gpi.c 64 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2017-2020, The Linux Foundation. All rights reserved.
  4. * Copyright (c) 2020, Linaro Limited
  5. */
  6. #include <dt-bindings/dma/qcom-gpi.h>
  7. #include <linux/bitfield.h>
  8. #include <linux/dma-mapping.h>
  9. #include <linux/dmaengine.h>
  10. #include <linux/module.h>
  11. #include <linux/of_dma.h>
  12. #include <linux/platform_device.h>
  13. #include <linux/dma/qcom-gpi-dma.h>
  14. #include <linux/scatterlist.h>
  15. #include <linux/slab.h>
  16. #include "../dmaengine.h"
  17. #include "../virt-dma.h"
  18. #define TRE_TYPE_DMA 0x10
  19. #define TRE_TYPE_GO 0x20
  20. #define TRE_TYPE_CONFIG0 0x22
  21. /* TRE flags */
  22. #define TRE_FLAGS_CHAIN BIT(0)
  23. #define TRE_FLAGS_IEOB BIT(8)
  24. #define TRE_FLAGS_IEOT BIT(9)
  25. #define TRE_FLAGS_BEI BIT(10)
  26. #define TRE_FLAGS_LINK BIT(11)
  27. #define TRE_FLAGS_TYPE GENMASK(23, 16)
  28. /* SPI CONFIG0 WD0 */
  29. #define TRE_SPI_C0_WORD_SZ GENMASK(4, 0)
  30. #define TRE_SPI_C0_LOOPBACK BIT(8)
  31. #define TRE_SPI_C0_CS BIT(11)
  32. #define TRE_SPI_C0_CPHA BIT(12)
  33. #define TRE_SPI_C0_CPOL BIT(13)
  34. #define TRE_SPI_C0_TX_PACK BIT(24)
  35. #define TRE_SPI_C0_RX_PACK BIT(25)
  36. /* CONFIG0 WD2 */
  37. #define TRE_C0_CLK_DIV GENMASK(11, 0)
  38. #define TRE_C0_CLK_SRC GENMASK(19, 16)
  39. /* SPI GO WD0 */
  40. #define TRE_SPI_GO_CMD GENMASK(4, 0)
  41. #define TRE_SPI_GO_CS GENMASK(10, 8)
  42. #define TRE_SPI_GO_FRAG BIT(26)
  43. /* GO WD2 */
  44. #define TRE_RX_LEN GENMASK(23, 0)
  45. /* I2C Config0 WD0 */
  46. #define TRE_I2C_C0_TLOW GENMASK(7, 0)
  47. #define TRE_I2C_C0_THIGH GENMASK(15, 8)
  48. #define TRE_I2C_C0_TCYL GENMASK(23, 16)
  49. #define TRE_I2C_C0_TX_PACK BIT(24)
  50. #define TRE_I2C_C0_RX_PACK BIT(25)
  51. /* I2C GO WD0 */
  52. #define TRE_I2C_GO_CMD GENMASK(4, 0)
  53. #define TRE_I2C_GO_ADDR GENMASK(14, 8)
  54. #define TRE_I2C_GO_STRETCH BIT(26)
  55. /* DMA TRE */
  56. #define TRE_DMA_LEN GENMASK(23, 0)
  57. /* Register offsets from gpi-top */
  58. #define GPII_n_CH_k_CNTXT_0_OFFS(n, k) (0x20000 + (0x4000 * (n)) + (0x80 * (k)))
  59. #define GPII_n_CH_k_CNTXT_0_EL_SIZE GENMASK(31, 24)
  60. #define GPII_n_CH_k_CNTXT_0_CHSTATE GENMASK(23, 20)
  61. #define GPII_n_CH_k_CNTXT_0_ERIDX GENMASK(18, 14)
  62. #define GPII_n_CH_k_CNTXT_0_DIR BIT(3)
  63. #define GPII_n_CH_k_CNTXT_0_PROTO GENMASK(2, 0)
  64. #define GPII_n_CH_k_CNTXT_0(el_size, erindex, dir, chtype_proto) \
  65. (FIELD_PREP(GPII_n_CH_k_CNTXT_0_EL_SIZE, el_size) | \
  66. FIELD_PREP(GPII_n_CH_k_CNTXT_0_ERIDX, erindex) | \
  67. FIELD_PREP(GPII_n_CH_k_CNTXT_0_DIR, dir) | \
  68. FIELD_PREP(GPII_n_CH_k_CNTXT_0_PROTO, chtype_proto))
  69. #define GPI_CHTYPE_DIR_IN (0)
  70. #define GPI_CHTYPE_DIR_OUT (1)
  71. #define GPI_CHTYPE_PROTO_GPI (0x2)
  72. #define GPII_n_CH_k_DOORBELL_0_OFFS(n, k) (0x22000 + (0x4000 * (n)) + (0x8 * (k)))
  73. #define GPII_n_CH_CMD_OFFS(n) (0x23008 + (0x4000 * (n)))
  74. #define GPII_n_CH_CMD_OPCODE GENMASK(31, 24)
  75. #define GPII_n_CH_CMD_CHID GENMASK(7, 0)
  76. #define GPII_n_CH_CMD(opcode, chid) \
  77. (FIELD_PREP(GPII_n_CH_CMD_OPCODE, opcode) | \
  78. FIELD_PREP(GPII_n_CH_CMD_CHID, chid))
  79. #define GPII_n_CH_CMD_ALLOCATE (0)
  80. #define GPII_n_CH_CMD_START (1)
  81. #define GPII_n_CH_CMD_STOP (2)
  82. #define GPII_n_CH_CMD_RESET (9)
  83. #define GPII_n_CH_CMD_DE_ALLOC (10)
  84. #define GPII_n_CH_CMD_UART_SW_STALE (32)
  85. #define GPII_n_CH_CMD_UART_RFR_READY (33)
  86. #define GPII_n_CH_CMD_UART_RFR_NOT_READY (34)
  87. /* EV Context Array */
  88. #define GPII_n_EV_CH_k_CNTXT_0_OFFS(n, k) (0x21000 + (0x4000 * (n)) + (0x80 * (k)))
  89. #define GPII_n_EV_k_CNTXT_0_EL_SIZE GENMASK(31, 24)
  90. #define GPII_n_EV_k_CNTXT_0_CHSTATE GENMASK(23, 20)
  91. #define GPII_n_EV_k_CNTXT_0_INTYPE BIT(16)
  92. #define GPII_n_EV_k_CNTXT_0_CHTYPE GENMASK(3, 0)
  93. #define GPII_n_EV_k_CNTXT_0(el_size, inttype, chtype) \
  94. (FIELD_PREP(GPII_n_EV_k_CNTXT_0_EL_SIZE, el_size) | \
  95. FIELD_PREP(GPII_n_EV_k_CNTXT_0_INTYPE, inttype) | \
  96. FIELD_PREP(GPII_n_EV_k_CNTXT_0_CHTYPE, chtype))
  97. #define GPI_INTTYPE_IRQ (1)
  98. #define GPI_CHTYPE_GPI_EV (0x2)
  99. enum CNTXT_OFFS {
  100. CNTXT_0_CONFIG = 0x0,
  101. CNTXT_1_R_LENGTH = 0x4,
  102. CNTXT_2_RING_BASE_LSB = 0x8,
  103. CNTXT_3_RING_BASE_MSB = 0xC,
  104. CNTXT_4_RING_RP_LSB = 0x10,
  105. CNTXT_5_RING_RP_MSB = 0x14,
  106. CNTXT_6_RING_WP_LSB = 0x18,
  107. CNTXT_7_RING_WP_MSB = 0x1C,
  108. CNTXT_8_RING_INT_MOD = 0x20,
  109. CNTXT_9_RING_INTVEC = 0x24,
  110. CNTXT_10_RING_MSI_LSB = 0x28,
  111. CNTXT_11_RING_MSI_MSB = 0x2C,
  112. CNTXT_12_RING_RP_UPDATE_LSB = 0x30,
  113. CNTXT_13_RING_RP_UPDATE_MSB = 0x34,
  114. };
  115. #define GPII_n_EV_CH_k_DOORBELL_0_OFFS(n, k) (0x22100 + (0x4000 * (n)) + (0x8 * (k)))
  116. #define GPII_n_EV_CH_CMD_OFFS(n) (0x23010 + (0x4000 * (n)))
  117. #define GPII_n_EV_CMD_OPCODE GENMASK(31, 24)
  118. #define GPII_n_EV_CMD_CHID GENMASK(7, 0)
  119. #define GPII_n_EV_CMD(opcode, chid) \
  120. (FIELD_PREP(GPII_n_EV_CMD_OPCODE, opcode) | \
  121. FIELD_PREP(GPII_n_EV_CMD_CHID, chid))
  122. #define GPII_n_EV_CH_CMD_ALLOCATE (0x00)
  123. #define GPII_n_EV_CH_CMD_RESET (0x09)
  124. #define GPII_n_EV_CH_CMD_DE_ALLOC (0x0A)
  125. #define GPII_n_CNTXT_TYPE_IRQ_OFFS(n) (0x23080 + (0x4000 * (n)))
  126. /* mask type register */
  127. #define GPII_n_CNTXT_TYPE_IRQ_MSK_OFFS(n) (0x23088 + (0x4000 * (n)))
  128. #define GPII_n_CNTXT_TYPE_IRQ_MSK_BMSK GENMASK(6, 0)
  129. #define GPII_n_CNTXT_TYPE_IRQ_MSK_GENERAL BIT(6)
  130. #define GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB BIT(3)
  131. #define GPII_n_CNTXT_TYPE_IRQ_MSK_GLOB BIT(2)
  132. #define GPII_n_CNTXT_TYPE_IRQ_MSK_EV_CTRL BIT(1)
  133. #define GPII_n_CNTXT_TYPE_IRQ_MSK_CH_CTRL BIT(0)
  134. #define GPII_n_CNTXT_SRC_GPII_CH_IRQ_OFFS(n) (0x23090 + (0x4000 * (n)))
  135. #define GPII_n_CNTXT_SRC_EV_CH_IRQ_OFFS(n) (0x23094 + (0x4000 * (n)))
  136. /* Mask channel control interrupt register */
  137. #define GPII_n_CNTXT_SRC_CH_IRQ_MSK_OFFS(n) (0x23098 + (0x4000 * (n)))
  138. #define GPII_n_CNTXT_SRC_CH_IRQ_MSK_BMSK GENMASK(1, 0)
  139. /* Mask event control interrupt register */
  140. #define GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_OFFS(n) (0x2309C + (0x4000 * (n)))
  141. #define GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_BMSK BIT(0)
  142. #define GPII_n_CNTXT_SRC_CH_IRQ_CLR_OFFS(n) (0x230A0 + (0x4000 * (n)))
  143. #define GPII_n_CNTXT_SRC_EV_CH_IRQ_CLR_OFFS(n) (0x230A4 + (0x4000 * (n)))
  144. /* Mask event interrupt register */
  145. #define GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_OFFS(n) (0x230B8 + (0x4000 * (n)))
  146. #define GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_BMSK BIT(0)
  147. #define GPII_n_CNTXT_SRC_IEOB_IRQ_CLR_OFFS(n) (0x230C0 + (0x4000 * (n)))
  148. #define GPII_n_CNTXT_GLOB_IRQ_STTS_OFFS(n) (0x23100 + (0x4000 * (n)))
  149. #define GPI_GLOB_IRQ_ERROR_INT_MSK BIT(0)
  150. /* GPII specific Global - Enable bit register */
  151. #define GPII_n_CNTXT_GLOB_IRQ_EN_OFFS(n) (0x23108 + (0x4000 * (n)))
  152. #define GPII_n_CNTXT_GLOB_IRQ_CLR_OFFS(n) (0x23110 + (0x4000 * (n)))
  153. #define GPII_n_CNTXT_GPII_IRQ_STTS_OFFS(n) (0x23118 + (0x4000 * (n)))
  154. /* GPII general interrupt - Enable bit register */
  155. #define GPII_n_CNTXT_GPII_IRQ_EN_OFFS(n) (0x23120 + (0x4000 * (n)))
  156. #define GPII_n_CNTXT_GPII_IRQ_EN_BMSK GENMASK(3, 0)
  157. #define GPII_n_CNTXT_GPII_IRQ_CLR_OFFS(n) (0x23128 + (0x4000 * (n)))
  158. /* GPII Interrupt Type register */
  159. #define GPII_n_CNTXT_INTSET_OFFS(n) (0x23180 + (0x4000 * (n)))
  160. #define GPII_n_CNTXT_INTSET_BMSK BIT(0)
  161. #define GPII_n_CNTXT_MSI_BASE_LSB_OFFS(n) (0x23188 + (0x4000 * (n)))
  162. #define GPII_n_CNTXT_MSI_BASE_MSB_OFFS(n) (0x2318C + (0x4000 * (n)))
  163. #define GPII_n_CNTXT_SCRATCH_0_OFFS(n) (0x23400 + (0x4000 * (n)))
  164. #define GPII_n_CNTXT_SCRATCH_1_OFFS(n) (0x23404 + (0x4000 * (n)))
  165. #define GPII_n_ERROR_LOG_OFFS(n) (0x23200 + (0x4000 * (n)))
  166. /* QOS Registers */
  167. #define GPII_n_CH_k_QOS_OFFS(n, k) (0x2005C + (0x4000 * (n)) + (0x80 * (k)))
  168. /* Scratch registers */
  169. #define GPII_n_CH_k_SCRATCH_0_OFFS(n, k) (0x20060 + (0x4000 * (n)) + (0x80 * (k)))
  170. #define GPII_n_CH_k_SCRATCH_0_SEID GENMASK(2, 0)
  171. #define GPII_n_CH_k_SCRATCH_0_PROTO GENMASK(7, 4)
  172. #define GPII_n_CH_k_SCRATCH_0_PAIR GENMASK(20, 16)
  173. #define GPII_n_CH_k_SCRATCH_0(pair, proto, seid) \
  174. (FIELD_PREP(GPII_n_CH_k_SCRATCH_0_PAIR, pair) | \
  175. FIELD_PREP(GPII_n_CH_k_SCRATCH_0_PROTO, proto) | \
  176. FIELD_PREP(GPII_n_CH_k_SCRATCH_0_SEID, seid))
  177. #define GPII_n_CH_k_SCRATCH_1_OFFS(n, k) (0x20064 + (0x4000 * (n)) + (0x80 * (k)))
  178. #define GPII_n_CH_k_SCRATCH_2_OFFS(n, k) (0x20068 + (0x4000 * (n)) + (0x80 * (k)))
  179. #define GPII_n_CH_k_SCRATCH_3_OFFS(n, k) (0x2006C + (0x4000 * (n)) + (0x80 * (k)))
  180. struct __packed gpi_tre {
  181. u32 dword[4];
  182. };
  183. enum msm_gpi_tce_code {
  184. MSM_GPI_TCE_SUCCESS = 1,
  185. MSM_GPI_TCE_EOT = 2,
  186. MSM_GPI_TCE_EOB = 4,
  187. MSM_GPI_TCE_UNEXP_ERR = 16,
  188. };
  189. #define CMD_TIMEOUT_MS (250)
  190. #define MAX_CHANNELS_PER_GPII (2)
  191. #define GPI_TX_CHAN (0)
  192. #define GPI_RX_CHAN (1)
  193. #define STATE_IGNORE (U32_MAX)
  194. #define EV_FACTOR (2)
  195. #define REQ_OF_DMA_ARGS (5) /* # of arguments required from client */
  196. #define CHAN_TRES 64
  197. struct __packed xfer_compl_event {
  198. u64 ptr;
  199. u32 length:24;
  200. u8 code;
  201. u16 status;
  202. u8 type;
  203. u8 chid;
  204. };
  205. struct __packed immediate_data_event {
  206. u8 data_bytes[8];
  207. u8 length:4;
  208. u8 resvd:4;
  209. u16 tre_index;
  210. u8 code;
  211. u16 status;
  212. u8 type;
  213. u8 chid;
  214. };
  215. struct __packed qup_notif_event {
  216. u32 status;
  217. u32 time;
  218. u32 count:24;
  219. u8 resvd;
  220. u16 resvd1;
  221. u8 type;
  222. u8 chid;
  223. };
  224. struct __packed gpi_ere {
  225. u32 dword[4];
  226. };
  227. enum GPI_EV_TYPE {
  228. XFER_COMPLETE_EV_TYPE = 0x22,
  229. IMMEDIATE_DATA_EV_TYPE = 0x30,
  230. QUP_NOTIF_EV_TYPE = 0x31,
  231. STALE_EV_TYPE = 0xFF,
  232. };
  233. union __packed gpi_event {
  234. struct __packed xfer_compl_event xfer_compl_event;
  235. struct __packed immediate_data_event immediate_data_event;
  236. struct __packed qup_notif_event qup_notif_event;
  237. struct __packed gpi_ere gpi_ere;
  238. };
  239. enum gpii_irq_settings {
  240. DEFAULT_IRQ_SETTINGS,
  241. MASK_IEOB_SETTINGS,
  242. };
  243. enum gpi_ev_state {
  244. DEFAULT_EV_CH_STATE = 0,
  245. EV_STATE_NOT_ALLOCATED = DEFAULT_EV_CH_STATE,
  246. EV_STATE_ALLOCATED,
  247. MAX_EV_STATES
  248. };
  249. static const char *const gpi_ev_state_str[MAX_EV_STATES] = {
  250. [EV_STATE_NOT_ALLOCATED] = "NOT ALLOCATED",
  251. [EV_STATE_ALLOCATED] = "ALLOCATED",
  252. };
  253. #define TO_GPI_EV_STATE_STR(_state) (((_state) >= MAX_EV_STATES) ? \
  254. "INVALID" : gpi_ev_state_str[(_state)])
  255. enum gpi_ch_state {
  256. DEFAULT_CH_STATE = 0x0,
  257. CH_STATE_NOT_ALLOCATED = DEFAULT_CH_STATE,
  258. CH_STATE_ALLOCATED = 0x1,
  259. CH_STATE_STARTED = 0x2,
  260. CH_STATE_STOPPED = 0x3,
  261. CH_STATE_STOP_IN_PROC = 0x4,
  262. CH_STATE_ERROR = 0xf,
  263. MAX_CH_STATES
  264. };
  265. enum gpi_cmd {
  266. GPI_CH_CMD_BEGIN,
  267. GPI_CH_CMD_ALLOCATE = GPI_CH_CMD_BEGIN,
  268. GPI_CH_CMD_START,
  269. GPI_CH_CMD_STOP,
  270. GPI_CH_CMD_RESET,
  271. GPI_CH_CMD_DE_ALLOC,
  272. GPI_CH_CMD_UART_SW_STALE,
  273. GPI_CH_CMD_UART_RFR_READY,
  274. GPI_CH_CMD_UART_RFR_NOT_READY,
  275. GPI_CH_CMD_END = GPI_CH_CMD_UART_RFR_NOT_READY,
  276. GPI_EV_CMD_BEGIN,
  277. GPI_EV_CMD_ALLOCATE = GPI_EV_CMD_BEGIN,
  278. GPI_EV_CMD_RESET,
  279. GPI_EV_CMD_DEALLOC,
  280. GPI_EV_CMD_END = GPI_EV_CMD_DEALLOC,
  281. GPI_MAX_CMD,
  282. };
  283. #define IS_CHAN_CMD(_cmd) ((_cmd) <= GPI_CH_CMD_END)
  284. static const char *const gpi_cmd_str[GPI_MAX_CMD] = {
  285. [GPI_CH_CMD_ALLOCATE] = "CH ALLOCATE",
  286. [GPI_CH_CMD_START] = "CH START",
  287. [GPI_CH_CMD_STOP] = "CH STOP",
  288. [GPI_CH_CMD_RESET] = "CH_RESET",
  289. [GPI_CH_CMD_DE_ALLOC] = "DE ALLOC",
  290. [GPI_CH_CMD_UART_SW_STALE] = "UART SW STALE",
  291. [GPI_CH_CMD_UART_RFR_READY] = "UART RFR READY",
  292. [GPI_CH_CMD_UART_RFR_NOT_READY] = "UART RFR NOT READY",
  293. [GPI_EV_CMD_ALLOCATE] = "EV ALLOCATE",
  294. [GPI_EV_CMD_RESET] = "EV RESET",
  295. [GPI_EV_CMD_DEALLOC] = "EV DEALLOC",
  296. };
  297. #define TO_GPI_CMD_STR(_cmd) (((_cmd) >= GPI_MAX_CMD) ? "INVALID" : \
  298. gpi_cmd_str[(_cmd)])
  299. /*
  300. * @DISABLE_STATE: no register access allowed
  301. * @CONFIG_STATE: client has configured the channel
  302. * @PREP_HARDWARE: register access is allowed
  303. * however, no processing EVENTS
  304. * @ACTIVE_STATE: channels are fully operational
  305. * @PREPARE_TERMINATE: graceful termination of channels
  306. * register access is allowed
  307. * @PAUSE_STATE: channels are active, but not processing any events
  308. */
  309. enum gpi_pm_state {
  310. DISABLE_STATE,
  311. CONFIG_STATE,
  312. PREPARE_HARDWARE,
  313. ACTIVE_STATE,
  314. PREPARE_TERMINATE,
  315. PAUSE_STATE,
  316. MAX_PM_STATE
  317. };
  318. #define REG_ACCESS_VALID(_pm_state) ((_pm_state) >= PREPARE_HARDWARE)
  319. static const char *const gpi_pm_state_str[MAX_PM_STATE] = {
  320. [DISABLE_STATE] = "DISABLE",
  321. [CONFIG_STATE] = "CONFIG",
  322. [PREPARE_HARDWARE] = "PREPARE HARDWARE",
  323. [ACTIVE_STATE] = "ACTIVE",
  324. [PREPARE_TERMINATE] = "PREPARE TERMINATE",
  325. [PAUSE_STATE] = "PAUSE",
  326. };
  327. #define TO_GPI_PM_STR(_state) (((_state) >= MAX_PM_STATE) ? \
  328. "INVALID" : gpi_pm_state_str[(_state)])
  329. static const struct {
  330. enum gpi_cmd gpi_cmd;
  331. u32 opcode;
  332. u32 state;
  333. } gpi_cmd_info[GPI_MAX_CMD] = {
  334. {
  335. GPI_CH_CMD_ALLOCATE,
  336. GPII_n_CH_CMD_ALLOCATE,
  337. CH_STATE_ALLOCATED,
  338. },
  339. {
  340. GPI_CH_CMD_START,
  341. GPII_n_CH_CMD_START,
  342. CH_STATE_STARTED,
  343. },
  344. {
  345. GPI_CH_CMD_STOP,
  346. GPII_n_CH_CMD_STOP,
  347. CH_STATE_STOPPED,
  348. },
  349. {
  350. GPI_CH_CMD_RESET,
  351. GPII_n_CH_CMD_RESET,
  352. CH_STATE_ALLOCATED,
  353. },
  354. {
  355. GPI_CH_CMD_DE_ALLOC,
  356. GPII_n_CH_CMD_DE_ALLOC,
  357. CH_STATE_NOT_ALLOCATED,
  358. },
  359. {
  360. GPI_CH_CMD_UART_SW_STALE,
  361. GPII_n_CH_CMD_UART_SW_STALE,
  362. STATE_IGNORE,
  363. },
  364. {
  365. GPI_CH_CMD_UART_RFR_READY,
  366. GPII_n_CH_CMD_UART_RFR_READY,
  367. STATE_IGNORE,
  368. },
  369. {
  370. GPI_CH_CMD_UART_RFR_NOT_READY,
  371. GPII_n_CH_CMD_UART_RFR_NOT_READY,
  372. STATE_IGNORE,
  373. },
  374. {
  375. GPI_EV_CMD_ALLOCATE,
  376. GPII_n_EV_CH_CMD_ALLOCATE,
  377. EV_STATE_ALLOCATED,
  378. },
  379. {
  380. GPI_EV_CMD_RESET,
  381. GPII_n_EV_CH_CMD_RESET,
  382. EV_STATE_ALLOCATED,
  383. },
  384. {
  385. GPI_EV_CMD_DEALLOC,
  386. GPII_n_EV_CH_CMD_DE_ALLOC,
  387. EV_STATE_NOT_ALLOCATED,
  388. },
  389. };
  390. struct gpi_ring {
  391. void *pre_aligned;
  392. size_t alloc_size;
  393. phys_addr_t phys_addr;
  394. dma_addr_t dma_handle;
  395. void *base;
  396. void *wp;
  397. void *rp;
  398. u32 len;
  399. u32 el_size;
  400. u32 elements;
  401. bool configured;
  402. };
  403. struct gpi_dev {
  404. struct dma_device dma_device;
  405. struct device *dev;
  406. struct resource *res;
  407. void __iomem *regs;
  408. void __iomem *ee_base; /*ee register base address*/
  409. u32 max_gpii; /* maximum # of gpii instances available per gpi block */
  410. u32 gpii_mask; /* gpii instances available for apps */
  411. u32 ev_factor; /* ev ring length factor */
  412. struct gpii *gpiis;
  413. };
  414. struct reg_info {
  415. char *name;
  416. u32 offset;
  417. u32 val;
  418. };
  419. struct gchan {
  420. struct virt_dma_chan vc;
  421. u32 chid;
  422. u32 seid;
  423. u32 protocol;
  424. struct gpii *gpii;
  425. enum gpi_ch_state ch_state;
  426. enum gpi_pm_state pm_state;
  427. void __iomem *ch_cntxt_base_reg;
  428. void __iomem *ch_cntxt_db_reg;
  429. void __iomem *ch_cmd_reg;
  430. u32 dir;
  431. struct gpi_ring ch_ring;
  432. void *config;
  433. };
  434. struct gpii {
  435. u32 gpii_id;
  436. struct gchan gchan[MAX_CHANNELS_PER_GPII];
  437. struct gpi_dev *gpi_dev;
  438. int irq;
  439. void __iomem *regs; /* points to gpi top */
  440. void __iomem *ev_cntxt_base_reg;
  441. void __iomem *ev_cntxt_db_reg;
  442. void __iomem *ev_ring_rp_lsb_reg;
  443. void __iomem *ev_cmd_reg;
  444. void __iomem *ieob_clr_reg;
  445. struct mutex ctrl_lock;
  446. enum gpi_ev_state ev_state;
  447. bool configured_irq;
  448. enum gpi_pm_state pm_state;
  449. rwlock_t pm_lock;
  450. struct gpi_ring ev_ring;
  451. struct tasklet_struct ev_task; /* event processing tasklet */
  452. struct completion cmd_completion;
  453. enum gpi_cmd gpi_cmd;
  454. u32 cntxt_type_irq_msk;
  455. bool ieob_set;
  456. };
  457. #define MAX_TRE 3
  458. struct gpi_desc {
  459. struct virt_dma_desc vd;
  460. size_t len;
  461. void *db; /* DB register to program */
  462. struct gchan *gchan;
  463. struct gpi_tre tre[MAX_TRE];
  464. u32 num_tre;
  465. };
  466. static const u32 GPII_CHAN_DIR[MAX_CHANNELS_PER_GPII] = {
  467. GPI_CHTYPE_DIR_OUT, GPI_CHTYPE_DIR_IN
  468. };
  469. static irqreturn_t gpi_handle_irq(int irq, void *data);
  470. static void gpi_ring_recycle_ev_element(struct gpi_ring *ring);
  471. static int gpi_ring_add_element(struct gpi_ring *ring, void **wp);
  472. static void gpi_process_events(struct gpii *gpii);
  473. static inline struct gchan *to_gchan(struct dma_chan *dma_chan)
  474. {
  475. return container_of(dma_chan, struct gchan, vc.chan);
  476. }
  477. static inline struct gpi_desc *to_gpi_desc(struct virt_dma_desc *vd)
  478. {
  479. return container_of(vd, struct gpi_desc, vd);
  480. }
  481. static inline phys_addr_t to_physical(const struct gpi_ring *const ring,
  482. void *addr)
  483. {
  484. return ring->phys_addr + (addr - ring->base);
  485. }
  486. static inline void *to_virtual(const struct gpi_ring *const ring, phys_addr_t addr)
  487. {
  488. return ring->base + (addr - ring->phys_addr);
  489. }
  490. static inline u32 gpi_read_reg(struct gpii *gpii, void __iomem *addr)
  491. {
  492. return readl_relaxed(addr);
  493. }
  494. static inline void gpi_write_reg(struct gpii *gpii, void __iomem *addr, u32 val)
  495. {
  496. writel_relaxed(val, addr);
  497. }
  498. /* gpi_write_reg_field - write to specific bit field */
  499. static inline void gpi_write_reg_field(struct gpii *gpii, void __iomem *addr,
  500. u32 mask, u32 shift, u32 val)
  501. {
  502. u32 tmp = gpi_read_reg(gpii, addr);
  503. tmp &= ~mask;
  504. val = tmp | ((val << shift) & mask);
  505. gpi_write_reg(gpii, addr, val);
  506. }
  507. static __always_inline void
  508. gpi_update_reg(struct gpii *gpii, u32 offset, u32 mask, u32 val)
  509. {
  510. void __iomem *addr = gpii->regs + offset;
  511. u32 tmp = gpi_read_reg(gpii, addr);
  512. tmp &= ~mask;
  513. tmp |= u32_encode_bits(val, mask);
  514. gpi_write_reg(gpii, addr, tmp);
  515. }
  516. static void gpi_disable_interrupts(struct gpii *gpii)
  517. {
  518. gpi_update_reg(gpii, GPII_n_CNTXT_TYPE_IRQ_MSK_OFFS(gpii->gpii_id),
  519. GPII_n_CNTXT_TYPE_IRQ_MSK_BMSK, 0);
  520. gpi_update_reg(gpii, GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_OFFS(gpii->gpii_id),
  521. GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_BMSK, 0);
  522. gpi_update_reg(gpii, GPII_n_CNTXT_SRC_CH_IRQ_MSK_OFFS(gpii->gpii_id),
  523. GPII_n_CNTXT_SRC_CH_IRQ_MSK_BMSK, 0);
  524. gpi_update_reg(gpii, GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_OFFS(gpii->gpii_id),
  525. GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_BMSK, 0);
  526. gpi_update_reg(gpii, GPII_n_CNTXT_GLOB_IRQ_EN_OFFS(gpii->gpii_id),
  527. GPII_n_CNTXT_GPII_IRQ_EN_BMSK, 0);
  528. gpi_update_reg(gpii, GPII_n_CNTXT_GPII_IRQ_EN_OFFS(gpii->gpii_id),
  529. GPII_n_CNTXT_GPII_IRQ_EN_BMSK, 0);
  530. gpi_update_reg(gpii, GPII_n_CNTXT_INTSET_OFFS(gpii->gpii_id),
  531. GPII_n_CNTXT_INTSET_BMSK, 0);
  532. gpii->cntxt_type_irq_msk = 0;
  533. devm_free_irq(gpii->gpi_dev->dev, gpii->irq, gpii);
  534. gpii->configured_irq = false;
  535. }
  536. /* configure and enable interrupts */
  537. static int gpi_config_interrupts(struct gpii *gpii, enum gpii_irq_settings settings, bool mask)
  538. {
  539. const u32 enable = (GPII_n_CNTXT_TYPE_IRQ_MSK_GENERAL |
  540. GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB |
  541. GPII_n_CNTXT_TYPE_IRQ_MSK_GLOB |
  542. GPII_n_CNTXT_TYPE_IRQ_MSK_EV_CTRL |
  543. GPII_n_CNTXT_TYPE_IRQ_MSK_CH_CTRL);
  544. int ret;
  545. if (!gpii->configured_irq) {
  546. ret = devm_request_irq(gpii->gpi_dev->dev, gpii->irq,
  547. gpi_handle_irq, IRQF_TRIGGER_HIGH,
  548. "gpi-dma", gpii);
  549. if (ret < 0) {
  550. dev_err(gpii->gpi_dev->dev, "error request irq:%d ret:%d\n",
  551. gpii->irq, ret);
  552. return ret;
  553. }
  554. }
  555. if (settings == MASK_IEOB_SETTINGS) {
  556. /*
  557. * GPII only uses one EV ring per gpii so we can globally
  558. * enable/disable IEOB interrupt
  559. */
  560. if (mask)
  561. gpii->cntxt_type_irq_msk |= GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB;
  562. else
  563. gpii->cntxt_type_irq_msk &= ~(GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB);
  564. gpi_update_reg(gpii, GPII_n_CNTXT_TYPE_IRQ_MSK_OFFS(gpii->gpii_id),
  565. GPII_n_CNTXT_TYPE_IRQ_MSK_BMSK, gpii->cntxt_type_irq_msk);
  566. } else {
  567. gpi_update_reg(gpii, GPII_n_CNTXT_TYPE_IRQ_MSK_OFFS(gpii->gpii_id),
  568. GPII_n_CNTXT_TYPE_IRQ_MSK_BMSK, enable);
  569. gpi_update_reg(gpii, GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_OFFS(gpii->gpii_id),
  570. GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_BMSK,
  571. GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_BMSK);
  572. gpi_update_reg(gpii, GPII_n_CNTXT_SRC_CH_IRQ_MSK_OFFS(gpii->gpii_id),
  573. GPII_n_CNTXT_SRC_CH_IRQ_MSK_BMSK,
  574. GPII_n_CNTXT_SRC_CH_IRQ_MSK_BMSK);
  575. gpi_update_reg(gpii, GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_OFFS(gpii->gpii_id),
  576. GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_BMSK,
  577. GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_BMSK);
  578. gpi_update_reg(gpii, GPII_n_CNTXT_GLOB_IRQ_EN_OFFS(gpii->gpii_id),
  579. GPII_n_CNTXT_GPII_IRQ_EN_BMSK,
  580. GPII_n_CNTXT_GPII_IRQ_EN_BMSK);
  581. gpi_update_reg(gpii, GPII_n_CNTXT_GPII_IRQ_EN_OFFS(gpii->gpii_id),
  582. GPII_n_CNTXT_GPII_IRQ_EN_BMSK, GPII_n_CNTXT_GPII_IRQ_EN_BMSK);
  583. gpi_update_reg(gpii, GPII_n_CNTXT_MSI_BASE_LSB_OFFS(gpii->gpii_id), U32_MAX, 0);
  584. gpi_update_reg(gpii, GPII_n_CNTXT_MSI_BASE_MSB_OFFS(gpii->gpii_id), U32_MAX, 0);
  585. gpi_update_reg(gpii, GPII_n_CNTXT_SCRATCH_0_OFFS(gpii->gpii_id), U32_MAX, 0);
  586. gpi_update_reg(gpii, GPII_n_CNTXT_SCRATCH_1_OFFS(gpii->gpii_id), U32_MAX, 0);
  587. gpi_update_reg(gpii, GPII_n_CNTXT_INTSET_OFFS(gpii->gpii_id),
  588. GPII_n_CNTXT_INTSET_BMSK, 1);
  589. gpi_update_reg(gpii, GPII_n_ERROR_LOG_OFFS(gpii->gpii_id), U32_MAX, 0);
  590. gpii->cntxt_type_irq_msk = enable;
  591. }
  592. gpii->configured_irq = true;
  593. return 0;
  594. }
  595. /* Sends gpii event or channel command */
  596. static int gpi_send_cmd(struct gpii *gpii, struct gchan *gchan,
  597. enum gpi_cmd gpi_cmd)
  598. {
  599. u32 chid = MAX_CHANNELS_PER_GPII;
  600. unsigned long timeout;
  601. void __iomem *cmd_reg;
  602. u32 cmd;
  603. if (gpi_cmd >= GPI_MAX_CMD)
  604. return -EINVAL;
  605. if (IS_CHAN_CMD(gpi_cmd))
  606. chid = gchan->chid;
  607. dev_dbg(gpii->gpi_dev->dev,
  608. "sending cmd: %s:%u\n", TO_GPI_CMD_STR(gpi_cmd), chid);
  609. /* send opcode and wait for completion */
  610. reinit_completion(&gpii->cmd_completion);
  611. gpii->gpi_cmd = gpi_cmd;
  612. cmd_reg = IS_CHAN_CMD(gpi_cmd) ? gchan->ch_cmd_reg : gpii->ev_cmd_reg;
  613. cmd = IS_CHAN_CMD(gpi_cmd) ? GPII_n_CH_CMD(gpi_cmd_info[gpi_cmd].opcode, chid) :
  614. GPII_n_EV_CMD(gpi_cmd_info[gpi_cmd].opcode, 0);
  615. gpi_write_reg(gpii, cmd_reg, cmd);
  616. timeout = wait_for_completion_timeout(&gpii->cmd_completion,
  617. msecs_to_jiffies(CMD_TIMEOUT_MS));
  618. if (!timeout) {
  619. dev_err(gpii->gpi_dev->dev, "cmd: %s completion timeout:%u\n",
  620. TO_GPI_CMD_STR(gpi_cmd), chid);
  621. return -EIO;
  622. }
  623. /* confirm new ch state is correct , if the cmd is a state change cmd */
  624. if (gpi_cmd_info[gpi_cmd].state == STATE_IGNORE)
  625. return 0;
  626. if (IS_CHAN_CMD(gpi_cmd) && gchan->ch_state == gpi_cmd_info[gpi_cmd].state)
  627. return 0;
  628. if (!IS_CHAN_CMD(gpi_cmd) && gpii->ev_state == gpi_cmd_info[gpi_cmd].state)
  629. return 0;
  630. return -EIO;
  631. }
  632. /* program transfer ring DB register */
  633. static inline void gpi_write_ch_db(struct gchan *gchan,
  634. struct gpi_ring *ring, void *wp)
  635. {
  636. struct gpii *gpii = gchan->gpii;
  637. phys_addr_t p_wp;
  638. p_wp = to_physical(ring, wp);
  639. gpi_write_reg(gpii, gchan->ch_cntxt_db_reg, p_wp);
  640. }
  641. /* program event ring DB register */
  642. static inline void gpi_write_ev_db(struct gpii *gpii,
  643. struct gpi_ring *ring, void *wp)
  644. {
  645. phys_addr_t p_wp;
  646. p_wp = ring->phys_addr + (wp - ring->base);
  647. gpi_write_reg(gpii, gpii->ev_cntxt_db_reg, p_wp);
  648. }
  649. /* process transfer completion interrupt */
  650. static void gpi_process_ieob(struct gpii *gpii)
  651. {
  652. gpi_write_reg(gpii, gpii->ieob_clr_reg, BIT(0));
  653. gpi_config_interrupts(gpii, MASK_IEOB_SETTINGS, 0);
  654. tasklet_hi_schedule(&gpii->ev_task);
  655. }
  656. /* process channel control interrupt */
  657. static void gpi_process_ch_ctrl_irq(struct gpii *gpii)
  658. {
  659. u32 gpii_id = gpii->gpii_id;
  660. u32 offset = GPII_n_CNTXT_SRC_GPII_CH_IRQ_OFFS(gpii_id);
  661. u32 ch_irq = gpi_read_reg(gpii, gpii->regs + offset);
  662. struct gchan *gchan;
  663. u32 chid, state;
  664. /* clear the status */
  665. offset = GPII_n_CNTXT_SRC_CH_IRQ_CLR_OFFS(gpii_id);
  666. gpi_write_reg(gpii, gpii->regs + offset, (u32)ch_irq);
  667. for (chid = 0; chid < MAX_CHANNELS_PER_GPII; chid++) {
  668. if (!(BIT(chid) & ch_irq))
  669. continue;
  670. gchan = &gpii->gchan[chid];
  671. state = gpi_read_reg(gpii, gchan->ch_cntxt_base_reg +
  672. CNTXT_0_CONFIG);
  673. state = FIELD_GET(GPII_n_CH_k_CNTXT_0_CHSTATE, state);
  674. /*
  675. * CH_CMD_DEALLOC cmd always successful. However cmd does
  676. * not change hardware status. So overwriting software state
  677. * to default state.
  678. */
  679. if (gpii->gpi_cmd == GPI_CH_CMD_DE_ALLOC)
  680. state = DEFAULT_CH_STATE;
  681. gchan->ch_state = state;
  682. /*
  683. * Triggering complete all if ch_state is not a stop in process.
  684. * Stop in process is a transition state and we will wait for
  685. * stop interrupt before notifying.
  686. */
  687. if (gchan->ch_state != CH_STATE_STOP_IN_PROC)
  688. complete_all(&gpii->cmd_completion);
  689. }
  690. }
  691. /* processing gpi general error interrupts */
  692. static void gpi_process_gen_err_irq(struct gpii *gpii)
  693. {
  694. u32 gpii_id = gpii->gpii_id;
  695. u32 offset = GPII_n_CNTXT_GPII_IRQ_STTS_OFFS(gpii_id);
  696. u32 irq_stts = gpi_read_reg(gpii, gpii->regs + offset);
  697. /* clear the status */
  698. dev_dbg(gpii->gpi_dev->dev, "irq_stts:0x%x\n", irq_stts);
  699. /* Clear the register */
  700. offset = GPII_n_CNTXT_GPII_IRQ_CLR_OFFS(gpii_id);
  701. gpi_write_reg(gpii, gpii->regs + offset, irq_stts);
  702. }
  703. /* processing gpi level error interrupts */
  704. static void gpi_process_glob_err_irq(struct gpii *gpii)
  705. {
  706. u32 gpii_id = gpii->gpii_id;
  707. u32 offset = GPII_n_CNTXT_GLOB_IRQ_STTS_OFFS(gpii_id);
  708. u32 irq_stts = gpi_read_reg(gpii, gpii->regs + offset);
  709. offset = GPII_n_CNTXT_GLOB_IRQ_CLR_OFFS(gpii_id);
  710. gpi_write_reg(gpii, gpii->regs + offset, irq_stts);
  711. /* only error interrupt should be set */
  712. if (irq_stts & ~GPI_GLOB_IRQ_ERROR_INT_MSK) {
  713. dev_err(gpii->gpi_dev->dev, "invalid error status:0x%x\n", irq_stts);
  714. return;
  715. }
  716. offset = GPII_n_ERROR_LOG_OFFS(gpii_id);
  717. gpi_write_reg(gpii, gpii->regs + offset, 0);
  718. }
  719. /* gpii interrupt handler */
  720. static irqreturn_t gpi_handle_irq(int irq, void *data)
  721. {
  722. struct gpii *gpii = data;
  723. u32 gpii_id = gpii->gpii_id;
  724. u32 type, offset;
  725. unsigned long flags;
  726. read_lock_irqsave(&gpii->pm_lock, flags);
  727. /*
  728. * States are out of sync to receive interrupt
  729. * while software state is in DISABLE state, bailing out.
  730. */
  731. if (!REG_ACCESS_VALID(gpii->pm_state)) {
  732. dev_err(gpii->gpi_dev->dev, "receive interrupt while in %s state\n",
  733. TO_GPI_PM_STR(gpii->pm_state));
  734. goto exit_irq;
  735. }
  736. offset = GPII_n_CNTXT_TYPE_IRQ_OFFS(gpii->gpii_id);
  737. type = gpi_read_reg(gpii, gpii->regs + offset);
  738. do {
  739. /* global gpii error */
  740. if (type & GPII_n_CNTXT_TYPE_IRQ_MSK_GLOB) {
  741. gpi_process_glob_err_irq(gpii);
  742. type &= ~(GPII_n_CNTXT_TYPE_IRQ_MSK_GLOB);
  743. }
  744. /* transfer complete interrupt */
  745. if (type & GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB) {
  746. gpi_process_ieob(gpii);
  747. type &= ~GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB;
  748. }
  749. /* event control irq */
  750. if (type & GPII_n_CNTXT_TYPE_IRQ_MSK_EV_CTRL) {
  751. u32 ev_state;
  752. u32 ev_ch_irq;
  753. dev_dbg(gpii->gpi_dev->dev,
  754. "processing EV CTRL interrupt\n");
  755. offset = GPII_n_CNTXT_SRC_EV_CH_IRQ_OFFS(gpii_id);
  756. ev_ch_irq = gpi_read_reg(gpii, gpii->regs + offset);
  757. offset = GPII_n_CNTXT_SRC_EV_CH_IRQ_CLR_OFFS
  758. (gpii_id);
  759. gpi_write_reg(gpii, gpii->regs + offset, ev_ch_irq);
  760. ev_state = gpi_read_reg(gpii, gpii->ev_cntxt_base_reg +
  761. CNTXT_0_CONFIG);
  762. ev_state = FIELD_GET(GPII_n_EV_k_CNTXT_0_CHSTATE, ev_state);
  763. /*
  764. * CMD EV_CMD_DEALLOC is always successful. However
  765. * cmd does not change hardware status. So overwriting
  766. * software state to default state.
  767. */
  768. if (gpii->gpi_cmd == GPI_EV_CMD_DEALLOC)
  769. ev_state = DEFAULT_EV_CH_STATE;
  770. gpii->ev_state = ev_state;
  771. dev_dbg(gpii->gpi_dev->dev, "setting EV state to %s\n",
  772. TO_GPI_EV_STATE_STR(gpii->ev_state));
  773. complete_all(&gpii->cmd_completion);
  774. type &= ~(GPII_n_CNTXT_TYPE_IRQ_MSK_EV_CTRL);
  775. }
  776. /* channel control irq */
  777. if (type & GPII_n_CNTXT_TYPE_IRQ_MSK_CH_CTRL) {
  778. dev_dbg(gpii->gpi_dev->dev, "process CH CTRL interrupts\n");
  779. gpi_process_ch_ctrl_irq(gpii);
  780. type &= ~(GPII_n_CNTXT_TYPE_IRQ_MSK_CH_CTRL);
  781. }
  782. if (type) {
  783. dev_err(gpii->gpi_dev->dev, "Unhandled interrupt status:0x%x\n", type);
  784. gpi_process_gen_err_irq(gpii);
  785. goto exit_irq;
  786. }
  787. offset = GPII_n_CNTXT_TYPE_IRQ_OFFS(gpii->gpii_id);
  788. type = gpi_read_reg(gpii, gpii->regs + offset);
  789. } while (type);
  790. exit_irq:
  791. read_unlock_irqrestore(&gpii->pm_lock, flags);
  792. return IRQ_HANDLED;
  793. }
  794. /* process DMA Immediate completion data events */
  795. static void gpi_process_imed_data_event(struct gchan *gchan,
  796. struct immediate_data_event *imed_event)
  797. {
  798. struct gpii *gpii = gchan->gpii;
  799. struct gpi_ring *ch_ring = &gchan->ch_ring;
  800. void *tre = ch_ring->base + (ch_ring->el_size * imed_event->tre_index);
  801. struct dmaengine_result result;
  802. struct gpi_desc *gpi_desc;
  803. struct virt_dma_desc *vd;
  804. unsigned long flags;
  805. u32 chid;
  806. /*
  807. * If channel not active don't process event
  808. */
  809. if (gchan->pm_state != ACTIVE_STATE) {
  810. dev_err(gpii->gpi_dev->dev, "skipping processing event because ch @ %s state\n",
  811. TO_GPI_PM_STR(gchan->pm_state));
  812. return;
  813. }
  814. spin_lock_irqsave(&gchan->vc.lock, flags);
  815. vd = vchan_next_desc(&gchan->vc);
  816. if (!vd) {
  817. struct gpi_ere *gpi_ere;
  818. struct gpi_tre *gpi_tre;
  819. spin_unlock_irqrestore(&gchan->vc.lock, flags);
  820. dev_dbg(gpii->gpi_dev->dev, "event without a pending descriptor!\n");
  821. gpi_ere = (struct gpi_ere *)imed_event;
  822. dev_dbg(gpii->gpi_dev->dev,
  823. "Event: %08x %08x %08x %08x\n",
  824. gpi_ere->dword[0], gpi_ere->dword[1],
  825. gpi_ere->dword[2], gpi_ere->dword[3]);
  826. gpi_tre = tre;
  827. dev_dbg(gpii->gpi_dev->dev,
  828. "Pending TRE: %08x %08x %08x %08x\n",
  829. gpi_tre->dword[0], gpi_tre->dword[1],
  830. gpi_tre->dword[2], gpi_tre->dword[3]);
  831. return;
  832. }
  833. gpi_desc = to_gpi_desc(vd);
  834. spin_unlock_irqrestore(&gchan->vc.lock, flags);
  835. /*
  836. * RP pointed by Event is to last TRE processed,
  837. * we need to update ring rp to tre + 1
  838. */
  839. tre += ch_ring->el_size;
  840. if (tre >= (ch_ring->base + ch_ring->len))
  841. tre = ch_ring->base;
  842. ch_ring->rp = tre;
  843. /* make sure rp updates are immediately visible to all cores */
  844. smp_wmb();
  845. chid = imed_event->chid;
  846. if (imed_event->code == MSM_GPI_TCE_EOT && gpii->ieob_set) {
  847. if (chid == GPI_RX_CHAN)
  848. goto gpi_free_desc;
  849. else
  850. return;
  851. }
  852. if (imed_event->code == MSM_GPI_TCE_UNEXP_ERR)
  853. result.result = DMA_TRANS_ABORTED;
  854. else
  855. result.result = DMA_TRANS_NOERROR;
  856. result.residue = gpi_desc->len - imed_event->length;
  857. dma_cookie_complete(&vd->tx);
  858. dmaengine_desc_get_callback_invoke(&vd->tx, &result);
  859. gpi_free_desc:
  860. spin_lock_irqsave(&gchan->vc.lock, flags);
  861. list_del(&vd->node);
  862. spin_unlock_irqrestore(&gchan->vc.lock, flags);
  863. kfree(gpi_desc);
  864. gpi_desc = NULL;
  865. }
  866. /* processing transfer completion events */
  867. static void gpi_process_xfer_compl_event(struct gchan *gchan,
  868. struct xfer_compl_event *compl_event)
  869. {
  870. struct gpii *gpii = gchan->gpii;
  871. struct gpi_ring *ch_ring = &gchan->ch_ring;
  872. void *ev_rp = to_virtual(ch_ring, compl_event->ptr);
  873. struct virt_dma_desc *vd;
  874. struct gpi_desc *gpi_desc;
  875. struct dmaengine_result result;
  876. unsigned long flags;
  877. u32 chid;
  878. /* only process events on active channel */
  879. if (unlikely(gchan->pm_state != ACTIVE_STATE)) {
  880. dev_err(gpii->gpi_dev->dev, "skipping processing event because ch @ %s state\n",
  881. TO_GPI_PM_STR(gchan->pm_state));
  882. return;
  883. }
  884. spin_lock_irqsave(&gchan->vc.lock, flags);
  885. vd = vchan_next_desc(&gchan->vc);
  886. if (!vd) {
  887. struct gpi_ere *gpi_ere;
  888. spin_unlock_irqrestore(&gchan->vc.lock, flags);
  889. dev_err(gpii->gpi_dev->dev, "Event without a pending descriptor!\n");
  890. gpi_ere = (struct gpi_ere *)compl_event;
  891. dev_err(gpii->gpi_dev->dev,
  892. "Event: %08x %08x %08x %08x\n",
  893. gpi_ere->dword[0], gpi_ere->dword[1],
  894. gpi_ere->dword[2], gpi_ere->dword[3]);
  895. return;
  896. }
  897. gpi_desc = to_gpi_desc(vd);
  898. spin_unlock_irqrestore(&gchan->vc.lock, flags);
  899. /*
  900. * RP pointed by Event is to last TRE processed,
  901. * we need to update ring rp to ev_rp + 1
  902. */
  903. ev_rp += ch_ring->el_size;
  904. if (ev_rp >= (ch_ring->base + ch_ring->len))
  905. ev_rp = ch_ring->base;
  906. ch_ring->rp = ev_rp;
  907. /* update must be visible to other cores */
  908. smp_wmb();
  909. chid = compl_event->chid;
  910. if (compl_event->code == MSM_GPI_TCE_EOT && gpii->ieob_set) {
  911. if (chid == GPI_RX_CHAN)
  912. goto gpi_free_desc;
  913. else
  914. return;
  915. }
  916. if (compl_event->code == MSM_GPI_TCE_UNEXP_ERR) {
  917. dev_err(gpii->gpi_dev->dev, "Error in Transaction\n");
  918. result.result = DMA_TRANS_ABORTED;
  919. } else {
  920. dev_dbg(gpii->gpi_dev->dev, "Transaction Success\n");
  921. result.result = DMA_TRANS_NOERROR;
  922. }
  923. result.residue = gpi_desc->len - compl_event->length;
  924. dev_dbg(gpii->gpi_dev->dev, "Residue %d\n", result.residue);
  925. dma_cookie_complete(&vd->tx);
  926. dmaengine_desc_get_callback_invoke(&vd->tx, &result);
  927. gpi_free_desc:
  928. spin_lock_irqsave(&gchan->vc.lock, flags);
  929. list_del(&vd->node);
  930. spin_unlock_irqrestore(&gchan->vc.lock, flags);
  931. kfree(gpi_desc);
  932. gpi_desc = NULL;
  933. }
  934. /* process all events */
  935. static void gpi_process_events(struct gpii *gpii)
  936. {
  937. struct gpi_ring *ev_ring = &gpii->ev_ring;
  938. phys_addr_t cntxt_rp;
  939. void *rp;
  940. union gpi_event *gpi_event;
  941. struct gchan *gchan;
  942. u32 chid, type;
  943. cntxt_rp = gpi_read_reg(gpii, gpii->ev_ring_rp_lsb_reg);
  944. rp = to_virtual(ev_ring, cntxt_rp);
  945. do {
  946. while (rp != ev_ring->rp) {
  947. gpi_event = ev_ring->rp;
  948. chid = gpi_event->xfer_compl_event.chid;
  949. type = gpi_event->xfer_compl_event.type;
  950. dev_dbg(gpii->gpi_dev->dev,
  951. "Event: CHID:%u, type:%x %08x %08x %08x %08x\n",
  952. chid, type, gpi_event->gpi_ere.dword[0],
  953. gpi_event->gpi_ere.dword[1], gpi_event->gpi_ere.dword[2],
  954. gpi_event->gpi_ere.dword[3]);
  955. switch (type) {
  956. case XFER_COMPLETE_EV_TYPE:
  957. gchan = &gpii->gchan[chid];
  958. gpi_process_xfer_compl_event(gchan,
  959. &gpi_event->xfer_compl_event);
  960. break;
  961. case STALE_EV_TYPE:
  962. dev_dbg(gpii->gpi_dev->dev, "stale event, not processing\n");
  963. break;
  964. case IMMEDIATE_DATA_EV_TYPE:
  965. gchan = &gpii->gchan[chid];
  966. gpi_process_imed_data_event(gchan,
  967. &gpi_event->immediate_data_event);
  968. break;
  969. case QUP_NOTIF_EV_TYPE:
  970. dev_dbg(gpii->gpi_dev->dev, "QUP_NOTIF_EV_TYPE\n");
  971. break;
  972. default:
  973. dev_dbg(gpii->gpi_dev->dev,
  974. "not supported event type:0x%x\n", type);
  975. }
  976. gpi_ring_recycle_ev_element(ev_ring);
  977. }
  978. gpi_write_ev_db(gpii, ev_ring, ev_ring->wp);
  979. /* clear pending IEOB events */
  980. gpi_write_reg(gpii, gpii->ieob_clr_reg, BIT(0));
  981. cntxt_rp = gpi_read_reg(gpii, gpii->ev_ring_rp_lsb_reg);
  982. rp = to_virtual(ev_ring, cntxt_rp);
  983. } while (rp != ev_ring->rp);
  984. }
  985. /* processing events using tasklet */
  986. static void gpi_ev_tasklet(unsigned long data)
  987. {
  988. struct gpii *gpii = (struct gpii *)data;
  989. read_lock(&gpii->pm_lock);
  990. if (!REG_ACCESS_VALID(gpii->pm_state)) {
  991. read_unlock(&gpii->pm_lock);
  992. dev_err(gpii->gpi_dev->dev, "not processing any events, pm_state:%s\n",
  993. TO_GPI_PM_STR(gpii->pm_state));
  994. return;
  995. }
  996. /* process the events */
  997. gpi_process_events(gpii);
  998. /* enable IEOB, switching back to interrupts */
  999. gpi_config_interrupts(gpii, MASK_IEOB_SETTINGS, 1);
  1000. read_unlock(&gpii->pm_lock);
  1001. }
  1002. /* marks all pending events for the channel as stale */
  1003. static void gpi_mark_stale_events(struct gchan *gchan)
  1004. {
  1005. struct gpii *gpii = gchan->gpii;
  1006. struct gpi_ring *ev_ring = &gpii->ev_ring;
  1007. u32 cntxt_rp, local_rp;
  1008. void *ev_rp;
  1009. cntxt_rp = gpi_read_reg(gpii, gpii->ev_ring_rp_lsb_reg);
  1010. ev_rp = ev_ring->rp;
  1011. local_rp = (u32)to_physical(ev_ring, ev_rp);
  1012. while (local_rp != cntxt_rp) {
  1013. union gpi_event *gpi_event = ev_rp;
  1014. u32 chid = gpi_event->xfer_compl_event.chid;
  1015. if (chid == gchan->chid)
  1016. gpi_event->xfer_compl_event.type = STALE_EV_TYPE;
  1017. ev_rp += ev_ring->el_size;
  1018. if (ev_rp >= (ev_ring->base + ev_ring->len))
  1019. ev_rp = ev_ring->base;
  1020. cntxt_rp = gpi_read_reg(gpii, gpii->ev_ring_rp_lsb_reg);
  1021. local_rp = (u32)to_physical(ev_ring, ev_rp);
  1022. }
  1023. }
  1024. /* reset sw state and issue channel reset or de-alloc */
  1025. static int gpi_reset_chan(struct gchan *gchan, enum gpi_cmd gpi_cmd)
  1026. {
  1027. struct gpii *gpii = gchan->gpii;
  1028. struct gpi_ring *ch_ring = &gchan->ch_ring;
  1029. unsigned long flags;
  1030. LIST_HEAD(list);
  1031. int ret;
  1032. ret = gpi_send_cmd(gpii, gchan, gpi_cmd);
  1033. if (ret) {
  1034. dev_err(gpii->gpi_dev->dev, "Error with cmd:%s ret:%d\n",
  1035. TO_GPI_CMD_STR(gpi_cmd), ret);
  1036. return ret;
  1037. }
  1038. /* initialize the local ring ptrs */
  1039. ch_ring->rp = ch_ring->base;
  1040. ch_ring->wp = ch_ring->base;
  1041. /* visible to other cores */
  1042. smp_wmb();
  1043. /* check event ring for any stale events */
  1044. write_lock_irq(&gpii->pm_lock);
  1045. gpi_mark_stale_events(gchan);
  1046. /* remove all async descriptors */
  1047. spin_lock_irqsave(&gchan->vc.lock, flags);
  1048. vchan_get_all_descriptors(&gchan->vc, &list);
  1049. spin_unlock_irqrestore(&gchan->vc.lock, flags);
  1050. write_unlock_irq(&gpii->pm_lock);
  1051. vchan_dma_desc_free_list(&gchan->vc, &list);
  1052. return 0;
  1053. }
  1054. static int gpi_start_chan(struct gchan *gchan)
  1055. {
  1056. struct gpii *gpii = gchan->gpii;
  1057. int ret;
  1058. ret = gpi_send_cmd(gpii, gchan, GPI_CH_CMD_START);
  1059. if (ret) {
  1060. dev_err(gpii->gpi_dev->dev, "Error with cmd:%s ret:%d\n",
  1061. TO_GPI_CMD_STR(GPI_CH_CMD_START), ret);
  1062. return ret;
  1063. }
  1064. /* gpii CH is active now */
  1065. write_lock_irq(&gpii->pm_lock);
  1066. gchan->pm_state = ACTIVE_STATE;
  1067. write_unlock_irq(&gpii->pm_lock);
  1068. return 0;
  1069. }
  1070. static int gpi_stop_chan(struct gchan *gchan)
  1071. {
  1072. struct gpii *gpii = gchan->gpii;
  1073. int ret;
  1074. ret = gpi_send_cmd(gpii, gchan, GPI_CH_CMD_STOP);
  1075. if (ret) {
  1076. dev_err(gpii->gpi_dev->dev, "Error with cmd:%s ret:%d\n",
  1077. TO_GPI_CMD_STR(GPI_CH_CMD_STOP), ret);
  1078. return ret;
  1079. }
  1080. return 0;
  1081. }
  1082. /* allocate and configure the transfer channel */
  1083. static int gpi_alloc_chan(struct gchan *chan, bool send_alloc_cmd)
  1084. {
  1085. struct gpii *gpii = chan->gpii;
  1086. struct gpi_ring *ring = &chan->ch_ring;
  1087. int ret;
  1088. u32 id = gpii->gpii_id;
  1089. u32 chid = chan->chid;
  1090. u32 pair_chid = !chid;
  1091. if (send_alloc_cmd) {
  1092. ret = gpi_send_cmd(gpii, chan, GPI_CH_CMD_ALLOCATE);
  1093. if (ret) {
  1094. dev_err(gpii->gpi_dev->dev, "Error with cmd:%s ret:%d\n",
  1095. TO_GPI_CMD_STR(GPI_CH_CMD_ALLOCATE), ret);
  1096. return ret;
  1097. }
  1098. }
  1099. gpi_write_reg(gpii, chan->ch_cntxt_base_reg + CNTXT_0_CONFIG,
  1100. GPII_n_CH_k_CNTXT_0(ring->el_size, 0, chan->dir, GPI_CHTYPE_PROTO_GPI));
  1101. gpi_write_reg(gpii, chan->ch_cntxt_base_reg + CNTXT_1_R_LENGTH, ring->len);
  1102. gpi_write_reg(gpii, chan->ch_cntxt_base_reg + CNTXT_2_RING_BASE_LSB, ring->phys_addr);
  1103. gpi_write_reg(gpii, chan->ch_cntxt_base_reg + CNTXT_3_RING_BASE_MSB,
  1104. upper_32_bits(ring->phys_addr));
  1105. gpi_write_reg(gpii, chan->ch_cntxt_db_reg + CNTXT_5_RING_RP_MSB - CNTXT_4_RING_RP_LSB,
  1106. upper_32_bits(ring->phys_addr));
  1107. gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_SCRATCH_0_OFFS(id, chid),
  1108. GPII_n_CH_k_SCRATCH_0(pair_chid, chan->protocol, chan->seid));
  1109. gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_SCRATCH_1_OFFS(id, chid), 0);
  1110. gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_SCRATCH_2_OFFS(id, chid), 0);
  1111. gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_SCRATCH_3_OFFS(id, chid), 0);
  1112. gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_QOS_OFFS(id, chid), 1);
  1113. /* flush all the writes */
  1114. wmb();
  1115. return 0;
  1116. }
  1117. /* allocate and configure event ring */
  1118. static int gpi_alloc_ev_chan(struct gpii *gpii)
  1119. {
  1120. struct gpi_ring *ring = &gpii->ev_ring;
  1121. void __iomem *base = gpii->ev_cntxt_base_reg;
  1122. int ret;
  1123. ret = gpi_send_cmd(gpii, NULL, GPI_EV_CMD_ALLOCATE);
  1124. if (ret) {
  1125. dev_err(gpii->gpi_dev->dev, "error with cmd:%s ret:%d\n",
  1126. TO_GPI_CMD_STR(GPI_EV_CMD_ALLOCATE), ret);
  1127. return ret;
  1128. }
  1129. /* program event context */
  1130. gpi_write_reg(gpii, base + CNTXT_0_CONFIG,
  1131. GPII_n_EV_k_CNTXT_0(ring->el_size, GPI_INTTYPE_IRQ, GPI_CHTYPE_GPI_EV));
  1132. gpi_write_reg(gpii, base + CNTXT_1_R_LENGTH, ring->len);
  1133. gpi_write_reg(gpii, base + CNTXT_2_RING_BASE_LSB, lower_32_bits(ring->phys_addr));
  1134. gpi_write_reg(gpii, base + CNTXT_3_RING_BASE_MSB, upper_32_bits(ring->phys_addr));
  1135. gpi_write_reg(gpii, gpii->ev_cntxt_db_reg + CNTXT_5_RING_RP_MSB - CNTXT_4_RING_RP_LSB,
  1136. upper_32_bits(ring->phys_addr));
  1137. gpi_write_reg(gpii, base + CNTXT_8_RING_INT_MOD, 0);
  1138. gpi_write_reg(gpii, base + CNTXT_10_RING_MSI_LSB, 0);
  1139. gpi_write_reg(gpii, base + CNTXT_11_RING_MSI_MSB, 0);
  1140. gpi_write_reg(gpii, base + CNTXT_8_RING_INT_MOD, 0);
  1141. gpi_write_reg(gpii, base + CNTXT_12_RING_RP_UPDATE_LSB, 0);
  1142. gpi_write_reg(gpii, base + CNTXT_13_RING_RP_UPDATE_MSB, 0);
  1143. /* add events to ring */
  1144. ring->wp = (ring->base + ring->len - ring->el_size);
  1145. /* flush all the writes */
  1146. wmb();
  1147. /* gpii is active now */
  1148. write_lock_irq(&gpii->pm_lock);
  1149. gpii->pm_state = ACTIVE_STATE;
  1150. write_unlock_irq(&gpii->pm_lock);
  1151. gpi_write_ev_db(gpii, ring, ring->wp);
  1152. return 0;
  1153. }
  1154. /* calculate # of ERE/TRE available to queue */
  1155. static int gpi_ring_num_elements_avail(const struct gpi_ring * const ring)
  1156. {
  1157. int elements = 0;
  1158. if (ring->wp < ring->rp) {
  1159. elements = ((ring->rp - ring->wp) / ring->el_size) - 1;
  1160. } else {
  1161. elements = (ring->rp - ring->base) / ring->el_size;
  1162. elements += ((ring->base + ring->len - ring->wp) / ring->el_size) - 1;
  1163. }
  1164. return elements;
  1165. }
  1166. static int gpi_ring_add_element(struct gpi_ring *ring, void **wp)
  1167. {
  1168. if (gpi_ring_num_elements_avail(ring) <= 0)
  1169. return -ENOMEM;
  1170. *wp = ring->wp;
  1171. ring->wp += ring->el_size;
  1172. if (ring->wp >= (ring->base + ring->len))
  1173. ring->wp = ring->base;
  1174. /* visible to other cores */
  1175. smp_wmb();
  1176. return 0;
  1177. }
  1178. static void gpi_ring_recycle_ev_element(struct gpi_ring *ring)
  1179. {
  1180. /* Update the WP */
  1181. ring->wp += ring->el_size;
  1182. if (ring->wp >= (ring->base + ring->len))
  1183. ring->wp = ring->base;
  1184. /* Update the RP */
  1185. ring->rp += ring->el_size;
  1186. if (ring->rp >= (ring->base + ring->len))
  1187. ring->rp = ring->base;
  1188. /* visible to other cores */
  1189. smp_wmb();
  1190. }
  1191. static void gpi_free_ring(struct gpi_ring *ring,
  1192. struct gpii *gpii)
  1193. {
  1194. dma_free_coherent(gpii->gpi_dev->dev, ring->alloc_size,
  1195. ring->pre_aligned, ring->dma_handle);
  1196. memset(ring, 0, sizeof(*ring));
  1197. }
  1198. /* allocate memory for transfer and event rings */
  1199. static int gpi_alloc_ring(struct gpi_ring *ring, u32 elements,
  1200. u32 el_size, struct gpii *gpii)
  1201. {
  1202. u64 len = elements * el_size;
  1203. int bit;
  1204. /* ring len must be power of 2 */
  1205. bit = find_last_bit((unsigned long *)&len, 32);
  1206. if (((1 << bit) - 1) & len)
  1207. bit++;
  1208. len = 1 << bit;
  1209. ring->alloc_size = (len + (len - 1));
  1210. dev_dbg(gpii->gpi_dev->dev,
  1211. "#el:%u el_size:%u len:%u actual_len:%llu alloc_size:%zu\n",
  1212. elements, el_size, (elements * el_size), len,
  1213. ring->alloc_size);
  1214. ring->pre_aligned = dma_alloc_coherent(gpii->gpi_dev->dev,
  1215. ring->alloc_size,
  1216. &ring->dma_handle, GFP_KERNEL);
  1217. if (!ring->pre_aligned) {
  1218. dev_err(gpii->gpi_dev->dev, "could not alloc size:%zu mem for ring\n",
  1219. ring->alloc_size);
  1220. return -ENOMEM;
  1221. }
  1222. /* align the physical mem */
  1223. ring->phys_addr = (ring->dma_handle + (len - 1)) & ~(len - 1);
  1224. ring->base = ring->pre_aligned + (ring->phys_addr - ring->dma_handle);
  1225. ring->rp = ring->base;
  1226. ring->wp = ring->base;
  1227. ring->len = len;
  1228. ring->el_size = el_size;
  1229. ring->elements = ring->len / ring->el_size;
  1230. memset(ring->base, 0, ring->len);
  1231. ring->configured = true;
  1232. /* update to other cores */
  1233. smp_wmb();
  1234. dev_dbg(gpii->gpi_dev->dev,
  1235. "phy_pre:%pad phy_alig:%pa len:%u el_size:%u elements:%u\n",
  1236. &ring->dma_handle, &ring->phys_addr, ring->len,
  1237. ring->el_size, ring->elements);
  1238. return 0;
  1239. }
  1240. /* copy tre into transfer ring */
  1241. static void gpi_queue_xfer(struct gpii *gpii, struct gchan *gchan,
  1242. struct gpi_tre *gpi_tre, void **wp)
  1243. {
  1244. struct gpi_tre *ch_tre;
  1245. int ret;
  1246. /* get next tre location we can copy */
  1247. ret = gpi_ring_add_element(&gchan->ch_ring, (void **)&ch_tre);
  1248. if (unlikely(ret)) {
  1249. dev_err(gpii->gpi_dev->dev, "Error adding ring element to xfer ring\n");
  1250. return;
  1251. }
  1252. /* copy the tre info */
  1253. memcpy(ch_tre, gpi_tre, sizeof(*ch_tre));
  1254. *wp = ch_tre;
  1255. }
  1256. /* reset and restart transfer channel */
  1257. static int gpi_terminate_all(struct dma_chan *chan)
  1258. {
  1259. struct gchan *gchan = to_gchan(chan);
  1260. struct gpii *gpii = gchan->gpii;
  1261. int schid, echid, i;
  1262. int ret = 0;
  1263. mutex_lock(&gpii->ctrl_lock);
  1264. /*
  1265. * treat both channels as a group if its protocol is not UART
  1266. * STOP, RESET, or START needs to be in lockstep
  1267. */
  1268. schid = (gchan->protocol == QCOM_GPI_UART) ? gchan->chid : 0;
  1269. echid = (gchan->protocol == QCOM_GPI_UART) ? schid + 1 : MAX_CHANNELS_PER_GPII;
  1270. /* stop the channel */
  1271. for (i = schid; i < echid; i++) {
  1272. gchan = &gpii->gchan[i];
  1273. /* disable ch state so no more TRE processing */
  1274. write_lock_irq(&gpii->pm_lock);
  1275. gchan->pm_state = PREPARE_TERMINATE;
  1276. write_unlock_irq(&gpii->pm_lock);
  1277. /* send command to Stop the channel */
  1278. ret = gpi_stop_chan(gchan);
  1279. }
  1280. /* reset the channels (clears any pending tre) */
  1281. for (i = schid; i < echid; i++) {
  1282. gchan = &gpii->gchan[i];
  1283. ret = gpi_reset_chan(gchan, GPI_CH_CMD_RESET);
  1284. if (ret) {
  1285. dev_err(gpii->gpi_dev->dev, "Error resetting channel ret:%d\n", ret);
  1286. goto terminate_exit;
  1287. }
  1288. /* reprogram channel CNTXT */
  1289. ret = gpi_alloc_chan(gchan, false);
  1290. if (ret) {
  1291. dev_err(gpii->gpi_dev->dev, "Error alloc_channel ret:%d\n", ret);
  1292. goto terminate_exit;
  1293. }
  1294. }
  1295. /* restart the channels */
  1296. for (i = schid; i < echid; i++) {
  1297. gchan = &gpii->gchan[i];
  1298. ret = gpi_start_chan(gchan);
  1299. if (ret) {
  1300. dev_err(gpii->gpi_dev->dev, "Error Starting Channel ret:%d\n", ret);
  1301. goto terminate_exit;
  1302. }
  1303. }
  1304. terminate_exit:
  1305. mutex_unlock(&gpii->ctrl_lock);
  1306. return ret;
  1307. }
  1308. /* pause dma transfer for all channels */
  1309. static int gpi_pause(struct dma_chan *chan)
  1310. {
  1311. struct gchan *gchan = to_gchan(chan);
  1312. struct gpii *gpii = gchan->gpii;
  1313. int i, ret;
  1314. mutex_lock(&gpii->ctrl_lock);
  1315. /*
  1316. * pause/resume are per gpii not per channel, so
  1317. * client needs to call pause only once
  1318. */
  1319. if (gpii->pm_state == PAUSE_STATE) {
  1320. dev_dbg(gpii->gpi_dev->dev, "channel is already paused\n");
  1321. mutex_unlock(&gpii->ctrl_lock);
  1322. return 0;
  1323. }
  1324. /* send stop command to stop the channels */
  1325. for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) {
  1326. ret = gpi_stop_chan(&gpii->gchan[i]);
  1327. if (ret) {
  1328. mutex_unlock(&gpii->ctrl_lock);
  1329. return ret;
  1330. }
  1331. }
  1332. disable_irq(gpii->irq);
  1333. /* Wait for threads to complete out */
  1334. tasklet_kill(&gpii->ev_task);
  1335. write_lock_irq(&gpii->pm_lock);
  1336. gpii->pm_state = PAUSE_STATE;
  1337. write_unlock_irq(&gpii->pm_lock);
  1338. mutex_unlock(&gpii->ctrl_lock);
  1339. return 0;
  1340. }
  1341. /* resume dma transfer */
  1342. static int gpi_resume(struct dma_chan *chan)
  1343. {
  1344. struct gchan *gchan = to_gchan(chan);
  1345. struct gpii *gpii = gchan->gpii;
  1346. int i, ret;
  1347. mutex_lock(&gpii->ctrl_lock);
  1348. if (gpii->pm_state == ACTIVE_STATE) {
  1349. dev_dbg(gpii->gpi_dev->dev, "channel is already active\n");
  1350. mutex_unlock(&gpii->ctrl_lock);
  1351. return 0;
  1352. }
  1353. enable_irq(gpii->irq);
  1354. /* send start command to start the channels */
  1355. for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) {
  1356. ret = gpi_send_cmd(gpii, &gpii->gchan[i], GPI_CH_CMD_START);
  1357. if (ret) {
  1358. dev_err(gpii->gpi_dev->dev, "Error starting chan, ret:%d\n", ret);
  1359. mutex_unlock(&gpii->ctrl_lock);
  1360. return ret;
  1361. }
  1362. }
  1363. write_lock_irq(&gpii->pm_lock);
  1364. gpii->pm_state = ACTIVE_STATE;
  1365. write_unlock_irq(&gpii->pm_lock);
  1366. mutex_unlock(&gpii->ctrl_lock);
  1367. return 0;
  1368. }
  1369. static void gpi_desc_free(struct virt_dma_desc *vd)
  1370. {
  1371. struct gpi_desc *gpi_desc = to_gpi_desc(vd);
  1372. kfree(gpi_desc);
  1373. gpi_desc = NULL;
  1374. }
  1375. static int
  1376. gpi_peripheral_config(struct dma_chan *chan, struct dma_slave_config *config)
  1377. {
  1378. struct gchan *gchan = to_gchan(chan);
  1379. if (!config->peripheral_config)
  1380. return -EINVAL;
  1381. gchan->config = krealloc(gchan->config, config->peripheral_size, GFP_NOWAIT);
  1382. if (!gchan->config)
  1383. return -ENOMEM;
  1384. memcpy(gchan->config, config->peripheral_config, config->peripheral_size);
  1385. return 0;
  1386. }
  1387. static int gpi_create_i2c_tre(struct gchan *chan, struct gpi_desc *desc,
  1388. struct scatterlist *sgl, enum dma_transfer_direction direction)
  1389. {
  1390. struct gpi_i2c_config *i2c = chan->config;
  1391. struct device *dev = chan->gpii->gpi_dev->dev;
  1392. unsigned int tre_idx = 0;
  1393. dma_addr_t address;
  1394. struct gpi_tre *tre;
  1395. unsigned int i;
  1396. /* first create config tre if applicable */
  1397. if (i2c->set_config) {
  1398. tre = &desc->tre[tre_idx];
  1399. tre_idx++;
  1400. tre->dword[0] = u32_encode_bits(i2c->low_count, TRE_I2C_C0_TLOW);
  1401. tre->dword[0] |= u32_encode_bits(i2c->high_count, TRE_I2C_C0_THIGH);
  1402. tre->dword[0] |= u32_encode_bits(i2c->cycle_count, TRE_I2C_C0_TCYL);
  1403. tre->dword[0] |= u32_encode_bits(i2c->pack_enable, TRE_I2C_C0_TX_PACK);
  1404. tre->dword[0] |= u32_encode_bits(i2c->pack_enable, TRE_I2C_C0_RX_PACK);
  1405. tre->dword[1] = 0;
  1406. tre->dword[2] = u32_encode_bits(i2c->clk_div, TRE_C0_CLK_DIV);
  1407. tre->dword[3] = u32_encode_bits(TRE_TYPE_CONFIG0, TRE_FLAGS_TYPE);
  1408. tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN);
  1409. }
  1410. /* create the GO tre for Tx */
  1411. if (i2c->op == I2C_WRITE) {
  1412. tre = &desc->tre[tre_idx];
  1413. tre_idx++;
  1414. if (i2c->multi_msg)
  1415. tre->dword[0] = u32_encode_bits(I2C_READ, TRE_I2C_GO_CMD);
  1416. else
  1417. tre->dword[0] = u32_encode_bits(i2c->op, TRE_I2C_GO_CMD);
  1418. tre->dword[0] |= u32_encode_bits(i2c->addr, TRE_I2C_GO_ADDR);
  1419. tre->dword[0] |= u32_encode_bits(i2c->stretch, TRE_I2C_GO_STRETCH);
  1420. tre->dword[1] = 0;
  1421. tre->dword[2] = u32_encode_bits(i2c->rx_len, TRE_RX_LEN);
  1422. tre->dword[3] = u32_encode_bits(TRE_TYPE_GO, TRE_FLAGS_TYPE);
  1423. if (i2c->multi_msg)
  1424. tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_LINK);
  1425. else
  1426. tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN);
  1427. }
  1428. if (i2c->op == I2C_READ || i2c->multi_msg == false) {
  1429. /* create the DMA TRE */
  1430. tre = &desc->tre[tre_idx];
  1431. tre_idx++;
  1432. address = sg_dma_address(sgl);
  1433. tre->dword[0] = lower_32_bits(address);
  1434. tre->dword[1] = upper_32_bits(address);
  1435. tre->dword[2] = u32_encode_bits(sg_dma_len(sgl), TRE_DMA_LEN);
  1436. tre->dword[3] = u32_encode_bits(TRE_TYPE_DMA, TRE_FLAGS_TYPE);
  1437. tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_IEOT);
  1438. }
  1439. for (i = 0; i < tre_idx; i++)
  1440. dev_dbg(dev, "TRE:%d %x:%x:%x:%x\n", i, desc->tre[i].dword[0],
  1441. desc->tre[i].dword[1], desc->tre[i].dword[2], desc->tre[i].dword[3]);
  1442. return tre_idx;
  1443. }
  1444. static int gpi_create_spi_tre(struct gchan *chan, struct gpi_desc *desc,
  1445. struct scatterlist *sgl, enum dma_transfer_direction direction)
  1446. {
  1447. struct gpi_spi_config *spi = chan->config;
  1448. struct device *dev = chan->gpii->gpi_dev->dev;
  1449. unsigned int tre_idx = 0;
  1450. dma_addr_t address;
  1451. struct gpi_tre *tre;
  1452. unsigned int i;
  1453. /* first create config tre if applicable */
  1454. if (direction == DMA_MEM_TO_DEV && spi->set_config) {
  1455. tre = &desc->tre[tre_idx];
  1456. tre_idx++;
  1457. tre->dword[0] = u32_encode_bits(spi->word_len, TRE_SPI_C0_WORD_SZ);
  1458. tre->dword[0] |= u32_encode_bits(spi->loopback_en, TRE_SPI_C0_LOOPBACK);
  1459. tre->dword[0] |= u32_encode_bits(spi->clock_pol_high, TRE_SPI_C0_CPOL);
  1460. tre->dword[0] |= u32_encode_bits(spi->data_pol_high, TRE_SPI_C0_CPHA);
  1461. tre->dword[0] |= u32_encode_bits(spi->pack_en, TRE_SPI_C0_TX_PACK);
  1462. tre->dword[0] |= u32_encode_bits(spi->pack_en, TRE_SPI_C0_RX_PACK);
  1463. tre->dword[1] = 0;
  1464. tre->dword[2] = u32_encode_bits(spi->clk_div, TRE_C0_CLK_DIV);
  1465. tre->dword[2] |= u32_encode_bits(spi->clk_src, TRE_C0_CLK_SRC);
  1466. tre->dword[3] = u32_encode_bits(TRE_TYPE_CONFIG0, TRE_FLAGS_TYPE);
  1467. tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN);
  1468. }
  1469. /* create the GO tre for Tx */
  1470. if (direction == DMA_MEM_TO_DEV) {
  1471. tre = &desc->tre[tre_idx];
  1472. tre_idx++;
  1473. tre->dword[0] = u32_encode_bits(spi->fragmentation, TRE_SPI_GO_FRAG);
  1474. tre->dword[0] |= u32_encode_bits(spi->cs, TRE_SPI_GO_CS);
  1475. tre->dword[0] |= u32_encode_bits(spi->cmd, TRE_SPI_GO_CMD);
  1476. tre->dword[1] = 0;
  1477. tre->dword[2] = u32_encode_bits(spi->rx_len, TRE_RX_LEN);
  1478. tre->dword[3] = u32_encode_bits(TRE_TYPE_GO, TRE_FLAGS_TYPE);
  1479. if (spi->cmd == SPI_RX) {
  1480. tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_IEOB);
  1481. tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_LINK);
  1482. } else if (spi->cmd == SPI_TX) {
  1483. tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN);
  1484. } else { /* SPI_DUPLEX */
  1485. tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN);
  1486. tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_LINK);
  1487. }
  1488. }
  1489. /* create the dma tre */
  1490. tre = &desc->tre[tre_idx];
  1491. tre_idx++;
  1492. address = sg_dma_address(sgl);
  1493. tre->dword[0] = lower_32_bits(address);
  1494. tre->dword[1] = upper_32_bits(address);
  1495. tre->dword[2] = u32_encode_bits(sg_dma_len(sgl), TRE_DMA_LEN);
  1496. tre->dword[3] = u32_encode_bits(TRE_TYPE_DMA, TRE_FLAGS_TYPE);
  1497. if (direction == DMA_MEM_TO_DEV)
  1498. tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_IEOT);
  1499. for (i = 0; i < tre_idx; i++)
  1500. dev_dbg(dev, "TRE:%d %x:%x:%x:%x\n", i, desc->tre[i].dword[0],
  1501. desc->tre[i].dword[1], desc->tre[i].dword[2], desc->tre[i].dword[3]);
  1502. return tre_idx;
  1503. }
  1504. /* copy tre into transfer ring */
  1505. static struct dma_async_tx_descriptor *
  1506. gpi_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
  1507. unsigned int sg_len, enum dma_transfer_direction direction,
  1508. unsigned long flags, void *context)
  1509. {
  1510. struct gchan *gchan = to_gchan(chan);
  1511. struct gpii *gpii = gchan->gpii;
  1512. struct device *dev = gpii->gpi_dev->dev;
  1513. struct gpi_ring *ch_ring = &gchan->ch_ring;
  1514. struct gpi_desc *gpi_desc;
  1515. u32 nr, nr_tre = 0;
  1516. u8 set_config;
  1517. int i;
  1518. gpii->ieob_set = false;
  1519. if (!is_slave_direction(direction)) {
  1520. dev_err(gpii->gpi_dev->dev, "invalid dma direction: %d\n", direction);
  1521. return NULL;
  1522. }
  1523. if (sg_len > 1) {
  1524. dev_err(dev, "Multi sg sent, we support only one atm: %d\n", sg_len);
  1525. return NULL;
  1526. }
  1527. nr_tre = 3;
  1528. set_config = *(u32 *)gchan->config;
  1529. if (!set_config)
  1530. nr_tre = 2;
  1531. if (direction == DMA_DEV_TO_MEM) /* rx */
  1532. nr_tre = 1;
  1533. /* calculate # of elements required & available */
  1534. nr = gpi_ring_num_elements_avail(ch_ring);
  1535. if (nr < nr_tre) {
  1536. dev_err(dev, "not enough space in ring, avail:%u required:%u\n", nr, nr_tre);
  1537. return NULL;
  1538. }
  1539. gpi_desc = kzalloc(sizeof(*gpi_desc), GFP_NOWAIT);
  1540. if (!gpi_desc)
  1541. return NULL;
  1542. /* create TREs for xfer */
  1543. if (gchan->protocol == QCOM_GPI_SPI) {
  1544. i = gpi_create_spi_tre(gchan, gpi_desc, sgl, direction);
  1545. } else if (gchan->protocol == QCOM_GPI_I2C) {
  1546. i = gpi_create_i2c_tre(gchan, gpi_desc, sgl, direction);
  1547. } else {
  1548. dev_err(dev, "invalid peripheral: %d\n", gchan->protocol);
  1549. kfree(gpi_desc);
  1550. return NULL;
  1551. }
  1552. /* set up the descriptor */
  1553. gpi_desc->gchan = gchan;
  1554. gpi_desc->len = sg_dma_len(sgl);
  1555. gpi_desc->num_tre = i;
  1556. return vchan_tx_prep(&gchan->vc, &gpi_desc->vd, flags);
  1557. }
  1558. /* rings transfer ring db to being transfer */
  1559. static void gpi_issue_pending(struct dma_chan *chan)
  1560. {
  1561. struct gchan *gchan = to_gchan(chan);
  1562. struct gpii *gpii = gchan->gpii;
  1563. unsigned long flags, pm_lock_flags;
  1564. struct virt_dma_desc *vd = NULL;
  1565. struct gpi_desc *gpi_desc;
  1566. struct gpi_ring *ch_ring = &gchan->ch_ring;
  1567. void *tre, *wp = NULL;
  1568. int i;
  1569. read_lock_irqsave(&gpii->pm_lock, pm_lock_flags);
  1570. /* move all submitted discriptors to issued list */
  1571. spin_lock_irqsave(&gchan->vc.lock, flags);
  1572. if (vchan_issue_pending(&gchan->vc))
  1573. vd = list_last_entry(&gchan->vc.desc_issued,
  1574. struct virt_dma_desc, node);
  1575. spin_unlock_irqrestore(&gchan->vc.lock, flags);
  1576. /* nothing to do list is empty */
  1577. if (!vd) {
  1578. read_unlock_irqrestore(&gpii->pm_lock, pm_lock_flags);
  1579. return;
  1580. }
  1581. gpi_desc = to_gpi_desc(vd);
  1582. for (i = 0; i < gpi_desc->num_tre; i++) {
  1583. tre = &gpi_desc->tre[i];
  1584. gpi_queue_xfer(gpii, gchan, tre, &wp);
  1585. }
  1586. gpi_desc->db = ch_ring->wp;
  1587. gpi_write_ch_db(gchan, &gchan->ch_ring, gpi_desc->db);
  1588. read_unlock_irqrestore(&gpii->pm_lock, pm_lock_flags);
  1589. }
  1590. static int gpi_ch_init(struct gchan *gchan)
  1591. {
  1592. struct gpii *gpii = gchan->gpii;
  1593. const int ev_factor = gpii->gpi_dev->ev_factor;
  1594. u32 elements;
  1595. int i = 0, ret = 0;
  1596. gchan->pm_state = CONFIG_STATE;
  1597. /* check if both channels are configured before continue */
  1598. for (i = 0; i < MAX_CHANNELS_PER_GPII; i++)
  1599. if (gpii->gchan[i].pm_state != CONFIG_STATE)
  1600. goto exit_gpi_init;
  1601. /* protocol must be same for both channels */
  1602. if (gpii->gchan[0].protocol != gpii->gchan[1].protocol) {
  1603. dev_err(gpii->gpi_dev->dev, "protocol did not match protocol %u != %u\n",
  1604. gpii->gchan[0].protocol, gpii->gchan[1].protocol);
  1605. ret = -EINVAL;
  1606. goto exit_gpi_init;
  1607. }
  1608. /* allocate memory for event ring */
  1609. elements = CHAN_TRES << ev_factor;
  1610. ret = gpi_alloc_ring(&gpii->ev_ring, elements,
  1611. sizeof(union gpi_event), gpii);
  1612. if (ret)
  1613. goto exit_gpi_init;
  1614. /* configure interrupts */
  1615. write_lock_irq(&gpii->pm_lock);
  1616. gpii->pm_state = PREPARE_HARDWARE;
  1617. write_unlock_irq(&gpii->pm_lock);
  1618. ret = gpi_config_interrupts(gpii, DEFAULT_IRQ_SETTINGS, 0);
  1619. if (ret) {
  1620. dev_err(gpii->gpi_dev->dev, "error config. interrupts, ret:%d\n", ret);
  1621. goto error_config_int;
  1622. }
  1623. /* allocate event rings */
  1624. ret = gpi_alloc_ev_chan(gpii);
  1625. if (ret) {
  1626. dev_err(gpii->gpi_dev->dev, "error alloc_ev_chan:%d\n", ret);
  1627. goto error_alloc_ev_ring;
  1628. }
  1629. /* Allocate all channels */
  1630. for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) {
  1631. ret = gpi_alloc_chan(&gpii->gchan[i], true);
  1632. if (ret) {
  1633. dev_err(gpii->gpi_dev->dev, "Error allocating chan:%d\n", ret);
  1634. goto error_alloc_chan;
  1635. }
  1636. }
  1637. /* start channels */
  1638. for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) {
  1639. ret = gpi_start_chan(&gpii->gchan[i]);
  1640. if (ret) {
  1641. dev_err(gpii->gpi_dev->dev, "Error start chan:%d\n", ret);
  1642. goto error_start_chan;
  1643. }
  1644. }
  1645. return ret;
  1646. error_start_chan:
  1647. for (i = i - 1; i >= 0; i--) {
  1648. gpi_stop_chan(&gpii->gchan[i]);
  1649. gpi_send_cmd(gpii, gchan, GPI_CH_CMD_RESET);
  1650. }
  1651. i = 2;
  1652. error_alloc_chan:
  1653. for (i = i - 1; i >= 0; i--)
  1654. gpi_reset_chan(gchan, GPI_CH_CMD_DE_ALLOC);
  1655. error_alloc_ev_ring:
  1656. gpi_disable_interrupts(gpii);
  1657. error_config_int:
  1658. gpi_free_ring(&gpii->ev_ring, gpii);
  1659. exit_gpi_init:
  1660. return ret;
  1661. }
  1662. /* release all channel resources */
  1663. static void gpi_free_chan_resources(struct dma_chan *chan)
  1664. {
  1665. struct gchan *gchan = to_gchan(chan);
  1666. struct gpii *gpii = gchan->gpii;
  1667. enum gpi_pm_state cur_state;
  1668. int ret, i;
  1669. mutex_lock(&gpii->ctrl_lock);
  1670. cur_state = gchan->pm_state;
  1671. /* disable ch state so no more TRE processing for this channel */
  1672. write_lock_irq(&gpii->pm_lock);
  1673. gchan->pm_state = PREPARE_TERMINATE;
  1674. write_unlock_irq(&gpii->pm_lock);
  1675. /* attempt to do graceful hardware shutdown */
  1676. if (cur_state == ACTIVE_STATE) {
  1677. gpi_stop_chan(gchan);
  1678. ret = gpi_send_cmd(gpii, gchan, GPI_CH_CMD_RESET);
  1679. if (ret)
  1680. dev_err(gpii->gpi_dev->dev, "error resetting channel:%d\n", ret);
  1681. gpi_reset_chan(gchan, GPI_CH_CMD_DE_ALLOC);
  1682. }
  1683. /* free all allocated memory */
  1684. gpi_free_ring(&gchan->ch_ring, gpii);
  1685. vchan_free_chan_resources(&gchan->vc);
  1686. kfree(gchan->config);
  1687. write_lock_irq(&gpii->pm_lock);
  1688. gchan->pm_state = DISABLE_STATE;
  1689. write_unlock_irq(&gpii->pm_lock);
  1690. /* if other rings are still active exit */
  1691. for (i = 0; i < MAX_CHANNELS_PER_GPII; i++)
  1692. if (gpii->gchan[i].ch_ring.configured)
  1693. goto exit_free;
  1694. /* deallocate EV Ring */
  1695. cur_state = gpii->pm_state;
  1696. write_lock_irq(&gpii->pm_lock);
  1697. gpii->pm_state = PREPARE_TERMINATE;
  1698. write_unlock_irq(&gpii->pm_lock);
  1699. /* wait for threads to complete out */
  1700. tasklet_kill(&gpii->ev_task);
  1701. /* send command to de allocate event ring */
  1702. if (cur_state == ACTIVE_STATE)
  1703. gpi_send_cmd(gpii, NULL, GPI_EV_CMD_DEALLOC);
  1704. gpi_free_ring(&gpii->ev_ring, gpii);
  1705. /* disable interrupts */
  1706. if (cur_state == ACTIVE_STATE)
  1707. gpi_disable_interrupts(gpii);
  1708. /* set final state to disable */
  1709. write_lock_irq(&gpii->pm_lock);
  1710. gpii->pm_state = DISABLE_STATE;
  1711. write_unlock_irq(&gpii->pm_lock);
  1712. exit_free:
  1713. mutex_unlock(&gpii->ctrl_lock);
  1714. }
  1715. /* allocate channel resources */
  1716. static int gpi_alloc_chan_resources(struct dma_chan *chan)
  1717. {
  1718. struct gchan *gchan = to_gchan(chan);
  1719. struct gpii *gpii = gchan->gpii;
  1720. int ret;
  1721. mutex_lock(&gpii->ctrl_lock);
  1722. /* allocate memory for transfer ring */
  1723. ret = gpi_alloc_ring(&gchan->ch_ring, CHAN_TRES,
  1724. sizeof(struct gpi_tre), gpii);
  1725. if (ret)
  1726. goto xfer_alloc_err;
  1727. ret = gpi_ch_init(gchan);
  1728. mutex_unlock(&gpii->ctrl_lock);
  1729. return ret;
  1730. xfer_alloc_err:
  1731. mutex_unlock(&gpii->ctrl_lock);
  1732. return ret;
  1733. }
  1734. static int gpi_find_avail_gpii(struct gpi_dev *gpi_dev, u32 seid)
  1735. {
  1736. struct gchan *tx_chan, *rx_chan;
  1737. unsigned int gpii;
  1738. /* check if same seid is already configured for another chid */
  1739. for (gpii = 0; gpii < gpi_dev->max_gpii; gpii++) {
  1740. if (!((1 << gpii) & gpi_dev->gpii_mask))
  1741. continue;
  1742. tx_chan = &gpi_dev->gpiis[gpii].gchan[GPI_TX_CHAN];
  1743. rx_chan = &gpi_dev->gpiis[gpii].gchan[GPI_RX_CHAN];
  1744. if (rx_chan->vc.chan.client_count && rx_chan->seid == seid)
  1745. return gpii;
  1746. if (tx_chan->vc.chan.client_count && tx_chan->seid == seid)
  1747. return gpii;
  1748. }
  1749. /* no channels configured with same seid, return next avail gpii */
  1750. for (gpii = 0; gpii < gpi_dev->max_gpii; gpii++) {
  1751. if (!((1 << gpii) & gpi_dev->gpii_mask))
  1752. continue;
  1753. tx_chan = &gpi_dev->gpiis[gpii].gchan[GPI_TX_CHAN];
  1754. rx_chan = &gpi_dev->gpiis[gpii].gchan[GPI_RX_CHAN];
  1755. /* check if gpii is configured */
  1756. if (tx_chan->vc.chan.client_count ||
  1757. rx_chan->vc.chan.client_count)
  1758. continue;
  1759. /* found a free gpii */
  1760. return gpii;
  1761. }
  1762. /* no gpii instance available to use */
  1763. return -EIO;
  1764. }
  1765. /* gpi_of_dma_xlate: open client requested channel */
  1766. static struct dma_chan *gpi_of_dma_xlate(struct of_phandle_args *args,
  1767. struct of_dma *of_dma)
  1768. {
  1769. struct gpi_dev *gpi_dev = (struct gpi_dev *)of_dma->of_dma_data;
  1770. u32 seid, chid;
  1771. int gpii;
  1772. struct gchan *gchan;
  1773. if (args->args_count < 3) {
  1774. dev_err(gpi_dev->dev, "gpii require minimum 2 args, client passed:%d args\n",
  1775. args->args_count);
  1776. return NULL;
  1777. }
  1778. chid = args->args[0];
  1779. if (chid >= MAX_CHANNELS_PER_GPII) {
  1780. dev_err(gpi_dev->dev, "gpii channel:%d not valid\n", chid);
  1781. return NULL;
  1782. }
  1783. seid = args->args[1];
  1784. /* find next available gpii to use */
  1785. gpii = gpi_find_avail_gpii(gpi_dev, seid);
  1786. if (gpii < 0) {
  1787. dev_err(gpi_dev->dev, "no available gpii instances\n");
  1788. return NULL;
  1789. }
  1790. gchan = &gpi_dev->gpiis[gpii].gchan[chid];
  1791. if (gchan->vc.chan.client_count) {
  1792. dev_err(gpi_dev->dev, "gpii:%d chid:%d seid:%d already configured\n",
  1793. gpii, chid, gchan->seid);
  1794. return NULL;
  1795. }
  1796. gchan->seid = seid;
  1797. gchan->protocol = args->args[2];
  1798. return dma_get_slave_channel(&gchan->vc.chan);
  1799. }
  1800. static int gpi_probe(struct platform_device *pdev)
  1801. {
  1802. struct gpi_dev *gpi_dev;
  1803. unsigned int i;
  1804. u32 ee_offset;
  1805. int ret;
  1806. gpi_dev = devm_kzalloc(&pdev->dev, sizeof(*gpi_dev), GFP_KERNEL);
  1807. if (!gpi_dev)
  1808. return -ENOMEM;
  1809. gpi_dev->dev = &pdev->dev;
  1810. gpi_dev->res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1811. gpi_dev->regs = devm_ioremap_resource(gpi_dev->dev, gpi_dev->res);
  1812. if (IS_ERR(gpi_dev->regs))
  1813. return PTR_ERR(gpi_dev->regs);
  1814. gpi_dev->ee_base = gpi_dev->regs;
  1815. ret = of_property_read_u32(gpi_dev->dev->of_node, "dma-channels",
  1816. &gpi_dev->max_gpii);
  1817. if (ret) {
  1818. dev_err(gpi_dev->dev, "missing 'max-no-gpii' DT node\n");
  1819. return ret;
  1820. }
  1821. ret = of_property_read_u32(gpi_dev->dev->of_node, "dma-channel-mask",
  1822. &gpi_dev->gpii_mask);
  1823. if (ret) {
  1824. dev_err(gpi_dev->dev, "missing 'gpii-mask' DT node\n");
  1825. return ret;
  1826. }
  1827. ee_offset = (uintptr_t)device_get_match_data(gpi_dev->dev);
  1828. gpi_dev->ee_base = gpi_dev->ee_base - ee_offset;
  1829. gpi_dev->ev_factor = EV_FACTOR;
  1830. ret = dma_set_mask(gpi_dev->dev, DMA_BIT_MASK(64));
  1831. if (ret) {
  1832. dev_err(gpi_dev->dev, "Error setting dma_mask to 64, ret:%d\n", ret);
  1833. return ret;
  1834. }
  1835. gpi_dev->gpiis = devm_kzalloc(gpi_dev->dev, sizeof(*gpi_dev->gpiis) *
  1836. gpi_dev->max_gpii, GFP_KERNEL);
  1837. if (!gpi_dev->gpiis)
  1838. return -ENOMEM;
  1839. /* setup all the supported gpii */
  1840. INIT_LIST_HEAD(&gpi_dev->dma_device.channels);
  1841. for (i = 0; i < gpi_dev->max_gpii; i++) {
  1842. struct gpii *gpii = &gpi_dev->gpiis[i];
  1843. int chan;
  1844. if (!((1 << i) & gpi_dev->gpii_mask))
  1845. continue;
  1846. /* set up ev cntxt register map */
  1847. gpii->ev_cntxt_base_reg = gpi_dev->ee_base + GPII_n_EV_CH_k_CNTXT_0_OFFS(i, 0);
  1848. gpii->ev_cntxt_db_reg = gpi_dev->ee_base + GPII_n_EV_CH_k_DOORBELL_0_OFFS(i, 0);
  1849. gpii->ev_ring_rp_lsb_reg = gpii->ev_cntxt_base_reg + CNTXT_4_RING_RP_LSB;
  1850. gpii->ev_cmd_reg = gpi_dev->ee_base + GPII_n_EV_CH_CMD_OFFS(i);
  1851. gpii->ieob_clr_reg = gpi_dev->ee_base + GPII_n_CNTXT_SRC_IEOB_IRQ_CLR_OFFS(i);
  1852. /* set up irq */
  1853. ret = platform_get_irq(pdev, i);
  1854. if (ret < 0)
  1855. return ret;
  1856. gpii->irq = ret;
  1857. /* set up channel specific register info */
  1858. for (chan = 0; chan < MAX_CHANNELS_PER_GPII; chan++) {
  1859. struct gchan *gchan = &gpii->gchan[chan];
  1860. /* set up ch cntxt register map */
  1861. gchan->ch_cntxt_base_reg = gpi_dev->ee_base +
  1862. GPII_n_CH_k_CNTXT_0_OFFS(i, chan);
  1863. gchan->ch_cntxt_db_reg = gpi_dev->ee_base +
  1864. GPII_n_CH_k_DOORBELL_0_OFFS(i, chan);
  1865. gchan->ch_cmd_reg = gpi_dev->ee_base + GPII_n_CH_CMD_OFFS(i);
  1866. /* vchan setup */
  1867. vchan_init(&gchan->vc, &gpi_dev->dma_device);
  1868. gchan->vc.desc_free = gpi_desc_free;
  1869. gchan->chid = chan;
  1870. gchan->gpii = gpii;
  1871. gchan->dir = GPII_CHAN_DIR[chan];
  1872. }
  1873. mutex_init(&gpii->ctrl_lock);
  1874. rwlock_init(&gpii->pm_lock);
  1875. tasklet_init(&gpii->ev_task, gpi_ev_tasklet,
  1876. (unsigned long)gpii);
  1877. init_completion(&gpii->cmd_completion);
  1878. gpii->gpii_id = i;
  1879. gpii->regs = gpi_dev->ee_base;
  1880. gpii->gpi_dev = gpi_dev;
  1881. }
  1882. platform_set_drvdata(pdev, gpi_dev);
  1883. /* clear and Set capabilities */
  1884. dma_cap_zero(gpi_dev->dma_device.cap_mask);
  1885. dma_cap_set(DMA_SLAVE, gpi_dev->dma_device.cap_mask);
  1886. /* configure dmaengine apis */
  1887. gpi_dev->dma_device.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
  1888. gpi_dev->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
  1889. gpi_dev->dma_device.src_addr_widths = DMA_SLAVE_BUSWIDTH_8_BYTES;
  1890. gpi_dev->dma_device.dst_addr_widths = DMA_SLAVE_BUSWIDTH_8_BYTES;
  1891. gpi_dev->dma_device.device_alloc_chan_resources = gpi_alloc_chan_resources;
  1892. gpi_dev->dma_device.device_free_chan_resources = gpi_free_chan_resources;
  1893. gpi_dev->dma_device.device_tx_status = dma_cookie_status;
  1894. gpi_dev->dma_device.device_issue_pending = gpi_issue_pending;
  1895. gpi_dev->dma_device.device_prep_slave_sg = gpi_prep_slave_sg;
  1896. gpi_dev->dma_device.device_config = gpi_peripheral_config;
  1897. gpi_dev->dma_device.device_terminate_all = gpi_terminate_all;
  1898. gpi_dev->dma_device.dev = gpi_dev->dev;
  1899. gpi_dev->dma_device.device_pause = gpi_pause;
  1900. gpi_dev->dma_device.device_resume = gpi_resume;
  1901. /* register with dmaengine framework */
  1902. ret = dma_async_device_register(&gpi_dev->dma_device);
  1903. if (ret) {
  1904. dev_err(gpi_dev->dev, "async_device_register failed ret:%d", ret);
  1905. return ret;
  1906. }
  1907. ret = of_dma_controller_register(gpi_dev->dev->of_node,
  1908. gpi_of_dma_xlate, gpi_dev);
  1909. if (ret) {
  1910. dev_err(gpi_dev->dev, "of_dma_controller_reg failed ret:%d", ret);
  1911. return ret;
  1912. }
  1913. return ret;
  1914. }
  1915. static const struct of_device_id gpi_of_match[] = {
  1916. { .compatible = "qcom,sc7280-gpi-dma", .data = (void *)0x10000 },
  1917. { .compatible = "qcom,sdm845-gpi-dma", .data = (void *)0x0 },
  1918. { .compatible = "qcom,sm6350-gpi-dma", .data = (void *)0x10000 },
  1919. { .compatible = "qcom,sm8150-gpi-dma", .data = (void *)0x0 },
  1920. { .compatible = "qcom,sm8250-gpi-dma", .data = (void *)0x0 },
  1921. { .compatible = "qcom,sm8350-gpi-dma", .data = (void *)0x10000 },
  1922. { .compatible = "qcom,sm8450-gpi-dma", .data = (void *)0x10000 },
  1923. { },
  1924. };
  1925. MODULE_DEVICE_TABLE(of, gpi_of_match);
  1926. static struct platform_driver gpi_driver = {
  1927. .probe = gpi_probe,
  1928. .driver = {
  1929. .name = KBUILD_MODNAME,
  1930. .of_match_table = gpi_of_match,
  1931. },
  1932. };
  1933. static int __init gpi_init(void)
  1934. {
  1935. return platform_driver_register(&gpi_driver);
  1936. }
  1937. subsys_initcall(gpi_init)
  1938. MODULE_DESCRIPTION("QCOM GPI DMA engine driver");
  1939. MODULE_LICENSE("GPL v2");