adma.c 124 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629
  1. // SPDX-License-Identifier: GPL-2.0-or-later
  2. /*
  3. * Copyright (C) 2006-2009 DENX Software Engineering.
  4. *
  5. * Author: Yuri Tikhonov <[email protected]>
  6. *
  7. * Further porting to arch/powerpc by
  8. * Anatolij Gustschin <[email protected]>
  9. */
  10. /*
  11. * This driver supports the asynchrounous DMA copy and RAID engines available
  12. * on the AMCC PPC440SPe Processors.
  13. * Based on the Intel Xscale(R) family of I/O Processors (IOP 32x, 33x, 134x)
  14. * ADMA driver written by D.Williams.
  15. */
  16. #include <linux/init.h>
  17. #include <linux/module.h>
  18. #include <linux/async_tx.h>
  19. #include <linux/delay.h>
  20. #include <linux/dma-mapping.h>
  21. #include <linux/spinlock.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/slab.h>
  24. #include <linux/uaccess.h>
  25. #include <linux/proc_fs.h>
  26. #include <linux/of.h>
  27. #include <linux/of_address.h>
  28. #include <linux/of_irq.h>
  29. #include <linux/of_platform.h>
  30. #include <asm/dcr.h>
  31. #include <asm/dcr-regs.h>
  32. #include "adma.h"
  33. #include "../dmaengine.h"
  34. enum ppc_adma_init_code {
  35. PPC_ADMA_INIT_OK = 0,
  36. PPC_ADMA_INIT_MEMRES,
  37. PPC_ADMA_INIT_MEMREG,
  38. PPC_ADMA_INIT_ALLOC,
  39. PPC_ADMA_INIT_COHERENT,
  40. PPC_ADMA_INIT_CHANNEL,
  41. PPC_ADMA_INIT_IRQ1,
  42. PPC_ADMA_INIT_IRQ2,
  43. PPC_ADMA_INIT_REGISTER
  44. };
  45. static char *ppc_adma_errors[] = {
  46. [PPC_ADMA_INIT_OK] = "ok",
  47. [PPC_ADMA_INIT_MEMRES] = "failed to get memory resource",
  48. [PPC_ADMA_INIT_MEMREG] = "failed to request memory region",
  49. [PPC_ADMA_INIT_ALLOC] = "failed to allocate memory for adev "
  50. "structure",
  51. [PPC_ADMA_INIT_COHERENT] = "failed to allocate coherent memory for "
  52. "hardware descriptors",
  53. [PPC_ADMA_INIT_CHANNEL] = "failed to allocate memory for channel",
  54. [PPC_ADMA_INIT_IRQ1] = "failed to request first irq",
  55. [PPC_ADMA_INIT_IRQ2] = "failed to request second irq",
  56. [PPC_ADMA_INIT_REGISTER] = "failed to register dma async device",
  57. };
  58. static enum ppc_adma_init_code
  59. ppc440spe_adma_devices[PPC440SPE_ADMA_ENGINES_NUM];
  60. struct ppc_dma_chan_ref {
  61. struct dma_chan *chan;
  62. struct list_head node;
  63. };
  64. /* The list of channels exported by ppc440spe ADMA */
  65. static struct list_head
  66. ppc440spe_adma_chan_list = LIST_HEAD_INIT(ppc440spe_adma_chan_list);
  67. /* This flag is set when want to refetch the xor chain in the interrupt
  68. * handler
  69. */
  70. static u32 do_xor_refetch;
  71. /* Pointer to DMA0, DMA1 CP/CS FIFO */
  72. static void *ppc440spe_dma_fifo_buf;
  73. /* Pointers to last submitted to DMA0, DMA1 CDBs */
  74. static struct ppc440spe_adma_desc_slot *chan_last_sub[3];
  75. static struct ppc440spe_adma_desc_slot *chan_first_cdb[3];
  76. /* Pointer to last linked and submitted xor CB */
  77. static struct ppc440spe_adma_desc_slot *xor_last_linked;
  78. static struct ppc440spe_adma_desc_slot *xor_last_submit;
  79. /* This array is used in data-check operations for storing a pattern */
  80. static char ppc440spe_qword[16];
  81. static atomic_t ppc440spe_adma_err_irq_ref;
  82. static dcr_host_t ppc440spe_mq_dcr_host;
  83. static unsigned int ppc440spe_mq_dcr_len;
  84. /* Since RXOR operations use the common register (MQ0_CF2H) for setting-up
  85. * the block size in transactions, then we do not allow to activate more than
  86. * only one RXOR transactions simultaneously. So use this var to store
  87. * the information about is RXOR currently active (PPC440SPE_RXOR_RUN bit is
  88. * set) or not (PPC440SPE_RXOR_RUN is clear).
  89. */
  90. static unsigned long ppc440spe_rxor_state;
  91. /* These are used in enable & check routines
  92. */
  93. static u32 ppc440spe_r6_enabled;
  94. static struct ppc440spe_adma_chan *ppc440spe_r6_tchan;
  95. static struct completion ppc440spe_r6_test_comp;
  96. static int ppc440spe_adma_dma2rxor_prep_src(
  97. struct ppc440spe_adma_desc_slot *desc,
  98. struct ppc440spe_rxor *cursor, int index,
  99. int src_cnt, u32 addr);
  100. static void ppc440spe_adma_dma2rxor_set_src(
  101. struct ppc440spe_adma_desc_slot *desc,
  102. int index, dma_addr_t addr);
  103. static void ppc440spe_adma_dma2rxor_set_mult(
  104. struct ppc440spe_adma_desc_slot *desc,
  105. int index, u8 mult);
  106. #ifdef ADMA_LL_DEBUG
  107. #define ADMA_LL_DBG(x) ({ if (1) x; 0; })
  108. #else
  109. #define ADMA_LL_DBG(x) ({ if (0) x; 0; })
  110. #endif
  111. static void print_cb(struct ppc440spe_adma_chan *chan, void *block)
  112. {
  113. struct dma_cdb *cdb;
  114. struct xor_cb *cb;
  115. int i;
  116. switch (chan->device->id) {
  117. case 0:
  118. case 1:
  119. cdb = block;
  120. pr_debug("CDB at %p [%d]:\n"
  121. "\t attr 0x%02x opc 0x%02x cnt 0x%08x\n"
  122. "\t sg1u 0x%08x sg1l 0x%08x\n"
  123. "\t sg2u 0x%08x sg2l 0x%08x\n"
  124. "\t sg3u 0x%08x sg3l 0x%08x\n",
  125. cdb, chan->device->id,
  126. cdb->attr, cdb->opc, le32_to_cpu(cdb->cnt),
  127. le32_to_cpu(cdb->sg1u), le32_to_cpu(cdb->sg1l),
  128. le32_to_cpu(cdb->sg2u), le32_to_cpu(cdb->sg2l),
  129. le32_to_cpu(cdb->sg3u), le32_to_cpu(cdb->sg3l)
  130. );
  131. break;
  132. case 2:
  133. cb = block;
  134. pr_debug("CB at %p [%d]:\n"
  135. "\t cbc 0x%08x cbbc 0x%08x cbs 0x%08x\n"
  136. "\t cbtah 0x%08x cbtal 0x%08x\n"
  137. "\t cblah 0x%08x cblal 0x%08x\n",
  138. cb, chan->device->id,
  139. cb->cbc, cb->cbbc, cb->cbs,
  140. cb->cbtah, cb->cbtal,
  141. cb->cblah, cb->cblal);
  142. for (i = 0; i < 16; i++) {
  143. if (i && !cb->ops[i].h && !cb->ops[i].l)
  144. continue;
  145. pr_debug("\t ops[%2d]: h 0x%08x l 0x%08x\n",
  146. i, cb->ops[i].h, cb->ops[i].l);
  147. }
  148. break;
  149. }
  150. }
  151. static void print_cb_list(struct ppc440spe_adma_chan *chan,
  152. struct ppc440spe_adma_desc_slot *iter)
  153. {
  154. for (; iter; iter = iter->hw_next)
  155. print_cb(chan, iter->hw_desc);
  156. }
  157. static void prep_dma_xor_dbg(int id, dma_addr_t dst, dma_addr_t *src,
  158. unsigned int src_cnt)
  159. {
  160. int i;
  161. pr_debug("\n%s(%d):\nsrc: ", __func__, id);
  162. for (i = 0; i < src_cnt; i++)
  163. pr_debug("\t0x%016llx ", src[i]);
  164. pr_debug("dst:\n\t0x%016llx\n", dst);
  165. }
  166. static void prep_dma_pq_dbg(int id, dma_addr_t *dst, dma_addr_t *src,
  167. unsigned int src_cnt)
  168. {
  169. int i;
  170. pr_debug("\n%s(%d):\nsrc: ", __func__, id);
  171. for (i = 0; i < src_cnt; i++)
  172. pr_debug("\t0x%016llx ", src[i]);
  173. pr_debug("dst: ");
  174. for (i = 0; i < 2; i++)
  175. pr_debug("\t0x%016llx ", dst[i]);
  176. }
  177. static void prep_dma_pqzero_sum_dbg(int id, dma_addr_t *src,
  178. unsigned int src_cnt,
  179. const unsigned char *scf)
  180. {
  181. int i;
  182. pr_debug("\n%s(%d):\nsrc(coef): ", __func__, id);
  183. if (scf) {
  184. for (i = 0; i < src_cnt; i++)
  185. pr_debug("\t0x%016llx(0x%02x) ", src[i], scf[i]);
  186. } else {
  187. for (i = 0; i < src_cnt; i++)
  188. pr_debug("\t0x%016llx(no) ", src[i]);
  189. }
  190. pr_debug("dst: ");
  191. for (i = 0; i < 2; i++)
  192. pr_debug("\t0x%016llx ", src[src_cnt + i]);
  193. }
  194. /******************************************************************************
  195. * Command (Descriptor) Blocks low-level routines
  196. ******************************************************************************/
  197. /**
  198. * ppc440spe_desc_init_interrupt - initialize the descriptor for INTERRUPT
  199. * pseudo operation
  200. */
  201. static void ppc440spe_desc_init_interrupt(struct ppc440spe_adma_desc_slot *desc,
  202. struct ppc440spe_adma_chan *chan)
  203. {
  204. struct xor_cb *p;
  205. switch (chan->device->id) {
  206. case PPC440SPE_XOR_ID:
  207. p = desc->hw_desc;
  208. memset(desc->hw_desc, 0, sizeof(struct xor_cb));
  209. /* NOP with Command Block Complete Enable */
  210. p->cbc = XOR_CBCR_CBCE_BIT;
  211. break;
  212. case PPC440SPE_DMA0_ID:
  213. case PPC440SPE_DMA1_ID:
  214. memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
  215. /* NOP with interrupt */
  216. set_bit(PPC440SPE_DESC_INT, &desc->flags);
  217. break;
  218. default:
  219. printk(KERN_ERR "Unsupported id %d in %s\n", chan->device->id,
  220. __func__);
  221. break;
  222. }
  223. }
  224. /**
  225. * ppc440spe_desc_init_null_xor - initialize the descriptor for NULL XOR
  226. * pseudo operation
  227. */
  228. static void ppc440spe_desc_init_null_xor(struct ppc440spe_adma_desc_slot *desc)
  229. {
  230. memset(desc->hw_desc, 0, sizeof(struct xor_cb));
  231. desc->hw_next = NULL;
  232. desc->src_cnt = 0;
  233. desc->dst_cnt = 1;
  234. }
  235. /**
  236. * ppc440spe_desc_init_xor - initialize the descriptor for XOR operation
  237. */
  238. static void ppc440spe_desc_init_xor(struct ppc440spe_adma_desc_slot *desc,
  239. int src_cnt, unsigned long flags)
  240. {
  241. struct xor_cb *hw_desc = desc->hw_desc;
  242. memset(desc->hw_desc, 0, sizeof(struct xor_cb));
  243. desc->hw_next = NULL;
  244. desc->src_cnt = src_cnt;
  245. desc->dst_cnt = 1;
  246. hw_desc->cbc = XOR_CBCR_TGT_BIT | src_cnt;
  247. if (flags & DMA_PREP_INTERRUPT)
  248. /* Enable interrupt on completion */
  249. hw_desc->cbc |= XOR_CBCR_CBCE_BIT;
  250. }
  251. /**
  252. * ppc440spe_desc_init_dma2pq - initialize the descriptor for PQ
  253. * operation in DMA2 controller
  254. */
  255. static void ppc440spe_desc_init_dma2pq(struct ppc440spe_adma_desc_slot *desc,
  256. int dst_cnt, int src_cnt, unsigned long flags)
  257. {
  258. struct xor_cb *hw_desc = desc->hw_desc;
  259. memset(desc->hw_desc, 0, sizeof(struct xor_cb));
  260. desc->hw_next = NULL;
  261. desc->src_cnt = src_cnt;
  262. desc->dst_cnt = dst_cnt;
  263. memset(desc->reverse_flags, 0, sizeof(desc->reverse_flags));
  264. desc->descs_per_op = 0;
  265. hw_desc->cbc = XOR_CBCR_TGT_BIT;
  266. if (flags & DMA_PREP_INTERRUPT)
  267. /* Enable interrupt on completion */
  268. hw_desc->cbc |= XOR_CBCR_CBCE_BIT;
  269. }
  270. #define DMA_CTRL_FLAGS_LAST DMA_PREP_FENCE
  271. #define DMA_PREP_ZERO_P (DMA_CTRL_FLAGS_LAST << 1)
  272. #define DMA_PREP_ZERO_Q (DMA_PREP_ZERO_P << 1)
  273. /**
  274. * ppc440spe_desc_init_dma01pq - initialize the descriptors for PQ operation
  275. * with DMA0/1
  276. */
  277. static void ppc440spe_desc_init_dma01pq(struct ppc440spe_adma_desc_slot *desc,
  278. int dst_cnt, int src_cnt, unsigned long flags,
  279. unsigned long op)
  280. {
  281. struct dma_cdb *hw_desc;
  282. struct ppc440spe_adma_desc_slot *iter;
  283. u8 dopc;
  284. /* Common initialization of a PQ descriptors chain */
  285. set_bits(op, &desc->flags);
  286. desc->src_cnt = src_cnt;
  287. desc->dst_cnt = dst_cnt;
  288. /* WXOR MULTICAST if both P and Q are being computed
  289. * MV_SG1_SG2 if Q only
  290. */
  291. dopc = (desc->dst_cnt == DMA_DEST_MAX_NUM) ?
  292. DMA_CDB_OPC_MULTICAST : DMA_CDB_OPC_MV_SG1_SG2;
  293. list_for_each_entry(iter, &desc->group_list, chain_node) {
  294. hw_desc = iter->hw_desc;
  295. memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
  296. if (likely(!list_is_last(&iter->chain_node,
  297. &desc->group_list))) {
  298. /* set 'next' pointer */
  299. iter->hw_next = list_entry(iter->chain_node.next,
  300. struct ppc440spe_adma_desc_slot, chain_node);
  301. clear_bit(PPC440SPE_DESC_INT, &iter->flags);
  302. } else {
  303. /* this is the last descriptor.
  304. * this slot will be pasted from ADMA level
  305. * each time it wants to configure parameters
  306. * of the transaction (src, dst, ...)
  307. */
  308. iter->hw_next = NULL;
  309. if (flags & DMA_PREP_INTERRUPT)
  310. set_bit(PPC440SPE_DESC_INT, &iter->flags);
  311. else
  312. clear_bit(PPC440SPE_DESC_INT, &iter->flags);
  313. }
  314. }
  315. /* Set OPS depending on WXOR/RXOR type of operation */
  316. if (!test_bit(PPC440SPE_DESC_RXOR, &desc->flags)) {
  317. /* This is a WXOR only chain:
  318. * - first descriptors are for zeroing destinations
  319. * if PPC440SPE_ZERO_P/Q set;
  320. * - descriptors remained are for GF-XOR operations.
  321. */
  322. iter = list_first_entry(&desc->group_list,
  323. struct ppc440spe_adma_desc_slot,
  324. chain_node);
  325. if (test_bit(PPC440SPE_ZERO_P, &desc->flags)) {
  326. hw_desc = iter->hw_desc;
  327. hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
  328. iter = list_first_entry(&iter->chain_node,
  329. struct ppc440spe_adma_desc_slot,
  330. chain_node);
  331. }
  332. if (test_bit(PPC440SPE_ZERO_Q, &desc->flags)) {
  333. hw_desc = iter->hw_desc;
  334. hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
  335. iter = list_first_entry(&iter->chain_node,
  336. struct ppc440spe_adma_desc_slot,
  337. chain_node);
  338. }
  339. list_for_each_entry_from(iter, &desc->group_list, chain_node) {
  340. hw_desc = iter->hw_desc;
  341. hw_desc->opc = dopc;
  342. }
  343. } else {
  344. /* This is either RXOR-only or mixed RXOR/WXOR */
  345. /* The first 1 or 2 slots in chain are always RXOR,
  346. * if need to calculate P & Q, then there are two
  347. * RXOR slots; if only P or only Q, then there is one
  348. */
  349. iter = list_first_entry(&desc->group_list,
  350. struct ppc440spe_adma_desc_slot,
  351. chain_node);
  352. hw_desc = iter->hw_desc;
  353. hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
  354. if (desc->dst_cnt == DMA_DEST_MAX_NUM) {
  355. iter = list_first_entry(&iter->chain_node,
  356. struct ppc440spe_adma_desc_slot,
  357. chain_node);
  358. hw_desc = iter->hw_desc;
  359. hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
  360. }
  361. /* The remaining descs (if any) are WXORs */
  362. if (test_bit(PPC440SPE_DESC_WXOR, &desc->flags)) {
  363. iter = list_first_entry(&iter->chain_node,
  364. struct ppc440spe_adma_desc_slot,
  365. chain_node);
  366. list_for_each_entry_from(iter, &desc->group_list,
  367. chain_node) {
  368. hw_desc = iter->hw_desc;
  369. hw_desc->opc = dopc;
  370. }
  371. }
  372. }
  373. }
  374. /**
  375. * ppc440spe_desc_init_dma01pqzero_sum - initialize the descriptor
  376. * for PQ_ZERO_SUM operation
  377. */
  378. static void ppc440spe_desc_init_dma01pqzero_sum(
  379. struct ppc440spe_adma_desc_slot *desc,
  380. int dst_cnt, int src_cnt)
  381. {
  382. struct dma_cdb *hw_desc;
  383. struct ppc440spe_adma_desc_slot *iter;
  384. int i = 0;
  385. u8 dopc = (dst_cnt == 2) ? DMA_CDB_OPC_MULTICAST :
  386. DMA_CDB_OPC_MV_SG1_SG2;
  387. /*
  388. * Initialize starting from 2nd or 3rd descriptor dependent
  389. * on dst_cnt. First one or two slots are for cloning P
  390. * and/or Q to chan->pdest and/or chan->qdest as we have
  391. * to preserve original P/Q.
  392. */
  393. iter = list_first_entry(&desc->group_list,
  394. struct ppc440spe_adma_desc_slot, chain_node);
  395. iter = list_entry(iter->chain_node.next,
  396. struct ppc440spe_adma_desc_slot, chain_node);
  397. if (dst_cnt > 1) {
  398. iter = list_entry(iter->chain_node.next,
  399. struct ppc440spe_adma_desc_slot, chain_node);
  400. }
  401. /* initialize each source descriptor in chain */
  402. list_for_each_entry_from(iter, &desc->group_list, chain_node) {
  403. hw_desc = iter->hw_desc;
  404. memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
  405. iter->src_cnt = 0;
  406. iter->dst_cnt = 0;
  407. /* This is a ZERO_SUM operation:
  408. * - <src_cnt> descriptors starting from 2nd or 3rd
  409. * descriptor are for GF-XOR operations;
  410. * - remaining <dst_cnt> descriptors are for checking the result
  411. */
  412. if (i++ < src_cnt)
  413. /* MV_SG1_SG2 if only Q is being verified
  414. * MULTICAST if both P and Q are being verified
  415. */
  416. hw_desc->opc = dopc;
  417. else
  418. /* DMA_CDB_OPC_DCHECK128 operation */
  419. hw_desc->opc = DMA_CDB_OPC_DCHECK128;
  420. if (likely(!list_is_last(&iter->chain_node,
  421. &desc->group_list))) {
  422. /* set 'next' pointer */
  423. iter->hw_next = list_entry(iter->chain_node.next,
  424. struct ppc440spe_adma_desc_slot,
  425. chain_node);
  426. } else {
  427. /* this is the last descriptor.
  428. * this slot will be pasted from ADMA level
  429. * each time it wants to configure parameters
  430. * of the transaction (src, dst, ...)
  431. */
  432. iter->hw_next = NULL;
  433. /* always enable interrupt generation since we get
  434. * the status of pqzero from the handler
  435. */
  436. set_bit(PPC440SPE_DESC_INT, &iter->flags);
  437. }
  438. }
  439. desc->src_cnt = src_cnt;
  440. desc->dst_cnt = dst_cnt;
  441. }
  442. /**
  443. * ppc440spe_desc_init_memcpy - initialize the descriptor for MEMCPY operation
  444. */
  445. static void ppc440spe_desc_init_memcpy(struct ppc440spe_adma_desc_slot *desc,
  446. unsigned long flags)
  447. {
  448. struct dma_cdb *hw_desc = desc->hw_desc;
  449. memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
  450. desc->hw_next = NULL;
  451. desc->src_cnt = 1;
  452. desc->dst_cnt = 1;
  453. if (flags & DMA_PREP_INTERRUPT)
  454. set_bit(PPC440SPE_DESC_INT, &desc->flags);
  455. else
  456. clear_bit(PPC440SPE_DESC_INT, &desc->flags);
  457. hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
  458. }
  459. /**
  460. * ppc440spe_desc_set_src_addr - set source address into the descriptor
  461. */
  462. static void ppc440spe_desc_set_src_addr(struct ppc440spe_adma_desc_slot *desc,
  463. struct ppc440spe_adma_chan *chan,
  464. int src_idx, dma_addr_t addrh,
  465. dma_addr_t addrl)
  466. {
  467. struct dma_cdb *dma_hw_desc;
  468. struct xor_cb *xor_hw_desc;
  469. phys_addr_t addr64, tmplow, tmphi;
  470. switch (chan->device->id) {
  471. case PPC440SPE_DMA0_ID:
  472. case PPC440SPE_DMA1_ID:
  473. if (!addrh) {
  474. addr64 = addrl;
  475. tmphi = (addr64 >> 32);
  476. tmplow = (addr64 & 0xFFFFFFFF);
  477. } else {
  478. tmphi = addrh;
  479. tmplow = addrl;
  480. }
  481. dma_hw_desc = desc->hw_desc;
  482. dma_hw_desc->sg1l = cpu_to_le32((u32)tmplow);
  483. dma_hw_desc->sg1u |= cpu_to_le32((u32)tmphi);
  484. break;
  485. case PPC440SPE_XOR_ID:
  486. xor_hw_desc = desc->hw_desc;
  487. xor_hw_desc->ops[src_idx].l = addrl;
  488. xor_hw_desc->ops[src_idx].h |= addrh;
  489. break;
  490. }
  491. }
  492. /**
  493. * ppc440spe_desc_set_src_mult - set source address mult into the descriptor
  494. */
  495. static void ppc440spe_desc_set_src_mult(struct ppc440spe_adma_desc_slot *desc,
  496. struct ppc440spe_adma_chan *chan, u32 mult_index,
  497. int sg_index, unsigned char mult_value)
  498. {
  499. struct dma_cdb *dma_hw_desc;
  500. u32 *psgu;
  501. switch (chan->device->id) {
  502. case PPC440SPE_DMA0_ID:
  503. case PPC440SPE_DMA1_ID:
  504. dma_hw_desc = desc->hw_desc;
  505. switch (sg_index) {
  506. /* for RXOR operations set multiplier
  507. * into source cued address
  508. */
  509. case DMA_CDB_SG_SRC:
  510. psgu = &dma_hw_desc->sg1u;
  511. break;
  512. /* for WXOR operations set multiplier
  513. * into destination cued address(es)
  514. */
  515. case DMA_CDB_SG_DST1:
  516. psgu = &dma_hw_desc->sg2u;
  517. break;
  518. case DMA_CDB_SG_DST2:
  519. psgu = &dma_hw_desc->sg3u;
  520. break;
  521. default:
  522. BUG();
  523. }
  524. *psgu |= cpu_to_le32(mult_value << mult_index);
  525. break;
  526. case PPC440SPE_XOR_ID:
  527. break;
  528. default:
  529. BUG();
  530. }
  531. }
  532. /**
  533. * ppc440spe_desc_set_dest_addr - set destination address into the descriptor
  534. */
  535. static void ppc440spe_desc_set_dest_addr(struct ppc440spe_adma_desc_slot *desc,
  536. struct ppc440spe_adma_chan *chan,
  537. dma_addr_t addrh, dma_addr_t addrl,
  538. u32 dst_idx)
  539. {
  540. struct dma_cdb *dma_hw_desc;
  541. struct xor_cb *xor_hw_desc;
  542. phys_addr_t addr64, tmphi, tmplow;
  543. u32 *psgu, *psgl;
  544. switch (chan->device->id) {
  545. case PPC440SPE_DMA0_ID:
  546. case PPC440SPE_DMA1_ID:
  547. if (!addrh) {
  548. addr64 = addrl;
  549. tmphi = (addr64 >> 32);
  550. tmplow = (addr64 & 0xFFFFFFFF);
  551. } else {
  552. tmphi = addrh;
  553. tmplow = addrl;
  554. }
  555. dma_hw_desc = desc->hw_desc;
  556. psgu = dst_idx ? &dma_hw_desc->sg3u : &dma_hw_desc->sg2u;
  557. psgl = dst_idx ? &dma_hw_desc->sg3l : &dma_hw_desc->sg2l;
  558. *psgl = cpu_to_le32((u32)tmplow);
  559. *psgu |= cpu_to_le32((u32)tmphi);
  560. break;
  561. case PPC440SPE_XOR_ID:
  562. xor_hw_desc = desc->hw_desc;
  563. xor_hw_desc->cbtal = addrl;
  564. xor_hw_desc->cbtah |= addrh;
  565. break;
  566. }
  567. }
  568. /**
  569. * ppc440spe_desc_set_byte_count - set number of data bytes involved
  570. * into the operation
  571. */
  572. static void ppc440spe_desc_set_byte_count(struct ppc440spe_adma_desc_slot *desc,
  573. struct ppc440spe_adma_chan *chan,
  574. u32 byte_count)
  575. {
  576. struct dma_cdb *dma_hw_desc;
  577. struct xor_cb *xor_hw_desc;
  578. switch (chan->device->id) {
  579. case PPC440SPE_DMA0_ID:
  580. case PPC440SPE_DMA1_ID:
  581. dma_hw_desc = desc->hw_desc;
  582. dma_hw_desc->cnt = cpu_to_le32(byte_count);
  583. break;
  584. case PPC440SPE_XOR_ID:
  585. xor_hw_desc = desc->hw_desc;
  586. xor_hw_desc->cbbc = byte_count;
  587. break;
  588. }
  589. }
  590. /**
  591. * ppc440spe_desc_set_rxor_block_size - set RXOR block size
  592. */
  593. static inline void ppc440spe_desc_set_rxor_block_size(u32 byte_count)
  594. {
  595. /* assume that byte_count is aligned on the 512-boundary;
  596. * thus write it directly to the register (bits 23:31 are
  597. * reserved there).
  598. */
  599. dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CF2H, byte_count);
  600. }
  601. /**
  602. * ppc440spe_desc_set_dcheck - set CHECK pattern
  603. */
  604. static void ppc440spe_desc_set_dcheck(struct ppc440spe_adma_desc_slot *desc,
  605. struct ppc440spe_adma_chan *chan, u8 *qword)
  606. {
  607. struct dma_cdb *dma_hw_desc;
  608. switch (chan->device->id) {
  609. case PPC440SPE_DMA0_ID:
  610. case PPC440SPE_DMA1_ID:
  611. dma_hw_desc = desc->hw_desc;
  612. iowrite32(qword[0], &dma_hw_desc->sg3l);
  613. iowrite32(qword[4], &dma_hw_desc->sg3u);
  614. iowrite32(qword[8], &dma_hw_desc->sg2l);
  615. iowrite32(qword[12], &dma_hw_desc->sg2u);
  616. break;
  617. default:
  618. BUG();
  619. }
  620. }
  621. /**
  622. * ppc440spe_xor_set_link - set link address in xor CB
  623. */
  624. static void ppc440spe_xor_set_link(struct ppc440spe_adma_desc_slot *prev_desc,
  625. struct ppc440spe_adma_desc_slot *next_desc)
  626. {
  627. struct xor_cb *xor_hw_desc = prev_desc->hw_desc;
  628. if (unlikely(!next_desc || !(next_desc->phys))) {
  629. printk(KERN_ERR "%s: next_desc=0x%p; next_desc->phys=0x%llx\n",
  630. __func__, next_desc,
  631. next_desc ? next_desc->phys : 0);
  632. BUG();
  633. }
  634. xor_hw_desc->cbs = 0;
  635. xor_hw_desc->cblal = next_desc->phys;
  636. xor_hw_desc->cblah = 0;
  637. xor_hw_desc->cbc |= XOR_CBCR_LNK_BIT;
  638. }
  639. /**
  640. * ppc440spe_desc_set_link - set the address of descriptor following this
  641. * descriptor in chain
  642. */
  643. static void ppc440spe_desc_set_link(struct ppc440spe_adma_chan *chan,
  644. struct ppc440spe_adma_desc_slot *prev_desc,
  645. struct ppc440spe_adma_desc_slot *next_desc)
  646. {
  647. unsigned long flags;
  648. struct ppc440spe_adma_desc_slot *tail = next_desc;
  649. if (unlikely(!prev_desc || !next_desc ||
  650. (prev_desc->hw_next && prev_desc->hw_next != next_desc))) {
  651. /* If previous next is overwritten something is wrong.
  652. * though we may refetch from append to initiate list
  653. * processing; in this case - it's ok.
  654. */
  655. printk(KERN_ERR "%s: prev_desc=0x%p; next_desc=0x%p; "
  656. "prev->hw_next=0x%p\n", __func__, prev_desc,
  657. next_desc, prev_desc ? prev_desc->hw_next : 0);
  658. BUG();
  659. }
  660. local_irq_save(flags);
  661. /* do s/w chaining both for DMA and XOR descriptors */
  662. prev_desc->hw_next = next_desc;
  663. switch (chan->device->id) {
  664. case PPC440SPE_DMA0_ID:
  665. case PPC440SPE_DMA1_ID:
  666. break;
  667. case PPC440SPE_XOR_ID:
  668. /* bind descriptor to the chain */
  669. while (tail->hw_next)
  670. tail = tail->hw_next;
  671. xor_last_linked = tail;
  672. if (prev_desc == xor_last_submit)
  673. /* do not link to the last submitted CB */
  674. break;
  675. ppc440spe_xor_set_link(prev_desc, next_desc);
  676. break;
  677. }
  678. local_irq_restore(flags);
  679. }
  680. /**
  681. * ppc440spe_desc_get_link - get the address of the descriptor that
  682. * follows this one
  683. */
  684. static inline u32 ppc440spe_desc_get_link(struct ppc440spe_adma_desc_slot *desc,
  685. struct ppc440spe_adma_chan *chan)
  686. {
  687. if (!desc->hw_next)
  688. return 0;
  689. return desc->hw_next->phys;
  690. }
  691. /**
  692. * ppc440spe_desc_is_aligned - check alignment
  693. */
  694. static inline int ppc440spe_desc_is_aligned(
  695. struct ppc440spe_adma_desc_slot *desc, int num_slots)
  696. {
  697. return (desc->idx & (num_slots - 1)) ? 0 : 1;
  698. }
  699. /**
  700. * ppc440spe_chan_xor_slot_count - get the number of slots necessary for
  701. * XOR operation
  702. */
  703. static int ppc440spe_chan_xor_slot_count(size_t len, int src_cnt,
  704. int *slots_per_op)
  705. {
  706. int slot_cnt;
  707. /* each XOR descriptor provides up to 16 source operands */
  708. slot_cnt = *slots_per_op = (src_cnt + XOR_MAX_OPS - 1)/XOR_MAX_OPS;
  709. if (likely(len <= PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT))
  710. return slot_cnt;
  711. printk(KERN_ERR "%s: len %d > max %d !!\n",
  712. __func__, len, PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
  713. BUG();
  714. return slot_cnt;
  715. }
  716. /**
  717. * ppc440spe_dma2_pq_slot_count - get the number of slots necessary for
  718. * DMA2 PQ operation
  719. */
  720. static int ppc440spe_dma2_pq_slot_count(dma_addr_t *srcs,
  721. int src_cnt, size_t len)
  722. {
  723. signed long long order = 0;
  724. int state = 0;
  725. int addr_count = 0;
  726. int i;
  727. for (i = 1; i < src_cnt; i++) {
  728. dma_addr_t cur_addr = srcs[i];
  729. dma_addr_t old_addr = srcs[i-1];
  730. switch (state) {
  731. case 0:
  732. if (cur_addr == old_addr + len) {
  733. /* direct RXOR */
  734. order = 1;
  735. state = 1;
  736. if (i == src_cnt-1)
  737. addr_count++;
  738. } else if (old_addr == cur_addr + len) {
  739. /* reverse RXOR */
  740. order = -1;
  741. state = 1;
  742. if (i == src_cnt-1)
  743. addr_count++;
  744. } else {
  745. state = 3;
  746. }
  747. break;
  748. case 1:
  749. if (i == src_cnt-2 || (order == -1
  750. && cur_addr != old_addr - len)) {
  751. order = 0;
  752. state = 0;
  753. addr_count++;
  754. } else if (cur_addr == old_addr + len*order) {
  755. state = 2;
  756. if (i == src_cnt-1)
  757. addr_count++;
  758. } else if (cur_addr == old_addr + 2*len) {
  759. state = 2;
  760. if (i == src_cnt-1)
  761. addr_count++;
  762. } else if (cur_addr == old_addr + 3*len) {
  763. state = 2;
  764. if (i == src_cnt-1)
  765. addr_count++;
  766. } else {
  767. order = 0;
  768. state = 0;
  769. addr_count++;
  770. }
  771. break;
  772. case 2:
  773. order = 0;
  774. state = 0;
  775. addr_count++;
  776. break;
  777. }
  778. if (state == 3)
  779. break;
  780. }
  781. if (src_cnt <= 1 || (state != 1 && state != 2)) {
  782. pr_err("%s: src_cnt=%d, state=%d, addr_count=%d, order=%lld\n",
  783. __func__, src_cnt, state, addr_count, order);
  784. for (i = 0; i < src_cnt; i++)
  785. pr_err("\t[%d] 0x%llx \n", i, srcs[i]);
  786. BUG();
  787. }
  788. return (addr_count + XOR_MAX_OPS - 1) / XOR_MAX_OPS;
  789. }
  790. /******************************************************************************
  791. * ADMA channel low-level routines
  792. ******************************************************************************/
  793. static u32
  794. ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan);
  795. static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan);
  796. /**
  797. * ppc440spe_adma_device_clear_eot_status - interrupt ack to XOR or DMA engine
  798. */
  799. static void ppc440spe_adma_device_clear_eot_status(
  800. struct ppc440spe_adma_chan *chan)
  801. {
  802. struct dma_regs *dma_reg;
  803. struct xor_regs *xor_reg;
  804. u8 *p = chan->device->dma_desc_pool_virt;
  805. struct dma_cdb *cdb;
  806. u32 rv, i;
  807. switch (chan->device->id) {
  808. case PPC440SPE_DMA0_ID:
  809. case PPC440SPE_DMA1_ID:
  810. /* read FIFO to ack */
  811. dma_reg = chan->device->dma_reg;
  812. while ((rv = ioread32(&dma_reg->csfpl))) {
  813. i = rv & DMA_CDB_ADDR_MSK;
  814. cdb = (struct dma_cdb *)&p[i -
  815. (u32)chan->device->dma_desc_pool];
  816. /* Clear opcode to ack. This is necessary for
  817. * ZeroSum operations only
  818. */
  819. cdb->opc = 0;
  820. if (test_bit(PPC440SPE_RXOR_RUN,
  821. &ppc440spe_rxor_state)) {
  822. /* probably this is a completed RXOR op,
  823. * get pointer to CDB using the fact that
  824. * physical and virtual addresses of CDB
  825. * in pools have the same offsets
  826. */
  827. if (le32_to_cpu(cdb->sg1u) &
  828. DMA_CUED_XOR_BASE) {
  829. /* this is a RXOR */
  830. clear_bit(PPC440SPE_RXOR_RUN,
  831. &ppc440spe_rxor_state);
  832. }
  833. }
  834. if (rv & DMA_CDB_STATUS_MSK) {
  835. /* ZeroSum check failed
  836. */
  837. struct ppc440spe_adma_desc_slot *iter;
  838. dma_addr_t phys = rv & ~DMA_CDB_MSK;
  839. /*
  840. * Update the status of corresponding
  841. * descriptor.
  842. */
  843. list_for_each_entry(iter, &chan->chain,
  844. chain_node) {
  845. if (iter->phys == phys)
  846. break;
  847. }
  848. /*
  849. * if cannot find the corresponding
  850. * slot it's a bug
  851. */
  852. BUG_ON(&iter->chain_node == &chan->chain);
  853. if (iter->xor_check_result) {
  854. if (test_bit(PPC440SPE_DESC_PCHECK,
  855. &iter->flags)) {
  856. *iter->xor_check_result |=
  857. SUM_CHECK_P_RESULT;
  858. } else
  859. if (test_bit(PPC440SPE_DESC_QCHECK,
  860. &iter->flags)) {
  861. *iter->xor_check_result |=
  862. SUM_CHECK_Q_RESULT;
  863. } else
  864. BUG();
  865. }
  866. }
  867. }
  868. rv = ioread32(&dma_reg->dsts);
  869. if (rv) {
  870. pr_err("DMA%d err status: 0x%x\n",
  871. chan->device->id, rv);
  872. /* write back to clear */
  873. iowrite32(rv, &dma_reg->dsts);
  874. }
  875. break;
  876. case PPC440SPE_XOR_ID:
  877. /* reset status bits to ack */
  878. xor_reg = chan->device->xor_reg;
  879. rv = ioread32be(&xor_reg->sr);
  880. iowrite32be(rv, &xor_reg->sr);
  881. if (rv & (XOR_IE_ICBIE_BIT|XOR_IE_ICIE_BIT|XOR_IE_RPTIE_BIT)) {
  882. if (rv & XOR_IE_RPTIE_BIT) {
  883. /* Read PLB Timeout Error.
  884. * Try to resubmit the CB
  885. */
  886. u32 val = ioread32be(&xor_reg->ccbalr);
  887. iowrite32be(val, &xor_reg->cblalr);
  888. val = ioread32be(&xor_reg->crsr);
  889. iowrite32be(val | XOR_CRSR_XAE_BIT,
  890. &xor_reg->crsr);
  891. } else
  892. pr_err("XOR ERR 0x%x status\n", rv);
  893. break;
  894. }
  895. /* if the XORcore is idle, but there are unprocessed CBs
  896. * then refetch the s/w chain here
  897. */
  898. if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) &&
  899. do_xor_refetch)
  900. ppc440spe_chan_append(chan);
  901. break;
  902. }
  903. }
  904. /**
  905. * ppc440spe_chan_is_busy - get the channel status
  906. */
  907. static int ppc440spe_chan_is_busy(struct ppc440spe_adma_chan *chan)
  908. {
  909. struct dma_regs *dma_reg;
  910. struct xor_regs *xor_reg;
  911. int busy = 0;
  912. switch (chan->device->id) {
  913. case PPC440SPE_DMA0_ID:
  914. case PPC440SPE_DMA1_ID:
  915. dma_reg = chan->device->dma_reg;
  916. /* if command FIFO's head and tail pointers are equal and
  917. * status tail is the same as command, then channel is free
  918. */
  919. if (ioread16(&dma_reg->cpfhp) != ioread16(&dma_reg->cpftp) ||
  920. ioread16(&dma_reg->cpftp) != ioread16(&dma_reg->csftp))
  921. busy = 1;
  922. break;
  923. case PPC440SPE_XOR_ID:
  924. /* use the special status bit for the XORcore
  925. */
  926. xor_reg = chan->device->xor_reg;
  927. busy = (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) ? 1 : 0;
  928. break;
  929. }
  930. return busy;
  931. }
  932. /**
  933. * ppc440spe_chan_set_first_xor_descriptor - init XORcore chain
  934. */
  935. static void ppc440spe_chan_set_first_xor_descriptor(
  936. struct ppc440spe_adma_chan *chan,
  937. struct ppc440spe_adma_desc_slot *next_desc)
  938. {
  939. struct xor_regs *xor_reg = chan->device->xor_reg;
  940. if (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT)
  941. printk(KERN_INFO "%s: Warn: XORcore is running "
  942. "when try to set the first CDB!\n",
  943. __func__);
  944. xor_last_submit = xor_last_linked = next_desc;
  945. iowrite32be(XOR_CRSR_64BA_BIT, &xor_reg->crsr);
  946. iowrite32be(next_desc->phys, &xor_reg->cblalr);
  947. iowrite32be(0, &xor_reg->cblahr);
  948. iowrite32be(ioread32be(&xor_reg->cbcr) | XOR_CBCR_LNK_BIT,
  949. &xor_reg->cbcr);
  950. chan->hw_chain_inited = 1;
  951. }
  952. /**
  953. * ppc440spe_dma_put_desc - put DMA0,1 descriptor to FIFO.
  954. * called with irqs disabled
  955. */
  956. static void ppc440spe_dma_put_desc(struct ppc440spe_adma_chan *chan,
  957. struct ppc440spe_adma_desc_slot *desc)
  958. {
  959. u32 pcdb;
  960. struct dma_regs *dma_reg = chan->device->dma_reg;
  961. pcdb = desc->phys;
  962. if (!test_bit(PPC440SPE_DESC_INT, &desc->flags))
  963. pcdb |= DMA_CDB_NO_INT;
  964. chan_last_sub[chan->device->id] = desc;
  965. ADMA_LL_DBG(print_cb(chan, desc->hw_desc));
  966. iowrite32(pcdb, &dma_reg->cpfpl);
  967. }
  968. /**
  969. * ppc440spe_chan_append - update the h/w chain in the channel
  970. */
  971. static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan)
  972. {
  973. struct xor_regs *xor_reg;
  974. struct ppc440spe_adma_desc_slot *iter;
  975. struct xor_cb *xcb;
  976. u32 cur_desc;
  977. unsigned long flags;
  978. local_irq_save(flags);
  979. switch (chan->device->id) {
  980. case PPC440SPE_DMA0_ID:
  981. case PPC440SPE_DMA1_ID:
  982. cur_desc = ppc440spe_chan_get_current_descriptor(chan);
  983. if (likely(cur_desc)) {
  984. iter = chan_last_sub[chan->device->id];
  985. BUG_ON(!iter);
  986. } else {
  987. /* first peer */
  988. iter = chan_first_cdb[chan->device->id];
  989. BUG_ON(!iter);
  990. ppc440spe_dma_put_desc(chan, iter);
  991. chan->hw_chain_inited = 1;
  992. }
  993. /* is there something new to append */
  994. if (!iter->hw_next)
  995. break;
  996. /* flush descriptors from the s/w queue to fifo */
  997. list_for_each_entry_continue(iter, &chan->chain, chain_node) {
  998. ppc440spe_dma_put_desc(chan, iter);
  999. if (!iter->hw_next)
  1000. break;
  1001. }
  1002. break;
  1003. case PPC440SPE_XOR_ID:
  1004. /* update h/w links and refetch */
  1005. if (!xor_last_submit->hw_next)
  1006. break;
  1007. xor_reg = chan->device->xor_reg;
  1008. /* the last linked CDB has to generate an interrupt
  1009. * that we'd be able to append the next lists to h/w
  1010. * regardless of the XOR engine state at the moment of
  1011. * appending of these next lists
  1012. */
  1013. xcb = xor_last_linked->hw_desc;
  1014. xcb->cbc |= XOR_CBCR_CBCE_BIT;
  1015. if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT)) {
  1016. /* XORcore is idle. Refetch now */
  1017. do_xor_refetch = 0;
  1018. ppc440spe_xor_set_link(xor_last_submit,
  1019. xor_last_submit->hw_next);
  1020. ADMA_LL_DBG(print_cb_list(chan,
  1021. xor_last_submit->hw_next));
  1022. xor_last_submit = xor_last_linked;
  1023. iowrite32be(ioread32be(&xor_reg->crsr) |
  1024. XOR_CRSR_RCBE_BIT | XOR_CRSR_64BA_BIT,
  1025. &xor_reg->crsr);
  1026. } else {
  1027. /* XORcore is running. Refetch later in the handler */
  1028. do_xor_refetch = 1;
  1029. }
  1030. break;
  1031. }
  1032. local_irq_restore(flags);
  1033. }
  1034. /**
  1035. * ppc440spe_chan_get_current_descriptor - get the currently executed descriptor
  1036. */
  1037. static u32
  1038. ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan)
  1039. {
  1040. struct dma_regs *dma_reg;
  1041. struct xor_regs *xor_reg;
  1042. if (unlikely(!chan->hw_chain_inited))
  1043. /* h/w descriptor chain is not initialized yet */
  1044. return 0;
  1045. switch (chan->device->id) {
  1046. case PPC440SPE_DMA0_ID:
  1047. case PPC440SPE_DMA1_ID:
  1048. dma_reg = chan->device->dma_reg;
  1049. return ioread32(&dma_reg->acpl) & (~DMA_CDB_MSK);
  1050. case PPC440SPE_XOR_ID:
  1051. xor_reg = chan->device->xor_reg;
  1052. return ioread32be(&xor_reg->ccbalr);
  1053. }
  1054. return 0;
  1055. }
  1056. /**
  1057. * ppc440spe_chan_run - enable the channel
  1058. */
  1059. static void ppc440spe_chan_run(struct ppc440spe_adma_chan *chan)
  1060. {
  1061. struct xor_regs *xor_reg;
  1062. switch (chan->device->id) {
  1063. case PPC440SPE_DMA0_ID:
  1064. case PPC440SPE_DMA1_ID:
  1065. /* DMAs are always enabled, do nothing */
  1066. break;
  1067. case PPC440SPE_XOR_ID:
  1068. /* drain write buffer */
  1069. xor_reg = chan->device->xor_reg;
  1070. /* fetch descriptor pointed to in <link> */
  1071. iowrite32be(XOR_CRSR_64BA_BIT | XOR_CRSR_XAE_BIT,
  1072. &xor_reg->crsr);
  1073. break;
  1074. }
  1075. }
  1076. /******************************************************************************
  1077. * ADMA device level
  1078. ******************************************************************************/
  1079. static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan);
  1080. static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan);
  1081. static dma_cookie_t
  1082. ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx);
  1083. static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *tx,
  1084. dma_addr_t addr, int index);
  1085. static void
  1086. ppc440spe_adma_memcpy_xor_set_src(struct ppc440spe_adma_desc_slot *tx,
  1087. dma_addr_t addr, int index);
  1088. static void
  1089. ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *tx,
  1090. dma_addr_t *paddr, unsigned long flags);
  1091. static void
  1092. ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *tx,
  1093. dma_addr_t addr, int index);
  1094. static void
  1095. ppc440spe_adma_pq_set_src_mult(struct ppc440spe_adma_desc_slot *tx,
  1096. unsigned char mult, int index, int dst_pos);
  1097. static void
  1098. ppc440spe_adma_pqzero_sum_set_dest(struct ppc440spe_adma_desc_slot *tx,
  1099. dma_addr_t paddr, dma_addr_t qaddr);
  1100. static struct page *ppc440spe_rxor_srcs[32];
  1101. /**
  1102. * ppc440spe_can_rxor - check if the operands may be processed with RXOR
  1103. */
  1104. static int ppc440spe_can_rxor(struct page **srcs, int src_cnt, size_t len)
  1105. {
  1106. int i, order = 0, state = 0;
  1107. int idx = 0;
  1108. if (unlikely(!(src_cnt > 1)))
  1109. return 0;
  1110. BUG_ON(src_cnt > ARRAY_SIZE(ppc440spe_rxor_srcs));
  1111. /* Skip holes in the source list before checking */
  1112. for (i = 0; i < src_cnt; i++) {
  1113. if (!srcs[i])
  1114. continue;
  1115. ppc440spe_rxor_srcs[idx++] = srcs[i];
  1116. }
  1117. src_cnt = idx;
  1118. for (i = 1; i < src_cnt; i++) {
  1119. char *cur_addr = page_address(ppc440spe_rxor_srcs[i]);
  1120. char *old_addr = page_address(ppc440spe_rxor_srcs[i - 1]);
  1121. switch (state) {
  1122. case 0:
  1123. if (cur_addr == old_addr + len) {
  1124. /* direct RXOR */
  1125. order = 1;
  1126. state = 1;
  1127. } else if (old_addr == cur_addr + len) {
  1128. /* reverse RXOR */
  1129. order = -1;
  1130. state = 1;
  1131. } else
  1132. goto out;
  1133. break;
  1134. case 1:
  1135. if ((i == src_cnt - 2) ||
  1136. (order == -1 && cur_addr != old_addr - len)) {
  1137. order = 0;
  1138. state = 0;
  1139. } else if ((cur_addr == old_addr + len * order) ||
  1140. (cur_addr == old_addr + 2 * len) ||
  1141. (cur_addr == old_addr + 3 * len)) {
  1142. state = 2;
  1143. } else {
  1144. order = 0;
  1145. state = 0;
  1146. }
  1147. break;
  1148. case 2:
  1149. order = 0;
  1150. state = 0;
  1151. break;
  1152. }
  1153. }
  1154. out:
  1155. if (state == 1 || state == 2)
  1156. return 1;
  1157. return 0;
  1158. }
  1159. /**
  1160. * ppc440spe_adma_device_estimate - estimate the efficiency of processing
  1161. * the operation given on this channel. It's assumed that 'chan' is
  1162. * capable to process 'cap' type of operation.
  1163. * @chan: channel to use
  1164. * @cap: type of transaction
  1165. * @dst_lst: array of destination pointers
  1166. * @dst_cnt: number of destination operands
  1167. * @src_lst: array of source pointers
  1168. * @src_cnt: number of source operands
  1169. * @src_sz: size of each source operand
  1170. */
  1171. static int ppc440spe_adma_estimate(struct dma_chan *chan,
  1172. enum dma_transaction_type cap, struct page **dst_lst, int dst_cnt,
  1173. struct page **src_lst, int src_cnt, size_t src_sz)
  1174. {
  1175. int ef = 1;
  1176. if (cap == DMA_PQ || cap == DMA_PQ_VAL) {
  1177. /* If RAID-6 capabilities were not activated don't try
  1178. * to use them
  1179. */
  1180. if (unlikely(!ppc440spe_r6_enabled))
  1181. return -1;
  1182. }
  1183. /* In the current implementation of ppc440spe ADMA driver it
  1184. * makes sense to pick out only pq case, because it may be
  1185. * processed:
  1186. * (1) either using Biskup method on DMA2;
  1187. * (2) or on DMA0/1.
  1188. * Thus we give a favour to (1) if the sources are suitable;
  1189. * else let it be processed on one of the DMA0/1 engines.
  1190. * In the sum_product case where destination is also the
  1191. * source process it on DMA0/1 only.
  1192. */
  1193. if (cap == DMA_PQ && chan->chan_id == PPC440SPE_XOR_ID) {
  1194. if (dst_cnt == 1 && src_cnt == 2 && dst_lst[0] == src_lst[1])
  1195. ef = 0; /* sum_product case, process on DMA0/1 */
  1196. else if (ppc440spe_can_rxor(src_lst, src_cnt, src_sz))
  1197. ef = 3; /* override (DMA0/1 + idle) */
  1198. else
  1199. ef = 0; /* can't process on DMA2 if !rxor */
  1200. }
  1201. /* channel idleness increases the priority */
  1202. if (likely(ef) &&
  1203. !ppc440spe_chan_is_busy(to_ppc440spe_adma_chan(chan)))
  1204. ef++;
  1205. return ef;
  1206. }
  1207. struct dma_chan *
  1208. ppc440spe_async_tx_find_best_channel(enum dma_transaction_type cap,
  1209. struct page **dst_lst, int dst_cnt, struct page **src_lst,
  1210. int src_cnt, size_t src_sz)
  1211. {
  1212. struct dma_chan *best_chan = NULL;
  1213. struct ppc_dma_chan_ref *ref;
  1214. int best_rank = -1;
  1215. if (unlikely(!src_sz))
  1216. return NULL;
  1217. if (src_sz > PAGE_SIZE) {
  1218. /*
  1219. * should a user of the api ever pass > PAGE_SIZE requests
  1220. * we sort out cases where temporary page-sized buffers
  1221. * are used.
  1222. */
  1223. switch (cap) {
  1224. case DMA_PQ:
  1225. if (src_cnt == 1 && dst_lst[1] == src_lst[0])
  1226. return NULL;
  1227. if (src_cnt == 2 && dst_lst[1] == src_lst[1])
  1228. return NULL;
  1229. break;
  1230. case DMA_PQ_VAL:
  1231. case DMA_XOR_VAL:
  1232. return NULL;
  1233. default:
  1234. break;
  1235. }
  1236. }
  1237. list_for_each_entry(ref, &ppc440spe_adma_chan_list, node) {
  1238. if (dma_has_cap(cap, ref->chan->device->cap_mask)) {
  1239. int rank;
  1240. rank = ppc440spe_adma_estimate(ref->chan, cap, dst_lst,
  1241. dst_cnt, src_lst, src_cnt, src_sz);
  1242. if (rank > best_rank) {
  1243. best_rank = rank;
  1244. best_chan = ref->chan;
  1245. }
  1246. }
  1247. }
  1248. return best_chan;
  1249. }
  1250. EXPORT_SYMBOL_GPL(ppc440spe_async_tx_find_best_channel);
  1251. /**
  1252. * ppc440spe_get_group_entry - get group entry with index idx
  1253. * @tdesc: is the last allocated slot in the group.
  1254. */
  1255. static struct ppc440spe_adma_desc_slot *
  1256. ppc440spe_get_group_entry(struct ppc440spe_adma_desc_slot *tdesc, u32 entry_idx)
  1257. {
  1258. struct ppc440spe_adma_desc_slot *iter = tdesc->group_head;
  1259. int i = 0;
  1260. if (entry_idx < 0 || entry_idx >= (tdesc->src_cnt + tdesc->dst_cnt)) {
  1261. printk("%s: entry_idx %d, src_cnt %d, dst_cnt %d\n",
  1262. __func__, entry_idx, tdesc->src_cnt, tdesc->dst_cnt);
  1263. BUG();
  1264. }
  1265. list_for_each_entry(iter, &tdesc->group_list, chain_node) {
  1266. if (i++ == entry_idx)
  1267. break;
  1268. }
  1269. return iter;
  1270. }
  1271. /**
  1272. * ppc440spe_adma_free_slots - flags descriptor slots for reuse
  1273. * @slot: Slot to free
  1274. * Caller must hold &ppc440spe_chan->lock while calling this function
  1275. */
  1276. static void ppc440spe_adma_free_slots(struct ppc440spe_adma_desc_slot *slot,
  1277. struct ppc440spe_adma_chan *chan)
  1278. {
  1279. int stride = slot->slots_per_op;
  1280. while (stride--) {
  1281. slot->slots_per_op = 0;
  1282. slot = list_entry(slot->slot_node.next,
  1283. struct ppc440spe_adma_desc_slot,
  1284. slot_node);
  1285. }
  1286. }
  1287. /**
  1288. * ppc440spe_adma_run_tx_complete_actions - call functions to be called
  1289. * upon completion
  1290. */
  1291. static dma_cookie_t ppc440spe_adma_run_tx_complete_actions(
  1292. struct ppc440spe_adma_desc_slot *desc,
  1293. struct ppc440spe_adma_chan *chan,
  1294. dma_cookie_t cookie)
  1295. {
  1296. BUG_ON(desc->async_tx.cookie < 0);
  1297. if (desc->async_tx.cookie > 0) {
  1298. cookie = desc->async_tx.cookie;
  1299. desc->async_tx.cookie = 0;
  1300. dma_descriptor_unmap(&desc->async_tx);
  1301. /* call the callback (must not sleep or submit new
  1302. * operations to this channel)
  1303. */
  1304. dmaengine_desc_get_callback_invoke(&desc->async_tx, NULL);
  1305. }
  1306. /* run dependent operations */
  1307. dma_run_dependencies(&desc->async_tx);
  1308. return cookie;
  1309. }
  1310. /**
  1311. * ppc440spe_adma_clean_slot - clean up CDB slot (if ack is set)
  1312. */
  1313. static int ppc440spe_adma_clean_slot(struct ppc440spe_adma_desc_slot *desc,
  1314. struct ppc440spe_adma_chan *chan)
  1315. {
  1316. /* the client is allowed to attach dependent operations
  1317. * until 'ack' is set
  1318. */
  1319. if (!async_tx_test_ack(&desc->async_tx))
  1320. return 0;
  1321. /* leave the last descriptor in the chain
  1322. * so we can append to it
  1323. */
  1324. if (list_is_last(&desc->chain_node, &chan->chain) ||
  1325. desc->phys == ppc440spe_chan_get_current_descriptor(chan))
  1326. return 1;
  1327. if (chan->device->id != PPC440SPE_XOR_ID) {
  1328. /* our DMA interrupt handler clears opc field of
  1329. * each processed descriptor. For all types of
  1330. * operations except for ZeroSum we do not actually
  1331. * need ack from the interrupt handler. ZeroSum is a
  1332. * special case since the result of this operation
  1333. * is available from the handler only, so if we see
  1334. * such type of descriptor (which is unprocessed yet)
  1335. * then leave it in chain.
  1336. */
  1337. struct dma_cdb *cdb = desc->hw_desc;
  1338. if (cdb->opc == DMA_CDB_OPC_DCHECK128)
  1339. return 1;
  1340. }
  1341. dev_dbg(chan->device->common.dev, "\tfree slot %llx: %d stride: %d\n",
  1342. desc->phys, desc->idx, desc->slots_per_op);
  1343. list_del(&desc->chain_node);
  1344. ppc440spe_adma_free_slots(desc, chan);
  1345. return 0;
  1346. }
  1347. /**
  1348. * __ppc440spe_adma_slot_cleanup - this is the common clean-up routine
  1349. * which runs through the channel CDBs list until reach the descriptor
  1350. * currently processed. When routine determines that all CDBs of group
  1351. * are completed then corresponding callbacks (if any) are called and slots
  1352. * are freed.
  1353. */
  1354. static void __ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan)
  1355. {
  1356. struct ppc440spe_adma_desc_slot *iter, *_iter, *group_start = NULL;
  1357. dma_cookie_t cookie = 0;
  1358. u32 current_desc = ppc440spe_chan_get_current_descriptor(chan);
  1359. int busy = ppc440spe_chan_is_busy(chan);
  1360. int seen_current = 0, slot_cnt = 0, slots_per_op = 0;
  1361. dev_dbg(chan->device->common.dev, "ppc440spe adma%d: %s\n",
  1362. chan->device->id, __func__);
  1363. if (!current_desc) {
  1364. /* There were no transactions yet, so
  1365. * nothing to clean
  1366. */
  1367. return;
  1368. }
  1369. /* free completed slots from the chain starting with
  1370. * the oldest descriptor
  1371. */
  1372. list_for_each_entry_safe(iter, _iter, &chan->chain,
  1373. chain_node) {
  1374. dev_dbg(chan->device->common.dev, "\tcookie: %d slot: %d "
  1375. "busy: %d this_desc: %#llx next_desc: %#x "
  1376. "cur: %#x ack: %d\n",
  1377. iter->async_tx.cookie, iter->idx, busy, iter->phys,
  1378. ppc440spe_desc_get_link(iter, chan), current_desc,
  1379. async_tx_test_ack(&iter->async_tx));
  1380. prefetch(_iter);
  1381. prefetch(&_iter->async_tx);
  1382. /* do not advance past the current descriptor loaded into the
  1383. * hardware channel,subsequent descriptors are either in process
  1384. * or have not been submitted
  1385. */
  1386. if (seen_current)
  1387. break;
  1388. /* stop the search if we reach the current descriptor and the
  1389. * channel is busy, or if it appears that the current descriptor
  1390. * needs to be re-read (i.e. has been appended to)
  1391. */
  1392. if (iter->phys == current_desc) {
  1393. BUG_ON(seen_current++);
  1394. if (busy || ppc440spe_desc_get_link(iter, chan)) {
  1395. /* not all descriptors of the group have
  1396. * been completed; exit.
  1397. */
  1398. break;
  1399. }
  1400. }
  1401. /* detect the start of a group transaction */
  1402. if (!slot_cnt && !slots_per_op) {
  1403. slot_cnt = iter->slot_cnt;
  1404. slots_per_op = iter->slots_per_op;
  1405. if (slot_cnt <= slots_per_op) {
  1406. slot_cnt = 0;
  1407. slots_per_op = 0;
  1408. }
  1409. }
  1410. if (slot_cnt) {
  1411. if (!group_start)
  1412. group_start = iter;
  1413. slot_cnt -= slots_per_op;
  1414. }
  1415. /* all the members of a group are complete */
  1416. if (slots_per_op != 0 && slot_cnt == 0) {
  1417. struct ppc440spe_adma_desc_slot *grp_iter, *_grp_iter;
  1418. int end_of_chain = 0;
  1419. /* clean up the group */
  1420. slot_cnt = group_start->slot_cnt;
  1421. grp_iter = group_start;
  1422. list_for_each_entry_safe_from(grp_iter, _grp_iter,
  1423. &chan->chain, chain_node) {
  1424. cookie = ppc440spe_adma_run_tx_complete_actions(
  1425. grp_iter, chan, cookie);
  1426. slot_cnt -= slots_per_op;
  1427. end_of_chain = ppc440spe_adma_clean_slot(
  1428. grp_iter, chan);
  1429. if (end_of_chain && slot_cnt) {
  1430. /* Should wait for ZeroSum completion */
  1431. if (cookie > 0)
  1432. chan->common.completed_cookie = cookie;
  1433. return;
  1434. }
  1435. if (slot_cnt == 0 || end_of_chain)
  1436. break;
  1437. }
  1438. /* the group should be complete at this point */
  1439. BUG_ON(slot_cnt);
  1440. slots_per_op = 0;
  1441. group_start = NULL;
  1442. if (end_of_chain)
  1443. break;
  1444. else
  1445. continue;
  1446. } else if (slots_per_op) /* wait for group completion */
  1447. continue;
  1448. cookie = ppc440spe_adma_run_tx_complete_actions(iter, chan,
  1449. cookie);
  1450. if (ppc440spe_adma_clean_slot(iter, chan))
  1451. break;
  1452. }
  1453. BUG_ON(!seen_current);
  1454. if (cookie > 0) {
  1455. chan->common.completed_cookie = cookie;
  1456. pr_debug("\tcompleted cookie %d\n", cookie);
  1457. }
  1458. }
  1459. /**
  1460. * ppc440spe_adma_tasklet - clean up watch-dog initiator
  1461. */
  1462. static void ppc440spe_adma_tasklet(struct tasklet_struct *t)
  1463. {
  1464. struct ppc440spe_adma_chan *chan = from_tasklet(chan, t, irq_tasklet);
  1465. spin_lock_nested(&chan->lock, SINGLE_DEPTH_NESTING);
  1466. __ppc440spe_adma_slot_cleanup(chan);
  1467. spin_unlock(&chan->lock);
  1468. }
  1469. /**
  1470. * ppc440spe_adma_slot_cleanup - clean up scheduled initiator
  1471. */
  1472. static void ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan)
  1473. {
  1474. spin_lock_bh(&chan->lock);
  1475. __ppc440spe_adma_slot_cleanup(chan);
  1476. spin_unlock_bh(&chan->lock);
  1477. }
  1478. /**
  1479. * ppc440spe_adma_alloc_slots - allocate free slots (if any)
  1480. */
  1481. static struct ppc440spe_adma_desc_slot *ppc440spe_adma_alloc_slots(
  1482. struct ppc440spe_adma_chan *chan, int num_slots,
  1483. int slots_per_op)
  1484. {
  1485. struct ppc440spe_adma_desc_slot *iter = NULL, *_iter;
  1486. struct ppc440spe_adma_desc_slot *alloc_start = NULL;
  1487. int slots_found, retry = 0;
  1488. LIST_HEAD(chain);
  1489. BUG_ON(!num_slots || !slots_per_op);
  1490. /* start search from the last allocated descrtiptor
  1491. * if a contiguous allocation can not be found start searching
  1492. * from the beginning of the list
  1493. */
  1494. retry:
  1495. slots_found = 0;
  1496. if (retry == 0)
  1497. iter = chan->last_used;
  1498. else
  1499. iter = list_entry(&chan->all_slots,
  1500. struct ppc440spe_adma_desc_slot,
  1501. slot_node);
  1502. list_for_each_entry_safe_continue(iter, _iter, &chan->all_slots,
  1503. slot_node) {
  1504. prefetch(_iter);
  1505. prefetch(&_iter->async_tx);
  1506. if (iter->slots_per_op) {
  1507. slots_found = 0;
  1508. continue;
  1509. }
  1510. /* start the allocation if the slot is correctly aligned */
  1511. if (!slots_found++)
  1512. alloc_start = iter;
  1513. if (slots_found == num_slots) {
  1514. struct ppc440spe_adma_desc_slot *alloc_tail = NULL;
  1515. struct ppc440spe_adma_desc_slot *last_used = NULL;
  1516. iter = alloc_start;
  1517. while (num_slots) {
  1518. int i;
  1519. /* pre-ack all but the last descriptor */
  1520. if (num_slots != slots_per_op)
  1521. async_tx_ack(&iter->async_tx);
  1522. list_add_tail(&iter->chain_node, &chain);
  1523. alloc_tail = iter;
  1524. iter->async_tx.cookie = 0;
  1525. iter->hw_next = NULL;
  1526. iter->flags = 0;
  1527. iter->slot_cnt = num_slots;
  1528. iter->xor_check_result = NULL;
  1529. for (i = 0; i < slots_per_op; i++) {
  1530. iter->slots_per_op = slots_per_op - i;
  1531. last_used = iter;
  1532. iter = list_entry(iter->slot_node.next,
  1533. struct ppc440spe_adma_desc_slot,
  1534. slot_node);
  1535. }
  1536. num_slots -= slots_per_op;
  1537. }
  1538. alloc_tail->group_head = alloc_start;
  1539. alloc_tail->async_tx.cookie = -EBUSY;
  1540. list_splice(&chain, &alloc_tail->group_list);
  1541. chan->last_used = last_used;
  1542. return alloc_tail;
  1543. }
  1544. }
  1545. if (!retry++)
  1546. goto retry;
  1547. /* try to free some slots if the allocation fails */
  1548. tasklet_schedule(&chan->irq_tasklet);
  1549. return NULL;
  1550. }
  1551. /**
  1552. * ppc440spe_adma_alloc_chan_resources - allocate pools for CDB slots
  1553. */
  1554. static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan)
  1555. {
  1556. struct ppc440spe_adma_chan *ppc440spe_chan;
  1557. struct ppc440spe_adma_desc_slot *slot = NULL;
  1558. char *hw_desc;
  1559. int i, db_sz;
  1560. int init;
  1561. ppc440spe_chan = to_ppc440spe_adma_chan(chan);
  1562. init = ppc440spe_chan->slots_allocated ? 0 : 1;
  1563. chan->chan_id = ppc440spe_chan->device->id;
  1564. /* Allocate descriptor slots */
  1565. i = ppc440spe_chan->slots_allocated;
  1566. if (ppc440spe_chan->device->id != PPC440SPE_XOR_ID)
  1567. db_sz = sizeof(struct dma_cdb);
  1568. else
  1569. db_sz = sizeof(struct xor_cb);
  1570. for (; i < (ppc440spe_chan->device->pool_size / db_sz); i++) {
  1571. slot = kzalloc(sizeof(struct ppc440spe_adma_desc_slot),
  1572. GFP_KERNEL);
  1573. if (!slot) {
  1574. printk(KERN_INFO "SPE ADMA Channel only initialized"
  1575. " %d descriptor slots", i--);
  1576. break;
  1577. }
  1578. hw_desc = (char *) ppc440spe_chan->device->dma_desc_pool_virt;
  1579. slot->hw_desc = (void *) &hw_desc[i * db_sz];
  1580. dma_async_tx_descriptor_init(&slot->async_tx, chan);
  1581. slot->async_tx.tx_submit = ppc440spe_adma_tx_submit;
  1582. INIT_LIST_HEAD(&slot->chain_node);
  1583. INIT_LIST_HEAD(&slot->slot_node);
  1584. INIT_LIST_HEAD(&slot->group_list);
  1585. slot->phys = ppc440spe_chan->device->dma_desc_pool + i * db_sz;
  1586. slot->idx = i;
  1587. spin_lock_bh(&ppc440spe_chan->lock);
  1588. ppc440spe_chan->slots_allocated++;
  1589. list_add_tail(&slot->slot_node, &ppc440spe_chan->all_slots);
  1590. spin_unlock_bh(&ppc440spe_chan->lock);
  1591. }
  1592. if (i && !ppc440spe_chan->last_used) {
  1593. ppc440spe_chan->last_used =
  1594. list_entry(ppc440spe_chan->all_slots.next,
  1595. struct ppc440spe_adma_desc_slot,
  1596. slot_node);
  1597. }
  1598. dev_dbg(ppc440spe_chan->device->common.dev,
  1599. "ppc440spe adma%d: allocated %d descriptor slots\n",
  1600. ppc440spe_chan->device->id, i);
  1601. /* initialize the channel and the chain with a null operation */
  1602. if (init) {
  1603. switch (ppc440spe_chan->device->id) {
  1604. case PPC440SPE_DMA0_ID:
  1605. case PPC440SPE_DMA1_ID:
  1606. ppc440spe_chan->hw_chain_inited = 0;
  1607. /* Use WXOR for self-testing */
  1608. if (!ppc440spe_r6_tchan)
  1609. ppc440spe_r6_tchan = ppc440spe_chan;
  1610. break;
  1611. case PPC440SPE_XOR_ID:
  1612. ppc440spe_chan_start_null_xor(ppc440spe_chan);
  1613. break;
  1614. default:
  1615. BUG();
  1616. }
  1617. ppc440spe_chan->needs_unmap = 1;
  1618. }
  1619. return (i > 0) ? i : -ENOMEM;
  1620. }
  1621. /**
  1622. * ppc440spe_rxor_set_region_data -
  1623. */
  1624. static void ppc440spe_rxor_set_region(struct ppc440spe_adma_desc_slot *desc,
  1625. u8 xor_arg_no, u32 mask)
  1626. {
  1627. struct xor_cb *xcb = desc->hw_desc;
  1628. xcb->ops[xor_arg_no].h |= mask;
  1629. }
  1630. /**
  1631. * ppc440spe_rxor_set_src -
  1632. */
  1633. static void ppc440spe_rxor_set_src(struct ppc440spe_adma_desc_slot *desc,
  1634. u8 xor_arg_no, dma_addr_t addr)
  1635. {
  1636. struct xor_cb *xcb = desc->hw_desc;
  1637. xcb->ops[xor_arg_no].h |= DMA_CUED_XOR_BASE;
  1638. xcb->ops[xor_arg_no].l = addr;
  1639. }
  1640. /**
  1641. * ppc440spe_rxor_set_mult -
  1642. */
  1643. static void ppc440spe_rxor_set_mult(struct ppc440spe_adma_desc_slot *desc,
  1644. u8 xor_arg_no, u8 idx, u8 mult)
  1645. {
  1646. struct xor_cb *xcb = desc->hw_desc;
  1647. xcb->ops[xor_arg_no].h |= mult << (DMA_CUED_MULT1_OFF + idx * 8);
  1648. }
  1649. /**
  1650. * ppc440spe_adma_check_threshold - append CDBs to h/w chain if threshold
  1651. * has been achieved
  1652. */
  1653. static void ppc440spe_adma_check_threshold(struct ppc440spe_adma_chan *chan)
  1654. {
  1655. dev_dbg(chan->device->common.dev, "ppc440spe adma%d: pending: %d\n",
  1656. chan->device->id, chan->pending);
  1657. if (chan->pending >= PPC440SPE_ADMA_THRESHOLD) {
  1658. chan->pending = 0;
  1659. ppc440spe_chan_append(chan);
  1660. }
  1661. }
  1662. /**
  1663. * ppc440spe_adma_tx_submit - submit new descriptor group to the channel
  1664. * (it's not necessary that descriptors will be submitted to the h/w
  1665. * chains too right now)
  1666. */
  1667. static dma_cookie_t ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx)
  1668. {
  1669. struct ppc440spe_adma_desc_slot *sw_desc;
  1670. struct ppc440spe_adma_chan *chan = to_ppc440spe_adma_chan(tx->chan);
  1671. struct ppc440spe_adma_desc_slot *group_start, *old_chain_tail;
  1672. int slot_cnt;
  1673. int slots_per_op;
  1674. dma_cookie_t cookie;
  1675. sw_desc = tx_to_ppc440spe_adma_slot(tx);
  1676. group_start = sw_desc->group_head;
  1677. slot_cnt = group_start->slot_cnt;
  1678. slots_per_op = group_start->slots_per_op;
  1679. spin_lock_bh(&chan->lock);
  1680. cookie = dma_cookie_assign(tx);
  1681. if (unlikely(list_empty(&chan->chain))) {
  1682. /* first peer */
  1683. list_splice_init(&sw_desc->group_list, &chan->chain);
  1684. chan_first_cdb[chan->device->id] = group_start;
  1685. } else {
  1686. /* isn't first peer, bind CDBs to chain */
  1687. old_chain_tail = list_entry(chan->chain.prev,
  1688. struct ppc440spe_adma_desc_slot,
  1689. chain_node);
  1690. list_splice_init(&sw_desc->group_list,
  1691. &old_chain_tail->chain_node);
  1692. /* fix up the hardware chain */
  1693. ppc440spe_desc_set_link(chan, old_chain_tail, group_start);
  1694. }
  1695. /* increment the pending count by the number of operations */
  1696. chan->pending += slot_cnt / slots_per_op;
  1697. ppc440spe_adma_check_threshold(chan);
  1698. spin_unlock_bh(&chan->lock);
  1699. dev_dbg(chan->device->common.dev,
  1700. "ppc440spe adma%d: %s cookie: %d slot: %d tx %p\n",
  1701. chan->device->id, __func__,
  1702. sw_desc->async_tx.cookie, sw_desc->idx, sw_desc);
  1703. return cookie;
  1704. }
  1705. /**
  1706. * ppc440spe_adma_prep_dma_interrupt - prepare CDB for a pseudo DMA operation
  1707. */
  1708. static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_interrupt(
  1709. struct dma_chan *chan, unsigned long flags)
  1710. {
  1711. struct ppc440spe_adma_chan *ppc440spe_chan;
  1712. struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
  1713. int slot_cnt, slots_per_op;
  1714. ppc440spe_chan = to_ppc440spe_adma_chan(chan);
  1715. dev_dbg(ppc440spe_chan->device->common.dev,
  1716. "ppc440spe adma%d: %s\n", ppc440spe_chan->device->id,
  1717. __func__);
  1718. spin_lock_bh(&ppc440spe_chan->lock);
  1719. slot_cnt = slots_per_op = 1;
  1720. sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
  1721. slots_per_op);
  1722. if (sw_desc) {
  1723. group_start = sw_desc->group_head;
  1724. ppc440spe_desc_init_interrupt(group_start, ppc440spe_chan);
  1725. group_start->unmap_len = 0;
  1726. sw_desc->async_tx.flags = flags;
  1727. }
  1728. spin_unlock_bh(&ppc440spe_chan->lock);
  1729. return sw_desc ? &sw_desc->async_tx : NULL;
  1730. }
  1731. /**
  1732. * ppc440spe_adma_prep_dma_memcpy - prepare CDB for a MEMCPY operation
  1733. */
  1734. static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_memcpy(
  1735. struct dma_chan *chan, dma_addr_t dma_dest,
  1736. dma_addr_t dma_src, size_t len, unsigned long flags)
  1737. {
  1738. struct ppc440spe_adma_chan *ppc440spe_chan;
  1739. struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
  1740. int slot_cnt, slots_per_op;
  1741. ppc440spe_chan = to_ppc440spe_adma_chan(chan);
  1742. if (unlikely(!len))
  1743. return NULL;
  1744. BUG_ON(len > PPC440SPE_ADMA_DMA_MAX_BYTE_COUNT);
  1745. spin_lock_bh(&ppc440spe_chan->lock);
  1746. dev_dbg(ppc440spe_chan->device->common.dev,
  1747. "ppc440spe adma%d: %s len: %u int_en %d\n",
  1748. ppc440spe_chan->device->id, __func__, len,
  1749. flags & DMA_PREP_INTERRUPT ? 1 : 0);
  1750. slot_cnt = slots_per_op = 1;
  1751. sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
  1752. slots_per_op);
  1753. if (sw_desc) {
  1754. group_start = sw_desc->group_head;
  1755. ppc440spe_desc_init_memcpy(group_start, flags);
  1756. ppc440spe_adma_set_dest(group_start, dma_dest, 0);
  1757. ppc440spe_adma_memcpy_xor_set_src(group_start, dma_src, 0);
  1758. ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len);
  1759. sw_desc->unmap_len = len;
  1760. sw_desc->async_tx.flags = flags;
  1761. }
  1762. spin_unlock_bh(&ppc440spe_chan->lock);
  1763. return sw_desc ? &sw_desc->async_tx : NULL;
  1764. }
  1765. /**
  1766. * ppc440spe_adma_prep_dma_xor - prepare CDB for a XOR operation
  1767. */
  1768. static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor(
  1769. struct dma_chan *chan, dma_addr_t dma_dest,
  1770. dma_addr_t *dma_src, u32 src_cnt, size_t len,
  1771. unsigned long flags)
  1772. {
  1773. struct ppc440spe_adma_chan *ppc440spe_chan;
  1774. struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
  1775. int slot_cnt, slots_per_op;
  1776. ppc440spe_chan = to_ppc440spe_adma_chan(chan);
  1777. ADMA_LL_DBG(prep_dma_xor_dbg(ppc440spe_chan->device->id,
  1778. dma_dest, dma_src, src_cnt));
  1779. if (unlikely(!len))
  1780. return NULL;
  1781. BUG_ON(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
  1782. dev_dbg(ppc440spe_chan->device->common.dev,
  1783. "ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n",
  1784. ppc440spe_chan->device->id, __func__, src_cnt, len,
  1785. flags & DMA_PREP_INTERRUPT ? 1 : 0);
  1786. spin_lock_bh(&ppc440spe_chan->lock);
  1787. slot_cnt = ppc440spe_chan_xor_slot_count(len, src_cnt, &slots_per_op);
  1788. sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
  1789. slots_per_op);
  1790. if (sw_desc) {
  1791. group_start = sw_desc->group_head;
  1792. ppc440spe_desc_init_xor(group_start, src_cnt, flags);
  1793. ppc440spe_adma_set_dest(group_start, dma_dest, 0);
  1794. while (src_cnt--)
  1795. ppc440spe_adma_memcpy_xor_set_src(group_start,
  1796. dma_src[src_cnt], src_cnt);
  1797. ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len);
  1798. sw_desc->unmap_len = len;
  1799. sw_desc->async_tx.flags = flags;
  1800. }
  1801. spin_unlock_bh(&ppc440spe_chan->lock);
  1802. return sw_desc ? &sw_desc->async_tx : NULL;
  1803. }
  1804. static inline void
  1805. ppc440spe_desc_set_xor_src_cnt(struct ppc440spe_adma_desc_slot *desc,
  1806. int src_cnt);
  1807. static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor);
  1808. /**
  1809. * ppc440spe_adma_init_dma2rxor_slot -
  1810. */
  1811. static void ppc440spe_adma_init_dma2rxor_slot(
  1812. struct ppc440spe_adma_desc_slot *desc,
  1813. dma_addr_t *src, int src_cnt)
  1814. {
  1815. int i;
  1816. /* initialize CDB */
  1817. for (i = 0; i < src_cnt; i++) {
  1818. ppc440spe_adma_dma2rxor_prep_src(desc, &desc->rxor_cursor, i,
  1819. desc->src_cnt, (u32)src[i]);
  1820. }
  1821. }
  1822. /**
  1823. * ppc440spe_dma01_prep_mult -
  1824. * for Q operation where destination is also the source
  1825. */
  1826. static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_mult(
  1827. struct ppc440spe_adma_chan *ppc440spe_chan,
  1828. dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
  1829. const unsigned char *scf, size_t len, unsigned long flags)
  1830. {
  1831. struct ppc440spe_adma_desc_slot *sw_desc = NULL;
  1832. unsigned long op = 0;
  1833. int slot_cnt;
  1834. set_bit(PPC440SPE_DESC_WXOR, &op);
  1835. slot_cnt = 2;
  1836. spin_lock_bh(&ppc440spe_chan->lock);
  1837. /* use WXOR, each descriptor occupies one slot */
  1838. sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
  1839. if (sw_desc) {
  1840. struct ppc440spe_adma_chan *chan;
  1841. struct ppc440spe_adma_desc_slot *iter;
  1842. struct dma_cdb *hw_desc;
  1843. chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
  1844. set_bits(op, &sw_desc->flags);
  1845. sw_desc->src_cnt = src_cnt;
  1846. sw_desc->dst_cnt = dst_cnt;
  1847. /* First descriptor, zero data in the destination and copy it
  1848. * to q page using MULTICAST transfer.
  1849. */
  1850. iter = list_first_entry(&sw_desc->group_list,
  1851. struct ppc440spe_adma_desc_slot,
  1852. chain_node);
  1853. memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
  1854. /* set 'next' pointer */
  1855. iter->hw_next = list_entry(iter->chain_node.next,
  1856. struct ppc440spe_adma_desc_slot,
  1857. chain_node);
  1858. clear_bit(PPC440SPE_DESC_INT, &iter->flags);
  1859. hw_desc = iter->hw_desc;
  1860. hw_desc->opc = DMA_CDB_OPC_MULTICAST;
  1861. ppc440spe_desc_set_dest_addr(iter, chan,
  1862. DMA_CUED_XOR_BASE, dst[0], 0);
  1863. ppc440spe_desc_set_dest_addr(iter, chan, 0, dst[1], 1);
  1864. ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
  1865. src[0]);
  1866. ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
  1867. iter->unmap_len = len;
  1868. /*
  1869. * Second descriptor, multiply data from the q page
  1870. * and store the result in real destination.
  1871. */
  1872. iter = list_first_entry(&iter->chain_node,
  1873. struct ppc440spe_adma_desc_slot,
  1874. chain_node);
  1875. memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
  1876. iter->hw_next = NULL;
  1877. if (flags & DMA_PREP_INTERRUPT)
  1878. set_bit(PPC440SPE_DESC_INT, &iter->flags);
  1879. else
  1880. clear_bit(PPC440SPE_DESC_INT, &iter->flags);
  1881. hw_desc = iter->hw_desc;
  1882. hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
  1883. ppc440spe_desc_set_src_addr(iter, chan, 0,
  1884. DMA_CUED_XOR_HB, dst[1]);
  1885. ppc440spe_desc_set_dest_addr(iter, chan,
  1886. DMA_CUED_XOR_BASE, dst[0], 0);
  1887. ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
  1888. DMA_CDB_SG_DST1, scf[0]);
  1889. ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
  1890. iter->unmap_len = len;
  1891. sw_desc->async_tx.flags = flags;
  1892. }
  1893. spin_unlock_bh(&ppc440spe_chan->lock);
  1894. return sw_desc;
  1895. }
  1896. /**
  1897. * ppc440spe_dma01_prep_sum_product -
  1898. * Dx = A*(P+Pxy) + B*(Q+Qxy) operation where destination is also
  1899. * the source.
  1900. */
  1901. static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_sum_product(
  1902. struct ppc440spe_adma_chan *ppc440spe_chan,
  1903. dma_addr_t *dst, dma_addr_t *src, int src_cnt,
  1904. const unsigned char *scf, size_t len, unsigned long flags)
  1905. {
  1906. struct ppc440spe_adma_desc_slot *sw_desc = NULL;
  1907. unsigned long op = 0;
  1908. int slot_cnt;
  1909. set_bit(PPC440SPE_DESC_WXOR, &op);
  1910. slot_cnt = 3;
  1911. spin_lock_bh(&ppc440spe_chan->lock);
  1912. /* WXOR, each descriptor occupies one slot */
  1913. sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
  1914. if (sw_desc) {
  1915. struct ppc440spe_adma_chan *chan;
  1916. struct ppc440spe_adma_desc_slot *iter;
  1917. struct dma_cdb *hw_desc;
  1918. chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
  1919. set_bits(op, &sw_desc->flags);
  1920. sw_desc->src_cnt = src_cnt;
  1921. sw_desc->dst_cnt = 1;
  1922. /* 1st descriptor, src[1] data to q page and zero destination */
  1923. iter = list_first_entry(&sw_desc->group_list,
  1924. struct ppc440spe_adma_desc_slot,
  1925. chain_node);
  1926. memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
  1927. iter->hw_next = list_entry(iter->chain_node.next,
  1928. struct ppc440spe_adma_desc_slot,
  1929. chain_node);
  1930. clear_bit(PPC440SPE_DESC_INT, &iter->flags);
  1931. hw_desc = iter->hw_desc;
  1932. hw_desc->opc = DMA_CDB_OPC_MULTICAST;
  1933. ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
  1934. *dst, 0);
  1935. ppc440spe_desc_set_dest_addr(iter, chan, 0,
  1936. ppc440spe_chan->qdest, 1);
  1937. ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
  1938. src[1]);
  1939. ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
  1940. iter->unmap_len = len;
  1941. /* 2nd descriptor, multiply src[1] data and store the
  1942. * result in destination */
  1943. iter = list_first_entry(&iter->chain_node,
  1944. struct ppc440spe_adma_desc_slot,
  1945. chain_node);
  1946. memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
  1947. /* set 'next' pointer */
  1948. iter->hw_next = list_entry(iter->chain_node.next,
  1949. struct ppc440spe_adma_desc_slot,
  1950. chain_node);
  1951. if (flags & DMA_PREP_INTERRUPT)
  1952. set_bit(PPC440SPE_DESC_INT, &iter->flags);
  1953. else
  1954. clear_bit(PPC440SPE_DESC_INT, &iter->flags);
  1955. hw_desc = iter->hw_desc;
  1956. hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
  1957. ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
  1958. ppc440spe_chan->qdest);
  1959. ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
  1960. *dst, 0);
  1961. ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
  1962. DMA_CDB_SG_DST1, scf[1]);
  1963. ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
  1964. iter->unmap_len = len;
  1965. /*
  1966. * 3rd descriptor, multiply src[0] data and xor it
  1967. * with destination
  1968. */
  1969. iter = list_first_entry(&iter->chain_node,
  1970. struct ppc440spe_adma_desc_slot,
  1971. chain_node);
  1972. memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
  1973. iter->hw_next = NULL;
  1974. if (flags & DMA_PREP_INTERRUPT)
  1975. set_bit(PPC440SPE_DESC_INT, &iter->flags);
  1976. else
  1977. clear_bit(PPC440SPE_DESC_INT, &iter->flags);
  1978. hw_desc = iter->hw_desc;
  1979. hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
  1980. ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
  1981. src[0]);
  1982. ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
  1983. *dst, 0);
  1984. ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
  1985. DMA_CDB_SG_DST1, scf[0]);
  1986. ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
  1987. iter->unmap_len = len;
  1988. sw_desc->async_tx.flags = flags;
  1989. }
  1990. spin_unlock_bh(&ppc440spe_chan->lock);
  1991. return sw_desc;
  1992. }
  1993. static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_pq(
  1994. struct ppc440spe_adma_chan *ppc440spe_chan,
  1995. dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
  1996. const unsigned char *scf, size_t len, unsigned long flags)
  1997. {
  1998. int slot_cnt;
  1999. struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter;
  2000. unsigned long op = 0;
  2001. unsigned char mult = 1;
  2002. pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n",
  2003. __func__, dst_cnt, src_cnt, len);
  2004. /* select operations WXOR/RXOR depending on the
  2005. * source addresses of operators and the number
  2006. * of destinations (RXOR support only Q-parity calculations)
  2007. */
  2008. set_bit(PPC440SPE_DESC_WXOR, &op);
  2009. if (!test_and_set_bit(PPC440SPE_RXOR_RUN, &ppc440spe_rxor_state)) {
  2010. /* no active RXOR;
  2011. * do RXOR if:
  2012. * - there are more than 1 source,
  2013. * - len is aligned on 512-byte boundary,
  2014. * - source addresses fit to one of 4 possible regions.
  2015. */
  2016. if (src_cnt > 1 &&
  2017. !(len & MQ0_CF2H_RXOR_BS_MASK) &&
  2018. (src[0] + len) == src[1]) {
  2019. /* may do RXOR R1 R2 */
  2020. set_bit(PPC440SPE_DESC_RXOR, &op);
  2021. if (src_cnt != 2) {
  2022. /* may try to enhance region of RXOR */
  2023. if ((src[1] + len) == src[2]) {
  2024. /* do RXOR R1 R2 R3 */
  2025. set_bit(PPC440SPE_DESC_RXOR123,
  2026. &op);
  2027. } else if ((src[1] + len * 2) == src[2]) {
  2028. /* do RXOR R1 R2 R4 */
  2029. set_bit(PPC440SPE_DESC_RXOR124, &op);
  2030. } else if ((src[1] + len * 3) == src[2]) {
  2031. /* do RXOR R1 R2 R5 */
  2032. set_bit(PPC440SPE_DESC_RXOR125,
  2033. &op);
  2034. } else {
  2035. /* do RXOR R1 R2 */
  2036. set_bit(PPC440SPE_DESC_RXOR12,
  2037. &op);
  2038. }
  2039. } else {
  2040. /* do RXOR R1 R2 */
  2041. set_bit(PPC440SPE_DESC_RXOR12, &op);
  2042. }
  2043. }
  2044. if (!test_bit(PPC440SPE_DESC_RXOR, &op)) {
  2045. /* can not do this operation with RXOR */
  2046. clear_bit(PPC440SPE_RXOR_RUN,
  2047. &ppc440spe_rxor_state);
  2048. } else {
  2049. /* can do; set block size right now */
  2050. ppc440spe_desc_set_rxor_block_size(len);
  2051. }
  2052. }
  2053. /* Number of necessary slots depends on operation type selected */
  2054. if (!test_bit(PPC440SPE_DESC_RXOR, &op)) {
  2055. /* This is a WXOR only chain. Need descriptors for each
  2056. * source to GF-XOR them with WXOR, and need descriptors
  2057. * for each destination to zero them with WXOR
  2058. */
  2059. slot_cnt = src_cnt;
  2060. if (flags & DMA_PREP_ZERO_P) {
  2061. slot_cnt++;
  2062. set_bit(PPC440SPE_ZERO_P, &op);
  2063. }
  2064. if (flags & DMA_PREP_ZERO_Q) {
  2065. slot_cnt++;
  2066. set_bit(PPC440SPE_ZERO_Q, &op);
  2067. }
  2068. } else {
  2069. /* Need 1/2 descriptor for RXOR operation, and
  2070. * need (src_cnt - (2 or 3)) for WXOR of sources
  2071. * remained (if any)
  2072. */
  2073. slot_cnt = dst_cnt;
  2074. if (flags & DMA_PREP_ZERO_P)
  2075. set_bit(PPC440SPE_ZERO_P, &op);
  2076. if (flags & DMA_PREP_ZERO_Q)
  2077. set_bit(PPC440SPE_ZERO_Q, &op);
  2078. if (test_bit(PPC440SPE_DESC_RXOR12, &op))
  2079. slot_cnt += src_cnt - 2;
  2080. else
  2081. slot_cnt += src_cnt - 3;
  2082. /* Thus we have either RXOR only chain or
  2083. * mixed RXOR/WXOR
  2084. */
  2085. if (slot_cnt == dst_cnt)
  2086. /* RXOR only chain */
  2087. clear_bit(PPC440SPE_DESC_WXOR, &op);
  2088. }
  2089. spin_lock_bh(&ppc440spe_chan->lock);
  2090. /* for both RXOR/WXOR each descriptor occupies one slot */
  2091. sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
  2092. if (sw_desc) {
  2093. ppc440spe_desc_init_dma01pq(sw_desc, dst_cnt, src_cnt,
  2094. flags, op);
  2095. /* setup dst/src/mult */
  2096. pr_debug("%s: set dst descriptor 0, 1: 0x%016llx, 0x%016llx\n",
  2097. __func__, dst[0], dst[1]);
  2098. ppc440spe_adma_pq_set_dest(sw_desc, dst, flags);
  2099. while (src_cnt--) {
  2100. ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt],
  2101. src_cnt);
  2102. /* NOTE: "Multi = 0 is equivalent to = 1" as it
  2103. * stated in 440SPSPe_RAID6_Addendum_UM_1_17.pdf
  2104. * doesn't work for RXOR with DMA0/1! Instead, multi=0
  2105. * leads to zeroing source data after RXOR.
  2106. * So, for P case set-up mult=1 explicitly.
  2107. */
  2108. if (!(flags & DMA_PREP_PQ_DISABLE_Q))
  2109. mult = scf[src_cnt];
  2110. ppc440spe_adma_pq_set_src_mult(sw_desc,
  2111. mult, src_cnt, dst_cnt - 1);
  2112. }
  2113. /* Setup byte count foreach slot just allocated */
  2114. sw_desc->async_tx.flags = flags;
  2115. list_for_each_entry(iter, &sw_desc->group_list,
  2116. chain_node) {
  2117. ppc440spe_desc_set_byte_count(iter,
  2118. ppc440spe_chan, len);
  2119. iter->unmap_len = len;
  2120. }
  2121. }
  2122. spin_unlock_bh(&ppc440spe_chan->lock);
  2123. return sw_desc;
  2124. }
  2125. static struct ppc440spe_adma_desc_slot *ppc440spe_dma2_prep_pq(
  2126. struct ppc440spe_adma_chan *ppc440spe_chan,
  2127. dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
  2128. const unsigned char *scf, size_t len, unsigned long flags)
  2129. {
  2130. int slot_cnt, descs_per_op;
  2131. struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter;
  2132. unsigned long op = 0;
  2133. unsigned char mult = 1;
  2134. BUG_ON(!dst_cnt);
  2135. /*pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n",
  2136. __func__, dst_cnt, src_cnt, len);*/
  2137. spin_lock_bh(&ppc440spe_chan->lock);
  2138. descs_per_op = ppc440spe_dma2_pq_slot_count(src, src_cnt, len);
  2139. if (descs_per_op < 0) {
  2140. spin_unlock_bh(&ppc440spe_chan->lock);
  2141. return NULL;
  2142. }
  2143. /* depending on number of sources we have 1 or 2 RXOR chains */
  2144. slot_cnt = descs_per_op * dst_cnt;
  2145. sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
  2146. if (sw_desc) {
  2147. op = slot_cnt;
  2148. sw_desc->async_tx.flags = flags;
  2149. list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
  2150. ppc440spe_desc_init_dma2pq(iter, dst_cnt, src_cnt,
  2151. --op ? 0 : flags);
  2152. ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
  2153. len);
  2154. iter->unmap_len = len;
  2155. ppc440spe_init_rxor_cursor(&(iter->rxor_cursor));
  2156. iter->rxor_cursor.len = len;
  2157. iter->descs_per_op = descs_per_op;
  2158. }
  2159. op = 0;
  2160. list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
  2161. op++;
  2162. if (op % descs_per_op == 0)
  2163. ppc440spe_adma_init_dma2rxor_slot(iter, src,
  2164. src_cnt);
  2165. if (likely(!list_is_last(&iter->chain_node,
  2166. &sw_desc->group_list))) {
  2167. /* set 'next' pointer */
  2168. iter->hw_next =
  2169. list_entry(iter->chain_node.next,
  2170. struct ppc440spe_adma_desc_slot,
  2171. chain_node);
  2172. ppc440spe_xor_set_link(iter, iter->hw_next);
  2173. } else {
  2174. /* this is the last descriptor. */
  2175. iter->hw_next = NULL;
  2176. }
  2177. }
  2178. /* fixup head descriptor */
  2179. sw_desc->dst_cnt = dst_cnt;
  2180. if (flags & DMA_PREP_ZERO_P)
  2181. set_bit(PPC440SPE_ZERO_P, &sw_desc->flags);
  2182. if (flags & DMA_PREP_ZERO_Q)
  2183. set_bit(PPC440SPE_ZERO_Q, &sw_desc->flags);
  2184. /* setup dst/src/mult */
  2185. ppc440spe_adma_pq_set_dest(sw_desc, dst, flags);
  2186. while (src_cnt--) {
  2187. /* handle descriptors (if dst_cnt == 2) inside
  2188. * the ppc440spe_adma_pq_set_srcxxx() functions
  2189. */
  2190. ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt],
  2191. src_cnt);
  2192. if (!(flags & DMA_PREP_PQ_DISABLE_Q))
  2193. mult = scf[src_cnt];
  2194. ppc440spe_adma_pq_set_src_mult(sw_desc,
  2195. mult, src_cnt, dst_cnt - 1);
  2196. }
  2197. }
  2198. spin_unlock_bh(&ppc440spe_chan->lock);
  2199. ppc440spe_desc_set_rxor_block_size(len);
  2200. return sw_desc;
  2201. }
  2202. /**
  2203. * ppc440spe_adma_prep_dma_pq - prepare CDB (group) for a GF-XOR operation
  2204. */
  2205. static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pq(
  2206. struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
  2207. unsigned int src_cnt, const unsigned char *scf,
  2208. size_t len, unsigned long flags)
  2209. {
  2210. struct ppc440spe_adma_chan *ppc440spe_chan;
  2211. struct ppc440spe_adma_desc_slot *sw_desc = NULL;
  2212. int dst_cnt = 0;
  2213. ppc440spe_chan = to_ppc440spe_adma_chan(chan);
  2214. ADMA_LL_DBG(prep_dma_pq_dbg(ppc440spe_chan->device->id,
  2215. dst, src, src_cnt));
  2216. BUG_ON(!len);
  2217. BUG_ON(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
  2218. BUG_ON(!src_cnt);
  2219. if (src_cnt == 1 && dst[1] == src[0]) {
  2220. dma_addr_t dest[2];
  2221. /* dst[1] is real destination (Q) */
  2222. dest[0] = dst[1];
  2223. /* this is the page to multicast source data to */
  2224. dest[1] = ppc440spe_chan->qdest;
  2225. sw_desc = ppc440spe_dma01_prep_mult(ppc440spe_chan,
  2226. dest, 2, src, src_cnt, scf, len, flags);
  2227. return sw_desc ? &sw_desc->async_tx : NULL;
  2228. }
  2229. if (src_cnt == 2 && dst[1] == src[1]) {
  2230. sw_desc = ppc440spe_dma01_prep_sum_product(ppc440spe_chan,
  2231. &dst[1], src, 2, scf, len, flags);
  2232. return sw_desc ? &sw_desc->async_tx : NULL;
  2233. }
  2234. if (!(flags & DMA_PREP_PQ_DISABLE_P)) {
  2235. BUG_ON(!dst[0]);
  2236. dst_cnt++;
  2237. flags |= DMA_PREP_ZERO_P;
  2238. }
  2239. if (!(flags & DMA_PREP_PQ_DISABLE_Q)) {
  2240. BUG_ON(!dst[1]);
  2241. dst_cnt++;
  2242. flags |= DMA_PREP_ZERO_Q;
  2243. }
  2244. BUG_ON(!dst_cnt);
  2245. dev_dbg(ppc440spe_chan->device->common.dev,
  2246. "ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n",
  2247. ppc440spe_chan->device->id, __func__, src_cnt, len,
  2248. flags & DMA_PREP_INTERRUPT ? 1 : 0);
  2249. switch (ppc440spe_chan->device->id) {
  2250. case PPC440SPE_DMA0_ID:
  2251. case PPC440SPE_DMA1_ID:
  2252. sw_desc = ppc440spe_dma01_prep_pq(ppc440spe_chan,
  2253. dst, dst_cnt, src, src_cnt, scf,
  2254. len, flags);
  2255. break;
  2256. case PPC440SPE_XOR_ID:
  2257. sw_desc = ppc440spe_dma2_prep_pq(ppc440spe_chan,
  2258. dst, dst_cnt, src, src_cnt, scf,
  2259. len, flags);
  2260. break;
  2261. }
  2262. return sw_desc ? &sw_desc->async_tx : NULL;
  2263. }
  2264. /**
  2265. * ppc440spe_adma_prep_dma_pqzero_sum - prepare CDB group for
  2266. * a PQ_ZERO_SUM operation
  2267. */
  2268. static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pqzero_sum(
  2269. struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
  2270. unsigned int src_cnt, const unsigned char *scf, size_t len,
  2271. enum sum_check_flags *pqres, unsigned long flags)
  2272. {
  2273. struct ppc440spe_adma_chan *ppc440spe_chan;
  2274. struct ppc440spe_adma_desc_slot *sw_desc, *iter;
  2275. dma_addr_t pdest, qdest;
  2276. int slot_cnt, slots_per_op, idst, dst_cnt;
  2277. ppc440spe_chan = to_ppc440spe_adma_chan(chan);
  2278. if (flags & DMA_PREP_PQ_DISABLE_P)
  2279. pdest = 0;
  2280. else
  2281. pdest = pq[0];
  2282. if (flags & DMA_PREP_PQ_DISABLE_Q)
  2283. qdest = 0;
  2284. else
  2285. qdest = pq[1];
  2286. ADMA_LL_DBG(prep_dma_pqzero_sum_dbg(ppc440spe_chan->device->id,
  2287. src, src_cnt, scf));
  2288. /* Always use WXOR for P/Q calculations (two destinations).
  2289. * Need 1 or 2 extra slots to verify results are zero.
  2290. */
  2291. idst = dst_cnt = (pdest && qdest) ? 2 : 1;
  2292. /* One additional slot per destination to clone P/Q
  2293. * before calculation (we have to preserve destinations).
  2294. */
  2295. slot_cnt = src_cnt + dst_cnt * 2;
  2296. slots_per_op = 1;
  2297. spin_lock_bh(&ppc440spe_chan->lock);
  2298. sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
  2299. slots_per_op);
  2300. if (sw_desc) {
  2301. ppc440spe_desc_init_dma01pqzero_sum(sw_desc, dst_cnt, src_cnt);
  2302. /* Setup byte count for each slot just allocated */
  2303. sw_desc->async_tx.flags = flags;
  2304. list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
  2305. ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
  2306. len);
  2307. iter->unmap_len = len;
  2308. }
  2309. if (pdest) {
  2310. struct dma_cdb *hw_desc;
  2311. struct ppc440spe_adma_chan *chan;
  2312. iter = sw_desc->group_head;
  2313. chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
  2314. memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
  2315. iter->hw_next = list_entry(iter->chain_node.next,
  2316. struct ppc440spe_adma_desc_slot,
  2317. chain_node);
  2318. hw_desc = iter->hw_desc;
  2319. hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
  2320. iter->src_cnt = 0;
  2321. iter->dst_cnt = 0;
  2322. ppc440spe_desc_set_dest_addr(iter, chan, 0,
  2323. ppc440spe_chan->pdest, 0);
  2324. ppc440spe_desc_set_src_addr(iter, chan, 0, 0, pdest);
  2325. ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
  2326. len);
  2327. iter->unmap_len = 0;
  2328. /* override pdest to preserve original P */
  2329. pdest = ppc440spe_chan->pdest;
  2330. }
  2331. if (qdest) {
  2332. struct dma_cdb *hw_desc;
  2333. struct ppc440spe_adma_chan *chan;
  2334. iter = list_first_entry(&sw_desc->group_list,
  2335. struct ppc440spe_adma_desc_slot,
  2336. chain_node);
  2337. chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
  2338. if (pdest) {
  2339. iter = list_entry(iter->chain_node.next,
  2340. struct ppc440spe_adma_desc_slot,
  2341. chain_node);
  2342. }
  2343. memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
  2344. iter->hw_next = list_entry(iter->chain_node.next,
  2345. struct ppc440spe_adma_desc_slot,
  2346. chain_node);
  2347. hw_desc = iter->hw_desc;
  2348. hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
  2349. iter->src_cnt = 0;
  2350. iter->dst_cnt = 0;
  2351. ppc440spe_desc_set_dest_addr(iter, chan, 0,
  2352. ppc440spe_chan->qdest, 0);
  2353. ppc440spe_desc_set_src_addr(iter, chan, 0, 0, qdest);
  2354. ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
  2355. len);
  2356. iter->unmap_len = 0;
  2357. /* override qdest to preserve original Q */
  2358. qdest = ppc440spe_chan->qdest;
  2359. }
  2360. /* Setup destinations for P/Q ops */
  2361. ppc440spe_adma_pqzero_sum_set_dest(sw_desc, pdest, qdest);
  2362. /* Setup zero QWORDs into DCHECK CDBs */
  2363. idst = dst_cnt;
  2364. list_for_each_entry_reverse(iter, &sw_desc->group_list,
  2365. chain_node) {
  2366. /*
  2367. * The last CDB corresponds to Q-parity check,
  2368. * the one before last CDB corresponds
  2369. * P-parity check
  2370. */
  2371. if (idst == DMA_DEST_MAX_NUM) {
  2372. if (idst == dst_cnt) {
  2373. set_bit(PPC440SPE_DESC_QCHECK,
  2374. &iter->flags);
  2375. } else {
  2376. set_bit(PPC440SPE_DESC_PCHECK,
  2377. &iter->flags);
  2378. }
  2379. } else {
  2380. if (qdest) {
  2381. set_bit(PPC440SPE_DESC_QCHECK,
  2382. &iter->flags);
  2383. } else {
  2384. set_bit(PPC440SPE_DESC_PCHECK,
  2385. &iter->flags);
  2386. }
  2387. }
  2388. iter->xor_check_result = pqres;
  2389. /*
  2390. * set it to zero, if check fail then result will
  2391. * be updated
  2392. */
  2393. *iter->xor_check_result = 0;
  2394. ppc440spe_desc_set_dcheck(iter, ppc440spe_chan,
  2395. ppc440spe_qword);
  2396. if (!(--dst_cnt))
  2397. break;
  2398. }
  2399. /* Setup sources and mults for P/Q ops */
  2400. list_for_each_entry_continue_reverse(iter, &sw_desc->group_list,
  2401. chain_node) {
  2402. struct ppc440spe_adma_chan *chan;
  2403. u32 mult_dst;
  2404. chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
  2405. ppc440spe_desc_set_src_addr(iter, chan, 0,
  2406. DMA_CUED_XOR_HB,
  2407. src[src_cnt - 1]);
  2408. if (qdest) {
  2409. mult_dst = (dst_cnt - 1) ? DMA_CDB_SG_DST2 :
  2410. DMA_CDB_SG_DST1;
  2411. ppc440spe_desc_set_src_mult(iter, chan,
  2412. DMA_CUED_MULT1_OFF,
  2413. mult_dst,
  2414. scf[src_cnt - 1]);
  2415. }
  2416. if (!(--src_cnt))
  2417. break;
  2418. }
  2419. }
  2420. spin_unlock_bh(&ppc440spe_chan->lock);
  2421. return sw_desc ? &sw_desc->async_tx : NULL;
  2422. }
  2423. /**
  2424. * ppc440spe_adma_prep_dma_xor_zero_sum - prepare CDB group for
  2425. * XOR ZERO_SUM operation
  2426. */
  2427. static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor_zero_sum(
  2428. struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
  2429. size_t len, enum sum_check_flags *result, unsigned long flags)
  2430. {
  2431. struct dma_async_tx_descriptor *tx;
  2432. dma_addr_t pq[2];
  2433. /* validate P, disable Q */
  2434. pq[0] = src[0];
  2435. pq[1] = 0;
  2436. flags |= DMA_PREP_PQ_DISABLE_Q;
  2437. tx = ppc440spe_adma_prep_dma_pqzero_sum(chan, pq, &src[1],
  2438. src_cnt - 1, 0, len,
  2439. result, flags);
  2440. return tx;
  2441. }
  2442. /**
  2443. * ppc440spe_adma_set_dest - set destination address into descriptor
  2444. */
  2445. static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *sw_desc,
  2446. dma_addr_t addr, int index)
  2447. {
  2448. struct ppc440spe_adma_chan *chan;
  2449. BUG_ON(index >= sw_desc->dst_cnt);
  2450. chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
  2451. switch (chan->device->id) {
  2452. case PPC440SPE_DMA0_ID:
  2453. case PPC440SPE_DMA1_ID:
  2454. /* to do: support transfers lengths >
  2455. * PPC440SPE_ADMA_DMA/XOR_MAX_BYTE_COUNT
  2456. */
  2457. ppc440spe_desc_set_dest_addr(sw_desc->group_head,
  2458. chan, 0, addr, index);
  2459. break;
  2460. case PPC440SPE_XOR_ID:
  2461. sw_desc = ppc440spe_get_group_entry(sw_desc, index);
  2462. ppc440spe_desc_set_dest_addr(sw_desc,
  2463. chan, 0, addr, index);
  2464. break;
  2465. }
  2466. }
  2467. static void ppc440spe_adma_pq_zero_op(struct ppc440spe_adma_desc_slot *iter,
  2468. struct ppc440spe_adma_chan *chan, dma_addr_t addr)
  2469. {
  2470. /* To clear destinations update the descriptor
  2471. * (P or Q depending on index) as follows:
  2472. * addr is destination (0 corresponds to SG2):
  2473. */
  2474. ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE, addr, 0);
  2475. /* ... and the addr is source: */
  2476. ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB, addr);
  2477. /* addr is always SG2 then the mult is always DST1 */
  2478. ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
  2479. DMA_CDB_SG_DST1, 1);
  2480. }
  2481. /**
  2482. * ppc440spe_adma_pq_set_dest - set destination address into descriptor
  2483. * for the PQXOR operation
  2484. */
  2485. static void ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *sw_desc,
  2486. dma_addr_t *addrs, unsigned long flags)
  2487. {
  2488. struct ppc440spe_adma_desc_slot *iter;
  2489. struct ppc440spe_adma_chan *chan;
  2490. dma_addr_t paddr, qaddr;
  2491. dma_addr_t addr = 0, ppath, qpath;
  2492. int index = 0, i;
  2493. chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
  2494. if (flags & DMA_PREP_PQ_DISABLE_P)
  2495. paddr = 0;
  2496. else
  2497. paddr = addrs[0];
  2498. if (flags & DMA_PREP_PQ_DISABLE_Q)
  2499. qaddr = 0;
  2500. else
  2501. qaddr = addrs[1];
  2502. if (!paddr || !qaddr)
  2503. addr = paddr ? paddr : qaddr;
  2504. switch (chan->device->id) {
  2505. case PPC440SPE_DMA0_ID:
  2506. case PPC440SPE_DMA1_ID:
  2507. /* walk through the WXOR source list and set P/Q-destinations
  2508. * for each slot:
  2509. */
  2510. if (!test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
  2511. /* This is WXOR-only chain; may have 1/2 zero descs */
  2512. if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
  2513. index++;
  2514. if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
  2515. index++;
  2516. iter = ppc440spe_get_group_entry(sw_desc, index);
  2517. if (addr) {
  2518. /* one destination */
  2519. list_for_each_entry_from(iter,
  2520. &sw_desc->group_list, chain_node)
  2521. ppc440spe_desc_set_dest_addr(iter, chan,
  2522. DMA_CUED_XOR_BASE, addr, 0);
  2523. } else {
  2524. /* two destinations */
  2525. list_for_each_entry_from(iter,
  2526. &sw_desc->group_list, chain_node) {
  2527. ppc440spe_desc_set_dest_addr(iter, chan,
  2528. DMA_CUED_XOR_BASE, paddr, 0);
  2529. ppc440spe_desc_set_dest_addr(iter, chan,
  2530. DMA_CUED_XOR_BASE, qaddr, 1);
  2531. }
  2532. }
  2533. if (index) {
  2534. /* To clear destinations update the descriptor
  2535. * (1st,2nd, or both depending on flags)
  2536. */
  2537. index = 0;
  2538. if (test_bit(PPC440SPE_ZERO_P,
  2539. &sw_desc->flags)) {
  2540. iter = ppc440spe_get_group_entry(
  2541. sw_desc, index++);
  2542. ppc440spe_adma_pq_zero_op(iter, chan,
  2543. paddr);
  2544. }
  2545. if (test_bit(PPC440SPE_ZERO_Q,
  2546. &sw_desc->flags)) {
  2547. iter = ppc440spe_get_group_entry(
  2548. sw_desc, index++);
  2549. ppc440spe_adma_pq_zero_op(iter, chan,
  2550. qaddr);
  2551. }
  2552. return;
  2553. }
  2554. } else {
  2555. /* This is RXOR-only or RXOR/WXOR mixed chain */
  2556. /* If we want to include destination into calculations,
  2557. * then make dest addresses cued with mult=1 (XOR).
  2558. */
  2559. ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ?
  2560. DMA_CUED_XOR_HB :
  2561. DMA_CUED_XOR_BASE |
  2562. (1 << DMA_CUED_MULT1_OFF);
  2563. qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ?
  2564. DMA_CUED_XOR_HB :
  2565. DMA_CUED_XOR_BASE |
  2566. (1 << DMA_CUED_MULT1_OFF);
  2567. /* Setup destination(s) in RXOR slot(s) */
  2568. iter = ppc440spe_get_group_entry(sw_desc, index++);
  2569. ppc440spe_desc_set_dest_addr(iter, chan,
  2570. paddr ? ppath : qpath,
  2571. paddr ? paddr : qaddr, 0);
  2572. if (!addr) {
  2573. /* two destinations */
  2574. iter = ppc440spe_get_group_entry(sw_desc,
  2575. index++);
  2576. ppc440spe_desc_set_dest_addr(iter, chan,
  2577. qpath, qaddr, 0);
  2578. }
  2579. if (test_bit(PPC440SPE_DESC_WXOR, &sw_desc->flags)) {
  2580. /* Setup destination(s) in remaining WXOR
  2581. * slots
  2582. */
  2583. iter = ppc440spe_get_group_entry(sw_desc,
  2584. index);
  2585. if (addr) {
  2586. /* one destination */
  2587. list_for_each_entry_from(iter,
  2588. &sw_desc->group_list,
  2589. chain_node)
  2590. ppc440spe_desc_set_dest_addr(
  2591. iter, chan,
  2592. DMA_CUED_XOR_BASE,
  2593. addr, 0);
  2594. } else {
  2595. /* two destinations */
  2596. list_for_each_entry_from(iter,
  2597. &sw_desc->group_list,
  2598. chain_node) {
  2599. ppc440spe_desc_set_dest_addr(
  2600. iter, chan,
  2601. DMA_CUED_XOR_BASE,
  2602. paddr, 0);
  2603. ppc440spe_desc_set_dest_addr(
  2604. iter, chan,
  2605. DMA_CUED_XOR_BASE,
  2606. qaddr, 1);
  2607. }
  2608. }
  2609. }
  2610. }
  2611. break;
  2612. case PPC440SPE_XOR_ID:
  2613. /* DMA2 descriptors have only 1 destination, so there are
  2614. * two chains - one for each dest.
  2615. * If we want to include destination into calculations,
  2616. * then make dest addresses cued with mult=1 (XOR).
  2617. */
  2618. ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ?
  2619. DMA_CUED_XOR_HB :
  2620. DMA_CUED_XOR_BASE |
  2621. (1 << DMA_CUED_MULT1_OFF);
  2622. qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ?
  2623. DMA_CUED_XOR_HB :
  2624. DMA_CUED_XOR_BASE |
  2625. (1 << DMA_CUED_MULT1_OFF);
  2626. iter = ppc440spe_get_group_entry(sw_desc, 0);
  2627. for (i = 0; i < sw_desc->descs_per_op; i++) {
  2628. ppc440spe_desc_set_dest_addr(iter, chan,
  2629. paddr ? ppath : qpath,
  2630. paddr ? paddr : qaddr, 0);
  2631. iter = list_entry(iter->chain_node.next,
  2632. struct ppc440spe_adma_desc_slot,
  2633. chain_node);
  2634. }
  2635. if (!addr) {
  2636. /* Two destinations; setup Q here */
  2637. iter = ppc440spe_get_group_entry(sw_desc,
  2638. sw_desc->descs_per_op);
  2639. for (i = 0; i < sw_desc->descs_per_op; i++) {
  2640. ppc440spe_desc_set_dest_addr(iter,
  2641. chan, qpath, qaddr, 0);
  2642. iter = list_entry(iter->chain_node.next,
  2643. struct ppc440spe_adma_desc_slot,
  2644. chain_node);
  2645. }
  2646. }
  2647. break;
  2648. }
  2649. }
  2650. /**
  2651. * ppc440spe_adma_pq_zero_sum_set_dest - set destination address into descriptor
  2652. * for the PQ_ZERO_SUM operation
  2653. */
  2654. static void ppc440spe_adma_pqzero_sum_set_dest(
  2655. struct ppc440spe_adma_desc_slot *sw_desc,
  2656. dma_addr_t paddr, dma_addr_t qaddr)
  2657. {
  2658. struct ppc440spe_adma_desc_slot *iter, *end;
  2659. struct ppc440spe_adma_chan *chan;
  2660. dma_addr_t addr = 0;
  2661. int idx;
  2662. chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
  2663. /* walk through the WXOR source list and set P/Q-destinations
  2664. * for each slot
  2665. */
  2666. idx = (paddr && qaddr) ? 2 : 1;
  2667. /* set end */
  2668. list_for_each_entry_reverse(end, &sw_desc->group_list,
  2669. chain_node) {
  2670. if (!(--idx))
  2671. break;
  2672. }
  2673. /* set start */
  2674. idx = (paddr && qaddr) ? 2 : 1;
  2675. iter = ppc440spe_get_group_entry(sw_desc, idx);
  2676. if (paddr && qaddr) {
  2677. /* two destinations */
  2678. list_for_each_entry_from(iter, &sw_desc->group_list,
  2679. chain_node) {
  2680. if (unlikely(iter == end))
  2681. break;
  2682. ppc440spe_desc_set_dest_addr(iter, chan,
  2683. DMA_CUED_XOR_BASE, paddr, 0);
  2684. ppc440spe_desc_set_dest_addr(iter, chan,
  2685. DMA_CUED_XOR_BASE, qaddr, 1);
  2686. }
  2687. } else {
  2688. /* one destination */
  2689. addr = paddr ? paddr : qaddr;
  2690. list_for_each_entry_from(iter, &sw_desc->group_list,
  2691. chain_node) {
  2692. if (unlikely(iter == end))
  2693. break;
  2694. ppc440spe_desc_set_dest_addr(iter, chan,
  2695. DMA_CUED_XOR_BASE, addr, 0);
  2696. }
  2697. }
  2698. /* The remaining descriptors are DATACHECK. These have no need in
  2699. * destination. Actually, these destinations are used there
  2700. * as sources for check operation. So, set addr as source.
  2701. */
  2702. ppc440spe_desc_set_src_addr(end, chan, 0, 0, addr ? addr : paddr);
  2703. if (!addr) {
  2704. end = list_entry(end->chain_node.next,
  2705. struct ppc440spe_adma_desc_slot, chain_node);
  2706. ppc440spe_desc_set_src_addr(end, chan, 0, 0, qaddr);
  2707. }
  2708. }
  2709. /**
  2710. * ppc440spe_desc_set_xor_src_cnt - set source count into descriptor
  2711. */
  2712. static inline void ppc440spe_desc_set_xor_src_cnt(
  2713. struct ppc440spe_adma_desc_slot *desc,
  2714. int src_cnt)
  2715. {
  2716. struct xor_cb *hw_desc = desc->hw_desc;
  2717. hw_desc->cbc &= ~XOR_CDCR_OAC_MSK;
  2718. hw_desc->cbc |= src_cnt;
  2719. }
  2720. /**
  2721. * ppc440spe_adma_pq_set_src - set source address into descriptor
  2722. */
  2723. static void ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *sw_desc,
  2724. dma_addr_t addr, int index)
  2725. {
  2726. struct ppc440spe_adma_chan *chan;
  2727. dma_addr_t haddr = 0;
  2728. struct ppc440spe_adma_desc_slot *iter = NULL;
  2729. chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
  2730. switch (chan->device->id) {
  2731. case PPC440SPE_DMA0_ID:
  2732. case PPC440SPE_DMA1_ID:
  2733. /* DMA0,1 may do: WXOR, RXOR, RXOR+WXORs chain
  2734. */
  2735. if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
  2736. /* RXOR-only or RXOR/WXOR operation */
  2737. int iskip = test_bit(PPC440SPE_DESC_RXOR12,
  2738. &sw_desc->flags) ? 2 : 3;
  2739. if (index == 0) {
  2740. /* 1st slot (RXOR) */
  2741. /* setup sources region (R1-2-3, R1-2-4,
  2742. * or R1-2-5)
  2743. */
  2744. if (test_bit(PPC440SPE_DESC_RXOR12,
  2745. &sw_desc->flags))
  2746. haddr = DMA_RXOR12 <<
  2747. DMA_CUED_REGION_OFF;
  2748. else if (test_bit(PPC440SPE_DESC_RXOR123,
  2749. &sw_desc->flags))
  2750. haddr = DMA_RXOR123 <<
  2751. DMA_CUED_REGION_OFF;
  2752. else if (test_bit(PPC440SPE_DESC_RXOR124,
  2753. &sw_desc->flags))
  2754. haddr = DMA_RXOR124 <<
  2755. DMA_CUED_REGION_OFF;
  2756. else if (test_bit(PPC440SPE_DESC_RXOR125,
  2757. &sw_desc->flags))
  2758. haddr = DMA_RXOR125 <<
  2759. DMA_CUED_REGION_OFF;
  2760. else
  2761. BUG();
  2762. haddr |= DMA_CUED_XOR_BASE;
  2763. iter = ppc440spe_get_group_entry(sw_desc, 0);
  2764. } else if (index < iskip) {
  2765. /* 1st slot (RXOR)
  2766. * shall actually set source address only once
  2767. * instead of first <iskip>
  2768. */
  2769. iter = NULL;
  2770. } else {
  2771. /* 2nd/3d and next slots (WXOR);
  2772. * skip first slot with RXOR
  2773. */
  2774. haddr = DMA_CUED_XOR_HB;
  2775. iter = ppc440spe_get_group_entry(sw_desc,
  2776. index - iskip + sw_desc->dst_cnt);
  2777. }
  2778. } else {
  2779. int znum = 0;
  2780. /* WXOR-only operation; skip first slots with
  2781. * zeroing destinations
  2782. */
  2783. if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
  2784. znum++;
  2785. if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
  2786. znum++;
  2787. haddr = DMA_CUED_XOR_HB;
  2788. iter = ppc440spe_get_group_entry(sw_desc,
  2789. index + znum);
  2790. }
  2791. if (likely(iter)) {
  2792. ppc440spe_desc_set_src_addr(iter, chan, 0, haddr, addr);
  2793. if (!index &&
  2794. test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags) &&
  2795. sw_desc->dst_cnt == 2) {
  2796. /* if we have two destinations for RXOR, then
  2797. * setup source in the second descr too
  2798. */
  2799. iter = ppc440spe_get_group_entry(sw_desc, 1);
  2800. ppc440spe_desc_set_src_addr(iter, chan, 0,
  2801. haddr, addr);
  2802. }
  2803. }
  2804. break;
  2805. case PPC440SPE_XOR_ID:
  2806. /* DMA2 may do Biskup */
  2807. iter = sw_desc->group_head;
  2808. if (iter->dst_cnt == 2) {
  2809. /* both P & Q calculations required; set P src here */
  2810. ppc440spe_adma_dma2rxor_set_src(iter, index, addr);
  2811. /* this is for Q */
  2812. iter = ppc440spe_get_group_entry(sw_desc,
  2813. sw_desc->descs_per_op);
  2814. }
  2815. ppc440spe_adma_dma2rxor_set_src(iter, index, addr);
  2816. break;
  2817. }
  2818. }
  2819. /**
  2820. * ppc440spe_adma_memcpy_xor_set_src - set source address into descriptor
  2821. */
  2822. static void ppc440spe_adma_memcpy_xor_set_src(
  2823. struct ppc440spe_adma_desc_slot *sw_desc,
  2824. dma_addr_t addr, int index)
  2825. {
  2826. struct ppc440spe_adma_chan *chan;
  2827. chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
  2828. sw_desc = sw_desc->group_head;
  2829. if (likely(sw_desc))
  2830. ppc440spe_desc_set_src_addr(sw_desc, chan, index, 0, addr);
  2831. }
  2832. /**
  2833. * ppc440spe_adma_dma2rxor_inc_addr -
  2834. */
  2835. static void ppc440spe_adma_dma2rxor_inc_addr(
  2836. struct ppc440spe_adma_desc_slot *desc,
  2837. struct ppc440spe_rxor *cursor, int index, int src_cnt)
  2838. {
  2839. cursor->addr_count++;
  2840. if (index == src_cnt - 1) {
  2841. ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count);
  2842. } else if (cursor->addr_count == XOR_MAX_OPS) {
  2843. ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count);
  2844. cursor->addr_count = 0;
  2845. cursor->desc_count++;
  2846. }
  2847. }
  2848. /**
  2849. * ppc440spe_adma_dma2rxor_prep_src - setup RXOR types in DMA2 CDB
  2850. */
  2851. static int ppc440spe_adma_dma2rxor_prep_src(
  2852. struct ppc440spe_adma_desc_slot *hdesc,
  2853. struct ppc440spe_rxor *cursor, int index,
  2854. int src_cnt, u32 addr)
  2855. {
  2856. u32 sign;
  2857. struct ppc440spe_adma_desc_slot *desc = hdesc;
  2858. int i;
  2859. for (i = 0; i < cursor->desc_count; i++) {
  2860. desc = list_entry(hdesc->chain_node.next,
  2861. struct ppc440spe_adma_desc_slot,
  2862. chain_node);
  2863. }
  2864. switch (cursor->state) {
  2865. case 0:
  2866. if (addr == cursor->addrl + cursor->len) {
  2867. /* direct RXOR */
  2868. cursor->state = 1;
  2869. cursor->xor_count++;
  2870. if (index == src_cnt-1) {
  2871. ppc440spe_rxor_set_region(desc,
  2872. cursor->addr_count,
  2873. DMA_RXOR12 << DMA_CUED_REGION_OFF);
  2874. ppc440spe_adma_dma2rxor_inc_addr(
  2875. desc, cursor, index, src_cnt);
  2876. }
  2877. } else if (cursor->addrl == addr + cursor->len) {
  2878. /* reverse RXOR */
  2879. cursor->state = 1;
  2880. cursor->xor_count++;
  2881. set_bit(cursor->addr_count, &desc->reverse_flags[0]);
  2882. if (index == src_cnt-1) {
  2883. ppc440spe_rxor_set_region(desc,
  2884. cursor->addr_count,
  2885. DMA_RXOR12 << DMA_CUED_REGION_OFF);
  2886. ppc440spe_adma_dma2rxor_inc_addr(
  2887. desc, cursor, index, src_cnt);
  2888. }
  2889. } else {
  2890. printk(KERN_ERR "Cannot build "
  2891. "DMA2 RXOR command block.\n");
  2892. BUG();
  2893. }
  2894. break;
  2895. case 1:
  2896. sign = test_bit(cursor->addr_count,
  2897. desc->reverse_flags)
  2898. ? -1 : 1;
  2899. if (index == src_cnt-2 || (sign == -1
  2900. && addr != cursor->addrl - 2*cursor->len)) {
  2901. cursor->state = 0;
  2902. cursor->xor_count = 1;
  2903. cursor->addrl = addr;
  2904. ppc440spe_rxor_set_region(desc,
  2905. cursor->addr_count,
  2906. DMA_RXOR12 << DMA_CUED_REGION_OFF);
  2907. ppc440spe_adma_dma2rxor_inc_addr(
  2908. desc, cursor, index, src_cnt);
  2909. } else if (addr == cursor->addrl + 2*sign*cursor->len) {
  2910. cursor->state = 2;
  2911. cursor->xor_count = 0;
  2912. ppc440spe_rxor_set_region(desc,
  2913. cursor->addr_count,
  2914. DMA_RXOR123 << DMA_CUED_REGION_OFF);
  2915. if (index == src_cnt-1) {
  2916. ppc440spe_adma_dma2rxor_inc_addr(
  2917. desc, cursor, index, src_cnt);
  2918. }
  2919. } else if (addr == cursor->addrl + 3*cursor->len) {
  2920. cursor->state = 2;
  2921. cursor->xor_count = 0;
  2922. ppc440spe_rxor_set_region(desc,
  2923. cursor->addr_count,
  2924. DMA_RXOR124 << DMA_CUED_REGION_OFF);
  2925. if (index == src_cnt-1) {
  2926. ppc440spe_adma_dma2rxor_inc_addr(
  2927. desc, cursor, index, src_cnt);
  2928. }
  2929. } else if (addr == cursor->addrl + 4*cursor->len) {
  2930. cursor->state = 2;
  2931. cursor->xor_count = 0;
  2932. ppc440spe_rxor_set_region(desc,
  2933. cursor->addr_count,
  2934. DMA_RXOR125 << DMA_CUED_REGION_OFF);
  2935. if (index == src_cnt-1) {
  2936. ppc440spe_adma_dma2rxor_inc_addr(
  2937. desc, cursor, index, src_cnt);
  2938. }
  2939. } else {
  2940. cursor->state = 0;
  2941. cursor->xor_count = 1;
  2942. cursor->addrl = addr;
  2943. ppc440spe_rxor_set_region(desc,
  2944. cursor->addr_count,
  2945. DMA_RXOR12 << DMA_CUED_REGION_OFF);
  2946. ppc440spe_adma_dma2rxor_inc_addr(
  2947. desc, cursor, index, src_cnt);
  2948. }
  2949. break;
  2950. case 2:
  2951. cursor->state = 0;
  2952. cursor->addrl = addr;
  2953. cursor->xor_count++;
  2954. if (index) {
  2955. ppc440spe_adma_dma2rxor_inc_addr(
  2956. desc, cursor, index, src_cnt);
  2957. }
  2958. break;
  2959. }
  2960. return 0;
  2961. }
  2962. /**
  2963. * ppc440spe_adma_dma2rxor_set_src - set RXOR source address; it's assumed that
  2964. * ppc440spe_adma_dma2rxor_prep_src() has already done prior this call
  2965. */
  2966. static void ppc440spe_adma_dma2rxor_set_src(
  2967. struct ppc440spe_adma_desc_slot *desc,
  2968. int index, dma_addr_t addr)
  2969. {
  2970. struct xor_cb *xcb = desc->hw_desc;
  2971. int k = 0, op = 0, lop = 0;
  2972. /* get the RXOR operand which corresponds to index addr */
  2973. while (op <= index) {
  2974. lop = op;
  2975. if (k == XOR_MAX_OPS) {
  2976. k = 0;
  2977. desc = list_entry(desc->chain_node.next,
  2978. struct ppc440spe_adma_desc_slot, chain_node);
  2979. xcb = desc->hw_desc;
  2980. }
  2981. if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) ==
  2982. (DMA_RXOR12 << DMA_CUED_REGION_OFF))
  2983. op += 2;
  2984. else
  2985. op += 3;
  2986. }
  2987. BUG_ON(k < 1);
  2988. if (test_bit(k-1, desc->reverse_flags)) {
  2989. /* reverse operand order; put last op in RXOR group */
  2990. if (index == op - 1)
  2991. ppc440spe_rxor_set_src(desc, k - 1, addr);
  2992. } else {
  2993. /* direct operand order; put first op in RXOR group */
  2994. if (index == lop)
  2995. ppc440spe_rxor_set_src(desc, k - 1, addr);
  2996. }
  2997. }
  2998. /**
  2999. * ppc440spe_adma_dma2rxor_set_mult - set RXOR multipliers; it's assumed that
  3000. * ppc440spe_adma_dma2rxor_prep_src() has already done prior this call
  3001. */
  3002. static void ppc440spe_adma_dma2rxor_set_mult(
  3003. struct ppc440spe_adma_desc_slot *desc,
  3004. int index, u8 mult)
  3005. {
  3006. struct xor_cb *xcb = desc->hw_desc;
  3007. int k = 0, op = 0, lop = 0;
  3008. /* get the RXOR operand which corresponds to index mult */
  3009. while (op <= index) {
  3010. lop = op;
  3011. if (k == XOR_MAX_OPS) {
  3012. k = 0;
  3013. desc = list_entry(desc->chain_node.next,
  3014. struct ppc440spe_adma_desc_slot,
  3015. chain_node);
  3016. xcb = desc->hw_desc;
  3017. }
  3018. if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) ==
  3019. (DMA_RXOR12 << DMA_CUED_REGION_OFF))
  3020. op += 2;
  3021. else
  3022. op += 3;
  3023. }
  3024. BUG_ON(k < 1);
  3025. if (test_bit(k-1, desc->reverse_flags)) {
  3026. /* reverse order */
  3027. ppc440spe_rxor_set_mult(desc, k - 1, op - index - 1, mult);
  3028. } else {
  3029. /* direct order */
  3030. ppc440spe_rxor_set_mult(desc, k - 1, index - lop, mult);
  3031. }
  3032. }
  3033. /**
  3034. * ppc440spe_init_rxor_cursor -
  3035. */
  3036. static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor)
  3037. {
  3038. memset(cursor, 0, sizeof(struct ppc440spe_rxor));
  3039. cursor->state = 2;
  3040. }
  3041. /**
  3042. * ppc440spe_adma_pq_set_src_mult - set multiplication coefficient into
  3043. * descriptor for the PQXOR operation
  3044. */
  3045. static void ppc440spe_adma_pq_set_src_mult(
  3046. struct ppc440spe_adma_desc_slot *sw_desc,
  3047. unsigned char mult, int index, int dst_pos)
  3048. {
  3049. struct ppc440spe_adma_chan *chan;
  3050. u32 mult_idx, mult_dst;
  3051. struct ppc440spe_adma_desc_slot *iter = NULL, *iter1 = NULL;
  3052. chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
  3053. switch (chan->device->id) {
  3054. case PPC440SPE_DMA0_ID:
  3055. case PPC440SPE_DMA1_ID:
  3056. if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
  3057. int region = test_bit(PPC440SPE_DESC_RXOR12,
  3058. &sw_desc->flags) ? 2 : 3;
  3059. if (index < region) {
  3060. /* RXOR multipliers */
  3061. iter = ppc440spe_get_group_entry(sw_desc,
  3062. sw_desc->dst_cnt - 1);
  3063. if (sw_desc->dst_cnt == 2)
  3064. iter1 = ppc440spe_get_group_entry(
  3065. sw_desc, 0);
  3066. mult_idx = DMA_CUED_MULT1_OFF + (index << 3);
  3067. mult_dst = DMA_CDB_SG_SRC;
  3068. } else {
  3069. /* WXOR multiplier */
  3070. iter = ppc440spe_get_group_entry(sw_desc,
  3071. index - region +
  3072. sw_desc->dst_cnt);
  3073. mult_idx = DMA_CUED_MULT1_OFF;
  3074. mult_dst = dst_pos ? DMA_CDB_SG_DST2 :
  3075. DMA_CDB_SG_DST1;
  3076. }
  3077. } else {
  3078. int znum = 0;
  3079. /* WXOR-only;
  3080. * skip first slots with destinations (if ZERO_DST has
  3081. * place)
  3082. */
  3083. if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
  3084. znum++;
  3085. if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
  3086. znum++;
  3087. iter = ppc440spe_get_group_entry(sw_desc, index + znum);
  3088. mult_idx = DMA_CUED_MULT1_OFF;
  3089. mult_dst = dst_pos ? DMA_CDB_SG_DST2 : DMA_CDB_SG_DST1;
  3090. }
  3091. if (likely(iter)) {
  3092. ppc440spe_desc_set_src_mult(iter, chan,
  3093. mult_idx, mult_dst, mult);
  3094. if (unlikely(iter1)) {
  3095. /* if we have two destinations for RXOR, then
  3096. * we've just set Q mult. Set-up P now.
  3097. */
  3098. ppc440spe_desc_set_src_mult(iter1, chan,
  3099. mult_idx, mult_dst, 1);
  3100. }
  3101. }
  3102. break;
  3103. case PPC440SPE_XOR_ID:
  3104. iter = sw_desc->group_head;
  3105. if (sw_desc->dst_cnt == 2) {
  3106. /* both P & Q calculations required; set P mult here */
  3107. ppc440spe_adma_dma2rxor_set_mult(iter, index, 1);
  3108. /* and then set Q mult */
  3109. iter = ppc440spe_get_group_entry(sw_desc,
  3110. sw_desc->descs_per_op);
  3111. }
  3112. ppc440spe_adma_dma2rxor_set_mult(iter, index, mult);
  3113. break;
  3114. }
  3115. }
  3116. /**
  3117. * ppc440spe_adma_free_chan_resources - free the resources allocated
  3118. */
  3119. static void ppc440spe_adma_free_chan_resources(struct dma_chan *chan)
  3120. {
  3121. struct ppc440spe_adma_chan *ppc440spe_chan;
  3122. struct ppc440spe_adma_desc_slot *iter, *_iter;
  3123. int in_use_descs = 0;
  3124. ppc440spe_chan = to_ppc440spe_adma_chan(chan);
  3125. ppc440spe_adma_slot_cleanup(ppc440spe_chan);
  3126. spin_lock_bh(&ppc440spe_chan->lock);
  3127. list_for_each_entry_safe(iter, _iter, &ppc440spe_chan->chain,
  3128. chain_node) {
  3129. in_use_descs++;
  3130. list_del(&iter->chain_node);
  3131. }
  3132. list_for_each_entry_safe_reverse(iter, _iter,
  3133. &ppc440spe_chan->all_slots, slot_node) {
  3134. list_del(&iter->slot_node);
  3135. kfree(iter);
  3136. ppc440spe_chan->slots_allocated--;
  3137. }
  3138. ppc440spe_chan->last_used = NULL;
  3139. dev_dbg(ppc440spe_chan->device->common.dev,
  3140. "ppc440spe adma%d %s slots_allocated %d\n",
  3141. ppc440spe_chan->device->id,
  3142. __func__, ppc440spe_chan->slots_allocated);
  3143. spin_unlock_bh(&ppc440spe_chan->lock);
  3144. /* one is ok since we left it on there on purpose */
  3145. if (in_use_descs > 1)
  3146. printk(KERN_ERR "SPE: Freeing %d in use descriptors!\n",
  3147. in_use_descs - 1);
  3148. }
  3149. /**
  3150. * ppc440spe_adma_tx_status - poll the status of an ADMA transaction
  3151. * @chan: ADMA channel handle
  3152. * @cookie: ADMA transaction identifier
  3153. * @txstate: a holder for the current state of the channel
  3154. */
  3155. static enum dma_status ppc440spe_adma_tx_status(struct dma_chan *chan,
  3156. dma_cookie_t cookie, struct dma_tx_state *txstate)
  3157. {
  3158. struct ppc440spe_adma_chan *ppc440spe_chan;
  3159. enum dma_status ret;
  3160. ppc440spe_chan = to_ppc440spe_adma_chan(chan);
  3161. ret = dma_cookie_status(chan, cookie, txstate);
  3162. if (ret == DMA_COMPLETE)
  3163. return ret;
  3164. ppc440spe_adma_slot_cleanup(ppc440spe_chan);
  3165. return dma_cookie_status(chan, cookie, txstate);
  3166. }
  3167. /**
  3168. * ppc440spe_adma_eot_handler - end of transfer interrupt handler
  3169. */
  3170. static irqreturn_t ppc440spe_adma_eot_handler(int irq, void *data)
  3171. {
  3172. struct ppc440spe_adma_chan *chan = data;
  3173. dev_dbg(chan->device->common.dev,
  3174. "ppc440spe adma%d: %s\n", chan->device->id, __func__);
  3175. tasklet_schedule(&chan->irq_tasklet);
  3176. ppc440spe_adma_device_clear_eot_status(chan);
  3177. return IRQ_HANDLED;
  3178. }
  3179. /**
  3180. * ppc440spe_adma_err_handler - DMA error interrupt handler;
  3181. * do the same things as a eot handler
  3182. */
  3183. static irqreturn_t ppc440spe_adma_err_handler(int irq, void *data)
  3184. {
  3185. struct ppc440spe_adma_chan *chan = data;
  3186. dev_dbg(chan->device->common.dev,
  3187. "ppc440spe adma%d: %s\n", chan->device->id, __func__);
  3188. tasklet_schedule(&chan->irq_tasklet);
  3189. ppc440spe_adma_device_clear_eot_status(chan);
  3190. return IRQ_HANDLED;
  3191. }
  3192. /**
  3193. * ppc440spe_test_callback - called when test operation has been done
  3194. */
  3195. static void ppc440spe_test_callback(void *unused)
  3196. {
  3197. complete(&ppc440spe_r6_test_comp);
  3198. }
  3199. /**
  3200. * ppc440spe_adma_issue_pending - flush all pending descriptors to h/w
  3201. */
  3202. static void ppc440spe_adma_issue_pending(struct dma_chan *chan)
  3203. {
  3204. struct ppc440spe_adma_chan *ppc440spe_chan;
  3205. ppc440spe_chan = to_ppc440spe_adma_chan(chan);
  3206. dev_dbg(ppc440spe_chan->device->common.dev,
  3207. "ppc440spe adma%d: %s %d \n", ppc440spe_chan->device->id,
  3208. __func__, ppc440spe_chan->pending);
  3209. if (ppc440spe_chan->pending) {
  3210. ppc440spe_chan->pending = 0;
  3211. ppc440spe_chan_append(ppc440spe_chan);
  3212. }
  3213. }
  3214. /**
  3215. * ppc440spe_chan_start_null_xor - initiate the first XOR operation (DMA engines
  3216. * use FIFOs (as opposite to chains used in XOR) so this is a XOR
  3217. * specific operation)
  3218. */
  3219. static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan)
  3220. {
  3221. struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
  3222. dma_cookie_t cookie;
  3223. int slot_cnt, slots_per_op;
  3224. dev_dbg(chan->device->common.dev,
  3225. "ppc440spe adma%d: %s\n", chan->device->id, __func__);
  3226. spin_lock_bh(&chan->lock);
  3227. slot_cnt = ppc440spe_chan_xor_slot_count(0, 2, &slots_per_op);
  3228. sw_desc = ppc440spe_adma_alloc_slots(chan, slot_cnt, slots_per_op);
  3229. if (sw_desc) {
  3230. group_start = sw_desc->group_head;
  3231. list_splice_init(&sw_desc->group_list, &chan->chain);
  3232. async_tx_ack(&sw_desc->async_tx);
  3233. ppc440spe_desc_init_null_xor(group_start);
  3234. cookie = dma_cookie_assign(&sw_desc->async_tx);
  3235. /* initialize the completed cookie to be less than
  3236. * the most recently used cookie
  3237. */
  3238. chan->common.completed_cookie = cookie - 1;
  3239. /* channel should not be busy */
  3240. BUG_ON(ppc440spe_chan_is_busy(chan));
  3241. /* set the descriptor address */
  3242. ppc440spe_chan_set_first_xor_descriptor(chan, sw_desc);
  3243. /* run the descriptor */
  3244. ppc440spe_chan_run(chan);
  3245. } else
  3246. printk(KERN_ERR "ppc440spe adma%d"
  3247. " failed to allocate null descriptor\n",
  3248. chan->device->id);
  3249. spin_unlock_bh(&chan->lock);
  3250. }
  3251. /**
  3252. * ppc440spe_test_raid6 - test are RAID-6 capabilities enabled successfully.
  3253. * For this we just perform one WXOR operation with the same source
  3254. * and destination addresses, the GF-multiplier is 1; so if RAID-6
  3255. * capabilities are enabled then we'll get src/dst filled with zero.
  3256. */
  3257. static int ppc440spe_test_raid6(struct ppc440spe_adma_chan *chan)
  3258. {
  3259. struct ppc440spe_adma_desc_slot *sw_desc, *iter;
  3260. struct page *pg;
  3261. char *a;
  3262. dma_addr_t dma_addr, addrs[2];
  3263. unsigned long op = 0;
  3264. int rval = 0;
  3265. set_bit(PPC440SPE_DESC_WXOR, &op);
  3266. pg = alloc_page(GFP_KERNEL);
  3267. if (!pg)
  3268. return -ENOMEM;
  3269. spin_lock_bh(&chan->lock);
  3270. sw_desc = ppc440spe_adma_alloc_slots(chan, 1, 1);
  3271. if (sw_desc) {
  3272. /* 1 src, 1 dsr, int_ena, WXOR */
  3273. ppc440spe_desc_init_dma01pq(sw_desc, 1, 1, 1, op);
  3274. list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
  3275. ppc440spe_desc_set_byte_count(iter, chan, PAGE_SIZE);
  3276. iter->unmap_len = PAGE_SIZE;
  3277. }
  3278. } else {
  3279. rval = -EFAULT;
  3280. spin_unlock_bh(&chan->lock);
  3281. goto exit;
  3282. }
  3283. spin_unlock_bh(&chan->lock);
  3284. /* Fill the test page with ones */
  3285. memset(page_address(pg), 0xFF, PAGE_SIZE);
  3286. dma_addr = dma_map_page(chan->device->dev, pg, 0,
  3287. PAGE_SIZE, DMA_BIDIRECTIONAL);
  3288. /* Setup addresses */
  3289. ppc440spe_adma_pq_set_src(sw_desc, dma_addr, 0);
  3290. ppc440spe_adma_pq_set_src_mult(sw_desc, 1, 0, 0);
  3291. addrs[0] = dma_addr;
  3292. addrs[1] = 0;
  3293. ppc440spe_adma_pq_set_dest(sw_desc, addrs, DMA_PREP_PQ_DISABLE_Q);
  3294. async_tx_ack(&sw_desc->async_tx);
  3295. sw_desc->async_tx.callback = ppc440spe_test_callback;
  3296. sw_desc->async_tx.callback_param = NULL;
  3297. init_completion(&ppc440spe_r6_test_comp);
  3298. ppc440spe_adma_tx_submit(&sw_desc->async_tx);
  3299. ppc440spe_adma_issue_pending(&chan->common);
  3300. wait_for_completion(&ppc440spe_r6_test_comp);
  3301. /* Now check if the test page is zeroed */
  3302. a = page_address(pg);
  3303. if ((*(u32 *)a) == 0 && memcmp(a, a+4, PAGE_SIZE-4) == 0) {
  3304. /* page is zero - RAID-6 enabled */
  3305. rval = 0;
  3306. } else {
  3307. /* RAID-6 was not enabled */
  3308. rval = -EINVAL;
  3309. }
  3310. exit:
  3311. __free_page(pg);
  3312. return rval;
  3313. }
  3314. static void ppc440spe_adma_init_capabilities(struct ppc440spe_adma_device *adev)
  3315. {
  3316. switch (adev->id) {
  3317. case PPC440SPE_DMA0_ID:
  3318. case PPC440SPE_DMA1_ID:
  3319. dma_cap_set(DMA_MEMCPY, adev->common.cap_mask);
  3320. dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask);
  3321. dma_cap_set(DMA_PQ, adev->common.cap_mask);
  3322. dma_cap_set(DMA_PQ_VAL, adev->common.cap_mask);
  3323. dma_cap_set(DMA_XOR_VAL, adev->common.cap_mask);
  3324. break;
  3325. case PPC440SPE_XOR_ID:
  3326. dma_cap_set(DMA_XOR, adev->common.cap_mask);
  3327. dma_cap_set(DMA_PQ, adev->common.cap_mask);
  3328. dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask);
  3329. adev->common.cap_mask = adev->common.cap_mask;
  3330. break;
  3331. }
  3332. /* Set base routines */
  3333. adev->common.device_alloc_chan_resources =
  3334. ppc440spe_adma_alloc_chan_resources;
  3335. adev->common.device_free_chan_resources =
  3336. ppc440spe_adma_free_chan_resources;
  3337. adev->common.device_tx_status = ppc440spe_adma_tx_status;
  3338. adev->common.device_issue_pending = ppc440spe_adma_issue_pending;
  3339. /* Set prep routines based on capability */
  3340. if (dma_has_cap(DMA_MEMCPY, adev->common.cap_mask)) {
  3341. adev->common.device_prep_dma_memcpy =
  3342. ppc440spe_adma_prep_dma_memcpy;
  3343. }
  3344. if (dma_has_cap(DMA_XOR, adev->common.cap_mask)) {
  3345. adev->common.max_xor = XOR_MAX_OPS;
  3346. adev->common.device_prep_dma_xor =
  3347. ppc440spe_adma_prep_dma_xor;
  3348. }
  3349. if (dma_has_cap(DMA_PQ, adev->common.cap_mask)) {
  3350. switch (adev->id) {
  3351. case PPC440SPE_DMA0_ID:
  3352. dma_set_maxpq(&adev->common,
  3353. DMA0_FIFO_SIZE / sizeof(struct dma_cdb), 0);
  3354. break;
  3355. case PPC440SPE_DMA1_ID:
  3356. dma_set_maxpq(&adev->common,
  3357. DMA1_FIFO_SIZE / sizeof(struct dma_cdb), 0);
  3358. break;
  3359. case PPC440SPE_XOR_ID:
  3360. adev->common.max_pq = XOR_MAX_OPS * 3;
  3361. break;
  3362. }
  3363. adev->common.device_prep_dma_pq =
  3364. ppc440spe_adma_prep_dma_pq;
  3365. }
  3366. if (dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask)) {
  3367. switch (adev->id) {
  3368. case PPC440SPE_DMA0_ID:
  3369. adev->common.max_pq = DMA0_FIFO_SIZE /
  3370. sizeof(struct dma_cdb);
  3371. break;
  3372. case PPC440SPE_DMA1_ID:
  3373. adev->common.max_pq = DMA1_FIFO_SIZE /
  3374. sizeof(struct dma_cdb);
  3375. break;
  3376. }
  3377. adev->common.device_prep_dma_pq_val =
  3378. ppc440spe_adma_prep_dma_pqzero_sum;
  3379. }
  3380. if (dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask)) {
  3381. switch (adev->id) {
  3382. case PPC440SPE_DMA0_ID:
  3383. adev->common.max_xor = DMA0_FIFO_SIZE /
  3384. sizeof(struct dma_cdb);
  3385. break;
  3386. case PPC440SPE_DMA1_ID:
  3387. adev->common.max_xor = DMA1_FIFO_SIZE /
  3388. sizeof(struct dma_cdb);
  3389. break;
  3390. }
  3391. adev->common.device_prep_dma_xor_val =
  3392. ppc440spe_adma_prep_dma_xor_zero_sum;
  3393. }
  3394. if (dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask)) {
  3395. adev->common.device_prep_dma_interrupt =
  3396. ppc440spe_adma_prep_dma_interrupt;
  3397. }
  3398. pr_info("%s: AMCC(R) PPC440SP(E) ADMA Engine: "
  3399. "( %s%s%s%s%s%s)\n",
  3400. dev_name(adev->dev),
  3401. dma_has_cap(DMA_PQ, adev->common.cap_mask) ? "pq " : "",
  3402. dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask) ? "pq_val " : "",
  3403. dma_has_cap(DMA_XOR, adev->common.cap_mask) ? "xor " : "",
  3404. dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask) ? "xor_val " : "",
  3405. dma_has_cap(DMA_MEMCPY, adev->common.cap_mask) ? "memcpy " : "",
  3406. dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask) ? "intr " : "");
  3407. }
  3408. static int ppc440spe_adma_setup_irqs(struct ppc440spe_adma_device *adev,
  3409. struct ppc440spe_adma_chan *chan,
  3410. int *initcode)
  3411. {
  3412. struct platform_device *ofdev;
  3413. struct device_node *np;
  3414. int ret;
  3415. ofdev = container_of(adev->dev, struct platform_device, dev);
  3416. np = ofdev->dev.of_node;
  3417. if (adev->id != PPC440SPE_XOR_ID) {
  3418. adev->err_irq = irq_of_parse_and_map(np, 1);
  3419. if (!adev->err_irq) {
  3420. dev_warn(adev->dev, "no err irq resource?\n");
  3421. *initcode = PPC_ADMA_INIT_IRQ2;
  3422. adev->err_irq = -ENXIO;
  3423. } else
  3424. atomic_inc(&ppc440spe_adma_err_irq_ref);
  3425. } else {
  3426. adev->err_irq = -ENXIO;
  3427. }
  3428. adev->irq = irq_of_parse_and_map(np, 0);
  3429. if (!adev->irq) {
  3430. dev_err(adev->dev, "no irq resource\n");
  3431. *initcode = PPC_ADMA_INIT_IRQ1;
  3432. ret = -ENXIO;
  3433. goto err_irq_map;
  3434. }
  3435. dev_dbg(adev->dev, "irq %d, err irq %d\n",
  3436. adev->irq, adev->err_irq);
  3437. ret = request_irq(adev->irq, ppc440spe_adma_eot_handler,
  3438. 0, dev_driver_string(adev->dev), chan);
  3439. if (ret) {
  3440. dev_err(adev->dev, "can't request irq %d\n",
  3441. adev->irq);
  3442. *initcode = PPC_ADMA_INIT_IRQ1;
  3443. ret = -EIO;
  3444. goto err_req1;
  3445. }
  3446. /* only DMA engines have a separate error IRQ
  3447. * so it's Ok if err_irq < 0 in XOR engine case.
  3448. */
  3449. if (adev->err_irq > 0) {
  3450. /* both DMA engines share common error IRQ */
  3451. ret = request_irq(adev->err_irq,
  3452. ppc440spe_adma_err_handler,
  3453. IRQF_SHARED,
  3454. dev_driver_string(adev->dev),
  3455. chan);
  3456. if (ret) {
  3457. dev_err(adev->dev, "can't request irq %d\n",
  3458. adev->err_irq);
  3459. *initcode = PPC_ADMA_INIT_IRQ2;
  3460. ret = -EIO;
  3461. goto err_req2;
  3462. }
  3463. }
  3464. if (adev->id == PPC440SPE_XOR_ID) {
  3465. /* enable XOR engine interrupts */
  3466. iowrite32be(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT |
  3467. XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT,
  3468. &adev->xor_reg->ier);
  3469. } else {
  3470. u32 mask, enable;
  3471. np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe");
  3472. if (!np) {
  3473. pr_err("%s: can't find I2O device tree node\n",
  3474. __func__);
  3475. ret = -ENODEV;
  3476. goto err_req2;
  3477. }
  3478. adev->i2o_reg = of_iomap(np, 0);
  3479. if (!adev->i2o_reg) {
  3480. pr_err("%s: failed to map I2O registers\n", __func__);
  3481. of_node_put(np);
  3482. ret = -EINVAL;
  3483. goto err_req2;
  3484. }
  3485. of_node_put(np);
  3486. /* Unmask 'CS FIFO Attention' interrupts and
  3487. * enable generating interrupts on errors
  3488. */
  3489. enable = (adev->id == PPC440SPE_DMA0_ID) ?
  3490. ~(I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) :
  3491. ~(I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM);
  3492. mask = ioread32(&adev->i2o_reg->iopim) & enable;
  3493. iowrite32(mask, &adev->i2o_reg->iopim);
  3494. }
  3495. return 0;
  3496. err_req2:
  3497. free_irq(adev->irq, chan);
  3498. err_req1:
  3499. irq_dispose_mapping(adev->irq);
  3500. err_irq_map:
  3501. if (adev->err_irq > 0) {
  3502. if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref))
  3503. irq_dispose_mapping(adev->err_irq);
  3504. }
  3505. return ret;
  3506. }
  3507. static void ppc440spe_adma_release_irqs(struct ppc440spe_adma_device *adev,
  3508. struct ppc440spe_adma_chan *chan)
  3509. {
  3510. u32 mask, disable;
  3511. if (adev->id == PPC440SPE_XOR_ID) {
  3512. /* disable XOR engine interrupts */
  3513. mask = ioread32be(&adev->xor_reg->ier);
  3514. mask &= ~(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT |
  3515. XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT);
  3516. iowrite32be(mask, &adev->xor_reg->ier);
  3517. } else {
  3518. /* disable DMAx engine interrupts */
  3519. disable = (adev->id == PPC440SPE_DMA0_ID) ?
  3520. (I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) :
  3521. (I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM);
  3522. mask = ioread32(&adev->i2o_reg->iopim) | disable;
  3523. iowrite32(mask, &adev->i2o_reg->iopim);
  3524. }
  3525. free_irq(adev->irq, chan);
  3526. irq_dispose_mapping(adev->irq);
  3527. if (adev->err_irq > 0) {
  3528. free_irq(adev->err_irq, chan);
  3529. if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref)) {
  3530. irq_dispose_mapping(adev->err_irq);
  3531. iounmap(adev->i2o_reg);
  3532. }
  3533. }
  3534. }
  3535. /**
  3536. * ppc440spe_adma_probe - probe the asynch device
  3537. */
  3538. static int ppc440spe_adma_probe(struct platform_device *ofdev)
  3539. {
  3540. struct device_node *np = ofdev->dev.of_node;
  3541. struct resource res;
  3542. struct ppc440spe_adma_device *adev;
  3543. struct ppc440spe_adma_chan *chan;
  3544. struct ppc_dma_chan_ref *ref, *_ref;
  3545. int ret = 0, initcode = PPC_ADMA_INIT_OK;
  3546. const u32 *idx;
  3547. int len;
  3548. void *regs;
  3549. u32 id, pool_size;
  3550. if (of_device_is_compatible(np, "amcc,xor-accelerator")) {
  3551. id = PPC440SPE_XOR_ID;
  3552. /* As far as the XOR engine is concerned, it does not
  3553. * use FIFOs but uses linked list. So there is no dependency
  3554. * between pool size to allocate and the engine configuration.
  3555. */
  3556. pool_size = PAGE_SIZE << 1;
  3557. } else {
  3558. /* it is DMA0 or DMA1 */
  3559. idx = of_get_property(np, "cell-index", &len);
  3560. if (!idx || (len != sizeof(u32))) {
  3561. dev_err(&ofdev->dev, "Device node %pOF has missing "
  3562. "or invalid cell-index property\n",
  3563. np);
  3564. return -EINVAL;
  3565. }
  3566. id = *idx;
  3567. /* DMA0,1 engines use FIFO to maintain CDBs, so we
  3568. * should allocate the pool accordingly to size of this
  3569. * FIFO. Thus, the pool size depends on the FIFO depth:
  3570. * how much CDBs pointers the FIFO may contain then so
  3571. * much CDBs we should provide in the pool.
  3572. * That is
  3573. * CDB size = 32B;
  3574. * CDBs number = (DMA0_FIFO_SIZE >> 3);
  3575. * Pool size = CDBs number * CDB size =
  3576. * = (DMA0_FIFO_SIZE >> 3) << 5 = DMA0_FIFO_SIZE << 2.
  3577. */
  3578. pool_size = (id == PPC440SPE_DMA0_ID) ?
  3579. DMA0_FIFO_SIZE : DMA1_FIFO_SIZE;
  3580. pool_size <<= 2;
  3581. }
  3582. if (of_address_to_resource(np, 0, &res)) {
  3583. dev_err(&ofdev->dev, "failed to get memory resource\n");
  3584. initcode = PPC_ADMA_INIT_MEMRES;
  3585. ret = -ENODEV;
  3586. goto out;
  3587. }
  3588. if (!request_mem_region(res.start, resource_size(&res),
  3589. dev_driver_string(&ofdev->dev))) {
  3590. dev_err(&ofdev->dev, "failed to request memory region %pR\n",
  3591. &res);
  3592. initcode = PPC_ADMA_INIT_MEMREG;
  3593. ret = -EBUSY;
  3594. goto out;
  3595. }
  3596. /* create a device */
  3597. adev = kzalloc(sizeof(*adev), GFP_KERNEL);
  3598. if (!adev) {
  3599. initcode = PPC_ADMA_INIT_ALLOC;
  3600. ret = -ENOMEM;
  3601. goto err_adev_alloc;
  3602. }
  3603. adev->id = id;
  3604. adev->pool_size = pool_size;
  3605. /* allocate coherent memory for hardware descriptors */
  3606. adev->dma_desc_pool_virt = dma_alloc_coherent(&ofdev->dev,
  3607. adev->pool_size, &adev->dma_desc_pool,
  3608. GFP_KERNEL);
  3609. if (adev->dma_desc_pool_virt == NULL) {
  3610. dev_err(&ofdev->dev, "failed to allocate %d bytes of coherent "
  3611. "memory for hardware descriptors\n",
  3612. adev->pool_size);
  3613. initcode = PPC_ADMA_INIT_COHERENT;
  3614. ret = -ENOMEM;
  3615. goto err_dma_alloc;
  3616. }
  3617. dev_dbg(&ofdev->dev, "allocated descriptor pool virt 0x%p phys 0x%llx\n",
  3618. adev->dma_desc_pool_virt, (u64)adev->dma_desc_pool);
  3619. regs = ioremap(res.start, resource_size(&res));
  3620. if (!regs) {
  3621. dev_err(&ofdev->dev, "failed to ioremap regs!\n");
  3622. ret = -ENOMEM;
  3623. goto err_regs_alloc;
  3624. }
  3625. if (adev->id == PPC440SPE_XOR_ID) {
  3626. adev->xor_reg = regs;
  3627. /* Reset XOR */
  3628. iowrite32be(XOR_CRSR_XASR_BIT, &adev->xor_reg->crsr);
  3629. iowrite32be(XOR_CRSR_64BA_BIT, &adev->xor_reg->crrr);
  3630. } else {
  3631. size_t fifo_size = (adev->id == PPC440SPE_DMA0_ID) ?
  3632. DMA0_FIFO_SIZE : DMA1_FIFO_SIZE;
  3633. adev->dma_reg = regs;
  3634. /* DMAx_FIFO_SIZE is defined in bytes,
  3635. * <fsiz> - is defined in number of CDB pointers (8byte).
  3636. * DMA FIFO Length = CSlength + CPlength, where
  3637. * CSlength = CPlength = (fsiz + 1) * 8.
  3638. */
  3639. iowrite32(DMA_FIFO_ENABLE | ((fifo_size >> 3) - 2),
  3640. &adev->dma_reg->fsiz);
  3641. /* Configure DMA engine */
  3642. iowrite32(DMA_CFG_DXEPR_HP | DMA_CFG_DFMPP_HP | DMA_CFG_FALGN,
  3643. &adev->dma_reg->cfg);
  3644. /* Clear Status */
  3645. iowrite32(~0, &adev->dma_reg->dsts);
  3646. }
  3647. adev->dev = &ofdev->dev;
  3648. adev->common.dev = &ofdev->dev;
  3649. INIT_LIST_HEAD(&adev->common.channels);
  3650. platform_set_drvdata(ofdev, adev);
  3651. /* create a channel */
  3652. chan = kzalloc(sizeof(*chan), GFP_KERNEL);
  3653. if (!chan) {
  3654. initcode = PPC_ADMA_INIT_CHANNEL;
  3655. ret = -ENOMEM;
  3656. goto err_chan_alloc;
  3657. }
  3658. spin_lock_init(&chan->lock);
  3659. INIT_LIST_HEAD(&chan->chain);
  3660. INIT_LIST_HEAD(&chan->all_slots);
  3661. chan->device = adev;
  3662. chan->common.device = &adev->common;
  3663. dma_cookie_init(&chan->common);
  3664. list_add_tail(&chan->common.device_node, &adev->common.channels);
  3665. tasklet_setup(&chan->irq_tasklet, ppc440spe_adma_tasklet);
  3666. /* allocate and map helper pages for async validation or
  3667. * async_mult/async_sum_product operations on DMA0/1.
  3668. */
  3669. if (adev->id != PPC440SPE_XOR_ID) {
  3670. chan->pdest_page = alloc_page(GFP_KERNEL);
  3671. chan->qdest_page = alloc_page(GFP_KERNEL);
  3672. if (!chan->pdest_page ||
  3673. !chan->qdest_page) {
  3674. if (chan->pdest_page)
  3675. __free_page(chan->pdest_page);
  3676. if (chan->qdest_page)
  3677. __free_page(chan->qdest_page);
  3678. ret = -ENOMEM;
  3679. goto err_page_alloc;
  3680. }
  3681. chan->pdest = dma_map_page(&ofdev->dev, chan->pdest_page, 0,
  3682. PAGE_SIZE, DMA_BIDIRECTIONAL);
  3683. chan->qdest = dma_map_page(&ofdev->dev, chan->qdest_page, 0,
  3684. PAGE_SIZE, DMA_BIDIRECTIONAL);
  3685. }
  3686. ref = kmalloc(sizeof(*ref), GFP_KERNEL);
  3687. if (ref) {
  3688. ref->chan = &chan->common;
  3689. INIT_LIST_HEAD(&ref->node);
  3690. list_add_tail(&ref->node, &ppc440spe_adma_chan_list);
  3691. } else {
  3692. dev_err(&ofdev->dev, "failed to allocate channel reference!\n");
  3693. ret = -ENOMEM;
  3694. goto err_ref_alloc;
  3695. }
  3696. ret = ppc440spe_adma_setup_irqs(adev, chan, &initcode);
  3697. if (ret)
  3698. goto err_irq;
  3699. ppc440spe_adma_init_capabilities(adev);
  3700. ret = dma_async_device_register(&adev->common);
  3701. if (ret) {
  3702. initcode = PPC_ADMA_INIT_REGISTER;
  3703. dev_err(&ofdev->dev, "failed to register dma device\n");
  3704. goto err_dev_reg;
  3705. }
  3706. goto out;
  3707. err_dev_reg:
  3708. ppc440spe_adma_release_irqs(adev, chan);
  3709. err_irq:
  3710. list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list, node) {
  3711. if (chan == to_ppc440spe_adma_chan(ref->chan)) {
  3712. list_del(&ref->node);
  3713. kfree(ref);
  3714. }
  3715. }
  3716. err_ref_alloc:
  3717. if (adev->id != PPC440SPE_XOR_ID) {
  3718. dma_unmap_page(&ofdev->dev, chan->pdest,
  3719. PAGE_SIZE, DMA_BIDIRECTIONAL);
  3720. dma_unmap_page(&ofdev->dev, chan->qdest,
  3721. PAGE_SIZE, DMA_BIDIRECTIONAL);
  3722. __free_page(chan->pdest_page);
  3723. __free_page(chan->qdest_page);
  3724. }
  3725. err_page_alloc:
  3726. kfree(chan);
  3727. err_chan_alloc:
  3728. if (adev->id == PPC440SPE_XOR_ID)
  3729. iounmap(adev->xor_reg);
  3730. else
  3731. iounmap(adev->dma_reg);
  3732. err_regs_alloc:
  3733. dma_free_coherent(adev->dev, adev->pool_size,
  3734. adev->dma_desc_pool_virt,
  3735. adev->dma_desc_pool);
  3736. err_dma_alloc:
  3737. kfree(adev);
  3738. err_adev_alloc:
  3739. release_mem_region(res.start, resource_size(&res));
  3740. out:
  3741. if (id < PPC440SPE_ADMA_ENGINES_NUM)
  3742. ppc440spe_adma_devices[id] = initcode;
  3743. return ret;
  3744. }
  3745. /**
  3746. * ppc440spe_adma_remove - remove the asynch device
  3747. */
  3748. static int ppc440spe_adma_remove(struct platform_device *ofdev)
  3749. {
  3750. struct ppc440spe_adma_device *adev = platform_get_drvdata(ofdev);
  3751. struct device_node *np = ofdev->dev.of_node;
  3752. struct resource res;
  3753. struct dma_chan *chan, *_chan;
  3754. struct ppc_dma_chan_ref *ref, *_ref;
  3755. struct ppc440spe_adma_chan *ppc440spe_chan;
  3756. if (adev->id < PPC440SPE_ADMA_ENGINES_NUM)
  3757. ppc440spe_adma_devices[adev->id] = -1;
  3758. dma_async_device_unregister(&adev->common);
  3759. list_for_each_entry_safe(chan, _chan, &adev->common.channels,
  3760. device_node) {
  3761. ppc440spe_chan = to_ppc440spe_adma_chan(chan);
  3762. ppc440spe_adma_release_irqs(adev, ppc440spe_chan);
  3763. tasklet_kill(&ppc440spe_chan->irq_tasklet);
  3764. if (adev->id != PPC440SPE_XOR_ID) {
  3765. dma_unmap_page(&ofdev->dev, ppc440spe_chan->pdest,
  3766. PAGE_SIZE, DMA_BIDIRECTIONAL);
  3767. dma_unmap_page(&ofdev->dev, ppc440spe_chan->qdest,
  3768. PAGE_SIZE, DMA_BIDIRECTIONAL);
  3769. __free_page(ppc440spe_chan->pdest_page);
  3770. __free_page(ppc440spe_chan->qdest_page);
  3771. }
  3772. list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list,
  3773. node) {
  3774. if (ppc440spe_chan ==
  3775. to_ppc440spe_adma_chan(ref->chan)) {
  3776. list_del(&ref->node);
  3777. kfree(ref);
  3778. }
  3779. }
  3780. list_del(&chan->device_node);
  3781. kfree(ppc440spe_chan);
  3782. }
  3783. dma_free_coherent(adev->dev, adev->pool_size,
  3784. adev->dma_desc_pool_virt, adev->dma_desc_pool);
  3785. if (adev->id == PPC440SPE_XOR_ID)
  3786. iounmap(adev->xor_reg);
  3787. else
  3788. iounmap(adev->dma_reg);
  3789. of_address_to_resource(np, 0, &res);
  3790. release_mem_region(res.start, resource_size(&res));
  3791. kfree(adev);
  3792. return 0;
  3793. }
  3794. /*
  3795. * /sys driver interface to enable h/w RAID-6 capabilities
  3796. * Files created in e.g. /sys/devices/plb.0/400100100.dma0/driver/
  3797. * directory are "devices", "enable" and "poly".
  3798. * "devices" shows available engines.
  3799. * "enable" is used to enable RAID-6 capabilities or to check
  3800. * whether these has been activated.
  3801. * "poly" allows setting/checking used polynomial (for PPC440SPe only).
  3802. */
  3803. static ssize_t devices_show(struct device_driver *dev, char *buf)
  3804. {
  3805. ssize_t size = 0;
  3806. int i;
  3807. for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++) {
  3808. if (ppc440spe_adma_devices[i] == -1)
  3809. continue;
  3810. size += scnprintf(buf + size, PAGE_SIZE - size,
  3811. "PPC440SP(E)-ADMA.%d: %s\n", i,
  3812. ppc_adma_errors[ppc440spe_adma_devices[i]]);
  3813. }
  3814. return size;
  3815. }
  3816. static DRIVER_ATTR_RO(devices);
  3817. static ssize_t enable_show(struct device_driver *dev, char *buf)
  3818. {
  3819. return snprintf(buf, PAGE_SIZE,
  3820. "PPC440SP(e) RAID-6 capabilities are %sABLED.\n",
  3821. ppc440spe_r6_enabled ? "EN" : "DIS");
  3822. }
  3823. static ssize_t enable_store(struct device_driver *dev, const char *buf,
  3824. size_t count)
  3825. {
  3826. unsigned long val;
  3827. int err;
  3828. if (!count || count > 11)
  3829. return -EINVAL;
  3830. if (!ppc440spe_r6_tchan)
  3831. return -EFAULT;
  3832. /* Write a key */
  3833. err = kstrtoul(buf, 16, &val);
  3834. if (err)
  3835. return err;
  3836. dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_XORBA, val);
  3837. isync();
  3838. /* Verify whether it really works now */
  3839. if (ppc440spe_test_raid6(ppc440spe_r6_tchan) == 0) {
  3840. pr_info("PPC440SP(e) RAID-6 has been activated "
  3841. "successfully\n");
  3842. ppc440spe_r6_enabled = 1;
  3843. } else {
  3844. pr_info("PPC440SP(e) RAID-6 hasn't been activated!"
  3845. " Error key ?\n");
  3846. ppc440spe_r6_enabled = 0;
  3847. }
  3848. return count;
  3849. }
  3850. static DRIVER_ATTR_RW(enable);
  3851. static ssize_t poly_show(struct device_driver *dev, char *buf)
  3852. {
  3853. ssize_t size = 0;
  3854. u32 reg;
  3855. #ifdef CONFIG_440SP
  3856. /* 440SP has fixed polynomial */
  3857. reg = 0x4d;
  3858. #else
  3859. reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL);
  3860. reg >>= MQ0_CFBHL_POLY;
  3861. reg &= 0xFF;
  3862. #endif
  3863. size = snprintf(buf, PAGE_SIZE, "PPC440SP(e) RAID-6 driver "
  3864. "uses 0x1%02x polynomial.\n", reg);
  3865. return size;
  3866. }
  3867. static ssize_t poly_store(struct device_driver *dev, const char *buf,
  3868. size_t count)
  3869. {
  3870. unsigned long reg, val;
  3871. int err;
  3872. #ifdef CONFIG_440SP
  3873. /* 440SP uses default 0x14D polynomial only */
  3874. return -EINVAL;
  3875. #endif
  3876. if (!count || count > 6)
  3877. return -EINVAL;
  3878. /* e.g., 0x14D or 0x11D */
  3879. err = kstrtoul(buf, 16, &val);
  3880. if (err)
  3881. return err;
  3882. if (val & ~0x1FF)
  3883. return -EINVAL;
  3884. val &= 0xFF;
  3885. reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL);
  3886. reg &= ~(0xFF << MQ0_CFBHL_POLY);
  3887. reg |= val << MQ0_CFBHL_POLY;
  3888. dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL, reg);
  3889. return count;
  3890. }
  3891. static DRIVER_ATTR_RW(poly);
  3892. /*
  3893. * Common initialisation for RAID engines; allocate memory for
  3894. * DMAx FIFOs, perform configuration common for all DMA engines.
  3895. * Further DMA engine specific configuration is done at probe time.
  3896. */
  3897. static int ppc440spe_configure_raid_devices(void)
  3898. {
  3899. struct device_node *np;
  3900. struct resource i2o_res;
  3901. struct i2o_regs __iomem *i2o_reg;
  3902. dcr_host_t i2o_dcr_host;
  3903. unsigned int dcr_base, dcr_len;
  3904. int i, ret;
  3905. np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe");
  3906. if (!np) {
  3907. pr_err("%s: can't find I2O device tree node\n",
  3908. __func__);
  3909. return -ENODEV;
  3910. }
  3911. if (of_address_to_resource(np, 0, &i2o_res)) {
  3912. of_node_put(np);
  3913. return -EINVAL;
  3914. }
  3915. i2o_reg = of_iomap(np, 0);
  3916. if (!i2o_reg) {
  3917. pr_err("%s: failed to map I2O registers\n", __func__);
  3918. of_node_put(np);
  3919. return -EINVAL;
  3920. }
  3921. /* Get I2O DCRs base */
  3922. dcr_base = dcr_resource_start(np, 0);
  3923. dcr_len = dcr_resource_len(np, 0);
  3924. if (!dcr_base && !dcr_len) {
  3925. pr_err("%pOF: can't get DCR registers base/len!\n", np);
  3926. of_node_put(np);
  3927. iounmap(i2o_reg);
  3928. return -ENODEV;
  3929. }
  3930. i2o_dcr_host = dcr_map(np, dcr_base, dcr_len);
  3931. if (!DCR_MAP_OK(i2o_dcr_host)) {
  3932. pr_err("%pOF: failed to map DCRs!\n", np);
  3933. of_node_put(np);
  3934. iounmap(i2o_reg);
  3935. return -ENODEV;
  3936. }
  3937. of_node_put(np);
  3938. /* Provide memory regions for DMA's FIFOs: I2O, DMA0 and DMA1 share
  3939. * the base address of FIFO memory space.
  3940. * Actually we need twice more physical memory than programmed in the
  3941. * <fsiz> register (because there are two FIFOs for each DMA: CP and CS)
  3942. */
  3943. ppc440spe_dma_fifo_buf = kmalloc((DMA0_FIFO_SIZE + DMA1_FIFO_SIZE) << 1,
  3944. GFP_KERNEL);
  3945. if (!ppc440spe_dma_fifo_buf) {
  3946. pr_err("%s: DMA FIFO buffer allocation failed.\n", __func__);
  3947. iounmap(i2o_reg);
  3948. dcr_unmap(i2o_dcr_host, dcr_len);
  3949. return -ENOMEM;
  3950. }
  3951. /*
  3952. * Configure h/w
  3953. */
  3954. /* Reset I2O/DMA */
  3955. mtdcri(SDR0, DCRN_SDR0_SRST, DCRN_SDR0_SRST_I2ODMA);
  3956. mtdcri(SDR0, DCRN_SDR0_SRST, 0);
  3957. /* Setup the base address of mmaped registers */
  3958. dcr_write(i2o_dcr_host, DCRN_I2O0_IBAH, (u32)(i2o_res.start >> 32));
  3959. dcr_write(i2o_dcr_host, DCRN_I2O0_IBAL, (u32)(i2o_res.start) |
  3960. I2O_REG_ENABLE);
  3961. dcr_unmap(i2o_dcr_host, dcr_len);
  3962. /* Setup FIFO memory space base address */
  3963. iowrite32(0, &i2o_reg->ifbah);
  3964. iowrite32(((u32)__pa(ppc440spe_dma_fifo_buf)), &i2o_reg->ifbal);
  3965. /* set zero FIFO size for I2O, so the whole
  3966. * ppc440spe_dma_fifo_buf is used by DMAs.
  3967. * DMAx_FIFOs will be configured while probe.
  3968. */
  3969. iowrite32(0, &i2o_reg->ifsiz);
  3970. iounmap(i2o_reg);
  3971. /* To prepare WXOR/RXOR functionality we need access to
  3972. * Memory Queue Module DCRs (finally it will be enabled
  3973. * via /sys interface of the ppc440spe ADMA driver).
  3974. */
  3975. np = of_find_compatible_node(NULL, NULL, "ibm,mq-440spe");
  3976. if (!np) {
  3977. pr_err("%s: can't find MQ device tree node\n",
  3978. __func__);
  3979. ret = -ENODEV;
  3980. goto out_free;
  3981. }
  3982. /* Get MQ DCRs base */
  3983. dcr_base = dcr_resource_start(np, 0);
  3984. dcr_len = dcr_resource_len(np, 0);
  3985. if (!dcr_base && !dcr_len) {
  3986. pr_err("%pOF: can't get DCR registers base/len!\n", np);
  3987. ret = -ENODEV;
  3988. goto out_mq;
  3989. }
  3990. ppc440spe_mq_dcr_host = dcr_map(np, dcr_base, dcr_len);
  3991. if (!DCR_MAP_OK(ppc440spe_mq_dcr_host)) {
  3992. pr_err("%pOF: failed to map DCRs!\n", np);
  3993. ret = -ENODEV;
  3994. goto out_mq;
  3995. }
  3996. of_node_put(np);
  3997. ppc440spe_mq_dcr_len = dcr_len;
  3998. /* Set HB alias */
  3999. dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_BAUH, DMA_CUED_XOR_HB);
  4000. /* Set:
  4001. * - LL transaction passing limit to 1;
  4002. * - Memory controller cycle limit to 1;
  4003. * - Galois Polynomial to 0x14d (default)
  4004. */
  4005. dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL,
  4006. (1 << MQ0_CFBHL_TPLM) | (1 << MQ0_CFBHL_HBCL) |
  4007. (PPC440SPE_DEFAULT_POLY << MQ0_CFBHL_POLY));
  4008. atomic_set(&ppc440spe_adma_err_irq_ref, 0);
  4009. for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++)
  4010. ppc440spe_adma_devices[i] = -1;
  4011. return 0;
  4012. out_mq:
  4013. of_node_put(np);
  4014. out_free:
  4015. kfree(ppc440spe_dma_fifo_buf);
  4016. return ret;
  4017. }
  4018. static const struct of_device_id ppc440spe_adma_of_match[] = {
  4019. { .compatible = "ibm,dma-440spe", },
  4020. { .compatible = "amcc,xor-accelerator", },
  4021. {},
  4022. };
  4023. MODULE_DEVICE_TABLE(of, ppc440spe_adma_of_match);
  4024. static struct platform_driver ppc440spe_adma_driver = {
  4025. .probe = ppc440spe_adma_probe,
  4026. .remove = ppc440spe_adma_remove,
  4027. .driver = {
  4028. .name = "PPC440SP(E)-ADMA",
  4029. .of_match_table = ppc440spe_adma_of_match,
  4030. },
  4031. };
  4032. static __init int ppc440spe_adma_init(void)
  4033. {
  4034. int ret;
  4035. ret = ppc440spe_configure_raid_devices();
  4036. if (ret)
  4037. return ret;
  4038. ret = platform_driver_register(&ppc440spe_adma_driver);
  4039. if (ret) {
  4040. pr_err("%s: failed to register platform driver\n",
  4041. __func__);
  4042. goto out_reg;
  4043. }
  4044. /* Initialization status */
  4045. ret = driver_create_file(&ppc440spe_adma_driver.driver,
  4046. &driver_attr_devices);
  4047. if (ret)
  4048. goto out_dev;
  4049. /* RAID-6 h/w enable entry */
  4050. ret = driver_create_file(&ppc440spe_adma_driver.driver,
  4051. &driver_attr_enable);
  4052. if (ret)
  4053. goto out_en;
  4054. /* GF polynomial to use */
  4055. ret = driver_create_file(&ppc440spe_adma_driver.driver,
  4056. &driver_attr_poly);
  4057. if (!ret)
  4058. return ret;
  4059. driver_remove_file(&ppc440spe_adma_driver.driver,
  4060. &driver_attr_enable);
  4061. out_en:
  4062. driver_remove_file(&ppc440spe_adma_driver.driver,
  4063. &driver_attr_devices);
  4064. out_dev:
  4065. /* User will not be able to enable h/w RAID-6 */
  4066. pr_err("%s: failed to create RAID-6 driver interface\n",
  4067. __func__);
  4068. platform_driver_unregister(&ppc440spe_adma_driver);
  4069. out_reg:
  4070. dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len);
  4071. kfree(ppc440spe_dma_fifo_buf);
  4072. return ret;
  4073. }
  4074. static void __exit ppc440spe_adma_exit(void)
  4075. {
  4076. driver_remove_file(&ppc440spe_adma_driver.driver,
  4077. &driver_attr_poly);
  4078. driver_remove_file(&ppc440spe_adma_driver.driver,
  4079. &driver_attr_enable);
  4080. driver_remove_file(&ppc440spe_adma_driver.driver,
  4081. &driver_attr_devices);
  4082. platform_driver_unregister(&ppc440spe_adma_driver);
  4083. dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len);
  4084. kfree(ppc440spe_dma_fifo_buf);
  4085. }
  4086. arch_initcall(ppc440spe_adma_init);
  4087. module_exit(ppc440spe_adma_exit);
  4088. MODULE_AUTHOR("Yuri Tikhonov <[email protected]>");
  4089. MODULE_DESCRIPTION("PPC440SPE ADMA Engine Driver");
  4090. MODULE_LICENSE("GPL");