.
  865. */
  866. if (uc->config.ep_type == PSIL_EP_NATIVE ||
  867. uc->config.dir != DMA_MEM_TO_DEV || !(uc->config.tx_flags & DMA_PREP_INTERRUPT))
  868. return true;
  869. peer_bcnt = udma_tchanrt_read(uc, UDMA_CHAN_RT_PEER_BCNT_REG);
  870. bcnt = udma_tchanrt_read(uc, UDMA_CHAN_RT_BCNT_REG);
  871. /* Transfer is incomplete, store current residue and time stamp */
  872. if (peer_bcnt < bcnt) {
  873. uc->tx_drain.residue = bcnt - peer_bcnt;
  874. uc->tx_drain.tstamp = ktime_get();
  875. return false;
  876. }
  877. return true;
  878. }
  879. static void udma_check_tx_completion(struct work_struct *work)
  880. {
  881. struct udma_chan *uc = container_of(work, typeof(*uc),
  882. tx_drain.work.work);
  883. bool desc_done = true;
  884. u32 residue_diff;
  885. ktime_t time_diff;
  886. unsigned long delay;
  887. while (1) {
  888. if (uc->desc) {
  889. /* Get previous residue and time stamp */
  890. residue_diff = uc->tx_drain.residue;
  891. time_diff = uc->tx_drain.tstamp;
  892. /*
  893. * Get current residue and time stamp or see if
  894. * transfer is complete
  895. */
  896. desc_done = udma_is_desc_really_done(uc, uc->desc);
  897. }
  898. if (!desc_done) {
  899. /*
  900. * Find the time delta and residue delta w.r.t
  901. * previous poll
  902. */
  903. time_diff = ktime_sub(uc->tx_drain.tstamp,
  904. time_diff) + 1;
  905. residue_diff -= uc->tx_drain.residue;
  906. if (residue_diff) {
  907. /*
  908. * Try to guess when we should check
  909. * next time by calculating rate at
  910. * which data is being drained at the
  911. * peer device
  912. */
  913. delay = (time_diff / residue_diff) *
  914. uc->tx_drain.residue;
  915. } else {
  916. /* No progress, check again in 1 second */
  917. schedule_delayed_work(&uc->tx_drain.work, HZ);
  918. break;
  919. }
  920. usleep_range(ktime_to_us(delay),
  921. ktime_to_us(delay) + 10);
  922. continue;
  923. }
  924. if (uc->desc) {
  925. struct udma_desc *d = uc->desc;
  926. udma_decrement_byte_counters(uc, d->residue);
  927. udma_start(uc);
  928. vchan_cookie_complete(&d->vd);
  929. break;
  930. }
  931. break;
  932. }
  933. }
  934. static irqreturn_t udma_ring_irq_handler(int irq, void *data)
  935. {
  936. struct udma_chan *uc = data;
  937. struct udma_desc *d;
  938. dma_addr_t paddr = 0;
  939. if (udma_pop_from_ring(uc, &paddr) || !paddr)
  940. return IRQ_HANDLED;
  941. spin_lock(&uc->vc.lock);
  942. /* Teardown completion message */
  943. if (cppi5_desc_is_tdcm(paddr)) {
  944. complete_all(&uc->teardown_completed);
  945. if (uc->terminated_desc) {
  946. udma_desc_free(&uc->terminated_desc->vd);
  947. uc->terminated_desc = NULL;
  948. }
  949. if (!uc->desc)
  950. udma_start(uc);
  951. goto out;
  952. }
  953. d = udma_udma_desc_from_paddr(uc, paddr);
  954. if (d) {
  955. dma_addr_t desc_paddr = udma_curr_cppi5_desc_paddr(d,
  956. d->desc_idx);
  957. if (desc_paddr != paddr) {
  958. dev_err(uc->ud->dev, "not matching descriptors!\n");
  959. goto out;
  960. }
  961. if (d == uc->desc) {
  962. /* active descriptor */
  963. if (uc->cyclic) {
  964. udma_cyclic_packet_elapsed(uc);
  965. vchan_cyclic_callback(&d->vd);
  966. } else {
  967. if (udma_is_desc_really_done(uc, d)) {
  968. udma_decrement_byte_counters(uc, d->residue);
  969. udma_start(uc);
  970. vchan_cookie_complete(&d->vd);
  971. } else {
  972. schedule_delayed_work(&uc->tx_drain.work,
  973. 0);
  974. }
  975. }
  976. } else {
  977. /*
  978. * terminated descriptor, mark the descriptor as
  979. * completed to update the channel's cookie marker
  980. */
  981. dma_cookie_complete(&d->vd.tx);
  982. }
  983. }
  984. out:
  985. spin_unlock(&uc->vc.lock);
  986. return IRQ_HANDLED;
  987. }
  988. static irqreturn_t udma_udma_irq_handler(int irq, void *data)
  989. {
  990. struct udma_chan *uc = data;
  991. struct udma_desc *d;
  992. spin_lock(&uc->vc.lock);
  993. d = uc->desc;
  994. if (d) {
  995. d->tr_idx = (d->tr_idx + 1) % d->sglen;
  996. if (uc->cyclic) {
  997. vchan_cyclic_callback(&d->vd);
  998. } else {
  999. /* TODO: figure out the real amount of data */
  1000. udma_decrement_byte_counters(uc, d->residue);
  1001. udma_start(uc);
  1002. vchan_cookie_complete(&d->vd);
  1003. }
  1004. }
  1005. spin_unlock(&uc->vc.lock);
  1006. return IRQ_HANDLED;
  1007. }
  1008. /**
  1009. * __udma_alloc_gp_rflow_range - alloc range of GP RX flows
  1010. * @ud: UDMA device
  1011. * @from: Start the search from this flow id number
  1012. * @cnt: Number of consecutive flow ids to allocate
  1013. *
  1014. * Allocate range of RX flow ids for future use, those flows can be requested
  1015. * only using explicit flow id number. if @from is set to -1 it will try to find
  1016. * first free range. if @from is positive value it will force allocation only
  1017. * of the specified range of flows.
  1018. *
  1019. * Returns -ENOMEM if can't find free range.
  1020. * -EEXIST if requested range is busy.
  1021. * -EINVAL if wrong input values passed.
  1022. * Returns flow id on success.
  1023. */
  1024. static int __udma_alloc_gp_rflow_range(struct udma_dev *ud, int from, int cnt)
  1025. {
  1026. int start, tmp_from;
  1027. DECLARE_BITMAP(tmp, K3_UDMA_MAX_RFLOWS);
  1028. tmp_from = from;
  1029. if (tmp_from < 0)
  1030. tmp_from = ud->rchan_cnt;
  1031. /* default flows can't be allocated and accessible only by id */
  1032. if (tmp_from < ud->rchan_cnt)
  1033. return -EINVAL;
  1034. if (tmp_from + cnt > ud->rflow_cnt)
  1035. return -EINVAL;
  1036. bitmap_or(tmp, ud->rflow_gp_map, ud->rflow_gp_map_allocated,
  1037. ud->rflow_cnt);
  1038. start = bitmap_find_next_zero_area(tmp,
  1039. ud->rflow_cnt,
  1040. tmp_from, cnt, 0);
  1041. if (start >= ud->rflow_cnt)
  1042. return -ENOMEM;
  1043. if (from >= 0 && start != from)
  1044. return -EEXIST;
  1045. bitmap_set(ud->rflow_gp_map_allocated, start, cnt);
  1046. return start;
  1047. }
  1048. static int __udma_free_gp_rflow_range(struct udma_dev *ud, int from, int cnt)
  1049. {
  1050. if (from < ud->rchan_cnt)
  1051. return -EINVAL;
  1052. if (from + cnt > ud->rflow_cnt)
  1053. return -EINVAL;
  1054. bitmap_clear(ud->rflow_gp_map_allocated, from, cnt);
  1055. return 0;
  1056. }
  1057. static struct udma_rflow *__udma_get_rflow(struct udma_dev *ud, int id)
  1058. {
  1059. /*
  1060. * Attempt to request rflow by ID can be made for any rflow
  1061. * if not in use with assumption that caller knows what's doing.
  1062. * TI-SCI FW will perform additional permission check ant way, it's
  1063. * safe
  1064. */
  1065. if (id < 0 || id >= ud->rflow_cnt)
  1066. return ERR_PTR(-ENOENT);
  1067. if (test_bit(id, ud->rflow_in_use))
  1068. return ERR_PTR(-ENOENT);
  1069. if (ud->rflow_gp_map) {
  1070. /* GP rflow has to be allocated first */
  1071. if (!test_bit(id, ud->rflow_gp_map) &&
  1072. !test_bit(id, ud->rflow_gp_map_allocated))
  1073. return ERR_PTR(-EINVAL);
  1074. }
  1075. dev_dbg(ud->dev, "get rflow%d\n", id);
  1076. set_bit(id, ud->rflow_in_use);
  1077. return &ud->rflows[id];
  1078. }
  1079. static void __udma_put_rflow(struct udma_dev *ud, struct udma_rflow *rflow)
  1080. {
  1081. if (!test_bit(rflow->id, ud->rflow_in_use)) {
  1082. dev_err(ud->dev, "attempt to put unused rflow%d\n", rflow->id);
  1083. return;
  1084. }
  1085. dev_dbg(ud->dev, "put rflow%d\n", rflow->id);
  1086. clear_bit(rflow->id, ud->rflow_in_use);
  1087. }
  1088. #define UDMA_RESERVE_RESOURCE(res) \
  1089. static struct udma_##res *__udma_reserve_##res(struct udma_dev *ud, \
  1090. enum udma_tp_level tpl, \
  1091. int id) \
  1092. { \
  1093. if (id >= 0) { \
  1094. if (test_bit(id, ud->res##_map)) { \
  1095. dev_err(ud->dev, "res##%d is in use\n", id); \
  1096. return ERR_PTR(-ENOENT); \
  1097. } \
  1098. } else { \
  1099. int start; \
  1100. \
  1101. if (tpl >= ud->res##_tpl.levels) \
  1102. tpl = ud->res##_tpl.levels - 1; \
  1103. \
  1104. start = ud->res##_tpl.start_idx[tpl]; \
  1105. \
  1106. id = find_next_zero_bit(ud->res##_map, ud->res##_cnt, \
  1107. start); \
  1108. if (id == ud->res##_cnt) { \
  1109. return ERR_PTR(-ENOENT); \
  1110. } \
  1111. } \
  1112. \
  1113. set_bit(id, ud->res##_map); \
  1114. return &ud->res##s[id]; \
  1115. }
  1116. UDMA_RESERVE_RESOURCE(bchan);
  1117. UDMA_RESERVE_RESOURCE(tchan);
  1118. UDMA_RESERVE_RESOURCE(rchan);
  1119. static int bcdma_get_bchan(struct udma_chan *uc)
  1120. {
  1121. struct udma_dev *ud = uc->ud;
  1122. enum udma_tp_level tpl;
  1123. int ret;
  1124. if (uc->bchan) {
  1125. dev_dbg(ud->dev, "chan%d: already have bchan%d allocated\n",
  1126. uc->id, uc->bchan->id);
  1127. return 0;
  1128. }
  1129. /*
  1130. * Use normal channels for peripherals, and highest TPL channel for
  1131. * mem2mem
  1132. */
  1133. if (uc->config.tr_trigger_type)
  1134. tpl = 0;
  1135. else
  1136. tpl = ud->bchan_tpl.levels - 1;
  1137. uc->bchan = __udma_reserve_bchan(ud, tpl, -1);
  1138. if (IS_ERR(uc->bchan)) {
  1139. ret = PTR_ERR(uc->bchan);
  1140. uc->bchan = NULL;
  1141. return ret;
  1142. }
  1143. uc->tchan = uc->bchan;
  1144. return 0;
  1145. }
  1146. static int udma_get_tchan(struct udma_chan *uc)
  1147. {
  1148. struct udma_dev *ud = uc->ud;
  1149. int ret;
  1150. if (uc->tchan) {
  1151. dev_dbg(ud->dev, "chan%d: already have tchan%d allocated\n",
  1152. uc->id, uc->tchan->id);
  1153. return 0;
  1154. }
  1155. /*
  1156. * mapped_channel_id is -1 for UDMA, BCDMA and PKTDMA unmapped channels.
  1157. * For PKTDMA mapped channels it is configured to a channel which must
  1158. * be used to service the peripheral.
  1159. */
  1160. uc->tchan = __udma_reserve_tchan(ud, uc->config.channel_tpl,
  1161. uc->config.mapped_channel_id);
  1162. if (IS_ERR(uc->tchan)) {
  1163. ret = PTR_ERR(uc->tchan);
  1164. uc->tchan = NULL;
  1165. return ret;
  1166. }
  1167. if (ud->tflow_cnt) {
  1168. int tflow_id;
  1169. /* Only PKTDMA have support for tx flows */
  1170. if (uc->config.default_flow_id >= 0)
  1171. tflow_id = uc->config.default_flow_id;
  1172. else
  1173. tflow_id = uc->tchan->id;
  1174. if (test_bit(tflow_id, ud->tflow_map)) {
  1175. dev_err(ud->dev, "tflow%d is in use\n", tflow_id);
  1176. clear_bit(uc->tchan->id, ud->tchan_map);
  1177. uc->tchan = NULL;
  1178. return -ENOENT;
  1179. }
  1180. uc->tchan->tflow_id = tflow_id;
  1181. set_bit(tflow_id, ud->tflow_map);
  1182. } else {
  1183. uc->tchan->tflow_id = -1;
  1184. }
  1185. return 0;
  1186. }
  1187. static int udma_get_rchan(struct udma_chan *uc)
  1188. {
  1189. struct udma_dev *ud = uc->ud;
  1190. int ret;
  1191. if (uc->rchan) {
  1192. dev_dbg(ud->dev, "chan%d: already have rchan%d allocated\n",
  1193. uc->id, uc->rchan->id);
  1194. return 0;
  1195. }
  1196. /*
  1197. * mapped_channel_id is -1 for UDMA, BCDMA and PKTDMA unmapped channels.
  1198. * For PKTDMA mapped channels it is configured to a channel which must
  1199. * be used to service the peripheral.
  1200. */
  1201. uc->rchan = __udma_reserve_rchan(ud, uc->config.channel_tpl,
  1202. uc->config.mapped_channel_id);
  1203. if (IS_ERR(uc->rchan)) {
  1204. ret = PTR_ERR(uc->rchan);
  1205. uc->rchan = NULL;
  1206. return ret;
  1207. }
  1208. return 0;
  1209. }
  1210. static int udma_get_chan_pair(struct udma_chan *uc)
  1211. {
  1212. struct udma_dev *ud = uc->ud;
  1213. int chan_id, end;
  1214. if ((uc->tchan && uc->rchan) && uc->tchan->id == uc->rchan->id) {
  1215. dev_info(ud->dev, "chan%d: already have %d pair allocated\n",
  1216. uc->id, uc->tchan->id);
  1217. return 0;
  1218. }
  1219. if (uc->tchan) {
  1220. dev_err(ud->dev, "chan%d: already have tchan%d allocated\n",
  1221. uc->id, uc->tchan->id);
  1222. return -EBUSY;
  1223. } else if (uc->rchan) {
  1224. dev_err(ud->dev, "chan%d: already have rchan%d allocated\n",
  1225. uc->id, uc->rchan->id);
  1226. return -EBUSY;
  1227. }
  1228. /* Can be optimized, but let's have it like this for now */
  1229. end = min(ud->tchan_cnt, ud->rchan_cnt);
  1230. /*
  1231. * Try to use the highest TPL channel pair for MEM_TO_MEM channels
  1232. * Note: in UDMAP the channel TPL is symmetric between tchan and rchan
  1233. */
  1234. chan_id = ud->tchan_tpl.start_idx[ud->tchan_tpl.levels - 1];
  1235. for (; chan_id < end; chan_id++) {
  1236. if (!test_bit(chan_id, ud->tchan_map) &&
  1237. !test_bit(chan_id, ud->rchan_map))
  1238. break;
  1239. }
  1240. if (chan_id == end)
  1241. return -ENOENT;
  1242. set_bit(chan_id, ud->tchan_map);
  1243. set_bit(chan_id, ud->rchan_map);
  1244. uc->tchan = &ud->tchans[chan_id];
  1245. uc->rchan = &ud->rchans[chan_id];
  1246. /* UDMA does not use tx flows */
  1247. uc->tchan->tflow_id = -1;
  1248. return 0;
  1249. }
  1250. static int udma_get_rflow(struct udma_chan *uc, int flow_id)
  1251. {
  1252. struct udma_dev *ud = uc->ud;
  1253. int ret;
  1254. if (!uc->rchan) {
  1255. dev_err(ud->dev, "chan%d: does not have rchan??\n", uc->id);
  1256. return -EINVAL;
  1257. }
  1258. if (uc->rflow) {
  1259. dev_dbg(ud->dev, "chan%d: already have rflow%d allocated\n",
  1260. uc->id, uc->rflow->id);
  1261. return 0;
  1262. }
  1263. uc->rflow = __udma_get_rflow(ud, flow_id);
  1264. if (IS_ERR(uc->rflow)) {
  1265. ret = PTR_ERR(uc->rflow);
  1266. uc->rflow = NULL;
  1267. return ret;
  1268. }
  1269. return 0;
  1270. }
  1271. static void bcdma_put_bchan(struct udma_chan *uc)
  1272. {
  1273. struct udma_dev *ud = uc->ud;
  1274. if (uc->bchan) {
  1275. dev_dbg(ud->dev, "chan%d: put bchan%d\n", uc->id,
  1276. uc->bchan->id);
  1277. clear_bit(uc->bchan->id, ud->bchan_map);
  1278. uc->bchan = NULL;
  1279. uc->tchan = NULL;
  1280. }
  1281. }
  1282. static void udma_put_rchan(struct udma_chan *uc)
  1283. {
  1284. struct udma_dev *ud = uc->ud;
  1285. if (uc->rchan) {
  1286. dev_dbg(ud->dev, "chan%d: put rchan%d\n", uc->id,
  1287. uc->rchan->id);
  1288. clear_bit(uc->rchan->id, ud->rchan_map);
  1289. uc->rchan = NULL;
  1290. }
  1291. }
  1292. static void udma_put_tchan(struct udma_chan *uc)
  1293. {
  1294. struct udma_dev *ud = uc->ud;
  1295. if (uc->tchan) {
  1296. dev_dbg(ud->dev, "chan%d: put tchan%d\n", uc->id,
  1297. uc->tchan->id);
  1298. clear_bit(uc->tchan->id, ud->tchan_map);
  1299. if (uc->tchan->tflow_id >= 0)
  1300. clear_bit(uc->tchan->tflow_id, ud->tflow_map);
  1301. uc->tchan = NULL;
  1302. }
  1303. }
  1304. static void udma_put_rflow(struct udma_chan *uc)
  1305. {
  1306. struct udma_dev *ud = uc->ud;
  1307. if (uc->rflow) {
  1308. dev_dbg(ud->dev, "chan%d: put rflow%d\n", uc->id,
  1309. uc->rflow->id);
  1310. __udma_put_rflow(ud, uc->rflow);
  1311. uc->rflow = NULL;
  1312. }
  1313. }
  1314. static void bcdma_free_bchan_resources(struct udma_chan *uc)
  1315. {
  1316. if (!uc->bchan)
  1317. return;
  1318. k3_ringacc_ring_free(uc->bchan->tc_ring);
  1319. k3_ringacc_ring_free(uc->bchan->t_ring);
  1320. uc->bchan->tc_ring = NULL;
  1321. uc->bchan->t_ring = NULL;
  1322. k3_configure_chan_coherency(&uc->vc.chan, 0);
  1323. bcdma_put_bchan(uc);
  1324. }
  1325. static int bcdma_alloc_bchan_resources(struct udma_chan *uc)
  1326. {
  1327. struct k3_ring_cfg ring_cfg;
  1328. struct udma_dev *ud = uc->ud;
  1329. int ret;
  1330. ret = bcdma_get_bchan(uc);
  1331. if (ret)
  1332. return ret;
  1333. ret = k3_ringacc_request_rings_pair(ud->ringacc, uc->bchan->id, -1,
  1334. &uc->bchan->t_ring,
  1335. &uc->bchan->tc_ring);
  1336. if (ret) {
  1337. ret = -EBUSY;
  1338. goto err_ring;
  1339. }
  1340. memset(&ring_cfg, 0, sizeof(ring_cfg));
  1341. ring_cfg.size = K3_UDMA_DEFAULT_RING_SIZE;
  1342. ring_cfg.elm_size = K3_RINGACC_RING_ELSIZE_8;
  1343. ring_cfg.mode = K3_RINGACC_RING_MODE_RING;
  1344. k3_configure_chan_coherency(&uc->vc.chan, ud->asel);
  1345. ring_cfg.asel = ud->asel;
  1346. ring_cfg.dma_dev = dmaengine_get_dma_device(&uc->vc.chan);
  1347. ret = k3_ringacc_ring_cfg(uc->bchan->t_ring, &ring_cfg);
  1348. if (ret)
  1349. goto err_ringcfg;
  1350. return 0;
  1351. err_ringcfg:
  1352. k3_ringacc_ring_free(uc->bchan->tc_ring);
  1353. uc->bchan->tc_ring = NULL;
  1354. k3_ringacc_ring_free(uc->bchan->t_ring);
  1355. uc->bchan->t_ring = NULL;
  1356. k3_configure_chan_coherency(&uc->vc.chan, 0);
  1357. err_ring:
  1358. bcdma_put_bchan(uc);
  1359. return ret;
  1360. }
  1361. static void udma_free_tx_resources(struct udma_chan *uc)
  1362. {
  1363. if (!uc->tchan)
  1364. return;
  1365. k3_ringacc_ring_free(uc->tchan->t_ring);
  1366. k3_ringacc_ring_free(uc->tchan->tc_ring);
  1367. uc->tchan->t_ring = NULL;
  1368. uc->tchan->tc_ring = NULL;
  1369. udma_put_tchan(uc);
  1370. }
  1371. static int udma_alloc_tx_resources(struct udma_chan *uc)
  1372. {
  1373. struct k3_ring_cfg ring_cfg;
  1374. struct udma_dev *ud = uc->ud;
  1375. struct udma_tchan *tchan;
  1376. int ring_idx, ret;
  1377. ret = udma_get_tchan(uc);
  1378. if (ret)
  1379. return ret;
  1380. tchan = uc->tchan;
  1381. if (tchan->tflow_id >= 0)
  1382. ring_idx = tchan->tflow_id;
  1383. else
  1384. ring_idx = ud->bchan_cnt + tchan->id;
  1385. ret = k3_ringacc_request_rings_pair(ud->ringacc, ring_idx, -1,
  1386. &tchan->t_ring,
  1387. &tchan->tc_ring);
  1388. if (ret) {
  1389. ret = -EBUSY;
  1390. goto err_ring;
  1391. }
  1392. memset(&ring_cfg, 0, sizeof(ring_cfg));
  1393. ring_cfg.size = K3_UDMA_DEFAULT_RING_SIZE;
  1394. ring_cfg.elm_size = K3_RINGACC_RING_ELSIZE_8;
  1395. if (ud->match_data->type == DMA_TYPE_UDMA) {
  1396. ring_cfg.mode = K3_RINGACC_RING_MODE_MESSAGE;
  1397. } else {
  1398. ring_cfg.mode = K3_RINGACC_RING_MODE_RING;
  1399. k3_configure_chan_coherency(&uc->vc.chan, uc->config.asel);
  1400. ring_cfg.asel = uc->config.asel;
  1401. ring_cfg.dma_dev = dmaengine_get_dma_device(&uc->vc.chan);
  1402. }
  1403. ret = k3_ringacc_ring_cfg(tchan->t_ring, &ring_cfg);
  1404. ret |= k3_ringacc_ring_cfg(tchan->tc_ring, &ring_cfg);
  1405. if (ret)
  1406. goto err_ringcfg;
  1407. return 0;
  1408. err_ringcfg:
  1409. k3_ringacc_ring_free(uc->tchan->tc_ring);
  1410. uc->tchan->tc_ring = NULL;
  1411. k3_ringacc_ring_free(uc->tchan->t_ring);
  1412. uc->tchan->t_ring = NULL;
  1413. err_ring:
  1414. udma_put_tchan(uc);
  1415. return ret;
  1416. }
  1417. static void udma_free_rx_resources(struct udma_chan *uc)
  1418. {
  1419. if (!uc->rchan)
  1420. return;
  1421. if (uc->rflow) {
  1422. struct udma_rflow *rflow = uc->rflow;
  1423. k3_ringacc_ring_free(rflow->fd_ring);
  1424. k3_ringacc_ring_free(rflow->r_ring);
  1425. rflow->fd_ring = NULL;
  1426. rflow->r_ring = NULL;
  1427. udma_put_rflow(uc);
  1428. }
  1429. udma_put_rchan(uc);
  1430. }
  1431. static int udma_alloc_rx_resources(struct udma_chan *uc)
  1432. {
  1433. struct udma_dev *ud = uc->ud;
  1434. struct k3_ring_cfg ring_cfg;
  1435. struct udma_rflow *rflow;
  1436. int fd_ring_id;
  1437. int ret;
  1438. ret = udma_get_rchan(uc);
  1439. if (ret)
  1440. return ret;
  1441. /* For MEM_TO_MEM we don't need rflow or rings */
  1442. if (uc->config.dir == DMA_MEM_TO_MEM)
  1443. return 0;
  1444. if (uc->config.default_flow_id >= 0)
  1445. ret = udma_get_rflow(uc, uc->config.default_flow_id);
  1446. else
  1447. ret = udma_get_rflow(uc, uc->rchan->id);
  1448. if (ret) {
  1449. ret = -EBUSY;
  1450. goto err_rflow;
  1451. }
  1452. rflow = uc->rflow;
  1453. if (ud->tflow_cnt)
  1454. fd_ring_id = ud->tflow_cnt + rflow->id;
  1455. else
  1456. fd_ring_id = ud->bchan_cnt + ud->tchan_cnt + ud->echan_cnt +
  1457. uc->rchan->id;
  1458. ret = k3_ringacc_request_rings_pair(ud->ringacc, fd_ring_id, -1,
  1459. &rflow->fd_ring, &rflow->r_ring);
  1460. if (ret) {
  1461. ret = -EBUSY;
  1462. goto err_ring;
  1463. }
  1464. memset(&ring_cfg, 0, sizeof(ring_cfg));
  1465. ring_cfg.elm_size = K3_RINGACC_RING_ELSIZE_8;
  1466. if (ud->match_data->type == DMA_TYPE_UDMA) {
  1467. if (uc->config.pkt_mode)
  1468. ring_cfg.size = SG_MAX_SEGMENTS;
  1469. else
  1470. ring_cfg.size = K3_UDMA_DEFAULT_RING_SIZE;
  1471. ring_cfg.mode = K3_RINGACC_RING_MODE_MESSAGE;
  1472. } else {
  1473. ring_cfg.size = K3_UDMA_DEFAULT_RING_SIZE;
  1474. ring_cfg.mode = K3_RINGACC_RING_MODE_RING;
  1475. k3_configure_chan_coherency(&uc->vc.chan, uc->config.asel);
  1476. ring_cfg.asel = uc->config.asel;
  1477. ring_cfg.dma_dev = dmaengine_get_dma_device(&uc->vc.chan);
  1478. }
  1479. ret = k3_ringacc_ring_cfg(rflow->fd_ring, &ring_cfg);
  1480. ring_cfg.size = K3_UDMA_DEFAULT_RING_SIZE;
  1481. ret |= k3_ringacc_ring_cfg(rflow->r_ring, &ring_cfg);
  1482. if (ret)
  1483. goto err_ringcfg;
  1484. return 0;
  1485. err_ringcfg:
  1486. k3_ringacc_ring_free(rflow->r_ring);
  1487. rflow->r_ring = NULL;
  1488. k3_ringacc_ring_free(rflow->fd_ring);
  1489. rflow->fd_ring = NULL;
  1490. err_ring:
  1491. udma_put_rflow(uc);
  1492. err_rflow:
  1493. udma_put_rchan(uc);
  1494. return ret;
  1495. }
  1496. #define TISCI_BCDMA_BCHAN_VALID_PARAMS ( \
  1497. TI_SCI_MSG_VALUE_RM_UDMAP_CH_PAUSE_ON_ERR_VALID | \
  1498. TI_SCI_MSG_VALUE_RM_UDMAP_CH_EXTENDED_CH_TYPE_VALID)
  1499. #define TISCI_BCDMA_TCHAN_VALID_PARAMS ( \
  1500. TI_SCI_MSG_VALUE_RM_UDMAP_CH_PAUSE_ON_ERR_VALID | \
  1501. TI_SCI_MSG_VALUE_RM_UDMAP_CH_TX_SUPR_TDPKT_VALID)
  1502. #define TISCI_BCDMA_RCHAN_VALID_PARAMS ( \
  1503. TI_SCI_MSG_VALUE_RM_UDMAP_CH_PAUSE_ON_ERR_VALID)
  1504. #define TISCI_UDMA_TCHAN_VALID_PARAMS ( \
  1505. TI_SCI_MSG_VALUE_RM_UDMAP_CH_PAUSE_ON_ERR_VALID | \
  1506. TI_SCI_MSG_VALUE_RM_UDMAP_CH_TX_FILT_EINFO_VALID | \
  1507. TI_SCI_MSG_VALUE_RM_UDMAP_CH_TX_FILT_PSWORDS_VALID | \
  1508. TI_SCI_MSG_VALUE_RM_UDMAP_CH_CHAN_TYPE_VALID | \
  1509. TI_SCI_MSG_VALUE_RM_UDMAP_CH_TX_SUPR_TDPKT_VALID | \
  1510. TI_SCI_MSG_VALUE_RM_UDMAP_CH_FETCH_SIZE_VALID | \
  1511. TI_SCI_MSG_VALUE_RM_UDMAP_CH_CQ_QNUM_VALID | \
  1512. TI_SCI_MSG_VALUE_RM_UDMAP_CH_ATYPE_VALID)
  1513. #define TISCI_UDMA_RCHAN_VALID_PARAMS ( \
  1514. TI_SCI_MSG_VALUE_RM_UDMAP_CH_PAUSE_ON_ERR_VALID | \
  1515. TI_SCI_MSG_VALUE_RM_UDMAP_CH_FETCH_SIZE_VALID | \
  1516. TI_SCI_MSG_VALUE_RM_UDMAP_CH_CQ_QNUM_VALID | \
  1517. TI_SCI_MSG_VALUE_RM_UDMAP_CH_CHAN_TYPE_VALID | \
  1518. TI_SCI_MSG_VALUE_RM_UDMAP_CH_RX_IGNORE_SHORT_VALID | \
  1519. TI_SCI_MSG_VALUE_RM_UDMAP_CH_RX_IGNORE_LONG_VALID | \
  1520. TI_SCI_MSG_VALUE_RM_UDMAP_CH_RX_FLOWID_START_VALID | \
  1521. TI_SCI_MSG_VALUE_RM_UDMAP_CH_RX_FLOWID_CNT_VALID | \
  1522. TI_SCI_MSG_VALUE_RM_UDMAP_CH_ATYPE_VALID)
  1523. static int udma_tisci_m2m_channel_config(struct udma_chan *uc)
  1524. {
  1525. struct udma_dev *ud = uc->ud;
  1526. struct udma_tisci_rm *tisci_rm = &ud->tisci_rm;
  1527. const struct ti_sci_rm_udmap_ops *tisci_ops = tisci_rm->tisci_udmap_ops;
  1528. struct udma_tchan *tchan = uc->tchan;
  1529. struct udma_rchan *rchan = uc->rchan;
  1530. u8 burst_size = 0;
  1531. int ret;
  1532. u8 tpl;
  1533. /* Non synchronized - mem to mem type of transfer */
  1534. int tc_ring = k3_ringacc_get_ring_id(tchan->tc_ring);
  1535. struct ti_sci_msg_rm_udmap_tx_ch_cfg req_tx = { 0 };
  1536. struct ti_sci_msg_rm_udmap_rx_ch_cfg req_rx = { 0 };
  1537. if (ud->match_data->flags & UDMA_FLAG_BURST_SIZE) {
  1538. tpl = udma_get_chan_tpl_index(&ud->tchan_tpl, tchan->id);
  1539. burst_size = ud->match_data->burst_size[tpl];
  1540. }
  1541. req_tx.valid_params = TISCI_UDMA_TCHAN_VALID_PARAMS;
  1542. req_tx.nav_id = tisci_rm->tisci_dev_id;
  1543. req_tx.index = tchan->id;
  1544. req_tx.tx_chan_type = TI_SCI_RM_UDMAP_CHAN_TYPE_3RDP_BCOPY_PBRR;
  1545. req_tx.tx_fetch_size = sizeof(struct cppi5_desc_hdr_t) >> 2;
  1546. req_tx.txcq_qnum = tc_ring;
  1547. req_tx.tx_atype = ud->atype;
  1548. if (burst_size) {
  1549. req_tx.valid_params |= TI_SCI_MSG_VALUE_RM_UDMAP_CH_BURST_SIZE_VALID;
  1550. req_tx.tx_burst_size = burst_size;
  1551. }
  1552. ret = tisci_ops->tx_ch_cfg(tisci_rm->tisci, &req_tx);
  1553. if (ret) {
  1554. dev_err(ud->dev, "tchan%d cfg failed %d\n", tchan->id, ret);
  1555. return ret;
  1556. }
  1557. req_rx.valid_params = TISCI_UDMA_RCHAN_VALID_PARAMS;
  1558. req_rx.nav_id = tisci_rm->tisci_dev_id;
  1559. req_rx.index = rchan->id;
  1560. req_rx.rx_fetch_size = sizeof(struct cppi5_desc_hdr_t) >> 2;
  1561. req_rx.rxcq_qnum = tc_ring;
  1562. req_rx.rx_chan_type = TI_SCI_RM_UDMAP_CHAN_TYPE_3RDP_BCOPY_PBRR;
  1563. req_rx.rx_atype = ud->atype;
  1564. if (burst_size) {
  1565. req_rx.valid_params |= TI_SCI_MSG_VALUE_RM_UDMAP_CH_BURST_SIZE_VALID;
  1566. req_rx.rx_burst_size = burst_size;
  1567. }
  1568. ret = tisci_ops->rx_ch_cfg(tisci_rm->tisci, &req_rx);
  1569. if (ret)
  1570. dev_err(ud->dev, "rchan%d alloc failed %d\n", rchan->id, ret);
  1571. return ret;
  1572. }
  1573. static int bcdma_tisci_m2m_channel_config(struct udma_chan *uc)
  1574. {
  1575. struct udma_dev *ud = uc->ud;
  1576. struct udma_tisci_rm *tisci_rm = &ud->tisci_rm;
  1577. const struct ti_sci_rm_udmap_ops *tisci_ops = tisci_rm->tisci_udmap_ops;
  1578. struct ti_sci_msg_rm_udmap_tx_ch_cfg req_tx = { 0 };
  1579. struct udma_bchan *bchan = uc->bchan;
  1580. u8 burst_size = 0;
  1581. int ret;
  1582. u8 tpl;
  1583. if (ud->match_data->flags & UDMA_FLAG_BURST_SIZE) {
  1584. tpl = udma_get_chan_tpl_index(&ud->bchan_tpl, bchan->id);
  1585. burst_size = ud->match_data->burst_size[tpl];
  1586. }
  1587. req_tx.valid_params = TISCI_BCDMA_BCHAN_VALID_PARAMS;
  1588. req_tx.nav_id = tisci_rm->tisci_dev_id;
  1589. req_tx.extended_ch_type = TI_SCI_RM_BCDMA_EXTENDED_CH_TYPE_BCHAN;
  1590. req_tx.index = bchan->id;
  1591. if (burst_size) {
  1592. req_tx.valid_params |= TI_SCI_MSG_VALUE_RM_UDMAP_CH_BURST_SIZE_VALID;
  1593. req_tx.tx_burst_size = burst_size;
  1594. }
  1595. ret = tisci_ops->tx_ch_cfg(tisci_rm->tisci, &req_tx);
  1596. if (ret)
  1597. dev_err(ud->dev, "bchan%d cfg failed %d\n", bchan->id, ret);
  1598. return ret;
  1599. }
  1600. static int udma_tisci_tx_channel_config(struct udma_chan *uc)
  1601. {
  1602. struct udma_dev *ud = uc->ud;
  1603. struct udma_tisci_rm *tisci_rm = &ud->tisci_rm;
  1604. const struct ti_sci_rm_udmap_ops *tisci_ops = tisci_rm->tisci_udmap_ops;
  1605. struct udma_tchan *tchan = uc->tchan;
  1606. int tc_ring = k3_ringacc_get_ring_id(tchan->tc_ring);
  1607. struct ti_sci_msg_rm_udmap_tx_ch_cfg req_tx = { 0 };
  1608. u32 mode, fetch_size;
  1609. int ret;
  1610. if (uc->config.pkt_mode) {
  1611. mode = TI_SCI_RM_UDMAP_CHAN_TYPE_PKT_PBRR;
  1612. fetch_size = cppi5_hdesc_calc_size(uc->config.needs_epib,
  1613. uc->config.psd_size, 0);
  1614. } else {
  1615. mode = TI_SCI_RM_UDMAP_CHAN_TYPE_3RDP_PBRR;
  1616. fetch_size = sizeof(struct cppi5_desc_hdr_t);
  1617. }
  1618. req_tx.valid_params = TISCI_UDMA_TCHAN_VALID_PARAMS;
  1619. req_tx.nav_id = tisci_rm->tisci_dev_id;
  1620. req_tx.index = tchan->id;
  1621. req_tx.tx_chan_type = mode;
  1622. req_tx.tx_supr_tdpkt = uc->config.notdpkt;
  1623. req_tx.tx_fetch_size = fetch_size >> 2;
  1624. req_tx.txcq_qnum = tc_ring;
  1625. req_tx.tx_atype = uc->config.atype;
  1626. if (uc->config.ep_type == PSIL_EP_PDMA_XY &&
  1627. ud->match_data->flags & UDMA_FLAG_TDTYPE) {
  1628. /* wait for peer to complete the teardown for PDMAs */
  1629. req_tx.valid_params |=
  1630. TI_SCI_MSG_VALUE_RM_UDMAP_CH_TX_TDTYPE_VALID;
  1631. req_tx.tx_tdtype = 1;
  1632. }
  1633. ret = tisci_ops->tx_ch_cfg(tisci_rm->tisci, &req_tx);
  1634. if (ret)
  1635. dev_err(ud->dev, "tchan%d cfg failed %d\n", tchan->id, ret);
  1636. return ret;
  1637. }
  1638. static int bcdma_tisci_tx_channel_config(struct udma_chan *uc)
  1639. {
  1640. struct udma_dev *ud = uc->ud;
  1641. struct udma_tisci_rm *tisci_rm = &ud->tisci_rm;
  1642. const struct ti_sci_rm_udmap_ops *tisci_ops = tisci_rm->tisci_udmap_ops;
  1643. struct udma_tchan *tchan = uc->tchan;
  1644. struct ti_sci_msg_rm_udmap_tx_ch_cfg req_tx = { 0 };
  1645. int ret;
  1646. req_tx.valid_params = TISCI_BCDMA_TCHAN_VALID_PARAMS;
  1647. req_tx.nav_id = tisci_rm->tisci_dev_id;
  1648. req_tx.index = tchan->id;
  1649. req_tx.tx_supr_tdpkt = uc->config.notdpkt;
  1650. if (ud->match_data->flags & UDMA_FLAG_TDTYPE) {
  1651. /* wait for peer to complete the teardown for PDMAs */
  1652. req_tx.valid_params |=
  1653. TI_SCI_MSG_VALUE_RM_UDMAP_CH_TX_TDTYPE_VALID;
  1654. req_tx.tx_tdtype = 1;
  1655. }
  1656. ret = tisci_ops->tx_ch_cfg(tisci_rm->tisci, &req_tx);
  1657. if (ret)
  1658. dev_err(ud->dev, "tchan%d cfg failed %d\n", tchan->id, ret);
  1659. return ret;
  1660. }
  1661. #define pktdma_tisci_tx_channel_config bcdma_tisci_tx_channel_config
  1662. static int udma_tisci_rx_channel_config(struct udma_chan *uc)
  1663. {
  1664. struct udma_dev *ud = uc->ud;
  1665. struct udma_tisci_rm *tisci_rm = &ud->tisci_rm;
  1666. const struct ti_sci_rm_udmap_ops *tisci_ops = tisci_rm->tisci_udmap_ops;
  1667. struct udma_rchan *rchan = uc->rchan;
  1668. int fd_ring = k3_ringacc_get_ring_id(uc->rflow->fd_ring);
  1669. int rx_ring = k3_ringacc_get_ring_id(uc->rflow->r_ring);
  1670. struct ti_sci_msg_rm_udmap_rx_ch_cfg req_rx = { 0 };
  1671. struct ti_sci_msg_rm_udmap_flow_cfg flow_req = { 0 };
  1672. u32 mode, fetch_size;
  1673. int ret;
  1674. if (uc->config.pkt_mode) {
  1675. mode = TI_SCI_RM_UDMAP_CHAN_TYPE_PKT_PBRR;
  1676. fetch_size = cppi5_hdesc_calc_size(uc->config.needs_epib,
  1677. uc->config.psd_size, 0);
  1678. } else {
  1679. mode = TI_SCI_RM_UDMAP_CHAN_TYPE_3RDP_PBRR;
  1680. fetch_size = sizeof(struct cppi5_desc_hdr_t);
  1681. }
  1682. req_rx.valid_params = TISCI_UDMA_RCHAN_VALID_PARAMS;
  1683. req_rx.nav_id = tisci_rm->tisci_dev_id;
  1684. req_rx.index = rchan->id;
  1685. req_rx.rx_fetch_size = fetch_size >> 2;
  1686. req_rx.rxcq_qnum = rx_ring;
  1687. req_rx.rx_chan_type = mode;
  1688. req_rx.rx_atype = uc->config.atype;
  1689. ret = tisci_ops->rx_ch_cfg(tisci_rm->tisci, &req_rx);
  1690. if (ret) {
  1691. dev_err(ud->dev, "rchan%d cfg failed %d\n", rchan->id, ret);
  1692. return ret;
  1693. }
  1694. flow_req.valid_params =
  1695. TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_EINFO_PRESENT_VALID |
  1696. TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_PSINFO_PRESENT_VALID |
  1697. TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_ERROR_HANDLING_VALID |
  1698. TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_DESC_TYPE_VALID |
  1699. TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_DEST_QNUM_VALID |
  1700. TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_SRC_TAG_HI_SEL_VALID |
  1701. TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_SRC_TAG_LO_SEL_VALID |
  1702. TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_DEST_TAG_HI_SEL_VALID |
  1703. TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_DEST_TAG_LO_SEL_VALID |
  1704. TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_FDQ0_SZ0_QNUM_VALID |
  1705. TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_FDQ1_QNUM_VALID |
  1706. TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_FDQ2_QNUM_VALID |
  1707. TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_FDQ3_QNUM_VALID;
  1708. flow_req.nav_id = tisci_rm->tisci_dev_id;
  1709. flow_req.flow_index = rchan->id;
  1710. if (uc->config.needs_epib)
  1711. flow_req.rx_einfo_present = 1;
  1712. else
  1713. flow_req.rx_einfo_present = 0;
  1714. if (uc->config.psd_size)
  1715. flow_req.rx_psinfo_present = 1;
  1716. else
  1717. flow_req.rx_psinfo_present = 0;
  1718. flow_req.rx_error_handling = 1;
  1719. flow_req.rx_dest_qnum = rx_ring;
  1720. flow_req.rx_src_tag_hi_sel = UDMA_RFLOW_SRCTAG_NONE;
  1721. flow_req.rx_src_tag_lo_sel = UDMA_RFLOW_SRCTAG_SRC_TAG;
  1722. flow_req.rx_dest_tag_hi_sel = UDMA_RFLOW_DSTTAG_DST_TAG_HI;
  1723. flow_req.rx_dest_tag_lo_sel = UDMA_RFLOW_DSTTAG_DST_TAG_LO;
  1724. flow_req.rx_fdq0_sz0_qnum = fd_ring;
  1725. flow_req.rx_fdq1_qnum = fd_ring;
  1726. flow_req.rx_fdq2_qnum = fd_ring;
  1727. flow_req.rx_fdq3_qnum = fd_ring;
  1728. ret = tisci_ops->rx_flow_cfg(tisci_rm->tisci, &flow_req);
  1729. if (ret)
  1730. dev_err(ud->dev, "flow%d config failed: %d\n", rchan->id, ret);
  1731. return 0;
  1732. }
  1733. static int bcdma_tisci_rx_channel_config(struct udma_chan *uc)
  1734. {
  1735. struct udma_dev *ud = uc->ud;
  1736. struct udma_tisci_rm *tisci_rm = &ud->tisci_rm;
  1737. const struct ti_sci_rm_udmap_ops *tisci_ops = tisci_rm->tisci_udmap_ops;
  1738. struct udma_rchan *rchan = uc->rchan;
  1739. struct ti_sci_msg_rm_udmap_rx_ch_cfg req_rx = { 0 };
  1740. int ret;
  1741. req_rx.valid_params = TISCI_BCDMA_RCHAN_VALID_PARAMS;
  1742. req_rx.nav_id = tisci_rm->tisci_dev_id;
  1743. req_rx.index = rchan->id;
  1744. ret = tisci_ops->rx_ch_cfg(tisci_rm->tisci, &req_rx);
  1745. if (ret)
  1746. dev_err(ud->dev, "rchan%d cfg failed %d\n", rchan->id, ret);
  1747. return ret;
  1748. }
  1749. static int pktdma_tisci_rx_channel_config(struct udma_chan *uc)
  1750. {
  1751. struct udma_dev *ud = uc->ud;
  1752. struct udma_tisci_rm *tisci_rm = &ud->tisci_rm;
  1753. const struct ti_sci_rm_udmap_ops *tisci_ops = tisci_rm->tisci_udmap_ops;
  1754. struct ti_sci_msg_rm_udmap_rx_ch_cfg req_rx = { 0 };
  1755. struct ti_sci_msg_rm_udmap_flow_cfg flow_req = { 0 };
  1756. int ret;
  1757. req_rx.valid_params = TISCI_BCDMA_RCHAN_VALID_PARAMS;
  1758. req_rx.nav_id = tisci_rm->tisci_dev_id;
  1759. req_rx.index = uc->rchan->id;
  1760. ret = tisci_ops->rx_ch_cfg(tisci_rm->tisci, &req_rx);
  1761. if (ret) {
  1762. dev_err(ud->dev, "rchan%d cfg failed %d\n", uc->rchan->id, ret);
  1763. return ret;
  1764. }
  1765. flow_req.valid_params =
  1766. TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_EINFO_PRESENT_VALID |
  1767. TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_PSINFO_PRESENT_VALID |
  1768. TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_ERROR_HANDLING_VALID;
  1769. flow_req.nav_id = tisci_rm->tisci_dev_id;
  1770. flow_req.flow_index = uc->rflow->id;
  1771. if (uc->config.needs_epib)
  1772. flow_req.rx_einfo_present = 1;
  1773. else
  1774. flow_req.rx_einfo_present = 0;
  1775. if (uc->config.psd_size)
  1776. flow_req.rx_psinfo_present = 1;
  1777. else
  1778. flow_req.rx_psinfo_present = 0;
  1779. flow_req.rx_error_handling = 1;
  1780. ret = tisci_ops->rx_flow_cfg(tisci_rm->tisci, &flow_req);
  1781. if (ret)
  1782. dev_err(ud->dev, "flow%d config failed: %d\n", uc->rflow->id,
  1783. ret);
  1784. return ret;
  1785. }
  1786. static int udma_alloc_chan_resources(struct dma_chan *chan)
  1787. {
  1788. struct udma_chan *uc = to_udma_chan(chan);
  1789. struct udma_dev *ud = to_udma_dev(chan->device);
  1790. const struct udma_soc_data *soc_data = ud->soc_data;
  1791. struct k3_ring *irq_ring;
  1792. u32 irq_udma_idx;
  1793. int ret;
  1794. uc->dma_dev = ud->dev;
  1795. if (uc->config.pkt_mode || uc->config.dir == DMA_MEM_TO_MEM) {
  1796. uc->use_dma_pool = true;
  1797. /* in case of MEM_TO_MEM we have maximum of two TRs */
  1798. if (uc->config.dir == DMA_MEM_TO_MEM) {
  1799. uc->config.hdesc_size = cppi5_trdesc_calc_size(
  1800. sizeof(struct cppi5_tr_type15_t), 2);
  1801. uc->config.pkt_mode = false;
  1802. }
  1803. }
  1804. if (uc->use_dma_pool) {
  1805. uc->hdesc_pool = dma_pool_create(uc->name, ud->ddev.dev,
  1806. uc->config.hdesc_size,
  1807. ud->desc_align,
  1808. 0);
  1809. if (!uc->hdesc_pool) {
  1810. dev_err(ud->ddev.dev,
  1811. "Descriptor pool allocation failed\n");
  1812. uc->use_dma_pool = false;
  1813. ret = -ENOMEM;
  1814. goto err_cleanup;
  1815. }
  1816. }
  1817. /*
  1818. * Make sure that the completion is in a known state:
  1819. * No teardown, the channel is idle
  1820. */
  1821. reinit_completion(&uc->teardown_completed);
  1822. complete_all(&uc->teardown_completed);
  1823. uc->state = UDMA_CHAN_IS_IDLE;
  1824. switch (uc->config.dir) {
  1825. case DMA_MEM_TO_MEM:
  1826. /* Non synchronized - mem to mem type of transfer */
  1827. dev_dbg(uc->ud->dev, "%s: chan%d as MEM-to-MEM\n", __func__,
  1828. uc->id);
  1829. ret = udma_get_chan_pair(uc);
  1830. if (ret)
  1831. goto err_cleanup;
  1832. ret = udma_alloc_tx_resources(uc);
  1833. if (ret) {
  1834. udma_put_rchan(uc);
  1835. goto err_cleanup;
  1836. }
  1837. ret = udma_alloc_rx_resources(uc);
  1838. if (ret) {
  1839. udma_free_tx_resources(uc);
  1840. goto err_cleanup;
  1841. }
  1842. uc->config.src_thread = ud->psil_base + uc->tchan->id;
  1843. uc->config.dst_thread = (ud->psil_base + uc->rchan->id) |
  1844. K3_PSIL_DST_THREAD_ID_OFFSET;
  1845. irq_ring = uc->tchan->tc_ring;
  1846. irq_udma_idx = uc->tchan->id;
  1847. ret = udma_tisci_m2m_channel_config(uc);
  1848. break;
  1849. case DMA_MEM_TO_DEV:
  1850. /* Slave transfer synchronized - mem to dev (TX) trasnfer */
  1851. dev_dbg(uc->ud->dev, "%s: chan%d as MEM-to-DEV\n", __func__,
  1852. uc->id);
  1853. ret = udma_alloc_tx_resources(uc);
  1854. if (ret)
  1855. goto err_cleanup;
  1856. uc->config.src_thread = ud->psil_base + uc->tchan->id;
  1857. uc->config.dst_thread = uc->config.remote_thread_id;
  1858. uc->config.dst_thread |= K3_PSIL_DST_THREAD_ID_OFFSET;
  1859. irq_ring = uc->tchan->tc_ring;
  1860. irq_udma_idx = uc->tchan->id;
  1861. ret = udma_tisci_tx_channel_config(uc);
  1862. break;
  1863. case DMA_DEV_TO_MEM:
  1864. /* Slave transfer synchronized - dev to mem (RX) trasnfer */
  1865. dev_dbg(uc->ud->dev, "%s: chan%d as DEV-to-MEM\n", __func__,
  1866. uc->id);
  1867. ret = udma_alloc_rx_resources(uc);
  1868. if (ret)
  1869. goto err_cleanup;
  1870. uc->config.src_thread = uc->config.remote_thread_id;
  1871. uc->config.dst_thread = (ud->psil_base + uc->rchan->id) |
  1872. K3_PSIL_DST_THREAD_ID_OFFSET;
  1873. irq_ring = uc->rflow->r_ring;
  1874. irq_udma_idx = soc_data->oes.udma_rchan + uc->rchan->id;
  1875. ret = udma_tisci_rx_channel_config(uc);
  1876. break;
  1877. default:
  1878. /* Can not happen */
  1879. dev_err(uc->ud->dev, "%s: chan%d invalid direction (%u)\n",
  1880. __func__, uc->id, uc->config.dir);
  1881. ret = -EINVAL;
  1882. goto err_cleanup;
  1883. }
  1884. /* check if the channel configuration was successful */
  1885. if (ret)
  1886. goto err_res_free;
  1887. if (udma_is_chan_running(uc)) {
  1888. dev_warn(ud->dev, "chan%d: is running!\n", uc->id);
  1889. udma_reset_chan(uc, false);
  1890. if (udma_is_chan_running(uc)) {
  1891. dev_err(ud->dev, "chan%d: won't stop!\n", uc->id);
  1892. ret = -EBUSY;
  1893. goto err_res_free;
  1894. }
  1895. }
  1896. /* PSI-L pairing */
  1897. ret = navss_psil_pair(ud, uc->config.src_thread, uc->config.dst_thread);
  1898. if (ret) {
  1899. dev_err(ud->dev, "PSI-L pairing failed: 0x%04x -> 0x%04x\n",
  1900. uc->config.src_thread, uc->config.dst_thread);
  1901. goto err_res_free;
  1902. }
  1903. uc->psil_paired = true;
  1904. uc->irq_num_ring = k3_ringacc_get_ring_irq_num(irq_ring);
  1905. if (uc->irq_num_ring <= 0) {
  1906. dev_err(ud->dev, "Failed to get ring irq (index: %u)\n",
  1907. k3_ringacc_get_ring_id(irq_ring));
  1908. ret = -EINVAL;
  1909. goto err_psi_free;
  1910. }
  1911. ret = request_irq(uc->irq_num_ring, udma_ring_irq_handler,
  1912. IRQF_TRIGGER_HIGH, uc->name, uc);
  1913. if (ret) {
  1914. dev_err(ud->dev, "chan%d: ring irq request failed\n", uc->id);
  1915. goto err_irq_free;
  1916. }
  1917. /* Event from UDMA (TR events) only needed for slave TR mode channels */
  1918. if (is_slave_direction(uc->config.dir) && !uc->config.pkt_mode) {
  1919. uc->irq_num_udma = msi_get_virq(ud->dev, irq_udma_idx);
  1920. if (uc->irq_num_udma <= 0) {
  1921. dev_err(ud->dev, "Failed to get udma irq (index: %u)\n",
  1922. irq_udma_idx);
  1923. free_irq(uc->irq_num_ring, uc);
  1924. ret = -EINVAL;
  1925. goto err_irq_free;
  1926. }
  1927. ret = request_irq(uc->irq_num_udma, udma_udma_irq_handler, 0,
  1928. uc->name, uc);
  1929. if (ret) {
  1930. dev_err(ud->dev, "chan%d: UDMA irq request failed\n",
  1931. uc->id);
  1932. free_irq(uc->irq_num_ring, uc);
  1933. goto err_irq_free;
  1934. }
  1935. } else {
  1936. uc->irq_num_udma = 0;
  1937. }
  1938. udma_reset_rings(uc);
  1939. return 0;
  1940. err_irq_free:
  1941. uc->irq_num_ring = 0;
  1942. uc->irq_num_udma = 0;
  1943. err_psi_free:
  1944. navss_psil_unpair(ud, uc->config.src_thread, uc->config.dst_thread);
  1945. uc->psil_paired = false;
  1946. err_res_free:
  1947. udma_free_tx_resources(uc);
  1948. udma_free_rx_resources(uc);
  1949. err_cleanup:
  1950. udma_reset_uchan(uc);
  1951. if (uc->use_dma_pool) {
  1952. dma_pool_destroy(uc->hdesc_pool);
  1953. uc->use_dma_pool = false;
  1954. }
  1955. return ret;
  1956. }
  1957. static int bcdma_alloc_chan_resources(struct dma_chan *chan)
  1958. {
  1959. struct udma_chan *uc = to_udma_chan(chan);
  1960. struct udma_dev *ud = to_udma_dev(chan->device);
  1961. const struct udma_oes_offsets *oes = &ud->soc_data->oes;
  1962. u32 irq_udma_idx, irq_ring_idx;
  1963. int ret;
  1964. /* Only TR mode is supported */
  1965. uc->config.pkt_mode = false;
  1966. /*
  1967. * Make sure that the completion is in a known state:
  1968. * No teardown, the channel is idle
  1969. */
  1970. reinit_completion(&uc->teardown_completed);
  1971. complete_all(&uc->teardown_completed);
  1972. uc->state = UDMA_CHAN_IS_IDLE;
  1973. switch (uc->config.dir) {
  1974. case DMA_MEM_TO_MEM:
  1975. /* Non synchronized - mem to mem type of transfer */
  1976. dev_dbg(uc->ud->dev, "%s: chan%d as MEM-to-MEM\n", __func__,
  1977. uc->id);
  1978. ret = bcdma_alloc_bchan_resources(uc);
  1979. if (ret)
  1980. return ret;
  1981. irq_ring_idx = uc->bchan->id + oes->bcdma_bchan_ring;
  1982. irq_udma_idx = uc->bchan->id + oes->bcdma_bchan_data;
  1983. ret = bcdma_tisci_m2m_channel_config(uc);
  1984. break;
  1985. case DMA_MEM_TO_DEV:
  1986. /* Slave transfer synchronized - mem to dev (TX) trasnfer */
  1987. dev_dbg(uc->ud->dev, "%s: chan%d as MEM-to-DEV\n", __func__,
  1988. uc->id);
  1989. ret = udma_alloc_tx_resources(uc);
  1990. if (ret) {
  1991. uc->config.remote_thread_id = -1;
  1992. return ret;
  1993. }
  1994. uc->config.src_thread = ud->psil_base + uc->tchan->id;
  1995. uc->config.dst_thread = uc->config.remote_thread_id;
  1996. uc->config.dst_thread |= K3_PSIL_DST_THREAD_ID_OFFSET;
  1997. irq_ring_idx = uc->tchan->id + oes->bcdma_tchan_ring;
  1998. irq_udma_idx = uc->tchan->id + oes->bcdma_tchan_data;
  1999. ret = bcdma_tisci_tx_channel_config(uc);
  2000. break;
  2001. case DMA_DEV_TO_MEM:
  2002. /* Slave transfer synchronized - dev to mem (RX) trasnfer */
  2003. dev_dbg(uc->ud->dev, "%s: chan%d as DEV-to-MEM\n", __func__,
  2004. uc->id);
  2005. ret = udma_alloc_rx_resources(uc);
  2006. if (ret) {
  2007. uc->config.remote_thread_id = -1;
  2008. return ret;
  2009. }
  2010. uc->config.src_thread = uc->config.remote_thread_id;
  2011. uc->config.dst_thread = (ud->psil_base + uc->rchan->id) |
  2012. K3_PSIL_DST_THREAD_ID_OFFSET;
  2013. irq_ring_idx = uc->rchan->id + oes->bcdma_rchan_ring;
  2014. irq_udma_idx = uc->rchan->id + oes->bcdma_rchan_data;
  2015. ret = bcdma_tisci_rx_channel_config(uc);
  2016. break;
  2017. default:
  2018. /* Can not happen */
  2019. dev_err(uc->ud->dev, "%s: chan%d invalid direction (%u)\n",
  2020. __func__, uc->id, uc->config.dir);
  2021. return -EINVAL;
  2022. }
  2023. /* check if the channel configuration was successful */
  2024. if (ret)
  2025. goto err_res_free;
  2026. if (udma_is_chan_running(uc)) {
  2027. dev_warn(ud->dev, "chan%d: is running!\n", uc->id);
  2028. udma_reset_chan(uc, false);
  2029. if (udma_is_chan_running(uc)) {
  2030. dev_err(ud->dev, "chan%d: won't stop!\n", uc->id);
  2031. ret = -EBUSY;
  2032. goto err_res_free;
  2033. }
  2034. }
  2035. uc->dma_dev = dmaengine_get_dma_device(chan);
  2036. if (uc->config.dir == DMA_MEM_TO_MEM && !uc->config.tr_trigger_type) {
  2037. uc->config.hdesc_size = cppi5_trdesc_calc_size(
  2038. sizeof(struct cppi5_tr_type15_t), 2);
  2039. uc->hdesc_pool = dma_pool_create(uc->name, ud->ddev.dev,
  2040. uc->config.hdesc_size,
  2041. ud->desc_align,
  2042. 0);
  2043. if (!uc->hdesc_pool) {
  2044. dev_err(ud->ddev.dev,
  2045. "Descriptor pool allocation failed\n");
  2046. uc->use_dma_pool = false;
  2047. ret = -ENOMEM;
  2048. goto err_res_free;
  2049. }
  2050. uc->use_dma_pool = true;
  2051. } else if (uc->config.dir != DMA_MEM_TO_MEM) {
  2052. /* PSI-L pairing */
  2053. ret = navss_psil_pair(ud, uc->config.src_thread,
  2054. uc->config.dst_thread);
  2055. if (ret) {
  2056. dev_err(ud->dev,
  2057. "PSI-L pairing failed: 0x%04x -> 0x%04x\n",
  2058. uc->config.src_thread, uc->config.dst_thread);
  2059. goto err_res_free;
  2060. }
  2061. uc->psil_paired = true;
  2062. }
  2063. uc->irq_num_ring = msi_get_virq(ud->dev, irq_ring_idx);
  2064. if (uc->irq_num_ring <= 0) {
  2065. dev_err(ud->dev, "Failed to get ring irq (index: %u)\n",
  2066. irq_ring_idx);
  2067. ret = -EINVAL;
  2068. goto err_psi_free;
  2069. }
  2070. ret = request_irq(uc->irq_num_ring, udma_ring_irq_handler,
  2071. IRQF_TRIGGER_HIGH, uc->name, uc);
  2072. if (ret) {
  2073. dev_err(ud->dev, "chan%d: ring irq request failed\n", uc->id);
  2074. goto err_irq_free;
  2075. }
  2076. /* Event from BCDMA (TR events) only needed for slave channels */
  2077. if (is_slave_direction(uc->config.dir)) {
  2078. uc->irq_num_udma = msi_get_virq(ud->dev, irq_udma_idx);
  2079. if (uc->irq_num_udma <= 0) {
  2080. dev_err(ud->dev, "Failed to get bcdma irq (index: %u)\n",
  2081. irq_udma_idx);
  2082. free_irq(uc->irq_num_ring, uc);
  2083. ret = -EINVAL;
  2084. goto err_irq_free;
  2085. }
  2086. ret = request_irq(uc->irq_num_udma, udma_udma_irq_handler, 0,
  2087. uc->name, uc);
  2088. if (ret) {
  2089. dev_err(ud->dev, "chan%d: BCDMA irq request failed\n",
  2090. uc->id);
  2091. free_irq(uc->irq_num_ring, uc);
  2092. goto err_irq_free;
  2093. }
  2094. } else {
  2095. uc->irq_num_udma = 0;
  2096. }
  2097. udma_reset_rings(uc);
  2098. INIT_DELAYED_WORK_ONSTACK(&uc->tx_drain.work,
  2099. udma_check_tx_completion);
  2100. return 0;
  2101. err_irq_free:
  2102. uc->irq_num_ring = 0;
  2103. uc->irq_num_udma = 0;
  2104. err_psi_free:
  2105. if (uc->psil_paired)
  2106. navss_psil_unpair(ud, uc->config.src_thread,
  2107. uc->config.dst_thread);
  2108. uc->psil_paired = false;
  2109. err_res_free:
  2110. bcdma_free_bchan_resources(uc);
  2111. udma_free_tx_resources(uc);
  2112. udma_free_rx_resources(uc);
  2113. udma_reset_uchan(uc);
  2114. if (uc->use_dma_pool) {
  2115. dma_pool_destroy(uc->hdesc_pool);
  2116. uc->use_dma_pool = false;
  2117. }
  2118. return ret;
  2119. }
  2120. static int bcdma_router_config(struct dma_chan *chan)
  2121. {
  2122. struct k3_event_route_data *router_data = chan->route_data;
  2123. struct udma_chan *uc = to_udma_chan(chan);
  2124. u32 trigger_event;
  2125. if (!uc->bchan)
  2126. return -EINVAL;
  2127. if (uc->config.tr_trigger_type != 1 && uc->config.tr_trigger_type != 2)
  2128. return -EINVAL;
  2129. trigger_event = uc->ud->soc_data->bcdma_trigger_event_offset;
  2130. trigger_event += (uc->bchan->id * 2) + uc->config.tr_trigger_type - 1;
  2131. return router_data->set_event(router_data->priv, trigger_event);
  2132. }
  2133. static int pktdma_alloc_chan_resources(struct dma_chan *chan)
  2134. {
  2135. struct udma_chan *uc = to_udma_chan(chan);
  2136. struct udma_dev *ud = to_udma_dev(chan->device);
  2137. const struct udma_oes_offsets *oes = &ud->soc_data->oes;
  2138. u32 irq_ring_idx;
  2139. int ret;
  2140. /*
  2141. * Make sure that the completion is in a known state:
  2142. * No teardown, the channel is idle
  2143. */
  2144. reinit_completion(&uc->teardown_completed);
  2145. complete_all(&uc->teardown_completed);
  2146. uc->state = UDMA_CHAN_IS_IDLE;
  2147. switch (uc->config.dir) {
  2148. case DMA_MEM_TO_DEV:
  2149. /* Slave transfer synchronized - mem to dev (TX) trasnfer */
  2150. dev_dbg(uc->ud->dev, "%s: chan%d as MEM-to-DEV\n", __func__,
  2151. uc->id);
  2152. ret = udma_alloc_tx_resources(uc);
  2153. if (ret) {
  2154. uc->config.remote_thread_id = -1;
  2155. return ret;
  2156. }
  2157. uc->config.src_thread = ud->psil_base + uc->tchan->id;
  2158. uc->config.dst_thread = uc->config.remote_thread_id;
  2159. uc->config.dst_thread |= K3_PSIL_DST_THREAD_ID_OFFSET;
  2160. irq_ring_idx = uc->tchan->tflow_id + oes->pktdma_tchan_flow;
  2161. ret = pktdma_tisci_tx_channel_config(uc);
  2162. break;
  2163. case DMA_DEV_TO_MEM:
  2164. /* Slave transfer synchronized - dev to mem (RX) trasnfer */
  2165. dev_dbg(uc->ud->dev, "%s: chan%d as DEV-to-MEM\n", __func__,
  2166. uc->id);
  2167. ret = udma_alloc_rx_resources(uc);
  2168. if (ret) {
  2169. uc->config.remote_thread_id = -1;
  2170. return ret;
  2171. }
  2172. uc->config.src_thread = uc->config.remote_thread_id;
  2173. uc->config.dst_thread = (ud->psil_base + uc->rchan->id) |
  2174. K3_PSIL_DST_THREAD_ID_OFFSET;
  2175. irq_ring_idx = uc->rflow->id + oes->pktdma_rchan_flow;
  2176. ret = pktdma_tisci_rx_channel_config(uc);
  2177. break;
  2178. default:
  2179. /* Can not happen */
  2180. dev_err(uc->ud->dev, "%s: chan%d invalid direction (%u)\n",
  2181. __func__, uc->id, uc->config.dir);
  2182. return -EINVAL;
  2183. }
  2184. /* check if the channel configuration was successful */
  2185. if (ret)
  2186. goto err_res_free;
  2187. if (udma_is_chan_running(uc)) {
  2188. dev_warn(ud->dev, "chan%d: is running!\n", uc->id);
  2189. udma_reset_chan(uc, false);
  2190. if (udma_is_chan_running(uc)) {
  2191. dev_err(ud->dev, "chan%d: won't stop!\n", uc->id);
  2192. ret = -EBUSY;
  2193. goto err_res_free;
  2194. }
  2195. }
  2196. uc->dma_dev = dmaengine_get_dma_device(chan);
  2197. uc->hdesc_pool = dma_pool_create(uc->name, uc->dma_dev,
  2198. uc->config.hdesc_size, ud->desc_align,
  2199. 0);
  2200. if (!uc->hdesc_pool) {
  2201. dev_err(ud->ddev.dev,
  2202. "Descriptor pool allocation failed\n");
  2203. uc->use_dma_pool = false;
  2204. ret = -ENOMEM;
  2205. goto err_res_free;
  2206. }
  2207. uc->use_dma_pool = true;
  2208. /* PSI-L pairing */
  2209. ret = navss_psil_pair(ud, uc->config.src_thread, uc->config.dst_thread);
  2210. if (ret) {
  2211. dev_err(ud->dev, "PSI-L pairing failed: 0x%04x -> 0x%04x\n",
  2212. uc->config.src_thread, uc->config.dst_thread);
  2213. goto err_res_free;
  2214. }
  2215. uc->psil_paired = true;
  2216. uc->irq_num_ring = msi_get_virq(ud->dev, irq_ring_idx);
  2217. if (uc->irq_num_ring <= 0) {
  2218. dev_err(ud->dev, "Failed to get ring irq (index: %u)\n",
  2219. irq_ring_idx);
  2220. ret = -EINVAL;
  2221. goto err_psi_free;
  2222. }
  2223. ret = request_irq(uc->irq_num_ring, udma_ring_irq_handler,
  2224. IRQF_TRIGGER_HIGH, uc->name, uc);
  2225. if (ret) {
  2226. dev_err(ud->dev, "chan%d: ring irq request failed\n", uc->id);
  2227. goto err_irq_free;
  2228. }
  2229. uc->irq_num_udma = 0;
  2230. udma_reset_rings(uc);
  2231. INIT_DELAYED_WORK_ONSTACK(&uc->tx_drain.work,
  2232. udma_check_tx_completion);
  2233. if (uc->tchan)
  2234. dev_dbg(ud->dev,
  2235. "chan%d: tchan%d, tflow%d, Remote thread: 0x%04x\n",
  2236. uc->id, uc->tchan->id, uc->tchan->tflow_id,
  2237. uc->config.remote_thread_id);
  2238. else if (uc->rchan)
  2239. dev_dbg(ud->dev,
  2240. "chan%d: rchan%d, rflow%d, Remote thread: 0x%04x\n",
  2241. uc->id, uc->rchan->id, uc->rflow->id,
  2242. uc->config.remote_thread_id);
  2243. return 0;
  2244. err_irq_free:
  2245. uc->irq_num_ring = 0;
  2246. err_psi_free:
  2247. navss_psil_unpair(ud, uc->config.src_thread, uc->config.dst_thread);
  2248. uc->psil_paired = false;
  2249. err_res_free:
  2250. udma_free_tx_resources(uc);
  2251. udma_free_rx_resources(uc);
  2252. udma_reset_uchan(uc);
  2253. dma_pool_destroy(uc->hdesc_pool);
  2254. uc->use_dma_pool = false;
  2255. return ret;
  2256. }
  2257. static int udma_slave_config(struct dma_chan *chan,
  2258. struct dma_slave_config *cfg)
  2259. {
  2260. struct udma_chan *uc = to_udma_chan(chan);
  2261. memcpy(&uc->cfg, cfg, sizeof(uc->cfg));
  2262. return 0;
  2263. }
  2264. static struct udma_desc *udma_alloc_tr_desc(struct udma_chan *uc,
  2265. size_t tr_size, int tr_count,
  2266. enum dma_transfer_direction dir)
  2267. {
  2268. struct udma_hwdesc *hwdesc;
  2269. struct cppi5_desc_hdr_t *tr_desc;
  2270. struct udma_desc *d;
  2271. u32 reload_count = 0;
  2272. u32 ring_id;
  2273. switch (tr_size) {
  2274. case 16:
  2275. case 32:
  2276. case 64:
  2277. case 128:
  2278. break;
  2279. default:
  2280. dev_err(uc->ud->dev, "Unsupported TR size of %zu\n", tr_size);
  2281. return NULL;
  2282. }
  2283. /* We have only one descriptor containing multiple TRs */
  2284. d = kzalloc(sizeof(*d) + sizeof(d->hwdesc[0]), GFP_NOWAIT);
  2285. if (!d)
  2286. return NULL;
  2287. d->sglen = tr_count;
  2288. d->hwdesc_count = 1;
  2289. hwdesc = &d->hwdesc[0];
  2290. /* Allocate memory for DMA ring descriptor */
  2291. if (uc->use_dma_pool) {
  2292. hwdesc->cppi5_desc_size = uc->config.hdesc_size;
  2293. hwdesc->cppi5_desc_vaddr = dma_pool_zalloc(uc->hdesc_pool,
  2294. GFP_NOWAIT,
  2295. &hwdesc->cppi5_desc_paddr);
  2296. } else {
  2297. hwdesc->cppi5_desc_size = cppi5_trdesc_calc_size(tr_size,
  2298. tr_count);
  2299. hwdesc->cppi5_desc_size = ALIGN(hwdesc->cppi5_desc_size,
  2300. uc->ud->desc_align);
  2301. hwdesc->cppi5_desc_vaddr = dma_alloc_coherent(uc->ud->dev,
  2302. hwdesc->cppi5_desc_size,
  2303. &hwdesc->cppi5_desc_paddr,
  2304. GFP_NOWAIT);
  2305. }
  2306. if (!hwdesc->cppi5_desc_vaddr) {
  2307. kfree(d);
  2308. return NULL;
  2309. }
  2310. /* Start of the TR req records */
  2311. hwdesc->tr_req_base = hwdesc->cppi5_desc_vaddr + tr_size;
  2312. /* Start address of the TR response array */
  2313. hwdesc->tr_resp_base = hwdesc->tr_req_base + tr_size * tr_count;
  2314. tr_desc = hwdesc->cppi5_desc_vaddr;
  2315. if (uc->cyclic)
  2316. reload_count = CPPI5_INFO0_TRDESC_RLDCNT_INFINITE;
  2317. if (dir == DMA_DEV_TO_MEM)
  2318. ring_id = k3_ringacc_get_ring_id(uc->rflow->r_ring);
  2319. else
  2320. ring_id = k3_ringacc_get_ring_id(uc->tchan->tc_ring);
  2321. cppi5_trdesc_init(tr_desc, tr_count, tr_size, 0, reload_count);
  2322. cppi5_desc_set_pktids(tr_desc, uc->id,
  2323. CPPI5_INFO1_DESC_FLOWID_DEFAULT);
  2324. cppi5_desc_set_retpolicy(tr_desc, 0, ring_id);
  2325. return d;
  2326. }
  2327. /**
  2328. * udma_get_tr_counters - calculate TR counters for a given length
  2329. * @len: Length of the trasnfer
  2330. * @align_to: Preferred alignment
  2331. * @tr0_cnt0: First TR icnt0
  2332. * @tr0_cnt1: First TR icnt1
  2333. * @tr1_cnt0: Second (if used) TR icnt0
  2334. *
  2335. * For len < SZ_64K only one TR is enough, tr1_cnt0 is not updated
  2336. * For len >= SZ_64K two TRs are used in a simple way:
  2337. * First TR: SZ_64K-alignment blocks (tr0_cnt0, tr0_cnt1)
  2338. * Second TR: the remaining length (tr1_cnt0)
  2339. *
  2340. * Returns the number of TRs the length needs (1 or 2)
  2341. * -EINVAL if the length can not be supported
  2342. */
  2343. static int udma_get_tr_counters(size_t len, unsigned long align_to,
  2344. u16 *tr0_cnt0, u16 *tr0_cnt1, u16 *tr1_cnt0)
  2345. {
  2346. if (len < SZ_64K) {
  2347. *tr0_cnt0 = len;
  2348. *tr0_cnt1 = 1;
  2349. return 1;
  2350. }
  2351. if (align_to > 3)
  2352. align_to = 3;
  2353. realign:
  2354. *tr0_cnt0 = SZ_64K - BIT(align_to);
  2355. if (len / *tr0_cnt0 >= SZ_64K) {
  2356. if (align_to) {
  2357. align_to--;
  2358. goto realign;
  2359. }
  2360. return -EINVAL;
  2361. }
  2362. *tr0_cnt1 = len / *tr0_cnt0;
  2363. *tr1_cnt0 = len % *tr0_cnt0;
  2364. return 2;
  2365. }
  2366. static struct udma_desc *
  2367. udma_prep_slave_sg_tr(struct udma_chan *uc, struct scatterlist *sgl,
  2368. unsigned int sglen, enum dma_transfer_direction dir,
  2369. unsigned long tx_flags, void *context)
  2370. {
  2371. struct scatterlist *sgent;
  2372. struct udma_desc *d;
  2373. struct cppi5_tr_type1_t *tr_req = NULL;
  2374. u16 tr0_cnt0, tr0_cnt1, tr1_cnt0;
  2375. unsigned int i;
  2376. size_t tr_size;
  2377. int num_tr = 0;
  2378. int tr_idx = 0;
  2379. u64 asel;
  2380. /* estimate the number of TRs we will need */
  2381. for_each_sg(sgl, sgent, sglen, i) {
  2382. if (sg_dma_len(sgent) < SZ_64K)
  2383. num_tr++;
  2384. else
  2385. num_tr += 2;
  2386. }
  2387. /* Now allocate and setup the descriptor. */
  2388. tr_size = sizeof(struct cppi5_tr_type1_t);
  2389. d = udma_alloc_tr_desc(uc, tr_size, num_tr, dir);
  2390. if (!d)
  2391. return NULL;
  2392. d->sglen = sglen;
  2393. if (uc->ud->match_data->type == DMA_TYPE_UDMA)
  2394. asel = 0;
  2395. else
  2396. asel = (u64)uc->config.asel << K3_ADDRESS_ASEL_SHIFT;
  2397. tr_req = d->hwdesc[0].tr_req_base;
  2398. for_each_sg(sgl, sgent, sglen, i) {
  2399. dma_addr_t sg_addr = sg_dma_address(sgent);
  2400. num_tr = udma_get_tr_counters(sg_dma_len(sgent), __ffs(sg_addr),
  2401. &tr0_cnt0, &tr0_cnt1, &tr1_cnt0);
  2402. if (num_tr < 0) {
  2403. dev_err(uc->ud->dev, "size %u is not supported\n",
  2404. sg_dma_len(sgent));
  2405. udma_free_hwdesc(uc, d);
  2406. kfree(d);
  2407. return NULL;
  2408. }
  2409. cppi5_tr_init(&tr_req[tr_idx].flags, CPPI5_TR_TYPE1, false,
  2410. false, CPPI5_TR_EVENT_SIZE_COMPLETION, 0);
  2411. cppi5_tr_csf_set(&tr_req[tr_idx].flags, CPPI5_TR_CSF_SUPR_EVT);
  2412. sg_addr |= asel;
  2413. tr_req[tr_idx].addr = sg_addr;
  2414. tr_req[tr_idx].icnt0 = tr0_cnt0;
  2415. tr_req[tr_idx].icnt1 = tr0_cnt1;
  2416. tr_req[tr_idx].dim1 = tr0_cnt0;
  2417. tr_idx++;
  2418. if (num_tr == 2) {
  2419. cppi5_tr_init(&tr_req[tr_idx].flags, CPPI5_TR_TYPE1,
  2420. false, false,
  2421. CPPI5_TR_EVENT_SIZE_COMPLETION, 0);
  2422. cppi5_tr_csf_set(&tr_req[tr_idx].flags,
  2423. CPPI5_TR_CSF_SUPR_EVT);
  2424. tr_req[tr_idx].addr = sg_addr + tr0_cnt1 * tr0_cnt0;
  2425. tr_req[tr_idx].icnt0 = tr1_cnt0;
  2426. tr_req[tr_idx].icnt1 = 1;
  2427. tr_req[tr_idx].dim1 = tr1_cnt0;
  2428. tr_idx++;
  2429. }
  2430. d->residue += sg_dma_len(sgent);
  2431. }
  2432. cppi5_tr_csf_set(&tr_req[tr_idx - 1].flags,
  2433. CPPI5_TR_CSF_SUPR_EVT | CPPI5_TR_CSF_EOP);
  2434. return d;
  2435. }
  2436. static struct udma_desc *
  2437. udma_prep_slave_sg_triggered_tr(struct udma_chan *uc, struct scatterlist *sgl,
  2438. unsigned int sglen,
  2439. enum dma_transfer_direction dir,
  2440. unsigned long tx_flags, void *context)
  2441. {
  2442. struct scatterlist *sgent;
  2443. struct cppi5_tr_type15_t *tr_req = NULL;
  2444. enum dma_slave_buswidth dev_width;
  2445. u16 tr_cnt0, tr_cnt1;
  2446. dma_addr_t dev_addr;
  2447. struct udma_desc *d;
  2448. unsigned int i;
  2449. size_t tr_size, sg_len;
  2450. int num_tr = 0;
  2451. int tr_idx = 0;
  2452. u32 burst, trigger_size, port_window;
  2453. u64 asel;
  2454. if (dir == DMA_DEV_TO_MEM) {
  2455. dev_addr = uc->cfg.src_addr;
  2456. dev_width = uc->cfg.src_addr_width;
  2457. burst = uc->cfg.src_maxburst;
  2458. port_window = uc->cfg.src_port_window_size;
  2459. } else if (dir == DMA_MEM_TO_DEV) {
  2460. dev_addr = uc->cfg.dst_addr;
  2461. dev_width = uc->cfg.dst_addr_width;
  2462. burst = uc->cfg.dst_maxburst;
  2463. port_window = uc->cfg.dst_port_window_size;
  2464. } else {
  2465. dev_err(uc->ud->dev, "%s: bad direction?\n", __func__);
  2466. return NULL;
  2467. }
  2468. if (!burst)
  2469. burst = 1;
  2470. if (port_window) {
  2471. if (port_window != burst) {
  2472. dev_err(uc->ud->dev,
  2473. "The burst must be equal to port_window\n");
  2474. return NULL;
  2475. }
  2476. tr_cnt0 = dev_width * port_window;
  2477. tr_cnt1 = 1;
  2478. } else {
  2479. tr_cnt0 = dev_width;
  2480. tr_cnt1 = burst;
  2481. }
  2482. trigger_size = tr_cnt0 * tr_cnt1;
  2483. /* estimate the number of TRs we will need */
  2484. for_each_sg(sgl, sgent, sglen, i) {
  2485. sg_len = sg_dma_len(sgent);
  2486. if (sg_len % trigger_size) {
  2487. dev_err(uc->ud->dev,
  2488. "Not aligned SG entry (%zu for %u)\n", sg_len,
  2489. trigger_size);
  2490. return NULL;
  2491. }
  2492. if (sg_len / trigger_size < SZ_64K)
  2493. num_tr++;
  2494. else
  2495. num_tr += 2;
  2496. }
  2497. /* Now allocate and setup the descriptor. */
  2498. tr_size = sizeof(struct cppi5_tr_type15_t);
  2499. d = udma_alloc_tr_desc(uc, tr_size, num_tr, dir);
  2500. if (!d)
  2501. return NULL;
  2502. d->sglen = sglen;
  2503. if (uc->ud->match_data->type == DMA_TYPE_UDMA) {
  2504. asel = 0;
  2505. } else {
  2506. asel = (u64)uc->config.asel << K3_ADDRESS_ASEL_SHIFT;
  2507. dev_addr |= asel;
  2508. }
  2509. tr_req = d->hwdesc[0].tr_req_base;
  2510. for_each_sg(sgl, sgent, sglen, i) {
  2511. u16 tr0_cnt2, tr0_cnt3, tr1_cnt2;
  2512. dma_addr_t sg_addr = sg_dma_address(sgent);
  2513. sg_len = sg_dma_len(sgent);
  2514. num_tr = udma_get_tr_counters(sg_len / trigger_size, 0,
  2515. &tr0_cnt2, &tr0_cnt3, &tr1_cnt2);
  2516. if (num_tr < 0) {
  2517. dev_err(uc->ud->dev, "size %zu is not supported\n",
  2518. sg_len);
  2519. udma_free_hwdesc(uc, d);
  2520. kfree(d);
  2521. return NULL;
  2522. }
  2523. cppi5_tr_init(&tr_req[tr_idx].flags, CPPI5_TR_TYPE15, false,
  2524. true, CPPI5_TR_EVENT_SIZE_COMPLETION, 0);
  2525. cppi5_tr_csf_set(&tr_req[tr_idx].flags, CPPI5_TR_CSF_SUPR_EVT);
  2526. cppi5_tr_set_trigger(&tr_req[tr_idx].flags,
  2527. uc->config.tr_trigger_type,
  2528. CPPI5_TR_TRIGGER_TYPE_ICNT2_DEC, 0, 0);
  2529. sg_addr |= asel;
  2530. if (dir == DMA_DEV_TO_MEM) {
  2531. tr_req[tr_idx].addr = dev_addr;
  2532. tr_req[tr_idx].icnt0 = tr_cnt0;
  2533. tr_req[tr_idx].icnt1 = tr_cnt1;
  2534. tr_req[tr_idx].icnt2 = tr0_cnt2;
  2535. tr_req[tr_idx].icnt3 = tr0_cnt3;
  2536. tr_req[tr_idx].dim1 = (-1) * tr_cnt0;
  2537. tr_req[tr_idx].daddr = sg_addr;
  2538. tr_req[tr_idx].dicnt0 = tr_cnt0;
  2539. tr_req[tr_idx].dicnt1 = tr_cnt1;
  2540. tr_req[tr_idx].dicnt2 = tr0_cnt2;
  2541. tr_req[tr_idx].dicnt3 = tr0_cnt3;
  2542. tr_req[tr_idx].ddim1 = tr_cnt0;
  2543. tr_req[tr_idx].ddim2 = trigger_size;
  2544. tr_req[tr_idx].ddim3 = trigger_size * tr0_cnt2;
  2545. } else {
  2546. tr_req[tr_idx].addr = sg_addr;
  2547. tr_req[tr_idx].icnt0 = tr_cnt0;
  2548. tr_req[tr_idx].icnt1 = tr_cnt1;
  2549. tr_req[tr_idx].icnt2 = tr0_cnt2;
  2550. tr_req[tr_idx].icnt3 = tr0_cnt3;
  2551. tr_req[tr_idx].dim1 = tr_cnt0;
  2552. tr_req[tr_idx].dim2 = trigger_size;
  2553. tr_req[tr_idx].dim3 = trigger_size * tr0_cnt2;
  2554. tr_req[tr_idx].daddr = dev_addr;
  2555. tr_req[tr_idx].dicnt0 = tr_cnt0;
  2556. tr_req[tr_idx].dicnt1 = tr_cnt1;
  2557. tr_req[tr_idx].dicnt2 = tr0_cnt2;
  2558. tr_req[tr_idx].dicnt3 = tr0_cnt3;
  2559. tr_req[tr_idx].ddim1 = (-1) * tr_cnt0;
  2560. }
  2561. tr_idx++;
  2562. if (num_tr == 2) {
  2563. cppi5_tr_init(&tr_req[tr_idx].flags, CPPI5_TR_TYPE15,
  2564. false, true,
  2565. CPPI5_TR_EVENT_SIZE_COMPLETION, 0);
  2566. cppi5_tr_csf_set(&tr_req[tr_idx].flags,
  2567. CPPI5_TR_CSF_SUPR_EVT);
  2568. cppi5_tr_set_trigger(&tr_req[tr_idx].flags,
  2569. uc->config.tr_trigger_type,
  2570. CPPI5_TR_TRIGGER_TYPE_ICNT2_DEC,
  2571. 0, 0);
  2572. sg_addr += trigger_size * tr0_cnt2 * tr0_cnt3;
  2573. if (dir == DMA_DEV_TO_MEM) {
  2574. tr_req[tr_idx].addr = dev_addr;
  2575. tr_req[tr_idx].icnt0 = tr_cnt0;
  2576. tr_req[tr_idx].icnt1 = tr_cnt1;
  2577. tr_req[tr_idx].icnt2 = tr1_cnt2;
  2578. tr_req[tr_idx].icnt3 = 1;
  2579. tr_req[tr_idx].dim1 = (-1) * tr_cnt0;
  2580. tr_req[tr_idx].daddr = sg_addr;
  2581. tr_req[tr_idx].dicnt0 = tr_cnt0;
  2582. tr_req[tr_idx].dicnt1 = tr_cnt1;
  2583. tr_req[tr_idx].dicnt2 = tr1_cnt2;
  2584. tr_req[tr_idx].dicnt3 = 1;
  2585. tr_req[tr_idx].ddim1 = tr_cnt0;
  2586. tr_req[tr_idx].ddim2 = trigger_size;
  2587. } else {
  2588. tr_req[tr_idx].addr = sg_addr;
  2589. tr_req[tr_idx].icnt0 = tr_cnt0;
  2590. tr_req[tr_idx].icnt1 = tr_cnt1;
  2591. tr_req[tr_idx].icnt2 = tr1_cnt2;
  2592. tr_req[tr_idx].icnt3 = 1;
  2593. tr_req[tr_idx].dim1 = tr_cnt0;
  2594. tr_req[tr_idx].dim2 = trigger_size;
  2595. tr_req[tr_idx].daddr = dev_addr;
  2596. tr_req[tr_idx].dicnt0 = tr_cnt0;
  2597. tr_req[tr_idx].dicnt1 = tr_cnt1;
  2598. tr_req[tr_idx].dicnt2 = tr1_cnt2;
  2599. tr_req[tr_idx].dicnt3 = 1;
  2600. tr_req[tr_idx].ddim1 = (-1) * tr_cnt0;
  2601. }
  2602. tr_idx++;
  2603. }
  2604. d->residue += sg_len;
  2605. }
  2606. cppi5_tr_csf_set(&tr_req[tr_idx - 1].flags,
  2607. CPPI5_TR_CSF_SUPR_EVT | CPPI5_TR_CSF_EOP);
  2608. return d;
  2609. }
  2610. static int udma_configure_statictr(struct udma_chan *uc, struct udma_desc *d,
  2611. enum dma_slave_buswidth dev_width,
  2612. u16 elcnt)
  2613. {
  2614. if (uc->config.ep_type != PSIL_EP_PDMA_XY)
  2615. return 0;
  2616. /* Bus width translates to the element size (ES) */
  2617. switch (dev_width) {
  2618. case DMA_SLAVE_BUSWIDTH_1_BYTE:
  2619. d->static_tr.elsize = 0;
  2620. break;
  2621. case DMA_SLAVE_BUSWIDTH_2_BYTES:
  2622. d->static_tr.elsize = 1;
  2623. break;
  2624. case DMA_SLAVE_BUSWIDTH_3_BYTES:
  2625. d->static_tr.elsize = 2;
  2626. break;
  2627. case DMA_SLAVE_BUSWIDTH_4_BYTES:
  2628. d->static_tr.elsize = 3;
  2629. break;
  2630. case DMA_SLAVE_BUSWIDTH_8_BYTES:
  2631. d->static_tr.elsize = 4;
  2632. break;
  2633. default: /* not reached */
  2634. return -EINVAL;
  2635. }
  2636. d->static_tr.elcnt = elcnt;
  2637. /*
  2638. * PDMA must to close the packet when the channel is in packet mode.
  2639. * For TR mode when the channel is not cyclic we also need PDMA to close
  2640. * the packet otherwise the transfer will stall because PDMA holds on
  2641. * the data it has received from the peripheral.
  2642. */
  2643. if (uc->config.pkt_mode || !uc->cyclic) {
  2644. unsigned int div = dev_width * elcnt;
  2645. if (uc->cyclic)
  2646. d->static_tr.bstcnt = d->residue / d->sglen / div;
  2647. else
  2648. d->static_tr.bstcnt = d->residue / div;
  2649. if (uc->config.dir == DMA_DEV_TO_MEM &&
  2650. d->static_tr.bstcnt > uc->ud->match_data->statictr_z_mask)
  2651. return -EINVAL;
  2652. } else {
  2653. d->static_tr.bstcnt = 0;
  2654. }
  2655. return 0;
  2656. }
  2657. static struct udma_desc *
  2658. udma_prep_slave_sg_pkt(struct udma_chan *uc, struct scatterlist *sgl,
  2659. unsigned int sglen, enum dma_transfer_direction dir,
  2660. unsigned long tx_flags, void *context)
  2661. {
  2662. struct scatterlist *sgent;
  2663. struct cppi5_host_desc_t *h_desc = NULL;
  2664. struct udma_desc *d;
  2665. u32 ring_id;
  2666. unsigned int i;
  2667. u64 asel;
  2668. d = kzalloc(struct_size(d, hwdesc, sglen), GFP_NOWAIT);
  2669. if (!d)
  2670. return NULL;
  2671. d->sglen = sglen;
  2672. d->hwdesc_count = sglen;
  2673. if (dir == DMA_DEV_TO_MEM)
  2674. ring_id = k3_ringacc_get_ring_id(uc->rflow->r_ring);
  2675. else
  2676. ring_id = k3_ringacc_get_ring_id(uc->tchan->tc_ring);
  2677. if (uc->ud->match_data->type == DMA_TYPE_UDMA)
  2678. asel = 0;
  2679. else
  2680. asel = (u64)uc->config.asel << K3_ADDRESS_ASEL_SHIFT;
  2681. for_each_sg(sgl, sgent, sglen, i) {
  2682. struct udma_hwdesc *hwdesc = &d->hwdesc[i];
  2683. dma_addr_t sg_addr = sg_dma_address(sgent);
  2684. struct cppi5_host_desc_t *desc;
  2685. size_t sg_len = sg_dma_len(sgent);
  2686. hwdesc->cppi5_desc_vaddr = dma_pool_zalloc(uc->hdesc_pool,
  2687. GFP_NOWAIT,
  2688. &hwdesc->cppi5_desc_paddr);
  2689. if (!hwdesc->cppi5_desc_vaddr) {
  2690. dev_err(uc->ud->dev,
  2691. "descriptor%d allocation failed\n", i);
  2692. udma_free_hwdesc(uc, d);
  2693. kfree(d);
  2694. return NULL;
  2695. }
  2696. d->residue += sg_len;
  2697. hwdesc->cppi5_desc_size = uc->config.hdesc_size;
  2698. desc = hwdesc->cppi5_desc_vaddr;
  2699. if (i == 0) {
  2700. cppi5_hdesc_init(desc, 0, 0);
  2701. /* Flow and Packed ID */
  2702. cppi5_desc_set_pktids(&desc->hdr, uc->id,
  2703. CPPI5_INFO1_DESC_FLOWID_DEFAULT);
  2704. cppi5_desc_set_retpolicy(&desc->hdr, 0, ring_id);
  2705. } else {
  2706. cppi5_hdesc_reset_hbdesc(desc);
  2707. cppi5_desc_set_retpolicy(&desc->hdr, 0, 0xffff);
  2708. }
  2709. /* attach the sg buffer to the descriptor */
  2710. sg_addr |= asel;
  2711. cppi5_hdesc_attach_buf(desc, sg_addr, sg_len, sg_addr, sg_len);
  2712. /* Attach link as host buffer descriptor */
  2713. if (h_desc)
  2714. cppi5_hdesc_link_hbdesc(h_desc,
  2715. hwdesc->cppi5_desc_paddr | asel);
  2716. if (uc->ud->match_data->type == DMA_TYPE_PKTDMA ||
  2717. dir == DMA_MEM_TO_DEV)
  2718. h_desc = desc;
  2719. }
  2720. if (d->residue >= SZ_4M) {
  2721. dev_err(uc->ud->dev,
  2722. "%s: Transfer size %u is over the supported 4M range\n",
  2723. __func__, d->residue);
  2724. udma_free_hwdesc(uc, d);
  2725. kfree(d);
  2726. return NULL;
  2727. }
  2728. h_desc = d->hwdesc[0].cppi5_desc_vaddr;
  2729. cppi5_hdesc_set_pktlen(h_desc, d->residue);
  2730. return d;
  2731. }
  2732. static int udma_attach_metadata(struct dma_async_tx_descriptor *desc,
  2733. void *data, size_t len)
  2734. {
  2735. struct udma_desc *d = to_udma_desc(desc);
  2736. struct udma_chan *uc = to_udma_chan(desc->chan);
  2737. struct cppi5_host_desc_t *h_desc;
  2738. u32 psd_size = len;
  2739. u32 flags = 0;
  2740. if (!uc->config.pkt_mode || !uc->config.metadata_size)
  2741. return -ENOTSUPP;
  2742. if (!data || len > uc->config.metadata_size)
  2743. return -EINVAL;
  2744. if (uc->config.needs_epib && len < CPPI5_INFO0_HDESC_EPIB_SIZE)
  2745. return -EINVAL;
  2746. h_desc = d->hwdesc[0].cppi5_desc_vaddr;
  2747. if (d->dir == DMA_MEM_TO_DEV)
  2748. memcpy(h_desc->epib, data, len);
  2749. if (uc->config.needs_epib)
  2750. psd_size -= CPPI5_INFO0_HDESC_EPIB_SIZE;
  2751. d->metadata = data;
  2752. d->metadata_size = len;
  2753. if (uc->config.needs_epib)
  2754. flags |= CPPI5_INFO0_HDESC_EPIB_PRESENT;
  2755. cppi5_hdesc_update_flags(h_desc, flags);
  2756. cppi5_hdesc_update_psdata_size(h_desc, psd_size);
  2757. return 0;
  2758. }
  2759. static void *udma_get_metadata_ptr(struct dma_async_tx_descriptor *desc,
  2760. size_t *payload_len, size_t *max_len)
  2761. {
  2762. struct udma_desc *d = to_udma_desc(desc);
  2763. struct udma_chan *uc = to_udma_chan(desc->chan);
  2764. struct cppi5_host_desc_t *h_desc;
  2765. if (!uc->config.pkt_mode || !uc->config.metadata_size)
  2766. return ERR_PTR(-ENOTSUPP);
  2767. h_desc = d->hwdesc[0].cppi5_desc_vaddr;
  2768. *max_len = uc->config.metadata_size;
  2769. *payload_len = cppi5_hdesc_epib_present(&h_desc->hdr) ?
  2770. CPPI5_INFO0_HDESC_EPIB_SIZE : 0;
  2771. *payload_len += cppi5_hdesc_get_psdata_size(h_desc);
  2772. return h_desc->epib;
  2773. }
  2774. static int udma_set_metadata_len(struct dma_async_tx_descriptor *desc,
  2775. size_t payload_len)
  2776. {
  2777. struct udma_desc *d = to_udma_desc(desc);
  2778. struct udma_chan *uc = to_udma_chan(desc->chan);
  2779. struct cppi5_host_desc_t *h_desc;
  2780. u32 psd_size = payload_len;
  2781. u32 flags = 0;
  2782. if (!uc->config.pkt_mode || !uc->config.metadata_size)
  2783. return -ENOTSUPP;
  2784. if (payload_len > uc->config.metadata_size)
  2785. return -EINVAL;
  2786. if (uc->config.needs_epib && payload_len < CPPI5_INFO0_HDESC_EPIB_SIZE)
  2787. return -EINVAL;
  2788. h_desc = d->hwdesc[0].cppi5_desc_vaddr;
  2789. if (uc->config.needs_epib) {
  2790. psd_size -= CPPI5_INFO0_HDESC_EPIB_SIZE;
  2791. flags |= CPPI5_INFO0_HDESC_EPIB_PRESENT;
  2792. }
  2793. cppi5_hdesc_update_flags(h_desc, flags);
  2794. cppi5_hdesc_update_psdata_size(h_desc, psd_size);
  2795. return 0;
  2796. }
  2797. static struct dma_descriptor_metadata_ops metadata_ops = {
  2798. .attach = udma_attach_metadata,
  2799. .get_ptr = udma_get_metadata_ptr,
  2800. .set_len = udma_set_metadata_len,
  2801. };
  2802. static struct dma_async_tx_descriptor *
  2803. udma_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
  2804. unsigned int sglen, enum dma_transfer_direction dir,
  2805. unsigned long tx_flags, void *context)
  2806. {
  2807. struct udma_chan *uc = to_udma_chan(chan);
  2808. enum dma_slave_buswidth dev_width;
  2809. struct udma_desc *d;
  2810. u32 burst;
  2811. if (dir != uc->config.dir &&
  2812. (uc->config.dir == DMA_MEM_TO_MEM && !uc->config.tr_trigger_type)) {
  2813. dev_err(chan->device->dev,
  2814. "%s: chan%d is for %s, not supporting %s\n",
  2815. __func__, uc->id,
  2816. dmaengine_get_direction_text(uc->config.dir),
  2817. dmaengine_get_direction_text(dir));
  2818. return NULL;
  2819. }
  2820. if (dir == DMA_DEV_TO_MEM) {
  2821. dev_width = uc->cfg.src_addr_width;
  2822. burst = uc->cfg.src_maxburst;
  2823. } else if (dir == DMA_MEM_TO_DEV) {
  2824. dev_width = uc->cfg.dst_addr_width;
  2825. burst = uc->cfg.dst_maxburst;
  2826. } else {
  2827. dev_err(chan->device->dev, "%s: bad direction?\n", __func__);
  2828. return NULL;
  2829. }
  2830. if (!burst)
  2831. burst = 1;
  2832. uc->config.tx_flags = tx_flags;
  2833. if (uc->config.pkt_mode)
  2834. d = udma_prep_slave_sg_pkt(uc, sgl, sglen, dir, tx_flags,
  2835. context);
  2836. else if (is_slave_direction(uc->config.dir))
  2837. d = udma_prep_slave_sg_tr(uc, sgl, sglen, dir, tx_flags,
  2838. context);
  2839. else
  2840. d = udma_prep_slave_sg_triggered_tr(uc, sgl, sglen, dir,
  2841. tx_flags, context);
  2842. if (!d)
  2843. return NULL;
  2844. d->dir = dir;
  2845. d->desc_idx = 0;
  2846. d->tr_idx = 0;
  2847. /* static TR for remote PDMA */
  2848. if (udma_configure_statictr(uc, d, dev_width, burst)) {
  2849. dev_err(uc->ud->dev,
  2850. "%s: StaticTR Z is limited to maximum 4095 (%u)\n",
  2851. __func__, d->static_tr.bstcnt);
  2852. udma_free_hwdesc(uc, d);
  2853. kfree(d);
  2854. return NULL;
  2855. }
  2856. if (uc->config.metadata_size)
  2857. d->vd.tx.metadata_ops = &metadata_ops;
  2858. return vchan_tx_prep(&uc->vc, &d->vd, tx_flags);
  2859. }
  2860. static struct udma_desc *
  2861. udma_prep_dma_cyclic_tr(struct udma_chan *uc, dma_addr_t buf_addr,
  2862. size_t buf_len, size_t period_len,
  2863. enum dma_transfer_direction dir, unsigned long flags)
  2864. {
  2865. struct udma_desc *d;
  2866. size_t tr_size, period_addr;
  2867. struct cppi5_tr_type1_t *tr_req;
  2868. unsigned int periods = buf_len / period_len;
  2869. u16 tr0_cnt0, tr0_cnt1, tr1_cnt0;
  2870. unsigned int i;
  2871. int num_tr;
  2872. num_tr = udma_get_tr_counters(period_len, __ffs(buf_addr), &tr0_cnt0,
  2873. &tr0_cnt1, &tr1_cnt0);
  2874. if (num_tr < 0) {
  2875. dev_err(uc->ud->dev, "size %zu is not supported\n",
  2876. period_len);
  2877. return NULL;
  2878. }
  2879. /* Now allocate and setup the descriptor. */
  2880. tr_size = sizeof(struct cppi5_tr_type1_t);
  2881. d = udma_alloc_tr_desc(uc, tr_size, periods * num_tr, dir);
  2882. if (!d)
  2883. return NULL;
  2884. tr_req = d->hwdesc[0].tr_req_base;
  2885. if (uc->ud->match_data->type == DMA_TYPE_UDMA)
  2886. period_addr = buf_addr;
  2887. else
  2888. period_addr = buf_addr |
  2889. ((u64)uc->config.asel << K3_ADDRESS_ASEL_SHIFT);
  2890. for (i = 0; i < periods; i++) {
  2891. int tr_idx = i * num_tr;
  2892. cppi5_tr_init(&tr_req[tr_idx].flags, CPPI5_TR_TYPE1, false,
  2893. false, CPPI5_TR_EVENT_SIZE_COMPLETION, 0);
  2894. tr_req[tr_idx].addr = period_addr;
  2895. tr_req[tr_idx].icnt0 = tr0_cnt0;
  2896. tr_req[tr_idx].icnt1 = tr0_cnt1;
  2897. tr_req[tr_idx].dim1 = tr0_cnt0;
  2898. if (num_tr == 2) {
  2899. cppi5_tr_csf_set(&tr_req[tr_idx].flags,
  2900. CPPI5_TR_CSF_SUPR_EVT);
  2901. tr_idx++;
  2902. cppi5_tr_init(&tr_req[tr_idx].flags, CPPI5_TR_TYPE1,
  2903. false, false,
  2904. CPPI5_TR_EVENT_SIZE_COMPLETION, 0);
  2905. tr_req[tr_idx].addr = period_addr + tr0_cnt1 * tr0_cnt0;
  2906. tr_req[tr_idx].icnt0 = tr1_cnt0;
  2907. tr_req[tr_idx].icnt1 = 1;
  2908. tr_req[tr_idx].dim1 = tr1_cnt0;
  2909. }
  2910. if (!(flags & DMA_PREP_INTERRUPT))
  2911. cppi5_tr_csf_set(&tr_req[tr_idx].flags,
  2912. CPPI5_TR_CSF_SUPR_EVT);
  2913. period_addr += period_len;
  2914. }
  2915. return d;
  2916. }
  2917. static struct udma_desc *
  2918. udma_prep_dma_cyclic_pkt(struct udma_chan *uc, dma_addr_t buf_addr,
  2919. size_t buf_len, size_t period_len,
  2920. enum dma_transfer_direction dir, unsigned long flags)
  2921. {
  2922. struct udma_desc *d;
  2923. u32 ring_id;
  2924. int i;
  2925. int periods = buf_len / period_len;
  2926. if (periods > (K3_UDMA_DEFAULT_RING_SIZE - 1))
  2927. return NULL;
  2928. if (period_len >= SZ_4M)
  2929. return NULL;
  2930. d = kzalloc(struct_size(d, hwdesc, periods), GFP_NOWAIT);
  2931. if (!d)
  2932. return NULL;
  2933. d->hwdesc_count = periods;
  2934. /* TODO: re-check this... */
  2935. if (dir == DMA_DEV_TO_MEM)
  2936. ring_id = k3_ringacc_get_ring_id(uc->rflow->r_ring);
  2937. else
  2938. ring_id = k3_ringacc_get_ring_id(uc->tchan->tc_ring);
  2939. if (uc->ud->match_data->type != DMA_TYPE_UDMA)
  2940. buf_addr |= (u64)uc->config.asel << K3_ADDRESS_ASEL_SHIFT;
  2941. for (i = 0; i < periods; i++) {
  2942. struct udma_hwdesc *hwdesc = &d->hwdesc[i];
  2943. dma_addr_t period_addr = buf_addr + (period_len * i);
  2944. struct cppi5_host_desc_t *h_desc;
  2945. hwdesc->cppi5_desc_vaddr = dma_pool_zalloc(uc->hdesc_pool,
  2946. GFP_NOWAIT,
  2947. &hwdesc->cppi5_desc_paddr);
  2948. if (!hwdesc->cppi5_desc_vaddr) {
  2949. dev_err(uc->ud->dev,
  2950. "descriptor%d allocation failed\n", i);
  2951. udma_free_hwdesc(uc, d);
  2952. kfree(d);
  2953. return NULL;
  2954. }
  2955. hwdesc->cppi5_desc_size = uc->config.hdesc_size;
  2956. h_desc = hwdesc->cppi5_desc_vaddr;
  2957. cppi5_hdesc_init(h_desc, 0, 0);
  2958. cppi5_hdesc_set_pktlen(h_desc, period_len);
  2959. /* Flow and Packed ID */
  2960. cppi5_desc_set_pktids(&h_desc->hdr, uc->id,
  2961. CPPI5_INFO1_DESC_FLOWID_DEFAULT);
  2962. cppi5_desc_set_retpolicy(&h_desc->hdr, 0, ring_id);
  2963. /* attach each period to a new descriptor */
  2964. cppi5_hdesc_attach_buf(h_desc,
  2965. period_addr, period_len,
  2966. period_addr, period_len);
  2967. }
  2968. return d;
  2969. }
  2970. static struct dma_async_tx_descriptor *
  2971. udma_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
  2972. size_t period_len, enum dma_transfer_direction dir,
  2973. unsigned long flags)
  2974. {
  2975. struct udma_chan *uc = to_udma_chan(chan);
  2976. enum dma_slave_buswidth dev_width;
  2977. struct udma_desc *d;
  2978. u32 burst;
  2979. if (dir != uc->config.dir) {
  2980. dev_err(chan->device->dev,
  2981. "%s: chan%d is for %s, not supporting %s\n",
  2982. __func__, uc->id,
  2983. dmaengine_get_direction_text(uc->config.dir),
  2984. dmaengine_get_direction_text(dir));
  2985. return NULL;
  2986. }
  2987. uc->cyclic = true;
  2988. if (dir == DMA_DEV_TO_MEM) {
  2989. dev_width = uc->cfg.src_addr_width;
  2990. burst = uc->cfg.src_maxburst;
  2991. } else if (dir == DMA_MEM_TO_DEV) {
  2992. dev_width = uc->cfg.dst_addr_width;
  2993. burst = uc->cfg.dst_maxburst;
  2994. } else {
  2995. dev_err(uc->ud->dev, "%s: bad direction?\n", __func__);
  2996. return NULL;
  2997. }
  2998. if (!burst)
  2999. burst = 1;
  3000. if (uc->config.pkt_mode)
  3001. d = udma_prep_dma_cyclic_pkt(uc, buf_addr, buf_len, period_len,
  3002. dir, flags);
  3003. else
  3004. d = udma_prep_dma_cyclic_tr(uc, buf_addr, buf_len, period_len,
  3005. dir, flags);
  3006. if (!d)
  3007. return NULL;
  3008. d->sglen = buf_len / period_len;
  3009. d->dir = dir;
  3010. d->residue = buf_len;
  3011. /* static TR for remote PDMA */
  3012. if (udma_configure_statictr(uc, d, dev_width, burst)) {
  3013. dev_err(uc->ud->dev,
  3014. "%s: StaticTR Z is limited to maximum 4095 (%u)\n",
  3015. __func__, d->static_tr.bstcnt);
  3016. udma_free_hwdesc(uc, d);
  3017. kfree(d);
  3018. return NULL;
  3019. }
  3020. if (uc->config.metadata_size)
  3021. d->vd.tx.metadata_ops = &metadata_ops;
  3022. return vchan_tx_prep(&uc->vc, &d->vd, flags);
  3023. }
  3024. static struct dma_async_tx_descriptor *
  3025. udma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
  3026. size_t len, unsigned long tx_flags)
  3027. {
  3028. struct udma_chan *uc = to_udma_chan(chan);
  3029. struct udma_desc *d;
  3030. struct cppi5_tr_type15_t *tr_req;
  3031. int num_tr;
  3032. size_t tr_size = sizeof(struct cppi5_tr_type15_t);
  3033. u16 tr0_cnt0, tr0_cnt1, tr1_cnt0;
  3034. if (uc->config.dir != DMA_MEM_TO_MEM) {
  3035. dev_err(chan->device->dev,
  3036. "%s: chan%d is for %s, not supporting %s\n",
  3037. __func__, uc->id,
  3038. dmaengine_get_direction_text(uc->config.dir),
  3039. dmaengine_get_direction_text(DMA_MEM_TO_MEM));
  3040. return NULL;
  3041. }
  3042. num_tr = udma_get_tr_counters(len, __ffs(src | dest), &tr0_cnt0,
  3043. &tr0_cnt1, &tr1_cnt0);
  3044. if (num_tr < 0) {
  3045. dev_err(uc->ud->dev, "size %zu is not supported\n",
  3046. len);
  3047. return NULL;
  3048. }
  3049. d = udma_alloc_tr_desc(uc, tr_size, num_tr, DMA_MEM_TO_MEM);
  3050. if (!d)
  3051. return NULL;
  3052. d->dir = DMA_MEM_TO_MEM;
  3053. d->desc_idx = 0;
  3054. d->tr_idx = 0;
  3055. d->residue = len;
  3056. if (uc->ud->match_data->type != DMA_TYPE_UDMA) {
  3057. src |= (u64)uc->ud->asel << K3_ADDRESS_ASEL_SHIFT;
  3058. dest |= (u64)uc->ud->asel << K3_ADDRESS_ASEL_SHIFT;
  3059. }
  3060. tr_req = d->hwdesc[0].tr_req_base;
  3061. cppi5_tr_init(&tr_req[0].flags, CPPI5_TR_TYPE15, false, true,
  3062. CPPI5_TR_EVENT_SIZE_COMPLETION, 0);
  3063. cppi5_tr_csf_set(&tr_req[0].flags, CPPI5_TR_CSF_SUPR_EVT);
  3064. tr_req[0].addr = src;
  3065. tr_req[0].icnt0 = tr0_cnt0;
  3066. tr_req[0].icnt1 = tr0_cnt1;
  3067. tr_req[0].icnt2 = 1;
  3068. tr_req[0].icnt3 = 1;
  3069. tr_req[0].dim1 = tr0_cnt0;
  3070. tr_req[0].daddr = dest;
  3071. tr_req[0].dicnt0 = tr0_cnt0;
  3072. tr_req[0].dicnt1 = tr0_cnt1;
  3073. tr_req[0].dicnt2 = 1;
  3074. tr_req[0].dicnt3 = 1;
  3075. tr_req[0].ddim1 = tr0_cnt0;
  3076. if (num_tr == 2) {
  3077. cppi5_tr_init(&tr_req[1].flags, CPPI5_TR_TYPE15, false, true,
  3078. CPPI5_TR_EVENT_SIZE_COMPLETION, 0);
  3079. cppi5_tr_csf_set(&tr_req[1].flags, CPPI5_TR_CSF_SUPR_EVT);
  3080. tr_req[1].addr = src + tr0_cnt1 * tr0_cnt0;
  3081. tr_req[1].icnt0 = tr1_cnt0;
  3082. tr_req[1].icnt1 = 1;
  3083. tr_req[1].icnt2 = 1;
  3084. tr_req[1].icnt3 = 1;
  3085. tr_req[1].daddr = dest + tr0_cnt1 * tr0_cnt0;
  3086. tr_req[1].dicnt0 = tr1_cnt0;
  3087. tr_req[1].dicnt1 = 1;
  3088. tr_req[1].dicnt2 = 1;
  3089. tr_req[1].dicnt3 = 1;
  3090. }
  3091. cppi5_tr_csf_set(&tr_req[num_tr - 1].flags,
  3092. CPPI5_TR_CSF_SUPR_EVT | CPPI5_TR_CSF_EOP);
  3093. if (uc->config.metadata_size)
  3094. d->vd.tx.metadata_ops = &metadata_ops;
  3095. return vchan_tx_prep(&uc->vc, &d->vd, tx_flags);
  3096. }
  3097. static void udma_issue_pending(struct dma_chan *chan)
  3098. {
  3099. struct udma_chan *uc = to_udma_chan(chan);
  3100. unsigned long flags;
  3101. spin_lock_irqsave(&uc->vc.lock, flags);
  3102. /* If we have something pending and no active descriptor, then */
  3103. if (vchan_issue_pending(&uc->vc) && !uc->desc) {
  3104. /*
  3105. * start a descriptor if the channel is NOT [marked as
  3106. * terminating _and_ it is still running (teardown has not
  3107. * completed yet)].
  3108. */
  3109. if (!(uc->state == UDMA_CHAN_IS_TERMINATING &&
  3110. udma_is_chan_running(uc)))
  3111. udma_start(uc);
  3112. }
  3113. spin_unlock_irqrestore(&uc->vc.lock, flags);
  3114. }
  3115. static enum dma_status udma_tx_status(struct dma_chan *chan,
  3116. dma_cookie_t cookie,
  3117. struct dma_tx_state *txstate)
  3118. {
  3119. struct udma_chan *uc = to_udma_chan(chan);
  3120. enum dma_status ret;
  3121. unsigned long flags;
  3122. spin_lock_irqsave(&uc->vc.lock, flags);
  3123. ret = dma_cookie_status(chan, cookie, txstate);
  3124. if (!udma_is_chan_running(uc))
  3125. ret = DMA_COMPLETE;
  3126. if (ret == DMA_IN_PROGRESS && udma_is_chan_paused(uc))
  3127. ret = DMA_PAUSED;
  3128. if (ret == DMA_COMPLETE || !txstate)
  3129. goto out;
  3130. if (uc->desc && uc->desc->vd.tx.cookie == cookie) {
  3131. u32 peer_bcnt = 0;
  3132. u32 bcnt = 0;
  3133. u32 residue = uc->desc->residue;
  3134. u32 delay = 0;
  3135. if (uc->desc->dir == DMA_MEM_TO_DEV) {
  3136. bcnt = udma_tchanrt_read(uc, UDMA_CHAN_RT_SBCNT_REG);
  3137. if (uc->config.ep_type != PSIL_EP_NATIVE) {
  3138. peer_bcnt = udma_tchanrt_read(uc,
  3139. UDMA_CHAN_RT_PEER_BCNT_REG);
  3140. if (bcnt > peer_bcnt)
  3141. delay = bcnt - peer_bcnt;
  3142. }
  3143. } else if (uc->desc->dir == DMA_DEV_TO_MEM) {
  3144. bcnt = udma_rchanrt_read(uc, UDMA_CHAN_RT_BCNT_REG);
  3145. if (uc->config.ep_type != PSIL_EP_NATIVE) {
  3146. peer_bcnt = udma_rchanrt_read(uc,
  3147. UDMA_CHAN_RT_PEER_BCNT_REG);
  3148. if (peer_bcnt > bcnt)
  3149. delay = peer_bcnt - bcnt;
  3150. }
  3151. } else {
  3152. bcnt = udma_tchanrt_read(uc, UDMA_CHAN_RT_BCNT_REG);
  3153. }
  3154. if (bcnt && !(bcnt % uc->desc->residue))
  3155. residue = 0;
  3156. else
  3157. residue -= bcnt % uc->desc->residue;
  3158. if (!residue && (uc->config.dir == DMA_DEV_TO_MEM || !delay)) {
  3159. ret = DMA_COMPLETE;
  3160. delay = 0;
  3161. }
  3162. dma_set_residue(txstate, residue);
  3163. dma_set_in_flight_bytes(txstate, delay);
  3164. } else {
  3165. ret = DMA_COMPLETE;
  3166. }
  3167. out:
  3168. spin_unlock_irqrestore(&uc->vc.lock, flags);
  3169. return ret;
  3170. }
  3171. static int udma_pause(struct dma_chan *chan)
  3172. {
  3173. struct udma_chan *uc = to_udma_chan(chan);
  3174. /* pause the channel */
  3175. switch (uc->config.dir) {
  3176. case DMA_DEV_TO_MEM:
  3177. udma_rchanrt_update_bits(uc, UDMA_CHAN_RT_PEER_RT_EN_REG,
  3178. UDMA_PEER_RT_EN_PAUSE,
  3179. UDMA_PEER_RT_EN_PAUSE);
  3180. break;
  3181. case DMA_MEM_TO_DEV:
  3182. udma_tchanrt_update_bits(uc, UDMA_CHAN_RT_PEER_RT_EN_REG,
  3183. UDMA_PEER_RT_EN_PAUSE,
  3184. UDMA_PEER_RT_EN_PAUSE);
  3185. break;
  3186. case DMA_MEM_TO_MEM:
  3187. udma_tchanrt_update_bits(uc, UDMA_CHAN_RT_CTL_REG,
  3188. UDMA_CHAN_RT_CTL_PAUSE,
  3189. UDMA_CHAN_RT_CTL_PAUSE);
  3190. break;
  3191. default:
  3192. return -EINVAL;
  3193. }
  3194. return 0;
  3195. }
  3196. static int udma_resume(struct dma_chan *chan)
  3197. {
  3198. struct udma_chan *uc = to_udma_chan(chan);
  3199. /* resume the channel */
  3200. switch (uc->config.dir) {
  3201. case DMA_DEV_TO_MEM:
  3202. udma_rchanrt_update_bits(uc, UDMA_CHAN_RT_PEER_RT_EN_REG,
  3203. UDMA_PEER_RT_EN_PAUSE, 0);
  3204. break;
  3205. case DMA_MEM_TO_DEV:
  3206. udma_tchanrt_update_bits(uc, UDMA_CHAN_RT_PEER_RT_EN_REG,
  3207. UDMA_PEER_RT_EN_PAUSE, 0);
  3208. break;
  3209. case DMA_MEM_TO_MEM:
  3210. udma_tchanrt_update_bits(uc, UDMA_CHAN_RT_CTL_REG,
  3211. UDMA_CHAN_RT_CTL_PAUSE, 0);
  3212. break;
  3213. default:
  3214. return -EINVAL;
  3215. }
  3216. return 0;
  3217. }
  3218. static int udma_terminate_all(struct dma_chan *chan)
  3219. {
  3220. struct udma_chan *uc = to_udma_chan(chan);
  3221. unsigned long flags;
  3222. LIST_HEAD(head);
  3223. spin_lock_irqsave(&uc->vc.lock, flags);
  3224. if (udma_is_chan_running(uc))
  3225. udma_stop(uc);
  3226. if (uc->desc) {
  3227. uc->terminated_desc = uc->desc;
  3228. uc->desc = NULL;
  3229. uc->terminated_desc->terminated = true;
  3230. cancel_delayed_work(&uc->tx_drain.work);
  3231. }
  3232. uc->paused = false;
  3233. vchan_get_all_descriptors(&uc->vc, &head);
  3234. spin_unlock_irqrestore(&uc->vc.lock, flags);
  3235. vchan_dma_desc_free_list(&uc->vc, &head);
  3236. return 0;
  3237. }
  3238. static void udma_synchronize(struct dma_chan *chan)
  3239. {
  3240. struct udma_chan *uc = to_udma_chan(chan);
  3241. unsigned long timeout = msecs_to_jiffies(1000);
  3242. vchan_synchronize(&uc->vc);
  3243. if (uc->state == UDMA_CHAN_IS_TERMINATING) {
  3244. timeout = wait_for_completion_timeout(&uc->teardown_completed,
  3245. timeout);
  3246. if (!timeout) {
  3247. dev_warn(uc->ud->dev, "chan%d teardown timeout!\n",
  3248. uc->id);
  3249. udma_dump_chan_stdata(uc);
  3250. udma_reset_chan(uc, true);
  3251. }
  3252. }
  3253. udma_reset_chan(uc, false);
  3254. if (udma_is_chan_running(uc))
  3255. dev_warn(uc->ud->dev, "chan%d refused to stop!\n", uc->id);
  3256. cancel_delayed_work_sync(&uc->tx_drain.work);
  3257. udma_reset_rings(uc);
  3258. }
  3259. static void udma_desc_pre_callback(struct virt_dma_chan *vc,
  3260. struct virt_dma_desc *vd,
  3261. struct dmaengine_result *result)
  3262. {
  3263. struct udma_chan *uc = to_udma_chan(&vc->chan);
  3264. struct udma_desc *d;
  3265. if (!vd)
  3266. return;
  3267. d = to_udma_desc(&vd->tx);
  3268. if (d->metadata_size)
  3269. udma_fetch_epib(uc, d);
  3270. /* Provide residue information for the client */
  3271. if (result) {
  3272. void *desc_vaddr = udma_curr_cppi5_desc_vaddr(d, d->desc_idx);
  3273. if (cppi5_desc_get_type(desc_vaddr) ==
  3274. CPPI5_INFO0_DESC_TYPE_VAL_HOST) {
  3275. result->residue = d->residue -
  3276. cppi5_hdesc_get_pktlen(desc_vaddr);
  3277. if (result->residue)
  3278. result->result = DMA_TRANS_ABORTED;
  3279. else
  3280. result->result = DMA_TRANS_NOERROR;
  3281. } else {
  3282. result->residue = 0;
  3283. result->result = DMA_TRANS_NOERROR;
  3284. }
  3285. }
  3286. }
  3287. /*
  3288. * This tasklet handles the completion of a DMA descriptor by
  3289. * calling its callback and freeing it.
  3290. */
  3291. static void udma_vchan_complete(struct tasklet_struct *t)
  3292. {
  3293. struct virt_dma_chan *vc = from_tasklet(vc, t, task);
  3294. struct virt_dma_desc *vd, *_vd;
  3295. struct dmaengine_desc_callback cb;
  3296. LIST_HEAD(head);
  3297. spin_lock_irq(&vc->lock);
  3298. list_splice_tail_init(&vc->desc_completed, &head);
  3299. vd = vc->cyclic;
  3300. if (vd) {
  3301. vc->cyclic = NULL;
  3302. dmaengine_desc_get_callback(&vd->tx, &cb);
  3303. } else {
  3304. memset(&cb, 0, sizeof(cb));
  3305. }
  3306. spin_unlock_irq(&vc->lock);
  3307. udma_desc_pre_callback(vc, vd, NULL);
  3308. dmaengine_desc_callback_invoke(&cb, NULL);
  3309. list_for_each_entry_safe(vd, _vd, &head, node) {
  3310. struct dmaengine_result result;
  3311. dmaengine_desc_get_callback(&vd->tx, &cb);
  3312. list_del(&vd->node);
  3313. udma_desc_pre_callback(vc, vd, &result);
  3314. dmaengine_desc_callback_invoke(&cb, &result);
  3315. vchan_vdesc_fini(vd);
  3316. }
  3317. }
  3318. static void udma_free_chan_resources(struct dma_chan *chan)
  3319. {
  3320. struct udma_chan *uc = to_udma_chan(chan);
  3321. struct udma_dev *ud = to_udma_dev(chan->device);
  3322. udma_terminate_all(chan);
  3323. if (uc->terminated_desc) {
  3324. udma_reset_chan(uc, false);
  3325. udma_reset_rings(uc);
  3326. }
  3327. cancel_delayed_work_sync(&uc->tx_drain.work);
  3328. if (uc->irq_num_ring > 0) {
  3329. free_irq(uc->irq_num_ring, uc);
  3330. uc->irq_num_ring = 0;
  3331. }
  3332. if (uc->irq_num_udma > 0) {
  3333. free_irq(uc->irq_num_udma, uc);
  3334. uc->irq_num_udma = 0;
  3335. }
  3336. /* Release PSI-L pairing */
  3337. if (uc->psil_paired) {
  3338. navss_psil_unpair(ud, uc->config.src_thread,
  3339. uc->config.dst_thread);
  3340. uc->psil_paired = false;
  3341. }
  3342. vchan_free_chan_resources(&uc->vc);
  3343. tasklet_kill(&uc->vc.task);
  3344. bcdma_free_bchan_resources(uc);
  3345. udma_free_tx_resources(uc);
  3346. udma_free_rx_resources(uc);
  3347. udma_reset_uchan(uc);
  3348. if (uc->use_dma_pool) {
  3349. dma_pool_destroy(uc->hdesc_pool);
  3350. uc->use_dma_pool = false;
  3351. }
  3352. }
  3353. static struct platform_driver udma_driver;
  3354. static struct platform_driver bcdma_driver;
  3355. static struct platform_driver pktdma_driver;
  3356. struct udma_filter_param {
  3357. int remote_thread_id;
  3358. u32 atype;
  3359. u32 asel;
  3360. u32 tr_trigger_type;
  3361. };
  3362. static bool udma_dma_filter_fn(struct dma_chan *chan, void *param)
  3363. {
  3364. struct udma_chan_config *ucc;
  3365. struct psil_endpoint_config *ep_config;
  3366. struct udma_filter_param *filter_param;
  3367. struct udma_chan *uc;
  3368. struct udma_dev *ud;
  3369. if (chan->device->dev->driver != &udma_driver.driver &&
  3370. chan->device->dev->driver != &bcdma_driver.driver &&
  3371. chan->device->dev->driver != &pktdma_driver.driver)
  3372. return false;
  3373. uc = to_udma_chan(chan);
  3374. ucc = &uc->config;
  3375. ud = uc->ud;
  3376. filter_param = param;
  3377. if (filter_param->atype > 2) {
  3378. dev_err(ud->dev, "Invalid channel atype: %u\n",
  3379. filter_param->atype);
  3380. return false;
  3381. }
  3382. if (filter_param->asel > 15) {
  3383. dev_err(ud->dev, "Invalid channel asel: %u\n",
  3384. filter_param->asel);
  3385. return false;
  3386. }
  3387. ucc->remote_thread_id = filter_param->remote_thread_id;
  3388. ucc->atype = filter_param->atype;
  3389. ucc->asel = filter_param->asel;
  3390. ucc->tr_trigger_type = filter_param->tr_trigger_type;
  3391. if (ucc->tr_trigger_type) {
  3392. ucc->dir = DMA_MEM_TO_MEM;
  3393. goto triggered_bchan;
  3394. } else if (ucc->remote_thread_id & K3_PSIL_DST_THREAD_ID_OFFSET) {
  3395. ucc->dir = DMA_MEM_TO_DEV;
  3396. } else {
  3397. ucc->dir = DMA_DEV_TO_MEM;
  3398. }
  3399. ep_config = psil_get_ep_config(ucc->remote_thread_id);
  3400. if (IS_ERR(ep_config)) {
  3401. dev_err(ud->dev, "No configuration for psi-l thread 0x%04x\n",
  3402. ucc->remote_thread_id);
  3403. ucc->dir = DMA_MEM_TO_MEM;
  3404. ucc->remote_thread_id = -1;
  3405. ucc->atype = 0;
  3406. ucc->asel = 0;
  3407. return false;
  3408. }
  3409. if (ud->match_data->type == DMA_TYPE_BCDMA &&
  3410. ep_config->pkt_mode) {
  3411. dev_err(ud->dev,
  3412. "Only TR mode is supported (psi-l thread 0x%04x)\n",
  3413. ucc->remote_thread_id);
  3414. ucc->dir = DMA_MEM_TO_MEM;
  3415. ucc->remote_thread_id = -1;
  3416. ucc->atype = 0;
  3417. ucc->asel = 0;
  3418. return false;
  3419. }
  3420. ucc->pkt_mode = ep_config->pkt_mode;
  3421. ucc->channel_tpl = ep_config->channel_tpl;
  3422. ucc->notdpkt = ep_config->notdpkt;
  3423. ucc->ep_type = ep_config->ep_type;
  3424. if (ud->match_data->type == DMA_TYPE_PKTDMA &&
  3425. ep_config->mapped_channel_id >= 0) {
  3426. ucc->mapped_channel_id = ep_config->mapped_channel_id;
  3427. ucc->default_flow_id = ep_config->default_flow_id;
  3428. } else {
  3429. ucc->mapped_channel_id = -1;
  3430. ucc->default_flow_id = -1;
  3431. }
  3432. if (ucc->ep_type != PSIL_EP_NATIVE) {
  3433. const struct udma_match_data *match_data = ud->match_data;
  3434. if (match_data->flags & UDMA_FLAG_PDMA_ACC32)
  3435. ucc->enable_acc32 = ep_config->pdma_acc32;
  3436. if (match_data->flags & UDMA_FLAG_PDMA_BURST)
  3437. ucc->enable_burst = ep_config->pdma_burst;
  3438. }
  3439. ucc->needs_epib = ep_config->needs_epib;
  3440. ucc->psd_size = ep_config->psd_size;
  3441. ucc->metadata_size =
  3442. (ucc->needs_epib ? CPPI5_INFO0_HDESC_EPIB_SIZE : 0) +
  3443. ucc->psd_size;
  3444. if (ucc->pkt_mode)
  3445. ucc->hdesc_size = ALIGN(sizeof(struct cppi5_host_desc_t) +
  3446. ucc->metadata_size, ud->desc_align);
  3447. dev_dbg(ud->dev, "chan%d: Remote thread: 0x%04x (%s)\n", uc->id,
  3448. ucc->remote_thread_id, dmaengine_get_direction_text(ucc->dir));
  3449. return true;
  3450. triggered_bchan:
  3451. dev_dbg(ud->dev, "chan%d: triggered channel (type: %u)\n", uc->id,
  3452. ucc->tr_trigger_type);
  3453. return true;
  3454. }
  3455. static struct dma_chan *udma_of_xlate(struct of_phandle_args *dma_spec,
  3456. struct of_dma *ofdma)
  3457. {
  3458. struct udma_dev *ud = ofdma->of_dma_data;
  3459. dma_cap_mask_t mask = ud->ddev.cap_mask;
  3460. struct udma_filter_param filter_param;
  3461. struct dma_chan *chan;
  3462. if (ud->match_data->type == DMA_TYPE_BCDMA) {
  3463. if (dma_spec->args_count != 3)
  3464. return NULL;
  3465. filter_param.tr_trigger_type = dma_spec->args[0];
  3466. filter_param.remote_thread_id = dma_spec->args[1];
  3467. filter_param.asel = dma_spec->args[2];
  3468. filter_param.atype = 0;
  3469. } else {
  3470. if (dma_spec->args_count != 1 && dma_spec->args_count != 2)
  3471. return NULL;
  3472. filter_param.remote_thread_id = dma_spec->args[0];
  3473. filter_param.tr_trigger_type = 0;
  3474. if (dma_spec->args_count == 2) {
  3475. if (ud->match_data->type == DMA_TYPE_UDMA) {
  3476. filter_param.atype = dma_spec->args[1];
  3477. filter_param.asel = 0;
  3478. } else {
  3479. filter_param.atype = 0;
  3480. filter_param.asel = dma_spec->args[1];
  3481. }
  3482. } else {
  3483. filter_param.atype = 0;
  3484. filter_param.asel = 0;
  3485. }
  3486. }
  3487. chan = __dma_request_channel(&mask, udma_dma_filter_fn, &filter_param,
  3488. ofdma->of_node);
  3489. if (!chan) {
  3490. dev_err(ud->dev, "get channel fail in %s.\n", __func__);
  3491. return ERR_PTR(-EINVAL);
  3492. }
  3493. return chan;
  3494. }
  3495. static struct udma_match_data am654_main_data = {
  3496. .type = DMA_TYPE_UDMA,
  3497. .psil_base = 0x1000,
  3498. .enable_memcpy_support = true,
  3499. .statictr_z_mask = GENMASK(11, 0),
  3500. .burst_size = {
  3501. TI_SCI_RM_UDMAP_CHAN_BURST_SIZE_64_BYTES, /* Normal Channels */
  3502. TI_SCI_RM_UDMAP_CHAN_BURST_SIZE_64_BYTES, /* H Channels */
  3503. 0, /* No UH Channels */
  3504. },
  3505. };
  3506. static struct udma_match_data am654_mcu_data = {
  3507. .type = DMA_TYPE_UDMA,
  3508. .psil_base = 0x6000,
  3509. .enable_memcpy_support = false,
  3510. .statictr_z_mask = GENMASK(11, 0),
  3511. .burst_size = {
  3512. TI_SCI_RM_UDMAP_CHAN_BURST_SIZE_64_BYTES, /* Normal Channels */
  3513. TI_SCI_RM_UDMAP_CHAN_BURST_SIZE_64_BYTES, /* H Channels */
  3514. 0, /* No UH Channels */
  3515. },
  3516. };
  3517. static struct udma_match_data j721e_main_data = {
  3518. .type = DMA_TYPE_UDMA,
  3519. .psil_base = 0x1000,
  3520. .enable_memcpy_support = true,
  3521. .flags = UDMA_FLAGS_J7_CLASS,
  3522. .statictr_z_mask = GENMASK(23, 0),
  3523. .burst_size = {
  3524. TI_SCI_RM_UDMAP_CHAN_BURST_SIZE_64_BYTES, /* Normal Channels */
  3525. TI_SCI_RM_UDMAP_CHAN_BURST_SIZE_256_BYTES, /* H Channels */
  3526. TI_SCI_RM_UDMAP_CHAN_BURST_SIZE_256_BYTES, /* UH Channels */
  3527. },
  3528. };
  3529. static struct udma_match_data j721e_mcu_data = {
  3530. .type = DMA_TYPE_UDMA,
  3531. .psil_base = 0x6000,
  3532. .enable_memcpy_support = false, /* MEM_TO_MEM is slow via MCU UDMA */
  3533. .flags = UDMA_FLAGS_J7_CLASS,
  3534. .statictr_z_mask = GENMASK(23, 0),
  3535. .burst_size = {
  3536. TI_SCI_RM_UDMAP_CHAN_BURST_SIZE_64_BYTES, /* Normal Channels */
  3537. TI_SCI_RM_UDMAP_CHAN_BURST_SIZE_128_BYTES, /* H Channels */
  3538. 0, /* No UH Channels */
  3539. },
  3540. };
  3541. static struct udma_match_data am64_bcdma_data = {
  3542. .type = DMA_TYPE_BCDMA,
  3543. .psil_base = 0x2000, /* for tchan and rchan, not applicable to bchan */
  3544. .enable_memcpy_support = true, /* Supported via bchan */
  3545. .flags = UDMA_FLAGS_J7_CLASS,
  3546. .statictr_z_mask = GENMASK(23, 0),
  3547. .burst_size = {
  3548. TI_SCI_RM_UDMAP_CHAN_BURST_SIZE_64_BYTES, /* Normal Channels */
  3549. 0, /* No H Channels */
  3550. 0, /* No UH Channels */
  3551. },
  3552. };
  3553. static struct udma_match_data am64_pktdma_data = {
  3554. .type = DMA_TYPE_PKTDMA,
  3555. .psil_base = 0x1000,
  3556. .enable_memcpy_support = false, /* PKTDMA does not support MEM_TO_MEM */
  3557. .flags = UDMA_FLAGS_J7_CLASS,
  3558. .statictr_z_mask = GENMASK(23, 0),
  3559. .burst_size = {
  3560. TI_SCI_RM_UDMAP_CHAN_BURST_SIZE_64_BYTES, /* Normal Channels */
  3561. 0, /* No H Channels */
  3562. 0, /* No UH Channels */
  3563. },
  3564. };
  3565. static const struct of_device_id udma_of_match[] = {
  3566. {
  3567. .compatible = "ti,am654-navss-main-udmap",
  3568. .data = &am654_main_data,
  3569. },
  3570. {
  3571. .compatible = "ti,am654-navss-mcu-udmap",
  3572. .data = &am654_mcu_data,
  3573. }, {
  3574. .compatible = "ti,j721e-navss-main-udmap",
  3575. .data = &j721e_main_data,
  3576. }, {
  3577. .compatible = "ti,j721e-navss-mcu-udmap",
  3578. .data = &j721e_mcu_data,
  3579. },
  3580. { /* Sentinel */ },
  3581. };
  3582. static const struct of_device_id bcdma_of_match[] = {
  3583. {
  3584. .compatible = "ti,am64-dmss-bcdma",
  3585. .data = &am64_bcdma_data,
  3586. },
  3587. { /* Sentinel */ },
  3588. };
  3589. static const struct of_device_id pktdma_of_match[] = {
  3590. {
  3591. .compatible = "ti,am64-dmss-pktdma",
  3592. .data = &am64_pktdma_data,
  3593. },
  3594. { /* Sentinel */ },
  3595. };
  3596. static struct udma_soc_data am654_soc_data = {
  3597. .oes = {
  3598. .udma_rchan = 0x200,
  3599. },
  3600. };
  3601. static struct udma_soc_data j721e_soc_data = {
  3602. .oes = {
  3603. .udma_rchan = 0x400,
  3604. },
  3605. };
  3606. static struct udma_soc_data j7200_soc_data = {
  3607. .oes = {
  3608. .udma_rchan = 0x80,
  3609. },
  3610. };
  3611. static struct udma_soc_data am64_soc_data = {
  3612. .oes = {
  3613. .bcdma_bchan_data = 0x2200,
  3614. .bcdma_bchan_ring = 0x2400,
  3615. .bcdma_tchan_data = 0x2800,
  3616. .bcdma_tchan_ring = 0x2a00,
  3617. .bcdma_rchan_data = 0x2e00,
  3618. .bcdma_rchan_ring = 0x3000,
  3619. .pktdma_tchan_flow = 0x1200,
  3620. .pktdma_rchan_flow = 0x1600,
  3621. },
  3622. .bcdma_trigger_event_offset = 0xc400,
  3623. };
  3624. static const struct soc_device_attribute k3_soc_devices[] = {
  3625. { .family = "AM65X", .data = &am654_soc_data },
  3626. { .family = "J721E", .data = &j721e_soc_data },
  3627. { .family = "J7200", .data = &j7200_soc_data },
  3628. { .family = "AM64X", .data = &am64_soc_data },
  3629. { .family = "J721S2", .data = &j721e_soc_data},
  3630. { .family = "AM62X", .data = &am64_soc_data },
  3631. { /* sentinel */ }
  3632. };
  3633. static int udma_get_mmrs(struct platform_device *pdev, struct udma_dev *ud)
  3634. {
  3635. u32 cap2, cap3, cap4;
  3636. int i;
  3637. ud->mmrs[MMR_GCFG] = devm_platform_ioremap_resource_byname(pdev, mmr_names[MMR_GCFG]);
  3638. if (IS_ERR(ud->mmrs[MMR_GCFG]))
  3639. return PTR_ERR(ud->mmrs[MMR_GCFG]);
  3640. cap2 = udma_read(ud->mmrs[MMR_GCFG], 0x28);
  3641. cap3 = udma_read(ud->mmrs[MMR_GCFG], 0x2c);
  3642. switch (ud->match_data->type) {
  3643. case DMA_TYPE_UDMA:
  3644. ud->rflow_cnt = UDMA_CAP3_RFLOW_CNT(cap3);
  3645. ud->tchan_cnt = UDMA_CAP2_TCHAN_CNT(cap2);
  3646. ud->echan_cnt = UDMA_CAP2_ECHAN_CNT(cap2);
  3647. ud->rchan_cnt = UDMA_CAP2_RCHAN_CNT(cap2);
  3648. break;
  3649. case DMA_TYPE_BCDMA:
  3650. ud->bchan_cnt = BCDMA_CAP2_BCHAN_CNT(cap2);
  3651. ud->tchan_cnt = BCDMA_CAP2_TCHAN_CNT(cap2);
  3652. ud->rchan_cnt = BCDMA_CAP2_RCHAN_CNT(cap2);
  3653. ud->rflow_cnt = ud->rchan_cnt;
  3654. break;
  3655. case DMA_TYPE_PKTDMA:
  3656. cap4 = udma_read(ud->mmrs[MMR_GCFG], 0x30);
  3657. ud->tchan_cnt = UDMA_CAP2_TCHAN_CNT(cap2);
  3658. ud->rchan_cnt = UDMA_CAP2_RCHAN_CNT(cap2);
  3659. ud->rflow_cnt = UDMA_CAP3_RFLOW_CNT(cap3);
  3660. ud->tflow_cnt = PKTDMA_CAP4_TFLOW_CNT(cap4);
  3661. break;
  3662. default:
  3663. return -EINVAL;
  3664. }
  3665. for (i = 1; i < MMR_LAST; i++) {
  3666. if (i == MMR_BCHANRT && ud->bchan_cnt == 0)
  3667. continue;
  3668. if (i == MMR_TCHANRT && ud->tchan_cnt == 0)
  3669. continue;
  3670. if (i == MMR_RCHANRT && ud->rchan_cnt == 0)
  3671. continue;
  3672. ud->mmrs[i] = devm_platform_ioremap_resource_byname(pdev, mmr_names[i]);
  3673. if (IS_ERR(ud->mmrs[i]))
  3674. return PTR_ERR(ud->mmrs[i]);
  3675. }
  3676. return 0;
  3677. }
  3678. static void udma_mark_resource_ranges(struct udma_dev *ud, unsigned long *map,
  3679. struct ti_sci_resource_desc *rm_desc,
  3680. char *name)
  3681. {
  3682. bitmap_clear(map, rm_desc->start, rm_desc->num);
  3683. bitmap_clear(map, rm_desc->start_sec, rm_desc->num_sec);
  3684. dev_dbg(ud->dev, "ti_sci resource range for %s: %d:%d | %d:%d\n", name,
  3685. rm_desc->start, rm_desc->num, rm_desc->start_sec,
  3686. rm_desc->num_sec);
  3687. }
  3688. static const char * const range_names[] = {
  3689. [RM_RANGE_BCHAN] = "ti,sci-rm-range-bchan",
  3690. [RM_RANGE_TCHAN] = "ti,sci-rm-range-tchan",
  3691. [RM_RANGE_RCHAN] = "ti,sci-rm-range-rchan",
  3692. [RM_RANGE_RFLOW] = "ti,sci-rm-range-rflow",
  3693. [RM_RANGE_TFLOW] = "ti,sci-rm-range-tflow",
  3694. };
  3695. static int udma_setup_resources(struct udma_dev *ud)
  3696. {
  3697. int ret, i, j;
  3698. struct device *dev = ud->dev;
  3699. struct ti_sci_resource *rm_res, irq_res;
  3700. struct udma_tisci_rm *tisci_rm = &ud->tisci_rm;
  3701. u32 cap3;
  3702. /* Set up the throughput level start indexes */
  3703. cap3 = udma_read(ud->mmrs[MMR_GCFG], 0x2c);
  3704. if (of_device_is_compatible(dev->of_node,
  3705. "ti,am654-navss-main-udmap")) {
  3706. ud->tchan_tpl.levels = 2;
  3707. ud->tchan_tpl.start_idx[0] = 8;
  3708. } else if (of_device_is_compatible(dev->of_node,
  3709. "ti,am654-navss-mcu-udmap")) {
  3710. ud->tchan_tpl.levels = 2;
  3711. ud->tchan_tpl.start_idx[0] = 2;
  3712. } else if (UDMA_CAP3_UCHAN_CNT(cap3)) {
  3713. ud->tchan_tpl.levels = 3;
  3714. ud->tchan_tpl.start_idx[1] = UDMA_CAP3_UCHAN_CNT(cap3);
  3715. ud->tchan_tpl.start_idx[0] = UDMA_CAP3_HCHAN_CNT(cap3);
  3716. } else if (UDMA_CAP3_HCHAN_CNT(cap3)) {
  3717. ud->tchan_tpl.levels = 2;
  3718. ud->tchan_tpl.start_idx[0] = UDMA_CAP3_HCHAN_CNT(cap3);
  3719. } else {
  3720. ud->tchan_tpl.levels = 1;
  3721. }
  3722. ud->rchan_tpl.levels = ud->tchan_tpl.levels;
  3723. ud->rchan_tpl.start_idx[0] = ud->tchan_tpl.start_idx[0];
  3724. ud->rchan_tpl.start_idx[1] = ud->tchan_tpl.start_idx[1];
  3725. ud->tchan_map = devm_kmalloc_array(dev, BITS_TO_LONGS(ud->tchan_cnt),
  3726. sizeof(unsigned long), GFP_KERNEL);
  3727. ud->tchans = devm_kcalloc(dev, ud->tchan_cnt, sizeof(*ud->tchans),
  3728. GFP_KERNEL);
  3729. ud->rchan_map = devm_kmalloc_array(dev, BITS_TO_LONGS(ud->rchan_cnt),
  3730. sizeof(unsigned long), GFP_KERNEL);
  3731. ud->rchans = devm_kcalloc(dev, ud->rchan_cnt, sizeof(*ud->rchans),
  3732. GFP_KERNEL);
  3733. ud->rflow_gp_map = devm_kmalloc_array(dev, BITS_TO_LONGS(ud->rflow_cnt),
  3734. sizeof(unsigned long),
  3735. GFP_KERNEL);
  3736. ud->rflow_gp_map_allocated = devm_kcalloc(dev,
  3737. BITS_TO_LONGS(ud->rflow_cnt),
  3738. sizeof(unsigned long),
  3739. GFP_KERNEL);
  3740. ud->rflow_in_use = devm_kcalloc(dev, BITS_TO_LONGS(ud->rflow_cnt),
  3741. sizeof(unsigned long),
  3742. GFP_KERNEL);
  3743. ud->rflows = devm_kcalloc(dev, ud->rflow_cnt, sizeof(*ud->rflows),
  3744. GFP_KERNEL);
  3745. if (!ud->tchan_map || !ud->rchan_map || !ud->rflow_gp_map ||
  3746. !ud->rflow_gp_map_allocated || !ud->tchans || !ud->rchans ||
  3747. !ud->rflows || !ud->rflow_in_use)
  3748. return -ENOMEM;
  3749. /*
  3750. * RX flows with the same Ids as RX channels are reserved to be used
  3751. * as default flows if remote HW can't generate flow_ids. Those
  3752. * RX flows can be requested only explicitly by id.
  3753. */
  3754. bitmap_set(ud->rflow_gp_map_allocated, 0, ud->rchan_cnt);
  3755. /* by default no GP rflows are assigned to Linux */
  3756. bitmap_set(ud->rflow_gp_map, 0, ud->rflow_cnt);
  3757. /* Get resource ranges from tisci */
  3758. for (i = 0; i < RM_RANGE_LAST; i++) {
  3759. if (i == RM_RANGE_BCHAN || i == RM_RANGE_TFLOW)
  3760. continue;
  3761. tisci_rm->rm_ranges[i] =
  3762. devm_ti_sci_get_of_resource(tisci_rm->tisci, dev,
  3763. tisci_rm->tisci_dev_id,
  3764. (char *)range_names[i]);
  3765. }
  3766. /* tchan ranges */
  3767. rm_res = tisci_rm->rm_ranges[RM_RANGE_TCHAN];
  3768. if (IS_ERR(rm_res)) {
  3769. bitmap_zero(ud->tchan_map, ud->tchan_cnt);
  3770. irq_res.sets = 1;
  3771. } else {
  3772. bitmap_fill(ud->tchan_map, ud->tchan_cnt);
  3773. for (i = 0; i < rm_res->sets; i++)
  3774. udma_mark_resource_ranges(ud, ud->tchan_map,
  3775. &rm_res->desc[i], "tchan");
  3776. irq_res.sets = rm_res->sets;
  3777. }
  3778. /* rchan and matching default flow ranges */
  3779. rm_res = tisci_rm->rm_ranges[RM_RANGE_RCHAN];
  3780. if (IS_ERR(rm_res)) {
  3781. bitmap_zero(ud->rchan_map, ud->rchan_cnt);
  3782. irq_res.sets++;
  3783. } else {
  3784. bitmap_fill(ud->rchan_map, ud->rchan_cnt);
  3785. for (i = 0; i < rm_res->sets; i++)
  3786. udma_mark_resource_ranges(ud, ud->rchan_map,
  3787. &rm_res->desc[i], "rchan");
  3788. irq_res.sets += rm_res->sets;
  3789. }
  3790. irq_res.desc = kcalloc(irq_res.sets, sizeof(*irq_res.desc), GFP_KERNEL);
  3791. if (!irq_res.desc)
  3792. return -ENOMEM;
  3793. rm_res = tisci_rm->rm_ranges[RM_RANGE_TCHAN];
  3794. if (IS_ERR(rm_res)) {
  3795. irq_res.desc[0].start = 0;
  3796. irq_res.desc[0].num = ud->tchan_cnt;
  3797. i = 1;
  3798. } else {
  3799. for (i = 0; i < rm_res->sets; i++) {
  3800. irq_res.desc[i].start = rm_res->desc[i].start;
  3801. irq_res.desc[i].num = rm_res->desc[i].num;
  3802. irq_res.desc[i].start_sec = rm_res->desc[i].start_sec;
  3803. irq_res.desc[i].num_sec = rm_res->desc[i].num_sec;
  3804. }
  3805. }
  3806. rm_res = tisci_rm->rm_ranges[RM_RANGE_RCHAN];
  3807. if (IS_ERR(rm_res)) {
  3808. irq_res.desc[i].start = 0;
  3809. irq_res.desc[i].num = ud->rchan_cnt;
  3810. } else {
  3811. for (j = 0; j < rm_res->sets; j++, i++) {
  3812. if (rm_res->desc[j].num) {
  3813. irq_res.desc[i].start = rm_res->desc[j].start +
  3814. ud->soc_data->oes.udma_rchan;
  3815. irq_res.desc[i].num = rm_res->desc[j].num;
  3816. }
  3817. if (rm_res->desc[j].num_sec) {
  3818. irq_res.desc[i].start_sec = rm_res->desc[j].start_sec +
  3819. ud->soc_data->oes.udma_rchan;
  3820. irq_res.desc[i].num_sec = rm_res->desc[j].num_sec;
  3821. }
  3822. }
  3823. }
  3824. ret = ti_sci_inta_msi_domain_alloc_irqs(ud->dev, &irq_res);
  3825. kfree(irq_res.desc);
  3826. if (ret) {
  3827. dev_err(ud->dev, "Failed to allocate MSI interrupts\n");
  3828. return ret;
  3829. }
  3830. /* GP rflow ranges */
  3831. rm_res = tisci_rm->rm_ranges[RM_RANGE_RFLOW];
  3832. if (IS_ERR(rm_res)) {
  3833. /* all gp flows are assigned exclusively to Linux */
  3834. bitmap_clear(ud->rflow_gp_map, ud->rchan_cnt,
  3835. ud->rflow_cnt - ud->rchan_cnt);
  3836. } else {
  3837. for (i = 0; i < rm_res->sets; i++)
  3838. udma_mark_resource_ranges(ud, ud->rflow_gp_map,
  3839. &rm_res->desc[i], "gp-rflow");
  3840. }
  3841. return 0;
  3842. }
  3843. static int bcdma_setup_resources(struct udma_dev *ud)
  3844. {
  3845. int ret, i, j;
  3846. struct device *dev = ud->dev;
  3847. struct ti_sci_resource *rm_res, irq_res;
  3848. struct udma_tisci_rm *tisci_rm = &ud->tisci_rm;
  3849. const struct udma_oes_offsets *oes = &ud->soc_data->oes;
  3850. u32 cap;
  3851. /* Set up the throughput level start indexes */
  3852. cap = udma_read(ud->mmrs[MMR_GCFG], 0x2c);
  3853. if (BCDMA_CAP3_UBCHAN_CNT(cap)) {
  3854. ud->bchan_tpl.levels = 3;
  3855. ud->bchan_tpl.start_idx[1] = BCDMA_CAP3_UBCHAN_CNT(cap);
  3856. ud->bchan_tpl.start_idx[0] = BCDMA_CAP3_HBCHAN_CNT(cap);
  3857. } else if (BCDMA_CAP3_HBCHAN_CNT(cap)) {
  3858. ud->bchan_tpl.levels = 2;
  3859. ud->bchan_tpl.start_idx[0] = BCDMA_CAP3_HBCHAN_CNT(cap);
  3860. } else {
  3861. ud->bchan_tpl.levels = 1;
  3862. }
  3863. cap = udma_read(ud->mmrs[MMR_GCFG], 0x30);
  3864. if (BCDMA_CAP4_URCHAN_CNT(cap)) {
  3865. ud->rchan_tpl.levels = 3;
  3866. ud->rchan_tpl.start_idx[1] = BCDMA_CAP4_URCHAN_CNT(cap);
  3867. ud->rchan_tpl.start_idx[0] = BCDMA_CAP4_HRCHAN_CNT(cap);
  3868. } else if (BCDMA_CAP4_HRCHAN_CNT(cap)) {
  3869. ud->rchan_tpl.levels = 2;
  3870. ud->rchan_tpl.start_idx[0] = BCDMA_CAP4_HRCHAN_CNT(cap);
  3871. } else {
  3872. ud->rchan_tpl.levels = 1;
  3873. }
  3874. if (BCDMA_CAP4_UTCHAN_CNT(cap)) {
  3875. ud->tchan_tpl.levels = 3;
  3876. ud->tchan_tpl.start_idx[1] = BCDMA_CAP4_UTCHAN_CNT(cap);
  3877. ud->tchan_tpl.start_idx[0] = BCDMA_CAP4_HTCHAN_CNT(cap);
  3878. } else if (BCDMA_CAP4_HTCHAN_CNT(cap)) {
  3879. ud->tchan_tpl.levels = 2;
  3880. ud->tchan_tpl.start_idx[0] = BCDMA_CAP4_HTCHAN_CNT(cap);
  3881. } else {
  3882. ud->tchan_tpl.levels = 1;
  3883. }
  3884. ud->bchan_map = devm_kmalloc_array(dev, BITS_TO_LONGS(ud->bchan_cnt),
  3885. sizeof(unsigned long), GFP_KERNEL);
  3886. ud->bchans = devm_kcalloc(dev, ud->bchan_cnt, sizeof(*ud->bchans),
  3887. GFP_KERNEL);
  3888. ud->tchan_map = devm_kmalloc_array(dev, BITS_TO_LONGS(ud->tchan_cnt),
  3889. sizeof(unsigned long), GFP_KERNEL);
  3890. ud->tchans = devm_kcalloc(dev, ud->tchan_cnt, sizeof(*ud->tchans),
  3891. GFP_KERNEL);
  3892. ud->rchan_map = devm_kmalloc_array(dev, BITS_TO_LONGS(ud->rchan_cnt),
  3893. sizeof(unsigned long), GFP_KERNEL);
  3894. ud->rchans = devm_kcalloc(dev, ud->rchan_cnt, sizeof(*ud->rchans),
  3895. GFP_KERNEL);
  3896. /* BCDMA do not really have flows, but the driver expect it */
  3897. ud->rflow_in_use = devm_kcalloc(dev, BITS_TO_LONGS(ud->rchan_cnt),
  3898. sizeof(unsigned long),
  3899. GFP_KERNEL);
  3900. ud->rflows = devm_kcalloc(dev, ud->rchan_cnt, sizeof(*ud->rflows),
  3901. GFP_KERNEL);
  3902. if (!ud->bchan_map || !ud->tchan_map || !ud->rchan_map ||
  3903. !ud->rflow_in_use || !ud->bchans || !ud->tchans || !ud->rchans ||
  3904. !ud->rflows)
  3905. return -ENOMEM;
  3906. /* Get resource ranges from tisci */
  3907. for (i = 0; i < RM_RANGE_LAST; i++) {
  3908. if (i == RM_RANGE_RFLOW || i == RM_RANGE_TFLOW)
  3909. continue;
  3910. if (i == RM_RANGE_BCHAN && ud->bchan_cnt == 0)
  3911. continue;
  3912. if (i == RM_RANGE_TCHAN && ud->tchan_cnt == 0)
  3913. continue;
  3914. if (i == RM_RANGE_RCHAN && ud->rchan_cnt == 0)
  3915. continue;
  3916. tisci_rm->rm_ranges[i] =
  3917. devm_ti_sci_get_of_resource(tisci_rm->tisci, dev,
  3918. tisci_rm->tisci_dev_id,
  3919. (char *)range_names[i]);
  3920. }
  3921. irq_res.sets = 0;
  3922. /* bchan ranges */
  3923. if (ud->bchan_cnt) {
  3924. rm_res = tisci_rm->rm_ranges[RM_RANGE_BCHAN];
  3925. if (IS_ERR(rm_res)) {
  3926. bitmap_zero(ud->bchan_map, ud->bchan_cnt);
  3927. irq_res.sets++;
  3928. } else {
  3929. bitmap_fill(ud->bchan_map, ud->bchan_cnt);
  3930. for (i = 0; i < rm_res->sets; i++)
  3931. udma_mark_resource_ranges(ud, ud->bchan_map,
  3932. &rm_res->desc[i],
  3933. "bchan");
  3934. irq_res.sets += rm_res->sets;
  3935. }
  3936. }
  3937. /* tchan ranges */
  3938. if (ud->tchan_cnt) {
  3939. rm_res = tisci_rm->rm_ranges[RM_RANGE_TCHAN];
  3940. if (IS_ERR(rm_res)) {
  3941. bitmap_zero(ud->tchan_map, ud->tchan_cnt);
  3942. irq_res.sets += 2;
  3943. } else {
  3944. bitmap_fill(ud->tchan_map, ud->tchan_cnt);
  3945. for (i = 0; i < rm_res->sets; i++)
  3946. udma_mark_resource_ranges(ud, ud->tchan_map,
  3947. &rm_res->desc[i],
  3948. "tchan");
  3949. irq_res.sets += rm_res->sets * 2;
  3950. }
  3951. }
  3952. /* rchan ranges */
  3953. if (ud->rchan_cnt) {
  3954. rm_res = tisci_rm->rm_ranges[RM_RANGE_RCHAN];
  3955. if (IS_ERR(rm_res)) {
  3956. bitmap_zero(ud->rchan_map, ud->rchan_cnt);
  3957. irq_res.sets += 2;
  3958. } else {
  3959. bitmap_fill(ud->rchan_map, ud->rchan_cnt);
  3960. for (i = 0; i < rm_res->sets; i++)
  3961. udma_mark_resource_ranges(ud, ud->rchan_map,
  3962. &rm_res->desc[i],
  3963. "rchan");
  3964. irq_res.sets += rm_res->sets * 2;
  3965. }
  3966. }
  3967. irq_res.desc = kcalloc(irq_res.sets, sizeof(*irq_res.desc), GFP_KERNEL);
  3968. if (!irq_res.desc)
  3969. return -ENOMEM;
  3970. if (ud->bchan_cnt) {
  3971. rm_res = tisci_rm->rm_ranges[RM_RANGE_BCHAN];
  3972. if (IS_ERR(rm_res)) {
  3973. irq_res.desc[0].start = oes->bcdma_bchan_ring;
  3974. irq_res.desc[0].num = ud->bchan_cnt;
  3975. i = 1;
  3976. } else {
  3977. for (i = 0; i < rm_res->sets; i++) {
  3978. irq_res.desc[i].start = rm_res->desc[i].start +
  3979. oes->bcdma_bchan_ring;
  3980. irq_res.desc[i].num = rm_res->desc[i].num;
  3981. }
  3982. }
  3983. }
  3984. if (ud->tchan_cnt) {
  3985. rm_res = tisci_rm->rm_ranges[RM_RANGE_TCHAN];
  3986. if (IS_ERR(rm_res)) {
  3987. irq_res.desc[i].start = oes->bcdma_tchan_data;
  3988. irq_res.desc[i].num = ud->tchan_cnt;
  3989. irq_res.desc[i + 1].start = oes->bcdma_tchan_ring;
  3990. irq_res.desc[i + 1].num = ud->tchan_cnt;
  3991. i += 2;
  3992. } else {
  3993. for (j = 0; j < rm_res->sets; j++, i += 2) {
  3994. irq_res.desc[i].start = rm_res->desc[j].start +
  3995. oes->bcdma_tchan_data;
  3996. irq_res.desc[i].num = rm_res->desc[j].num;
  3997. irq_res.desc[i + 1].start = rm_res->desc[j].start +
  3998. oes->bcdma_tchan_ring;
  3999. irq_res.desc[i + 1].num = rm_res->desc[j].num;
  4000. }
  4001. }
  4002. }
  4003. if (ud->rchan_cnt) {
  4004. rm_res = tisci_rm->rm_ranges[RM_RANGE_RCHAN];
  4005. if (IS_ERR(rm_res)) {
  4006. irq_res.desc[i].start = oes->bcdma_rchan_data;
  4007. irq_res.desc[i].num = ud->rchan_cnt;
  4008. irq_res.desc[i + 1].start = oes->bcdma_rchan_ring;
  4009. irq_res.desc[i + 1].num = ud->rchan_cnt;
  4010. i += 2;
  4011. } else {
  4012. for (j = 0; j < rm_res->sets; j++, i += 2) {
  4013. irq_res.desc[i].start = rm_res->desc[j].start +
  4014. oes->bcdma_rchan_data;
  4015. irq_res.desc[i].num = rm_res->desc[j].num;
  4016. irq_res.desc[i + 1].start = rm_res->desc[j].start +
  4017. oes->bcdma_rchan_ring;
  4018. irq_res.desc[i + 1].num = rm_res->desc[j].num;
  4019. }
  4020. }
  4021. }
  4022. ret = ti_sci_inta_msi_domain_alloc_irqs(ud->dev, &irq_res);
  4023. kfree(irq_res.desc);
  4024. if (ret) {
  4025. dev_err(ud->dev, "Failed to allocate MSI interrupts\n");
  4026. return ret;
  4027. }
  4028. return 0;
  4029. }
  4030. static int pktdma_setup_resources(struct udma_dev *ud)
  4031. {
  4032. int ret, i, j;
  4033. struct device *dev = ud->dev;
  4034. struct ti_sci_resource *rm_res, irq_res;
  4035. struct udma_tisci_rm *tisci_rm = &ud->tisci_rm;
  4036. const struct udma_oes_offsets *oes = &ud->soc_data->oes;
  4037. u32 cap3;
  4038. /* Set up the throughput level start indexes */
  4039. cap3 = udma_read(ud->mmrs[MMR_GCFG], 0x2c);
  4040. if (UDMA_CAP3_UCHAN_CNT(cap3)) {
  4041. ud->tchan_tpl.levels = 3;
  4042. ud->tchan_tpl.start_idx[1] = UDMA_CAP3_UCHAN_CNT(cap3);
  4043. ud->tchan_tpl.start_idx[0] = UDMA_CAP3_HCHAN_CNT(cap3);
  4044. } else if (UDMA_CAP3_HCHAN_CNT(cap3)) {
  4045. ud->tchan_tpl.levels = 2;
  4046. ud->tchan_tpl.start_idx[0] = UDMA_CAP3_HCHAN_CNT(cap3);
  4047. } else {
  4048. ud->tchan_tpl.levels = 1;
  4049. }
  4050. ud->rchan_tpl.levels = ud->tchan_tpl.levels;
  4051. ud->rchan_tpl.start_idx[0] = ud->tchan_tpl.start_idx[0];
  4052. ud->rchan_tpl.start_idx[1] = ud->tchan_tpl.start_idx[1];
  4053. ud->tchan_map = devm_kmalloc_array(dev, BITS_TO_LONGS(ud->tchan_cnt),
  4054. sizeof(unsigned long), GFP_KERNEL);
  4055. ud->tchans = devm_kcalloc(dev, ud->tchan_cnt, sizeof(*ud->tchans),
  4056. GFP_KERNEL);
  4057. ud->rchan_map = devm_kmalloc_array(dev, BITS_TO_LONGS(ud->rchan_cnt),
  4058. sizeof(unsigned long), GFP_KERNEL);
  4059. ud->rchans = devm_kcalloc(dev, ud->rchan_cnt, sizeof(*ud->rchans),
  4060. GFP_KERNEL);
  4061. ud->rflow_in_use = devm_kcalloc(dev, BITS_TO_LONGS(ud->rflow_cnt),
  4062. sizeof(unsigned long),
  4063. GFP_KERNEL);
  4064. ud->rflows = devm_kcalloc(dev, ud->rflow_cnt, sizeof(*ud->rflows),
  4065. GFP_KERNEL);
  4066. ud->tflow_map = devm_kmalloc_array(dev, BITS_TO_LONGS(ud->tflow_cnt),
  4067. sizeof(unsigned long), GFP_KERNEL);
  4068. if (!ud->tchan_map || !ud->rchan_map || !ud->tflow_map || !ud->tchans ||
  4069. !ud->rchans || !ud->rflows || !ud->rflow_in_use)
  4070. return -ENOMEM;
  4071. /* Get resource ranges from tisci */
  4072. for (i = 0; i < RM_RANGE_LAST; i++) {
  4073. if (i == RM_RANGE_BCHAN)
  4074. continue;
  4075. tisci_rm->rm_ranges[i] =
  4076. devm_ti_sci_get_of_resource(tisci_rm->tisci, dev,
  4077. tisci_rm->tisci_dev_id,
  4078. (char *)range_names[i]);
  4079. }
  4080. /* tchan ranges */
  4081. rm_res = tisci_rm->rm_ranges[RM_RANGE_TCHAN];
  4082. if (IS_ERR(rm_res)) {
  4083. bitmap_zero(ud->tchan_map, ud->tchan_cnt);
  4084. } else {
  4085. bitmap_fill(ud->tchan_map, ud->tchan_cnt);
  4086. for (i = 0; i < rm_res->sets; i++)
  4087. udma_mark_resource_ranges(ud, ud->tchan_map,
  4088. &rm_res->desc[i], "tchan");
  4089. }
  4090. /* rchan ranges */
  4091. rm_res = tisci_rm->rm_ranges[RM_RANGE_RCHAN];
  4092. if (IS_ERR(rm_res)) {
  4093. bitmap_zero(ud->rchan_map, ud->rchan_cnt);
  4094. } else {
  4095. bitmap_fill(ud->rchan_map, ud->rchan_cnt);
  4096. for (i = 0; i < rm_res->sets; i++)
  4097. udma_mark_resource_ranges(ud, ud->rchan_map,
  4098. &rm_res->desc[i], "rchan");
  4099. }
  4100. /* rflow ranges */
  4101. rm_res = tisci_rm->rm_ranges[RM_RANGE_RFLOW];
  4102. if (IS_ERR(rm_res)) {
  4103. /* all rflows are assigned exclusively to Linux */
  4104. bitmap_zero(ud->rflow_in_use, ud->rflow_cnt);
  4105. irq_res.sets = 1;
  4106. } else {
  4107. bitmap_fill(ud->rflow_in_use, ud->rflow_cnt);
  4108. for (i = 0; i < rm_res->sets; i++)
  4109. udma_mark_resource_ranges(ud, ud->rflow_in_use,
  4110. &rm_res->desc[i], "rflow");
  4111. irq_res.sets = rm_res->sets;
  4112. }
  4113. /* tflow ranges */
  4114. rm_res = tisci_rm->rm_ranges[RM_RANGE_TFLOW];
  4115. if (IS_ERR(rm_res)) {
  4116. /* all tflows are assigned exclusively to Linux */
  4117. bitmap_zero(ud->tflow_map, ud->tflow_cnt);
  4118. irq_res.sets++;
  4119. } else {
  4120. bitmap_fill(ud->tflow_map, ud->tflow_cnt);
  4121. for (i = 0; i < rm_res->sets; i++)
  4122. udma_mark_resource_ranges(ud, ud->tflow_map,
  4123. &rm_res->desc[i], "tflow");
  4124. irq_res.sets += rm_res->sets;
  4125. }
  4126. irq_res.desc = kcalloc(irq_res.sets, sizeof(*irq_res.desc), GFP_KERNEL);
  4127. if (!irq_res.desc)
  4128. return -ENOMEM;
  4129. rm_res = tisci_rm->rm_ranges[RM_RANGE_TFLOW];
  4130. if (IS_ERR(rm_res)) {
  4131. irq_res.desc[0].start = oes->pktdma_tchan_flow;
  4132. irq_res.desc[0].num = ud->tflow_cnt;
  4133. i = 1;
  4134. } else {
  4135. for (i = 0; i < rm_res->sets; i++) {
  4136. irq_res.desc[i].start = rm_res->desc[i].start +
  4137. oes->pktdma_tchan_flow;
  4138. irq_res.desc[i].num = rm_res->desc[i].num;
  4139. }
  4140. }
  4141. rm_res = tisci_rm->rm_ranges[RM_RANGE_RFLOW];
  4142. if (IS_ERR(rm_res)) {
  4143. irq_res.desc[i].start = oes->pktdma_rchan_flow;
  4144. irq_res.desc[i].num = ud->rflow_cnt;
  4145. } else {
  4146. for (j = 0; j < rm_res->sets; j++, i++) {
  4147. irq_res.desc[i].start = rm_res->desc[j].start +
  4148. oes->pktdma_rchan_flow;
  4149. irq_res.desc[i].num = rm_res->desc[j].num;
  4150. }
  4151. }
  4152. ret = ti_sci_inta_msi_domain_alloc_irqs(ud->dev, &irq_res);
  4153. kfree(irq_res.desc);
  4154. if (ret) {
  4155. dev_err(ud->dev, "Failed to allocate MSI interrupts\n");
  4156. return ret;
  4157. }
  4158. return 0;
  4159. }
  4160. static int setup_resources(struct udma_dev *ud)
  4161. {
  4162. struct device *dev = ud->dev;
  4163. int ch_count, ret;
  4164. switch (ud->match_data->type) {
  4165. case DMA_TYPE_UDMA:
  4166. ret = udma_setup_resources(ud);
  4167. break;
  4168. case DMA_TYPE_BCDMA:
  4169. ret = bcdma_setup_resources(ud);
  4170. break;
  4171. case DMA_TYPE_PKTDMA:
  4172. ret = pktdma_setup_resources(ud);
  4173. break;
  4174. default:
  4175. return -EINVAL;
  4176. }
  4177. if (ret)
  4178. return ret;
  4179. ch_count = ud->bchan_cnt + ud->tchan_cnt + ud->rchan_cnt;
  4180. if (ud->bchan_cnt)
  4181. ch_count -= bitmap_weight(ud->bchan_map, ud->bchan_cnt);
  4182. ch_count -= bitmap_weight(ud->tchan_map, ud->tchan_cnt);
  4183. ch_count -= bitmap_weight(ud->rchan_map, ud->rchan_cnt);
  4184. if (!ch_count)
  4185. return -ENODEV;
  4186. ud->channels = devm_kcalloc(dev, ch_count, sizeof(*ud->channels),
  4187. GFP_KERNEL);
  4188. if (!ud->channels)
  4189. return -ENOMEM;
  4190. switch (ud->match_data->type) {
  4191. case DMA_TYPE_UDMA:
  4192. dev_info(dev,
  4193. "Channels: %d (tchan: %u, rchan: %u, gp-rflow: %u)\n",
  4194. ch_count,
  4195. ud->tchan_cnt - bitmap_weight(ud->tchan_map,
  4196. ud->tchan_cnt),
  4197. ud->rchan_cnt - bitmap_weight(ud->rchan_map,
  4198. ud->rchan_cnt),
  4199. ud->rflow_cnt - bitmap_weight(ud->rflow_gp_map,
  4200. ud->rflow_cnt));
  4201. break;
  4202. case DMA_TYPE_BCDMA:
  4203. dev_info(dev,
  4204. "Channels: %d (bchan: %u, tchan: %u, rchan: %u)\n",
  4205. ch_count,
  4206. ud->bchan_cnt - bitmap_weight(ud->bchan_map,
  4207. ud->bchan_cnt),
  4208. ud->tchan_cnt - bitmap_weight(ud->tchan_map,
  4209. ud->tchan_cnt),
  4210. ud->rchan_cnt - bitmap_weight(ud->rchan_map,
  4211. ud->rchan_cnt));
  4212. break;
  4213. case DMA_TYPE_PKTDMA:
  4214. dev_info(dev,
  4215. "Channels: %d (tchan: %u, rchan: %u)\n",
  4216. ch_count,
  4217. ud->tchan_cnt - bitmap_weight(ud->tchan_map,
  4218. ud->tchan_cnt),
  4219. ud->rchan_cnt - bitmap_weight(ud->rchan_map,
  4220. ud->rchan_cnt));
  4221. break;
  4222. default:
  4223. break;
  4224. }
  4225. return ch_count;
  4226. }
  4227. static int udma_setup_rx_flush(struct udma_dev *ud)
  4228. {
  4229. struct udma_rx_flush *rx_flush = &ud->rx_flush;
  4230. struct cppi5_desc_hdr_t *tr_desc;
  4231. struct cppi5_tr_type1_t *tr_req;
  4232. struct cppi5_host_desc_t *desc;
  4233. struct device *dev = ud->dev;
  4234. struct udma_hwdesc *hwdesc;
  4235. size_t tr_size;
  4236. /* Allocate 1K buffer for discarded data on RX channel teardown */
  4237. rx_flush->buffer_size = SZ_1K;
  4238. rx_flush->buffer_vaddr = devm_kzalloc(dev, rx_flush->buffer_size,
  4239. GFP_KERNEL);
  4240. if (!rx_flush->buffer_vaddr)
  4241. return -ENOMEM;
  4242. rx_flush->buffer_paddr = dma_map_single(dev, rx_flush->buffer_vaddr,
  4243. rx_flush->buffer_size,
  4244. DMA_TO_DEVICE);
  4245. if (dma_mapping_error(dev, rx_flush->buffer_paddr))
  4246. return -ENOMEM;
  4247. /* Set up descriptor to be used for TR mode */
  4248. hwdesc = &rx_flush->hwdescs[0];
  4249. tr_size = sizeof(struct cppi5_tr_type1_t);
  4250. hwdesc->cppi5_desc_size = cppi5_trdesc_calc_size(tr_size, 1);
  4251. hwdesc->cppi5_desc_size = ALIGN(hwdesc->cppi5_desc_size,
  4252. ud->desc_align);
  4253. hwdesc->cppi5_desc_vaddr = devm_kzalloc(dev, hwdesc->cppi5_desc_size,
  4254. GFP_KERNEL);
  4255. if (!hwdesc->cppi5_desc_vaddr)
  4256. return -ENOMEM;
  4257. hwdesc->cppi5_desc_paddr = dma_map_single(dev, hwdesc->cppi5_desc_vaddr,
  4258. hwdesc->cppi5_desc_size,
  4259. DMA_TO_DEVICE);
  4260. if (dma_mapping_error(dev, hwdesc->cppi5_desc_paddr))
  4261. return -ENOMEM;
  4262. /* Start of the TR req records */
  4263. hwdesc->tr_req_base = hwdesc->cppi5_desc_vaddr + tr_size;
  4264. /* Start address of the TR response array */
  4265. hwdesc->tr_resp_base = hwdesc->tr_req_base + tr_size;
  4266. tr_desc = hwdesc->cppi5_desc_vaddr;
  4267. cppi5_trdesc_init(tr_desc, 1, tr_size, 0, 0);
  4268. cppi5_desc_set_pktids(tr_desc, 0, CPPI5_INFO1_DESC_FLOWID_DEFAULT);
  4269. cppi5_desc_set_retpolicy(tr_desc, 0, 0);
  4270. tr_req = hwdesc->tr_req_base;
  4271. cppi5_tr_init(&tr_req->flags, CPPI5_TR_TYPE1, false, false,
  4272. CPPI5_TR_EVENT_SIZE_COMPLETION, 0);
  4273. cppi5_tr_csf_set(&tr_req->flags, CPPI5_TR_CSF_SUPR_EVT);
  4274. tr_req->addr = rx_flush->buffer_paddr;
  4275. tr_req->icnt0 = rx_flush->buffer_size;
  4276. tr_req->icnt1 = 1;
  4277. dma_sync_single_for_device(dev, hwdesc->cppi5_desc_paddr,
  4278. hwdesc->cppi5_desc_size, DMA_TO_DEVICE);
  4279. /* Set up descriptor to be used for packet mode */
  4280. hwdesc = &rx_flush->hwdescs[1];
  4281. hwdesc->cppi5_desc_size = ALIGN(sizeof(struct cppi5_host_desc_t) +
  4282. CPPI5_INFO0_HDESC_EPIB_SIZE +
  4283. CPPI5_INFO0_HDESC_PSDATA_MAX_SIZE,
  4284. ud->desc_align);
  4285. hwdesc->cppi5_desc_vaddr = devm_kzalloc(dev, hwdesc->cppi5_desc_size,
  4286. GFP_KERNEL);
  4287. if (!hwdesc->cppi5_desc_vaddr)
  4288. return -ENOMEM;
  4289. hwdesc->cppi5_desc_paddr = dma_map_single(dev, hwdesc->cppi5_desc_vaddr,
  4290. hwdesc->cppi5_desc_size,
  4291. DMA_TO_DEVICE);
  4292. if (dma_mapping_error(dev, hwdesc->cppi5_desc_paddr))
  4293. return -ENOMEM;
  4294. desc = hwdesc->cppi5_desc_vaddr;
  4295. cppi5_hdesc_init(desc, 0, 0);
  4296. cppi5_desc_set_pktids(&desc->hdr, 0, CPPI5_INFO1_DESC_FLOWID_DEFAULT);
  4297. cppi5_desc_set_retpolicy(&desc->hdr, 0, 0);
  4298. cppi5_hdesc_attach_buf(desc,
  4299. rx_flush->buffer_paddr, rx_flush->buffer_size,
  4300. rx_flush->buffer_paddr, rx_flush->buffer_size);
  4301. dma_sync_single_for_device(dev, hwdesc->cppi5_desc_paddr,
  4302. hwdesc->cppi5_desc_size, DMA_TO_DEVICE);
  4303. return 0;
  4304. }
  4305. #ifdef CONFIG_DEBUG_FS
  4306. static void udma_dbg_summary_show_chan(struct seq_file *s,
  4307. struct dma_chan *chan)
  4308. {
  4309. struct udma_chan *uc = to_udma_chan(chan);
  4310. struct udma_chan_config *ucc = &uc->config;
  4311. seq_printf(s, " %-13s| %s", dma_chan_name(chan),
  4312. chan->dbg_client_name ?: "in-use");
  4313. if (ucc->tr_trigger_type)
  4314. seq_puts(s, " (triggered, ");
  4315. else
  4316. seq_printf(s, " (%s, ",
  4317. dmaengine_get_direction_text(uc->config.dir));
  4318. switch (uc->config.dir) {
  4319. case DMA_MEM_TO_MEM:
  4320. if (uc->ud->match_data->type == DMA_TYPE_BCDMA) {
  4321. seq_printf(s, "bchan%d)\n", uc->bchan->id);
  4322. return;
  4323. }
  4324. seq_printf(s, "chan%d pair [0x%04x -> 0x%04x], ", uc->tchan->id,
  4325. ucc->src_thread, ucc->dst_thread);
  4326. break;
  4327. case DMA_DEV_TO_MEM:
  4328. seq_printf(s, "rchan%d [0x%04x -> 0x%04x], ", uc->rchan->id,
  4329. ucc->src_thread, ucc->dst_thread);
  4330. if (uc->ud->match_data->type == DMA_TYPE_PKTDMA)
  4331. seq_printf(s, "rflow%d, ", uc->rflow->id);
  4332. break;
  4333. case DMA_MEM_TO_DEV:
  4334. seq_printf(s, "tchan%d [0x%04x -> 0x%04x], ", uc->tchan->id,
  4335. ucc->src_thread, ucc->dst_thread);
  4336. if (uc->ud->match_data->type == DMA_TYPE_PKTDMA)
  4337. seq_printf(s, "tflow%d, ", uc->tchan->tflow_id);
  4338. break;
  4339. default:
  4340. seq_printf(s, ")\n");
  4341. return;
  4342. }
  4343. if (ucc->ep_type == PSIL_EP_NATIVE) {
  4344. seq_printf(s, "PSI-L Native");
  4345. if (ucc->metadata_size) {
  4346. seq_printf(s, "[%s", ucc->needs_epib ? " EPIB" : "");
  4347. if (ucc->psd_size)
  4348. seq_printf(s, " PSDsize:%u", ucc->psd_size);
  4349. seq_printf(s, " ]");
  4350. }
  4351. } else {
  4352. seq_printf(s, "PDMA");
  4353. if (ucc->enable_acc32 || ucc->enable_burst)
  4354. seq_printf(s, "[%s%s ]",
  4355. ucc->enable_acc32 ? " ACC32" : "",
  4356. ucc->enable_burst ? " BURST" : "");
  4357. }
  4358. seq_printf(s, ", %s)\n", ucc->pkt_mode ? "Packet mode" : "TR mode");
  4359. }
  4360. static void udma_dbg_summary_show(struct seq_file *s,
  4361. struct dma_device *dma_dev)
  4362. {
  4363. struct dma_chan *chan;
  4364. list_for_each_entry(chan, &dma_dev->channels, device_node) {
  4365. if (chan->client_count)
  4366. udma_dbg_summary_show_chan(s, chan);
  4367. }
  4368. }
  4369. #endif /* CONFIG_DEBUG_FS */
  4370. static enum dmaengine_alignment udma_get_copy_align(struct udma_dev *ud)
  4371. {
  4372. const struct udma_match_data *match_data = ud->match_data;
  4373. u8 tpl;
  4374. if (!match_data->enable_memcpy_support)
  4375. return DMAENGINE_ALIGN_8_BYTES;
  4376. /* Get the highest TPL level the device supports for memcpy */
  4377. if (ud->bchan_cnt)
  4378. tpl = udma_get_chan_tpl_index(&ud->bchan_tpl, 0);
  4379. else if (ud->tchan_cnt)
  4380. tpl = udma_get_chan_tpl_index(&ud->tchan_tpl, 0);
  4381. else
  4382. return DMAENGINE_ALIGN_8_BYTES;
  4383. switch (match_data->burst_size[tpl]) {
  4384. case TI_SCI_RM_UDMAP_CHAN_BURST_SIZE_256_BYTES:
  4385. return DMAENGINE_ALIGN_256_BYTES;
  4386. case TI_SCI_RM_UDMAP_CHAN_BURST_SIZE_128_BYTES:
  4387. return DMAENGINE_ALIGN_128_BYTES;
  4388. case TI_SCI_RM_UDMAP_CHAN_BURST_SIZE_64_BYTES:
  4389. fallthrough;
  4390. default:
  4391. return DMAENGINE_ALIGN_64_BYTES;
  4392. }
  4393. }
  4394. #define TI_UDMAC_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
  4395. BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
  4396. BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
  4397. BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
  4398. BIT(DMA_SLAVE_BUSWIDTH_8_BYTES))
  4399. static int udma_probe(struct platform_device *pdev)
  4400. {
  4401. struct device_node *navss_node = pdev->dev.parent->of_node;
  4402. const struct soc_device_attribute *soc;
  4403. struct device *dev = &pdev->dev;
  4404. struct udma_dev *ud;
  4405. const struct of_device_id *match;
  4406. int i, ret;
  4407. int ch_count;
  4408. ret = dma_coerce_mask_and_coherent(dev, DMA_BIT_MASK(48));
  4409. if (ret)
  4410. dev_err(dev, "failed to set dma mask stuff\n");
  4411. ud = devm_kzalloc(dev, sizeof(*ud), GFP_KERNEL);
  4412. if (!ud)
  4413. return -ENOMEM;
  4414. match = of_match_node(udma_of_match, dev->of_node);
  4415. if (!match)
  4416. match = of_match_node(bcdma_of_match, dev->of_node);
  4417. if (!match) {
  4418. match = of_match_node(pktdma_of_match, dev->of_node);
  4419. if (!match) {
  4420. dev_err(dev, "No compatible match found\n");
  4421. return -ENODEV;
  4422. }
  4423. }
  4424. ud->match_data = match->data;
  4425. soc = soc_device_match(k3_soc_devices);
  4426. if (!soc) {
  4427. dev_err(dev, "No compatible SoC found\n");
  4428. return -ENODEV;
  4429. }
  4430. ud->soc_data = soc->data;
  4431. ret = udma_get_mmrs(pdev, ud);
  4432. if (ret)
  4433. return ret;
  4434. ud->tisci_rm.tisci = ti_sci_get_by_phandle(dev->of_node, "ti,sci");
  4435. if (IS_ERR(ud->tisci_rm.tisci))
  4436. return PTR_ERR(ud->tisci_rm.tisci);
  4437. ret = of_property_read_u32(dev->of_node, "ti,sci-dev-id",
  4438. &ud->tisci_rm.tisci_dev_id);
  4439. if (ret) {
  4440. dev_err(dev, "ti,sci-dev-id read failure %d\n", ret);
  4441. return ret;
  4442. }
  4443. pdev->id = ud->tisci_rm.tisci_dev_id;
  4444. ret = of_property_read_u32(navss_node, "ti,sci-dev-id",
  4445. &ud->tisci_rm.tisci_navss_dev_id);
  4446. if (ret) {
  4447. dev_err(dev, "NAVSS ti,sci-dev-id read failure %d\n", ret);
  4448. return ret;
  4449. }
  4450. if (ud->match_data->type == DMA_TYPE_UDMA) {
  4451. ret = of_property_read_u32(dev->of_node, "ti,udma-atype",
  4452. &ud->atype);
  4453. if (!ret && ud->atype > 2) {
  4454. dev_err(dev, "Invalid atype: %u\n", ud->atype);
  4455. return -EINVAL;
  4456. }
  4457. } else {
  4458. ret = of_property_read_u32(dev->of_node, "ti,asel",
  4459. &ud->asel);
  4460. if (!ret && ud->asel > 15) {
  4461. dev_err(dev, "Invalid asel: %u\n", ud->asel);
  4462. return -EINVAL;
  4463. }
  4464. }
  4465. ud->tisci_rm.tisci_udmap_ops = &ud->tisci_rm.tisci->ops.rm_udmap_ops;
  4466. ud->tisci_rm.tisci_psil_ops = &ud->tisci_rm.tisci->ops.rm_psil_ops;
  4467. if (ud->match_data->type == DMA_TYPE_UDMA) {
  4468. ud->ringacc = of_k3_ringacc_get_by_phandle(dev->of_node, "ti,ringacc");
  4469. } else {
  4470. struct k3_ringacc_init_data ring_init_data;
  4471. ring_init_data.tisci = ud->tisci_rm.tisci;
  4472. ring_init_data.tisci_dev_id = ud->tisci_rm.tisci_dev_id;
  4473. if (ud->match_data->type == DMA_TYPE_BCDMA) {
  4474. ring_init_data.num_rings = ud->bchan_cnt +
  4475. ud->tchan_cnt +
  4476. ud->rchan_cnt;
  4477. } else {
  4478. ring_init_data.num_rings = ud->rflow_cnt +
  4479. ud->tflow_cnt;
  4480. }
  4481. ud->ringacc = k3_ringacc_dmarings_init(pdev, &ring_init_data);
  4482. }
  4483. if (IS_ERR(ud->ringacc))
  4484. return PTR_ERR(ud->ringacc);
  4485. dev->msi.domain = of_msi_get_domain(dev, dev->of_node,
  4486. DOMAIN_BUS_TI_SCI_INTA_MSI);
  4487. if (!dev->msi.domain) {
  4488. dev_err(dev, "Failed to get MSI domain\n");
  4489. return -EPROBE_DEFER;
  4490. }
  4491. dma_cap_set(DMA_SLAVE, ud->ddev.cap_mask);
  4492. /* cyclic operation is not supported via PKTDMA */
  4493. if (ud->match_data->type != DMA_TYPE_PKTDMA) {
  4494. dma_cap_set(DMA_CYCLIC, ud->ddev.cap_mask);
  4495. ud->ddev.device_prep_dma_cyclic = udma_prep_dma_cyclic;
  4496. }
  4497. ud->ddev.device_config = udma_slave_config;
  4498. ud->ddev.device_prep_slave_sg = udma_prep_slave_sg;
  4499. ud->ddev.device_issue_pending = udma_issue_pending;
  4500. ud->ddev.device_tx_status = udma_tx_status;
  4501. ud->ddev.device_pause = udma_pause;
  4502. ud->ddev.device_resume = udma_resume;
  4503. ud->ddev.device_terminate_all = udma_terminate_all;
  4504. ud->ddev.device_synchronize = udma_synchronize;
  4505. #ifdef CONFIG_DEBUG_FS
  4506. ud->ddev.dbg_summary_show = udma_dbg_summary_show;
  4507. #endif
  4508. switch (ud->match_data->type) {
  4509. case DMA_TYPE_UDMA:
  4510. ud->ddev.device_alloc_chan_resources =
  4511. udma_alloc_chan_resources;
  4512. break;
  4513. case DMA_TYPE_BCDMA:
  4514. ud->ddev.device_alloc_chan_resources =
  4515. bcdma_alloc_chan_resources;
  4516. ud->ddev.device_router_config = bcdma_router_config;
  4517. break;
  4518. case DMA_TYPE_PKTDMA:
  4519. ud->ddev.device_alloc_chan_resources =
  4520. pktdma_alloc_chan_resources;
  4521. break;
  4522. default:
  4523. return -EINVAL;
  4524. }
  4525. ud->ddev.device_free_chan_resources = udma_free_chan_resources;
  4526. ud->ddev.src_addr_widths = TI_UDMAC_BUSWIDTHS;
  4527. ud->ddev.dst_addr_widths = TI_UDMAC_BUSWIDTHS;
  4528. ud->ddev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
  4529. ud->ddev.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
  4530. ud->ddev.desc_metadata_modes = DESC_METADATA_CLIENT |
  4531. DESC_METADATA_ENGINE;
  4532. if (ud->match_data->enable_memcpy_support &&
  4533. !(ud->match_data->type == DMA_TYPE_BCDMA && ud->bchan_cnt == 0)) {
  4534. dma_cap_set(DMA_MEMCPY, ud->ddev.cap_mask);
  4535. ud->ddev.device_prep_dma_memcpy = udma_prep_dma_memcpy;
  4536. ud->ddev.directions |= BIT(DMA_MEM_TO_MEM);
  4537. }
  4538. ud->ddev.dev = dev;
  4539. ud->dev = dev;
  4540. ud->psil_base = ud->match_data->psil_base;
  4541. INIT_LIST_HEAD(&ud->ddev.channels);
  4542. INIT_LIST_HEAD(&ud->desc_to_purge);
  4543. ch_count = setup_resources(ud);
  4544. if (ch_count <= 0)
  4545. return ch_count;
  4546. spin_lock_init(&ud->lock);
  4547. INIT_WORK(&ud->purge_work, udma_purge_desc_work);
  4548. ud->desc_align = 64;
  4549. if (ud->desc_align < dma_get_cache_alignment())
  4550. ud->desc_align = dma_get_cache_alignment();
  4551. ret = udma_setup_rx_flush(ud);
  4552. if (ret)
  4553. return ret;
  4554. for (i = 0; i < ud->bchan_cnt; i++) {
  4555. struct udma_bchan *bchan = &ud->bchans[i];
  4556. bchan->id = i;
  4557. bchan->reg_rt = ud->mmrs[MMR_BCHANRT] + i * 0x1000;
  4558. }
  4559. for (i = 0; i < ud->tchan_cnt; i++) {
  4560. struct udma_tchan *tchan = &ud->tchans[i];
  4561. tchan->id = i;
  4562. tchan->reg_rt = ud->mmrs[MMR_TCHANRT] + i * 0x1000;
  4563. }
  4564. for (i = 0; i < ud->rchan_cnt; i++) {
  4565. struct udma_rchan *rchan = &ud->rchans[i];
  4566. rchan->id = i;
  4567. rchan->reg_rt = ud->mmrs[MMR_RCHANRT] + i * 0x1000;
  4568. }
  4569. for (i = 0; i < ud->rflow_cnt; i++) {
  4570. struct udma_rflow *rflow = &ud->rflows[i];
  4571. rflow->id = i;
  4572. }
  4573. for (i = 0; i < ch_count; i++) {
  4574. struct udma_chan *uc = &ud->channels[i];
  4575. uc->ud = ud;
  4576. uc->vc.desc_free = udma_desc_free;
  4577. uc->id = i;
  4578. uc->bchan = NULL;
  4579. uc->tchan = NULL;
  4580. uc->rchan = NULL;
  4581. uc->config.remote_thread_id = -1;
  4582. uc->config.mapped_channel_id = -1;
  4583. uc->config.default_flow_id = -1;
  4584. uc->config.dir = DMA_MEM_TO_MEM;
  4585. uc->name = devm_kasprintf(dev, GFP_KERNEL, "%s chan%d",
  4586. dev_name(dev), i);
  4587. vchan_init(&uc->vc, &ud->ddev);
  4588. /* Use custom vchan completion handling */
  4589. tasklet_setup(&uc->vc.task, udma_vchan_complete);
  4590. init_completion(&uc->teardown_completed);
  4591. INIT_DELAYED_WORK(&uc->tx_drain.work, udma_check_tx_completion);
  4592. }
  4593. /* Configure the copy_align to the maximum burst size the device supports */
  4594. ud->ddev.copy_align = udma_get_copy_align(ud);
  4595. ret = dma_async_device_register(&ud->ddev);
  4596. if (ret) {
  4597. dev_err(dev, "failed to register slave DMA engine: %d\n", ret);
  4598. return ret;
  4599. }
  4600. platform_set_drvdata(pdev, ud);
  4601. ret = of_dma_controller_register(dev->of_node, udma_of_xlate, ud);
  4602. if (ret) {
  4603. dev_err(dev, "failed to register of_dma controller\n");
  4604. dma_async_device_unregister(&ud->ddev);
  4605. }
  4606. return ret;
  4607. }
  4608. static struct platform_driver udma_driver = {
  4609. .driver = {
  4610. .name = "ti-udma",
  4611. .of_match_table = udma_of_match,
  4612. .suppress_bind_attrs = true,
  4613. },
  4614. .probe = udma_probe,
  4615. };
  4616. builtin_platform_driver(udma_driver);
  4617. static struct platform_driver bcdma_driver = {
  4618. .driver = {
  4619. .name = "ti-bcdma",
  4620. .of_match_table = bcdma_of_match,
  4621. .suppress_bind_attrs = true,
  4622. },
  4623. .probe = udma_probe,
  4624. };
  4625. builtin_platform_driver(bcdma_driver);
  4626. static struct platform_driver pktdma_driver = {
  4627. .driver = {
  4628. .name = "ti-pktdma",
  4629. .of_match_table = pktdma_of_match,
  4630. .suppress_bind_attrs = true,
  4631. },
  4632. .probe = udma_probe,
  4633. };
  4634. builtin_platform_driver(pktdma_driver);
  4635. /* Private interfaces to UDMA */
  4636. #include "k3-udma-private.c"