lgm-dma.c 41 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Lightning Mountain centralized DMA controller driver
  4. *
  5. * Copyright (c) 2016 - 2020 Intel Corporation.
  6. */
  7. #include <linux/bitfield.h>
  8. #include <linux/clk.h>
  9. #include <linux/dma-mapping.h>
  10. #include <linux/dmapool.h>
  11. #include <linux/err.h>
  12. #include <linux/export.h>
  13. #include <linux/init.h>
  14. #include <linux/interrupt.h>
  15. #include <linux/iopoll.h>
  16. #include <linux/of_dma.h>
  17. #include <linux/of_irq.h>
  18. #include <linux/platform_device.h>
  19. #include <linux/reset.h>
  20. #include "../dmaengine.h"
  21. #include "../virt-dma.h"
  22. #define DRIVER_NAME "lgm-dma"
  23. #define DMA_ID 0x0008
  24. #define DMA_ID_REV GENMASK(7, 0)
  25. #define DMA_ID_PNR GENMASK(19, 16)
  26. #define DMA_ID_CHNR GENMASK(26, 20)
  27. #define DMA_ID_DW_128B BIT(27)
  28. #define DMA_ID_AW_36B BIT(28)
  29. #define DMA_VER32 0x32
  30. #define DMA_VER31 0x31
  31. #define DMA_VER22 0x0A
  32. #define DMA_CTRL 0x0010
  33. #define DMA_CTRL_RST BIT(0)
  34. #define DMA_CTRL_DSRAM_PATH BIT(1)
  35. #define DMA_CTRL_DBURST_WR BIT(3)
  36. #define DMA_CTRL_VLD_DF_ACK BIT(4)
  37. #define DMA_CTRL_CH_FL BIT(6)
  38. #define DMA_CTRL_DS_FOD BIT(7)
  39. #define DMA_CTRL_DRB BIT(8)
  40. #define DMA_CTRL_ENBE BIT(9)
  41. #define DMA_CTRL_DESC_TMOUT_CNT_V31 GENMASK(27, 16)
  42. #define DMA_CTRL_DESC_TMOUT_EN_V31 BIT(30)
  43. #define DMA_CTRL_PKTARB BIT(31)
  44. #define DMA_CPOLL 0x0014
  45. #define DMA_CPOLL_CNT GENMASK(15, 4)
  46. #define DMA_CPOLL_EN BIT(31)
  47. #define DMA_CS 0x0018
  48. #define DMA_CS_MASK GENMASK(5, 0)
  49. #define DMA_CCTRL 0x001C
  50. #define DMA_CCTRL_ON BIT(0)
  51. #define DMA_CCTRL_RST BIT(1)
  52. #define DMA_CCTRL_CH_POLL_EN BIT(2)
  53. #define DMA_CCTRL_CH_ABC BIT(3) /* Adaptive Burst Chop */
  54. #define DMA_CDBA_MSB GENMASK(7, 4)
  55. #define DMA_CCTRL_DIR_TX BIT(8)
  56. #define DMA_CCTRL_CLASS GENMASK(11, 9)
  57. #define DMA_CCTRL_CLASSH GENMASK(19, 18)
  58. #define DMA_CCTRL_WR_NP_EN BIT(21)
  59. #define DMA_CCTRL_PDEN BIT(23)
  60. #define DMA_MAX_CLASS (SZ_32 - 1)
  61. #define DMA_CDBA 0x0020
  62. #define DMA_CDLEN 0x0024
  63. #define DMA_CIS 0x0028
  64. #define DMA_CIE 0x002C
  65. #define DMA_CI_EOP BIT(1)
  66. #define DMA_CI_DUR BIT(2)
  67. #define DMA_CI_DESCPT BIT(3)
  68. #define DMA_CI_CHOFF BIT(4)
  69. #define DMA_CI_RDERR BIT(5)
  70. #define DMA_CI_ALL \
  71. (DMA_CI_EOP | DMA_CI_DUR | DMA_CI_DESCPT | DMA_CI_CHOFF | DMA_CI_RDERR)
  72. #define DMA_PS 0x0040
  73. #define DMA_PCTRL 0x0044
  74. #define DMA_PCTRL_RXBL16 BIT(0)
  75. #define DMA_PCTRL_TXBL16 BIT(1)
  76. #define DMA_PCTRL_RXBL GENMASK(3, 2)
  77. #define DMA_PCTRL_RXBL_8 3
  78. #define DMA_PCTRL_TXBL GENMASK(5, 4)
  79. #define DMA_PCTRL_TXBL_8 3
  80. #define DMA_PCTRL_PDEN BIT(6)
  81. #define DMA_PCTRL_RXBL32 BIT(7)
  82. #define DMA_PCTRL_RXENDI GENMASK(9, 8)
  83. #define DMA_PCTRL_TXENDI GENMASK(11, 10)
  84. #define DMA_PCTRL_TXBL32 BIT(15)
  85. #define DMA_PCTRL_MEM_FLUSH BIT(16)
  86. #define DMA_IRNEN1 0x00E8
  87. #define DMA_IRNCR1 0x00EC
  88. #define DMA_IRNEN 0x00F4
  89. #define DMA_IRNCR 0x00F8
  90. #define DMA_C_DP_TICK 0x100
  91. #define DMA_C_DP_TICK_TIKNARB GENMASK(15, 0)
  92. #define DMA_C_DP_TICK_TIKARB GENMASK(31, 16)
  93. #define DMA_C_HDRM 0x110
  94. /*
  95. * If header mode is set in DMA descriptor,
  96. * If bit 30 is disabled, HDR_LEN must be configured according to channel
  97. * requirement.
  98. * If bit 30 is enabled(checksum with heade mode), HDR_LEN has no need to
  99. * be configured. It will enable check sum for switch
  100. * If header mode is not set in DMA descriptor,
  101. * This register setting doesn't matter
  102. */
  103. #define DMA_C_HDRM_HDR_SUM BIT(30)
  104. #define DMA_C_BOFF 0x120
  105. #define DMA_C_BOFF_BOF_LEN GENMASK(7, 0)
  106. #define DMA_C_BOFF_EN BIT(31)
  107. #define DMA_ORRC 0x190
  108. #define DMA_ORRC_ORRCNT GENMASK(8, 4)
  109. #define DMA_ORRC_EN BIT(31)
  110. #define DMA_C_ENDIAN 0x200
  111. #define DMA_C_END_DATAENDI GENMASK(1, 0)
  112. #define DMA_C_END_DE_EN BIT(7)
  113. #define DMA_C_END_DESENDI GENMASK(9, 8)
  114. #define DMA_C_END_DES_EN BIT(16)
  115. /* DMA controller capability */
  116. #define DMA_ADDR_36BIT BIT(0)
  117. #define DMA_DATA_128BIT BIT(1)
  118. #define DMA_CHAN_FLOW_CTL BIT(2)
  119. #define DMA_DESC_FOD BIT(3)
  120. #define DMA_DESC_IN_SRAM BIT(4)
  121. #define DMA_EN_BYTE_EN BIT(5)
  122. #define DMA_DBURST_WR BIT(6)
  123. #define DMA_VALID_DESC_FETCH_ACK BIT(7)
  124. #define DMA_DFT_DRB BIT(8)
  125. #define DMA_ORRC_MAX_CNT (SZ_32 - 1)
  126. #define DMA_DFT_POLL_CNT SZ_4
  127. #define DMA_DFT_BURST_V22 SZ_2
  128. #define DMA_BURSTL_8DW SZ_8
  129. #define DMA_BURSTL_16DW SZ_16
  130. #define DMA_BURSTL_32DW SZ_32
  131. #define DMA_DFT_BURST DMA_BURSTL_16DW
  132. #define DMA_MAX_DESC_NUM (SZ_8K - 1)
  133. #define DMA_CHAN_BOFF_MAX (SZ_256 - 1)
  134. #define DMA_DFT_ENDIAN 0
  135. #define DMA_DFT_DESC_TCNT 50
  136. #define DMA_HDR_LEN_MAX (SZ_16K - 1)
  137. /* DMA flags */
  138. #define DMA_TX_CH BIT(0)
  139. #define DMA_RX_CH BIT(1)
  140. #define DEVICE_ALLOC_DESC BIT(2)
  141. #define CHAN_IN_USE BIT(3)
  142. #define DMA_HW_DESC BIT(4)
  143. /* Descriptor fields */
  144. #define DESC_DATA_LEN GENMASK(15, 0)
  145. #define DESC_BYTE_OFF GENMASK(25, 23)
  146. #define DESC_EOP BIT(28)
  147. #define DESC_SOP BIT(29)
  148. #define DESC_C BIT(30)
  149. #define DESC_OWN BIT(31)
  150. #define DMA_CHAN_RST 1
  151. #define DMA_MAX_SIZE (BIT(16) - 1)
  152. #define MAX_LOWER_CHANS 32
  153. #define MASK_LOWER_CHANS GENMASK(4, 0)
  154. #define DMA_OWN 1
  155. #define HIGH_4_BITS GENMASK(3, 0)
  156. #define DMA_DFT_DESC_NUM 1
  157. #define DMA_PKT_DROP_DIS 0
  158. enum ldma_chan_on_off {
  159. DMA_CH_OFF = 0,
  160. DMA_CH_ON = 1,
  161. };
  162. enum {
  163. DMA_TYPE_TX = 0,
  164. DMA_TYPE_RX,
  165. DMA_TYPE_MCPY,
  166. };
  167. struct ldma_dev;
  168. struct ldma_port;
  169. struct ldma_chan {
  170. struct virt_dma_chan vchan;
  171. struct ldma_port *port; /* back pointer */
  172. char name[8]; /* Channel name */
  173. int nr; /* Channel id in hardware */
  174. u32 flags; /* central way or channel based way */
  175. enum ldma_chan_on_off onoff;
  176. dma_addr_t desc_phys;
  177. void *desc_base; /* Virtual address */
  178. u32 desc_cnt; /* Number of descriptors */
  179. int rst;
  180. u32 hdrm_len;
  181. bool hdrm_csum;
  182. u32 boff_len;
  183. u32 data_endian;
  184. u32 desc_endian;
  185. bool pden;
  186. bool desc_rx_np;
  187. bool data_endian_en;
  188. bool desc_endian_en;
  189. bool abc_en;
  190. bool desc_init;
  191. struct dma_pool *desc_pool; /* Descriptors pool */
  192. u32 desc_num;
  193. struct dw2_desc_sw *ds;
  194. struct work_struct work;
  195. struct dma_slave_config config;
  196. };
  197. struct ldma_port {
  198. struct ldma_dev *ldev; /* back pointer */
  199. u32 portid;
  200. u32 rxbl;
  201. u32 txbl;
  202. u32 rxendi;
  203. u32 txendi;
  204. u32 pkt_drop;
  205. };
  206. /* Instance specific data */
  207. struct ldma_inst_data {
  208. bool desc_in_sram;
  209. bool chan_fc;
  210. bool desc_fod; /* Fetch On Demand */
  211. bool valid_desc_fetch_ack;
  212. u32 orrc; /* Outstanding read count */
  213. const char *name;
  214. u32 type;
  215. };
  216. struct ldma_dev {
  217. struct device *dev;
  218. void __iomem *base;
  219. struct reset_control *rst;
  220. struct clk *core_clk;
  221. struct dma_device dma_dev;
  222. u32 ver;
  223. int irq;
  224. struct ldma_port *ports;
  225. struct ldma_chan *chans; /* channel list on this DMA or port */
  226. spinlock_t dev_lock; /* Controller register exclusive */
  227. u32 chan_nrs;
  228. u32 port_nrs;
  229. u32 channels_mask;
  230. u32 flags;
  231. u32 pollcnt;
  232. const struct ldma_inst_data *inst;
  233. struct workqueue_struct *wq;
  234. };
  235. struct dw2_desc {
  236. u32 field;
  237. u32 addr;
  238. } __packed __aligned(8);
  239. struct dw2_desc_sw {
  240. struct virt_dma_desc vdesc;
  241. struct ldma_chan *chan;
  242. dma_addr_t desc_phys;
  243. size_t desc_cnt;
  244. size_t size;
  245. struct dw2_desc *desc_hw;
  246. };
  247. static inline void
  248. ldma_update_bits(struct ldma_dev *d, u32 mask, u32 val, u32 ofs)
  249. {
  250. u32 old_val, new_val;
  251. old_val = readl(d->base + ofs);
  252. new_val = (old_val & ~mask) | (val & mask);
  253. if (new_val != old_val)
  254. writel(new_val, d->base + ofs);
  255. }
  256. static inline struct ldma_chan *to_ldma_chan(struct dma_chan *chan)
  257. {
  258. return container_of(chan, struct ldma_chan, vchan.chan);
  259. }
  260. static inline struct ldma_dev *to_ldma_dev(struct dma_device *dma_dev)
  261. {
  262. return container_of(dma_dev, struct ldma_dev, dma_dev);
  263. }
  264. static inline struct dw2_desc_sw *to_lgm_dma_desc(struct virt_dma_desc *vdesc)
  265. {
  266. return container_of(vdesc, struct dw2_desc_sw, vdesc);
  267. }
  268. static inline bool ldma_chan_tx(struct ldma_chan *c)
  269. {
  270. return !!(c->flags & DMA_TX_CH);
  271. }
  272. static inline bool ldma_chan_is_hw_desc(struct ldma_chan *c)
  273. {
  274. return !!(c->flags & DMA_HW_DESC);
  275. }
  276. static void ldma_dev_reset(struct ldma_dev *d)
  277. {
  278. unsigned long flags;
  279. spin_lock_irqsave(&d->dev_lock, flags);
  280. ldma_update_bits(d, DMA_CTRL_RST, DMA_CTRL_RST, DMA_CTRL);
  281. spin_unlock_irqrestore(&d->dev_lock, flags);
  282. }
  283. static void ldma_dev_pkt_arb_cfg(struct ldma_dev *d, bool enable)
  284. {
  285. unsigned long flags;
  286. u32 mask = DMA_CTRL_PKTARB;
  287. u32 val = enable ? DMA_CTRL_PKTARB : 0;
  288. spin_lock_irqsave(&d->dev_lock, flags);
  289. ldma_update_bits(d, mask, val, DMA_CTRL);
  290. spin_unlock_irqrestore(&d->dev_lock, flags);
  291. }
  292. static void ldma_dev_sram_desc_cfg(struct ldma_dev *d, bool enable)
  293. {
  294. unsigned long flags;
  295. u32 mask = DMA_CTRL_DSRAM_PATH;
  296. u32 val = enable ? DMA_CTRL_DSRAM_PATH : 0;
  297. spin_lock_irqsave(&d->dev_lock, flags);
  298. ldma_update_bits(d, mask, val, DMA_CTRL);
  299. spin_unlock_irqrestore(&d->dev_lock, flags);
  300. }
  301. static void ldma_dev_chan_flow_ctl_cfg(struct ldma_dev *d, bool enable)
  302. {
  303. unsigned long flags;
  304. u32 mask, val;
  305. if (d->inst->type != DMA_TYPE_TX)
  306. return;
  307. mask = DMA_CTRL_CH_FL;
  308. val = enable ? DMA_CTRL_CH_FL : 0;
  309. spin_lock_irqsave(&d->dev_lock, flags);
  310. ldma_update_bits(d, mask, val, DMA_CTRL);
  311. spin_unlock_irqrestore(&d->dev_lock, flags);
  312. }
  313. static void ldma_dev_global_polling_enable(struct ldma_dev *d)
  314. {
  315. unsigned long flags;
  316. u32 mask = DMA_CPOLL_EN | DMA_CPOLL_CNT;
  317. u32 val = DMA_CPOLL_EN;
  318. val |= FIELD_PREP(DMA_CPOLL_CNT, d->pollcnt);
  319. spin_lock_irqsave(&d->dev_lock, flags);
  320. ldma_update_bits(d, mask, val, DMA_CPOLL);
  321. spin_unlock_irqrestore(&d->dev_lock, flags);
  322. }
  323. static void ldma_dev_desc_fetch_on_demand_cfg(struct ldma_dev *d, bool enable)
  324. {
  325. unsigned long flags;
  326. u32 mask, val;
  327. if (d->inst->type == DMA_TYPE_MCPY)
  328. return;
  329. mask = DMA_CTRL_DS_FOD;
  330. val = enable ? DMA_CTRL_DS_FOD : 0;
  331. spin_lock_irqsave(&d->dev_lock, flags);
  332. ldma_update_bits(d, mask, val, DMA_CTRL);
  333. spin_unlock_irqrestore(&d->dev_lock, flags);
  334. }
  335. static void ldma_dev_byte_enable_cfg(struct ldma_dev *d, bool enable)
  336. {
  337. unsigned long flags;
  338. u32 mask = DMA_CTRL_ENBE;
  339. u32 val = enable ? DMA_CTRL_ENBE : 0;
  340. spin_lock_irqsave(&d->dev_lock, flags);
  341. ldma_update_bits(d, mask, val, DMA_CTRL);
  342. spin_unlock_irqrestore(&d->dev_lock, flags);
  343. }
  344. static void ldma_dev_orrc_cfg(struct ldma_dev *d)
  345. {
  346. unsigned long flags;
  347. u32 val = 0;
  348. u32 mask;
  349. if (d->inst->type == DMA_TYPE_RX)
  350. return;
  351. mask = DMA_ORRC_EN | DMA_ORRC_ORRCNT;
  352. if (d->inst->orrc > 0 && d->inst->orrc <= DMA_ORRC_MAX_CNT)
  353. val = DMA_ORRC_EN | FIELD_PREP(DMA_ORRC_ORRCNT, d->inst->orrc);
  354. spin_lock_irqsave(&d->dev_lock, flags);
  355. ldma_update_bits(d, mask, val, DMA_ORRC);
  356. spin_unlock_irqrestore(&d->dev_lock, flags);
  357. }
  358. static void ldma_dev_df_tout_cfg(struct ldma_dev *d, bool enable, int tcnt)
  359. {
  360. u32 mask = DMA_CTRL_DESC_TMOUT_CNT_V31;
  361. unsigned long flags;
  362. u32 val;
  363. if (enable)
  364. val = DMA_CTRL_DESC_TMOUT_EN_V31 | FIELD_PREP(DMA_CTRL_DESC_TMOUT_CNT_V31, tcnt);
  365. else
  366. val = 0;
  367. spin_lock_irqsave(&d->dev_lock, flags);
  368. ldma_update_bits(d, mask, val, DMA_CTRL);
  369. spin_unlock_irqrestore(&d->dev_lock, flags);
  370. }
  371. static void ldma_dev_dburst_wr_cfg(struct ldma_dev *d, bool enable)
  372. {
  373. unsigned long flags;
  374. u32 mask, val;
  375. if (d->inst->type != DMA_TYPE_RX && d->inst->type != DMA_TYPE_MCPY)
  376. return;
  377. mask = DMA_CTRL_DBURST_WR;
  378. val = enable ? DMA_CTRL_DBURST_WR : 0;
  379. spin_lock_irqsave(&d->dev_lock, flags);
  380. ldma_update_bits(d, mask, val, DMA_CTRL);
  381. spin_unlock_irqrestore(&d->dev_lock, flags);
  382. }
  383. static void ldma_dev_vld_fetch_ack_cfg(struct ldma_dev *d, bool enable)
  384. {
  385. unsigned long flags;
  386. u32 mask, val;
  387. if (d->inst->type != DMA_TYPE_TX)
  388. return;
  389. mask = DMA_CTRL_VLD_DF_ACK;
  390. val = enable ? DMA_CTRL_VLD_DF_ACK : 0;
  391. spin_lock_irqsave(&d->dev_lock, flags);
  392. ldma_update_bits(d, mask, val, DMA_CTRL);
  393. spin_unlock_irqrestore(&d->dev_lock, flags);
  394. }
  395. static void ldma_dev_drb_cfg(struct ldma_dev *d, int enable)
  396. {
  397. unsigned long flags;
  398. u32 mask = DMA_CTRL_DRB;
  399. u32 val = enable ? DMA_CTRL_DRB : 0;
  400. spin_lock_irqsave(&d->dev_lock, flags);
  401. ldma_update_bits(d, mask, val, DMA_CTRL);
  402. spin_unlock_irqrestore(&d->dev_lock, flags);
  403. }
  404. static int ldma_dev_cfg(struct ldma_dev *d)
  405. {
  406. bool enable;
  407. ldma_dev_pkt_arb_cfg(d, true);
  408. ldma_dev_global_polling_enable(d);
  409. enable = !!(d->flags & DMA_DFT_DRB);
  410. ldma_dev_drb_cfg(d, enable);
  411. enable = !!(d->flags & DMA_EN_BYTE_EN);
  412. ldma_dev_byte_enable_cfg(d, enable);
  413. enable = !!(d->flags & DMA_CHAN_FLOW_CTL);
  414. ldma_dev_chan_flow_ctl_cfg(d, enable);
  415. enable = !!(d->flags & DMA_DESC_FOD);
  416. ldma_dev_desc_fetch_on_demand_cfg(d, enable);
  417. enable = !!(d->flags & DMA_DESC_IN_SRAM);
  418. ldma_dev_sram_desc_cfg(d, enable);
  419. enable = !!(d->flags & DMA_DBURST_WR);
  420. ldma_dev_dburst_wr_cfg(d, enable);
  421. enable = !!(d->flags & DMA_VALID_DESC_FETCH_ACK);
  422. ldma_dev_vld_fetch_ack_cfg(d, enable);
  423. if (d->ver > DMA_VER22) {
  424. ldma_dev_orrc_cfg(d);
  425. ldma_dev_df_tout_cfg(d, true, DMA_DFT_DESC_TCNT);
  426. }
  427. dev_dbg(d->dev, "%s Controller 0x%08x configuration done\n",
  428. d->inst->name, readl(d->base + DMA_CTRL));
  429. return 0;
  430. }
  431. static int ldma_chan_cctrl_cfg(struct ldma_chan *c, u32 val)
  432. {
  433. struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device);
  434. u32 class_low, class_high;
  435. unsigned long flags;
  436. u32 reg;
  437. spin_lock_irqsave(&d->dev_lock, flags);
  438. ldma_update_bits(d, DMA_CS_MASK, c->nr, DMA_CS);
  439. reg = readl(d->base + DMA_CCTRL);
  440. /* Read from hardware */
  441. if (reg & DMA_CCTRL_DIR_TX)
  442. c->flags |= DMA_TX_CH;
  443. else
  444. c->flags |= DMA_RX_CH;
  445. /* Keep the class value unchanged */
  446. class_low = FIELD_GET(DMA_CCTRL_CLASS, reg);
  447. class_high = FIELD_GET(DMA_CCTRL_CLASSH, reg);
  448. val &= ~DMA_CCTRL_CLASS;
  449. val |= FIELD_PREP(DMA_CCTRL_CLASS, class_low);
  450. val &= ~DMA_CCTRL_CLASSH;
  451. val |= FIELD_PREP(DMA_CCTRL_CLASSH, class_high);
  452. writel(val, d->base + DMA_CCTRL);
  453. spin_unlock_irqrestore(&d->dev_lock, flags);
  454. return 0;
  455. }
  456. static void ldma_chan_irq_init(struct ldma_chan *c)
  457. {
  458. struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device);
  459. unsigned long flags;
  460. u32 enofs, crofs;
  461. u32 cn_bit;
  462. if (c->nr < MAX_LOWER_CHANS) {
  463. enofs = DMA_IRNEN;
  464. crofs = DMA_IRNCR;
  465. } else {
  466. enofs = DMA_IRNEN1;
  467. crofs = DMA_IRNCR1;
  468. }
  469. cn_bit = BIT(c->nr & MASK_LOWER_CHANS);
  470. spin_lock_irqsave(&d->dev_lock, flags);
  471. ldma_update_bits(d, DMA_CS_MASK, c->nr, DMA_CS);
  472. /* Clear all interrupts and disabled it */
  473. writel(0, d->base + DMA_CIE);
  474. writel(DMA_CI_ALL, d->base + DMA_CIS);
  475. ldma_update_bits(d, cn_bit, 0, enofs);
  476. writel(cn_bit, d->base + crofs);
  477. spin_unlock_irqrestore(&d->dev_lock, flags);
  478. }
  479. static void ldma_chan_set_class(struct ldma_chan *c, u32 val)
  480. {
  481. struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device);
  482. u32 class_val;
  483. if (d->inst->type == DMA_TYPE_MCPY || val > DMA_MAX_CLASS)
  484. return;
  485. /* 3 bits low */
  486. class_val = FIELD_PREP(DMA_CCTRL_CLASS, val & 0x7);
  487. /* 2 bits high */
  488. class_val |= FIELD_PREP(DMA_CCTRL_CLASSH, (val >> 3) & 0x3);
  489. ldma_update_bits(d, DMA_CS_MASK, c->nr, DMA_CS);
  490. ldma_update_bits(d, DMA_CCTRL_CLASS | DMA_CCTRL_CLASSH, class_val,
  491. DMA_CCTRL);
  492. }
  493. static int ldma_chan_on(struct ldma_chan *c)
  494. {
  495. struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device);
  496. unsigned long flags;
  497. /* If descriptors not configured, not allow to turn on channel */
  498. if (WARN_ON(!c->desc_init))
  499. return -EINVAL;
  500. spin_lock_irqsave(&d->dev_lock, flags);
  501. ldma_update_bits(d, DMA_CS_MASK, c->nr, DMA_CS);
  502. ldma_update_bits(d, DMA_CCTRL_ON, DMA_CCTRL_ON, DMA_CCTRL);
  503. spin_unlock_irqrestore(&d->dev_lock, flags);
  504. c->onoff = DMA_CH_ON;
  505. return 0;
  506. }
  507. static int ldma_chan_off(struct ldma_chan *c)
  508. {
  509. struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device);
  510. unsigned long flags;
  511. u32 val;
  512. int ret;
  513. spin_lock_irqsave(&d->dev_lock, flags);
  514. ldma_update_bits(d, DMA_CS_MASK, c->nr, DMA_CS);
  515. ldma_update_bits(d, DMA_CCTRL_ON, 0, DMA_CCTRL);
  516. spin_unlock_irqrestore(&d->dev_lock, flags);
  517. ret = readl_poll_timeout_atomic(d->base + DMA_CCTRL, val,
  518. !(val & DMA_CCTRL_ON), 0, 10000);
  519. if (ret)
  520. return ret;
  521. c->onoff = DMA_CH_OFF;
  522. return 0;
  523. }
  524. static void ldma_chan_desc_hw_cfg(struct ldma_chan *c, dma_addr_t desc_base,
  525. int desc_num)
  526. {
  527. struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device);
  528. unsigned long flags;
  529. spin_lock_irqsave(&d->dev_lock, flags);
  530. ldma_update_bits(d, DMA_CS_MASK, c->nr, DMA_CS);
  531. writel(lower_32_bits(desc_base), d->base + DMA_CDBA);
  532. /* Higher 4 bits of 36 bit addressing */
  533. if (IS_ENABLED(CONFIG_64BIT)) {
  534. u32 hi = upper_32_bits(desc_base) & HIGH_4_BITS;
  535. ldma_update_bits(d, DMA_CDBA_MSB,
  536. FIELD_PREP(DMA_CDBA_MSB, hi), DMA_CCTRL);
  537. }
  538. writel(desc_num, d->base + DMA_CDLEN);
  539. spin_unlock_irqrestore(&d->dev_lock, flags);
  540. c->desc_init = true;
  541. }
  542. static struct dma_async_tx_descriptor *
  543. ldma_chan_desc_cfg(struct dma_chan *chan, dma_addr_t desc_base, int desc_num)
  544. {
  545. struct ldma_chan *c = to_ldma_chan(chan);
  546. struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device);
  547. struct dma_async_tx_descriptor *tx;
  548. struct dw2_desc_sw *ds;
  549. if (!desc_num) {
  550. dev_err(d->dev, "Channel %d must allocate descriptor first\n",
  551. c->nr);
  552. return NULL;
  553. }
  554. if (desc_num > DMA_MAX_DESC_NUM) {
  555. dev_err(d->dev, "Channel %d descriptor number out of range %d\n",
  556. c->nr, desc_num);
  557. return NULL;
  558. }
  559. ldma_chan_desc_hw_cfg(c, desc_base, desc_num);
  560. c->flags |= DMA_HW_DESC;
  561. c->desc_cnt = desc_num;
  562. c->desc_phys = desc_base;
  563. ds = kzalloc(sizeof(*ds), GFP_NOWAIT);
  564. if (!ds)
  565. return NULL;
  566. tx = &ds->vdesc.tx;
  567. dma_async_tx_descriptor_init(tx, chan);
  568. return tx;
  569. }
  570. static int ldma_chan_reset(struct ldma_chan *c)
  571. {
  572. struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device);
  573. unsigned long flags;
  574. u32 val;
  575. int ret;
  576. ret = ldma_chan_off(c);
  577. if (ret)
  578. return ret;
  579. spin_lock_irqsave(&d->dev_lock, flags);
  580. ldma_update_bits(d, DMA_CS_MASK, c->nr, DMA_CS);
  581. ldma_update_bits(d, DMA_CCTRL_RST, DMA_CCTRL_RST, DMA_CCTRL);
  582. spin_unlock_irqrestore(&d->dev_lock, flags);
  583. ret = readl_poll_timeout_atomic(d->base + DMA_CCTRL, val,
  584. !(val & DMA_CCTRL_RST), 0, 10000);
  585. if (ret)
  586. return ret;
  587. c->rst = 1;
  588. c->desc_init = false;
  589. return 0;
  590. }
  591. static void ldma_chan_byte_offset_cfg(struct ldma_chan *c, u32 boff_len)
  592. {
  593. struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device);
  594. u32 mask = DMA_C_BOFF_EN | DMA_C_BOFF_BOF_LEN;
  595. u32 val;
  596. if (boff_len > 0 && boff_len <= DMA_CHAN_BOFF_MAX)
  597. val = FIELD_PREP(DMA_C_BOFF_BOF_LEN, boff_len) | DMA_C_BOFF_EN;
  598. else
  599. val = 0;
  600. ldma_update_bits(d, DMA_CS_MASK, c->nr, DMA_CS);
  601. ldma_update_bits(d, mask, val, DMA_C_BOFF);
  602. }
  603. static void ldma_chan_data_endian_cfg(struct ldma_chan *c, bool enable,
  604. u32 endian_type)
  605. {
  606. struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device);
  607. u32 mask = DMA_C_END_DE_EN | DMA_C_END_DATAENDI;
  608. u32 val;
  609. if (enable)
  610. val = DMA_C_END_DE_EN | FIELD_PREP(DMA_C_END_DATAENDI, endian_type);
  611. else
  612. val = 0;
  613. ldma_update_bits(d, DMA_CS_MASK, c->nr, DMA_CS);
  614. ldma_update_bits(d, mask, val, DMA_C_ENDIAN);
  615. }
  616. static void ldma_chan_desc_endian_cfg(struct ldma_chan *c, bool enable,
  617. u32 endian_type)
  618. {
  619. struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device);
  620. u32 mask = DMA_C_END_DES_EN | DMA_C_END_DESENDI;
  621. u32 val;
  622. if (enable)
  623. val = DMA_C_END_DES_EN | FIELD_PREP(DMA_C_END_DESENDI, endian_type);
  624. else
  625. val = 0;
  626. ldma_update_bits(d, DMA_CS_MASK, c->nr, DMA_CS);
  627. ldma_update_bits(d, mask, val, DMA_C_ENDIAN);
  628. }
  629. static void ldma_chan_hdr_mode_cfg(struct ldma_chan *c, u32 hdr_len, bool csum)
  630. {
  631. struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device);
  632. u32 mask, val;
  633. /* NB, csum disabled, hdr length must be provided */
  634. if (!csum && (!hdr_len || hdr_len > DMA_HDR_LEN_MAX))
  635. return;
  636. mask = DMA_C_HDRM_HDR_SUM;
  637. val = DMA_C_HDRM_HDR_SUM;
  638. if (!csum && hdr_len)
  639. val = hdr_len;
  640. ldma_update_bits(d, DMA_CS_MASK, c->nr, DMA_CS);
  641. ldma_update_bits(d, mask, val, DMA_C_HDRM);
  642. }
  643. static void ldma_chan_rxwr_np_cfg(struct ldma_chan *c, bool enable)
  644. {
  645. struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device);
  646. u32 mask, val;
  647. /* Only valid for RX channel */
  648. if (ldma_chan_tx(c))
  649. return;
  650. mask = DMA_CCTRL_WR_NP_EN;
  651. val = enable ? DMA_CCTRL_WR_NP_EN : 0;
  652. ldma_update_bits(d, DMA_CS_MASK, c->nr, DMA_CS);
  653. ldma_update_bits(d, mask, val, DMA_CCTRL);
  654. }
  655. static void ldma_chan_abc_cfg(struct ldma_chan *c, bool enable)
  656. {
  657. struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device);
  658. u32 mask, val;
  659. if (d->ver < DMA_VER32 || ldma_chan_tx(c))
  660. return;
  661. mask = DMA_CCTRL_CH_ABC;
  662. val = enable ? DMA_CCTRL_CH_ABC : 0;
  663. ldma_update_bits(d, DMA_CS_MASK, c->nr, DMA_CS);
  664. ldma_update_bits(d, mask, val, DMA_CCTRL);
  665. }
  666. static int ldma_port_cfg(struct ldma_port *p)
  667. {
  668. unsigned long flags;
  669. struct ldma_dev *d;
  670. u32 reg;
  671. d = p->ldev;
  672. reg = FIELD_PREP(DMA_PCTRL_TXENDI, p->txendi);
  673. reg |= FIELD_PREP(DMA_PCTRL_RXENDI, p->rxendi);
  674. if (d->ver == DMA_VER22) {
  675. reg |= FIELD_PREP(DMA_PCTRL_TXBL, p->txbl);
  676. reg |= FIELD_PREP(DMA_PCTRL_RXBL, p->rxbl);
  677. } else {
  678. reg |= FIELD_PREP(DMA_PCTRL_PDEN, p->pkt_drop);
  679. if (p->txbl == DMA_BURSTL_32DW)
  680. reg |= DMA_PCTRL_TXBL32;
  681. else if (p->txbl == DMA_BURSTL_16DW)
  682. reg |= DMA_PCTRL_TXBL16;
  683. else
  684. reg |= FIELD_PREP(DMA_PCTRL_TXBL, DMA_PCTRL_TXBL_8);
  685. if (p->rxbl == DMA_BURSTL_32DW)
  686. reg |= DMA_PCTRL_RXBL32;
  687. else if (p->rxbl == DMA_BURSTL_16DW)
  688. reg |= DMA_PCTRL_RXBL16;
  689. else
  690. reg |= FIELD_PREP(DMA_PCTRL_RXBL, DMA_PCTRL_RXBL_8);
  691. }
  692. spin_lock_irqsave(&d->dev_lock, flags);
  693. writel(p->portid, d->base + DMA_PS);
  694. writel(reg, d->base + DMA_PCTRL);
  695. spin_unlock_irqrestore(&d->dev_lock, flags);
  696. reg = readl(d->base + DMA_PCTRL); /* read back */
  697. dev_dbg(d->dev, "Port Control 0x%08x configuration done\n", reg);
  698. return 0;
  699. }
  700. static int ldma_chan_cfg(struct ldma_chan *c)
  701. {
  702. struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device);
  703. unsigned long flags;
  704. u32 reg;
  705. reg = c->pden ? DMA_CCTRL_PDEN : 0;
  706. reg |= c->onoff ? DMA_CCTRL_ON : 0;
  707. reg |= c->rst ? DMA_CCTRL_RST : 0;
  708. ldma_chan_cctrl_cfg(c, reg);
  709. ldma_chan_irq_init(c);
  710. if (d->ver <= DMA_VER22)
  711. return 0;
  712. spin_lock_irqsave(&d->dev_lock, flags);
  713. ldma_chan_set_class(c, c->nr);
  714. ldma_chan_byte_offset_cfg(c, c->boff_len);
  715. ldma_chan_data_endian_cfg(c, c->data_endian_en, c->data_endian);
  716. ldma_chan_desc_endian_cfg(c, c->desc_endian_en, c->desc_endian);
  717. ldma_chan_hdr_mode_cfg(c, c->hdrm_len, c->hdrm_csum);
  718. ldma_chan_rxwr_np_cfg(c, c->desc_rx_np);
  719. ldma_chan_abc_cfg(c, c->abc_en);
  720. spin_unlock_irqrestore(&d->dev_lock, flags);
  721. if (ldma_chan_is_hw_desc(c))
  722. ldma_chan_desc_hw_cfg(c, c->desc_phys, c->desc_cnt);
  723. return 0;
  724. }
  725. static void ldma_dev_init(struct ldma_dev *d)
  726. {
  727. unsigned long ch_mask = (unsigned long)d->channels_mask;
  728. struct ldma_port *p;
  729. struct ldma_chan *c;
  730. int i;
  731. u32 j;
  732. spin_lock_init(&d->dev_lock);
  733. ldma_dev_reset(d);
  734. ldma_dev_cfg(d);
  735. /* DMA port initialization */
  736. for (i = 0; i < d->port_nrs; i++) {
  737. p = &d->ports[i];
  738. ldma_port_cfg(p);
  739. }
  740. /* DMA channel initialization */
  741. for_each_set_bit(j, &ch_mask, d->chan_nrs) {
  742. c = &d->chans[j];
  743. ldma_chan_cfg(c);
  744. }
  745. }
  746. static int ldma_parse_dt(struct ldma_dev *d)
  747. {
  748. struct fwnode_handle *fwnode = dev_fwnode(d->dev);
  749. struct ldma_port *p;
  750. int i;
  751. if (fwnode_property_read_bool(fwnode, "intel,dma-byte-en"))
  752. d->flags |= DMA_EN_BYTE_EN;
  753. if (fwnode_property_read_bool(fwnode, "intel,dma-dburst-wr"))
  754. d->flags |= DMA_DBURST_WR;
  755. if (fwnode_property_read_bool(fwnode, "intel,dma-drb"))
  756. d->flags |= DMA_DFT_DRB;
  757. if (fwnode_property_read_u32(fwnode, "intel,dma-poll-cnt",
  758. &d->pollcnt))
  759. d->pollcnt = DMA_DFT_POLL_CNT;
  760. if (d->inst->chan_fc)
  761. d->flags |= DMA_CHAN_FLOW_CTL;
  762. if (d->inst->desc_fod)
  763. d->flags |= DMA_DESC_FOD;
  764. if (d->inst->desc_in_sram)
  765. d->flags |= DMA_DESC_IN_SRAM;
  766. if (d->inst->valid_desc_fetch_ack)
  767. d->flags |= DMA_VALID_DESC_FETCH_ACK;
  768. if (d->ver > DMA_VER22) {
  769. if (!d->port_nrs)
  770. return -EINVAL;
  771. for (i = 0; i < d->port_nrs; i++) {
  772. p = &d->ports[i];
  773. p->rxendi = DMA_DFT_ENDIAN;
  774. p->txendi = DMA_DFT_ENDIAN;
  775. p->rxbl = DMA_DFT_BURST;
  776. p->txbl = DMA_DFT_BURST;
  777. p->pkt_drop = DMA_PKT_DROP_DIS;
  778. }
  779. }
  780. return 0;
  781. }
  782. static void dma_free_desc_resource(struct virt_dma_desc *vdesc)
  783. {
  784. struct dw2_desc_sw *ds = to_lgm_dma_desc(vdesc);
  785. struct ldma_chan *c = ds->chan;
  786. dma_pool_free(c->desc_pool, ds->desc_hw, ds->desc_phys);
  787. kfree(ds);
  788. }
  789. static struct dw2_desc_sw *
  790. dma_alloc_desc_resource(int num, struct ldma_chan *c)
  791. {
  792. struct device *dev = c->vchan.chan.device->dev;
  793. struct dw2_desc_sw *ds;
  794. if (num > c->desc_num) {
  795. dev_err(dev, "sg num %d exceed max %d\n", num, c->desc_num);
  796. return NULL;
  797. }
  798. ds = kzalloc(sizeof(*ds), GFP_NOWAIT);
  799. if (!ds)
  800. return NULL;
  801. ds->chan = c;
  802. ds->desc_hw = dma_pool_zalloc(c->desc_pool, GFP_ATOMIC,
  803. &ds->desc_phys);
  804. if (!ds->desc_hw) {
  805. dev_dbg(dev, "out of memory for link descriptor\n");
  806. kfree(ds);
  807. return NULL;
  808. }
  809. ds->desc_cnt = num;
  810. return ds;
  811. }
  812. static void ldma_chan_irq_en(struct ldma_chan *c)
  813. {
  814. struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device);
  815. unsigned long flags;
  816. spin_lock_irqsave(&d->dev_lock, flags);
  817. writel(c->nr, d->base + DMA_CS);
  818. writel(DMA_CI_EOP, d->base + DMA_CIE);
  819. writel(BIT(c->nr), d->base + DMA_IRNEN);
  820. spin_unlock_irqrestore(&d->dev_lock, flags);
  821. }
  822. static void ldma_issue_pending(struct dma_chan *chan)
  823. {
  824. struct ldma_chan *c = to_ldma_chan(chan);
  825. struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device);
  826. unsigned long flags;
  827. if (d->ver == DMA_VER22) {
  828. spin_lock_irqsave(&c->vchan.lock, flags);
  829. if (vchan_issue_pending(&c->vchan)) {
  830. struct virt_dma_desc *vdesc;
  831. /* Get the next descriptor */
  832. vdesc = vchan_next_desc(&c->vchan);
  833. if (!vdesc) {
  834. c->ds = NULL;
  835. spin_unlock_irqrestore(&c->vchan.lock, flags);
  836. return;
  837. }
  838. list_del(&vdesc->node);
  839. c->ds = to_lgm_dma_desc(vdesc);
  840. ldma_chan_desc_hw_cfg(c, c->ds->desc_phys, c->ds->desc_cnt);
  841. ldma_chan_irq_en(c);
  842. }
  843. spin_unlock_irqrestore(&c->vchan.lock, flags);
  844. }
  845. ldma_chan_on(c);
  846. }
  847. static void ldma_synchronize(struct dma_chan *chan)
  848. {
  849. struct ldma_chan *c = to_ldma_chan(chan);
  850. /*
  851. * clear any pending work if any. In that
  852. * case the resource needs to be free here.
  853. */
  854. cancel_work_sync(&c->work);
  855. vchan_synchronize(&c->vchan);
  856. if (c->ds)
  857. dma_free_desc_resource(&c->ds->vdesc);
  858. }
  859. static int ldma_terminate_all(struct dma_chan *chan)
  860. {
  861. struct ldma_chan *c = to_ldma_chan(chan);
  862. unsigned long flags;
  863. LIST_HEAD(head);
  864. spin_lock_irqsave(&c->vchan.lock, flags);
  865. vchan_get_all_descriptors(&c->vchan, &head);
  866. spin_unlock_irqrestore(&c->vchan.lock, flags);
  867. vchan_dma_desc_free_list(&c->vchan, &head);
  868. return ldma_chan_reset(c);
  869. }
  870. static int ldma_resume_chan(struct dma_chan *chan)
  871. {
  872. struct ldma_chan *c = to_ldma_chan(chan);
  873. ldma_chan_on(c);
  874. return 0;
  875. }
  876. static int ldma_pause_chan(struct dma_chan *chan)
  877. {
  878. struct ldma_chan *c = to_ldma_chan(chan);
  879. return ldma_chan_off(c);
  880. }
  881. static enum dma_status
  882. ldma_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
  883. struct dma_tx_state *txstate)
  884. {
  885. struct ldma_chan *c = to_ldma_chan(chan);
  886. struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device);
  887. enum dma_status status = DMA_COMPLETE;
  888. if (d->ver == DMA_VER22)
  889. status = dma_cookie_status(chan, cookie, txstate);
  890. return status;
  891. }
  892. static void dma_chan_irq(int irq, void *data)
  893. {
  894. struct ldma_chan *c = data;
  895. struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device);
  896. u32 stat;
  897. /* Disable channel interrupts */
  898. writel(c->nr, d->base + DMA_CS);
  899. stat = readl(d->base + DMA_CIS);
  900. if (!stat)
  901. return;
  902. writel(readl(d->base + DMA_CIE) & ~DMA_CI_ALL, d->base + DMA_CIE);
  903. writel(stat, d->base + DMA_CIS);
  904. queue_work(d->wq, &c->work);
  905. }
  906. static irqreturn_t dma_interrupt(int irq, void *dev_id)
  907. {
  908. struct ldma_dev *d = dev_id;
  909. struct ldma_chan *c;
  910. unsigned long irncr;
  911. u32 cid;
  912. irncr = readl(d->base + DMA_IRNCR);
  913. if (!irncr) {
  914. dev_err(d->dev, "dummy interrupt\n");
  915. return IRQ_NONE;
  916. }
  917. for_each_set_bit(cid, &irncr, d->chan_nrs) {
  918. /* Mask */
  919. writel(readl(d->base + DMA_IRNEN) & ~BIT(cid), d->base + DMA_IRNEN);
  920. /* Ack */
  921. writel(readl(d->base + DMA_IRNCR) | BIT(cid), d->base + DMA_IRNCR);
  922. c = &d->chans[cid];
  923. dma_chan_irq(irq, c);
  924. }
  925. return IRQ_HANDLED;
  926. }
  927. static void prep_slave_burst_len(struct ldma_chan *c)
  928. {
  929. struct ldma_port *p = c->port;
  930. struct dma_slave_config *cfg = &c->config;
  931. if (cfg->dst_maxburst)
  932. cfg->src_maxburst = cfg->dst_maxburst;
  933. /* TX and RX has the same burst length */
  934. p->txbl = ilog2(cfg->src_maxburst);
  935. p->rxbl = p->txbl;
  936. }
  937. static struct dma_async_tx_descriptor *
  938. ldma_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
  939. unsigned int sglen, enum dma_transfer_direction dir,
  940. unsigned long flags, void *context)
  941. {
  942. struct ldma_chan *c = to_ldma_chan(chan);
  943. struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device);
  944. size_t len, avail, total = 0;
  945. struct dw2_desc *hw_ds;
  946. struct dw2_desc_sw *ds;
  947. struct scatterlist *sg;
  948. int num = sglen, i;
  949. dma_addr_t addr;
  950. if (!sgl)
  951. return NULL;
  952. if (d->ver > DMA_VER22)
  953. return ldma_chan_desc_cfg(chan, sgl->dma_address, sglen);
  954. for_each_sg(sgl, sg, sglen, i) {
  955. avail = sg_dma_len(sg);
  956. if (avail > DMA_MAX_SIZE)
  957. num += DIV_ROUND_UP(avail, DMA_MAX_SIZE) - 1;
  958. }
  959. ds = dma_alloc_desc_resource(num, c);
  960. if (!ds)
  961. return NULL;
  962. c->ds = ds;
  963. num = 0;
  964. /* sop and eop has to be handled nicely */
  965. for_each_sg(sgl, sg, sglen, i) {
  966. addr = sg_dma_address(sg);
  967. avail = sg_dma_len(sg);
  968. total += avail;
  969. do {
  970. len = min_t(size_t, avail, DMA_MAX_SIZE);
  971. hw_ds = &ds->desc_hw[num];
  972. switch (sglen) {
  973. case 1:
  974. hw_ds->field &= ~DESC_SOP;
  975. hw_ds->field |= FIELD_PREP(DESC_SOP, 1);
  976. hw_ds->field &= ~DESC_EOP;
  977. hw_ds->field |= FIELD_PREP(DESC_EOP, 1);
  978. break;
  979. default:
  980. if (num == 0) {
  981. hw_ds->field &= ~DESC_SOP;
  982. hw_ds->field |= FIELD_PREP(DESC_SOP, 1);
  983. hw_ds->field &= ~DESC_EOP;
  984. hw_ds->field |= FIELD_PREP(DESC_EOP, 0);
  985. } else if (num == (sglen - 1)) {
  986. hw_ds->field &= ~DESC_SOP;
  987. hw_ds->field |= FIELD_PREP(DESC_SOP, 0);
  988. hw_ds->field &= ~DESC_EOP;
  989. hw_ds->field |= FIELD_PREP(DESC_EOP, 1);
  990. } else {
  991. hw_ds->field &= ~DESC_SOP;
  992. hw_ds->field |= FIELD_PREP(DESC_SOP, 0);
  993. hw_ds->field &= ~DESC_EOP;
  994. hw_ds->field |= FIELD_PREP(DESC_EOP, 0);
  995. }
  996. break;
  997. }
  998. /* Only 32 bit address supported */
  999. hw_ds->addr = (u32)addr;
  1000. hw_ds->field &= ~DESC_DATA_LEN;
  1001. hw_ds->field |= FIELD_PREP(DESC_DATA_LEN, len);
  1002. hw_ds->field &= ~DESC_C;
  1003. hw_ds->field |= FIELD_PREP(DESC_C, 0);
  1004. hw_ds->field &= ~DESC_BYTE_OFF;
  1005. hw_ds->field |= FIELD_PREP(DESC_BYTE_OFF, addr & 0x3);
  1006. /* Ensure data ready before ownership change */
  1007. wmb();
  1008. hw_ds->field &= ~DESC_OWN;
  1009. hw_ds->field |= FIELD_PREP(DESC_OWN, DMA_OWN);
  1010. /* Ensure ownership changed before moving forward */
  1011. wmb();
  1012. num++;
  1013. addr += len;
  1014. avail -= len;
  1015. } while (avail);
  1016. }
  1017. ds->size = total;
  1018. prep_slave_burst_len(c);
  1019. return vchan_tx_prep(&c->vchan, &ds->vdesc, DMA_CTRL_ACK);
  1020. }
  1021. static int
  1022. ldma_slave_config(struct dma_chan *chan, struct dma_slave_config *cfg)
  1023. {
  1024. struct ldma_chan *c = to_ldma_chan(chan);
  1025. memcpy(&c->config, cfg, sizeof(c->config));
  1026. return 0;
  1027. }
  1028. static int ldma_alloc_chan_resources(struct dma_chan *chan)
  1029. {
  1030. struct ldma_chan *c = to_ldma_chan(chan);
  1031. struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device);
  1032. struct device *dev = c->vchan.chan.device->dev;
  1033. size_t desc_sz;
  1034. if (d->ver > DMA_VER22) {
  1035. c->flags |= CHAN_IN_USE;
  1036. return 0;
  1037. }
  1038. if (c->desc_pool)
  1039. return c->desc_num;
  1040. desc_sz = c->desc_num * sizeof(struct dw2_desc);
  1041. c->desc_pool = dma_pool_create(c->name, dev, desc_sz,
  1042. __alignof__(struct dw2_desc), 0);
  1043. if (!c->desc_pool) {
  1044. dev_err(dev, "unable to allocate descriptor pool\n");
  1045. return -ENOMEM;
  1046. }
  1047. return c->desc_num;
  1048. }
  1049. static void ldma_free_chan_resources(struct dma_chan *chan)
  1050. {
  1051. struct ldma_chan *c = to_ldma_chan(chan);
  1052. struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device);
  1053. if (d->ver == DMA_VER22) {
  1054. dma_pool_destroy(c->desc_pool);
  1055. c->desc_pool = NULL;
  1056. vchan_free_chan_resources(to_virt_chan(chan));
  1057. ldma_chan_reset(c);
  1058. } else {
  1059. c->flags &= ~CHAN_IN_USE;
  1060. }
  1061. }
  1062. static void dma_work(struct work_struct *work)
  1063. {
  1064. struct ldma_chan *c = container_of(work, struct ldma_chan, work);
  1065. struct dma_async_tx_descriptor *tx = &c->ds->vdesc.tx;
  1066. struct virt_dma_chan *vc = &c->vchan;
  1067. struct dmaengine_desc_callback cb;
  1068. struct virt_dma_desc *vd, *_vd;
  1069. unsigned long flags;
  1070. LIST_HEAD(head);
  1071. spin_lock_irqsave(&c->vchan.lock, flags);
  1072. list_splice_tail_init(&vc->desc_completed, &head);
  1073. spin_unlock_irqrestore(&c->vchan.lock, flags);
  1074. dmaengine_desc_get_callback(tx, &cb);
  1075. dma_cookie_complete(tx);
  1076. dmaengine_desc_callback_invoke(&cb, NULL);
  1077. list_for_each_entry_safe(vd, _vd, &head, node) {
  1078. dmaengine_desc_get_callback(tx, &cb);
  1079. dma_cookie_complete(tx);
  1080. list_del(&vd->node);
  1081. dmaengine_desc_callback_invoke(&cb, NULL);
  1082. vchan_vdesc_fini(vd);
  1083. }
  1084. c->ds = NULL;
  1085. }
  1086. static void
  1087. update_burst_len_v22(struct ldma_chan *c, struct ldma_port *p, u32 burst)
  1088. {
  1089. if (ldma_chan_tx(c))
  1090. p->txbl = ilog2(burst);
  1091. else
  1092. p->rxbl = ilog2(burst);
  1093. }
  1094. static void
  1095. update_burst_len_v3X(struct ldma_chan *c, struct ldma_port *p, u32 burst)
  1096. {
  1097. if (ldma_chan_tx(c))
  1098. p->txbl = burst;
  1099. else
  1100. p->rxbl = burst;
  1101. }
  1102. static int
  1103. update_client_configs(struct of_dma *ofdma, struct of_phandle_args *spec)
  1104. {
  1105. struct ldma_dev *d = ofdma->of_dma_data;
  1106. u32 chan_id = spec->args[0];
  1107. u32 port_id = spec->args[1];
  1108. u32 burst = spec->args[2];
  1109. struct ldma_port *p;
  1110. struct ldma_chan *c;
  1111. if (chan_id >= d->chan_nrs || port_id >= d->port_nrs)
  1112. return 0;
  1113. p = &d->ports[port_id];
  1114. c = &d->chans[chan_id];
  1115. c->port = p;
  1116. if (d->ver == DMA_VER22)
  1117. update_burst_len_v22(c, p, burst);
  1118. else
  1119. update_burst_len_v3X(c, p, burst);
  1120. ldma_port_cfg(p);
  1121. return 1;
  1122. }
  1123. static struct dma_chan *ldma_xlate(struct of_phandle_args *spec,
  1124. struct of_dma *ofdma)
  1125. {
  1126. struct ldma_dev *d = ofdma->of_dma_data;
  1127. u32 chan_id = spec->args[0];
  1128. int ret;
  1129. if (!spec->args_count)
  1130. return NULL;
  1131. /* if args_count is 1 driver use default settings */
  1132. if (spec->args_count > 1) {
  1133. ret = update_client_configs(ofdma, spec);
  1134. if (!ret)
  1135. return NULL;
  1136. }
  1137. return dma_get_slave_channel(&d->chans[chan_id].vchan.chan);
  1138. }
  1139. static void ldma_dma_init_v22(int i, struct ldma_dev *d)
  1140. {
  1141. struct ldma_chan *c;
  1142. c = &d->chans[i];
  1143. c->nr = i; /* Real channel number */
  1144. c->rst = DMA_CHAN_RST;
  1145. c->desc_num = DMA_DFT_DESC_NUM;
  1146. snprintf(c->name, sizeof(c->name), "chan%d", c->nr);
  1147. INIT_WORK(&c->work, dma_work);
  1148. c->vchan.desc_free = dma_free_desc_resource;
  1149. vchan_init(&c->vchan, &d->dma_dev);
  1150. }
  1151. static void ldma_dma_init_v3X(int i, struct ldma_dev *d)
  1152. {
  1153. struct ldma_chan *c;
  1154. c = &d->chans[i];
  1155. c->data_endian = DMA_DFT_ENDIAN;
  1156. c->desc_endian = DMA_DFT_ENDIAN;
  1157. c->data_endian_en = false;
  1158. c->desc_endian_en = false;
  1159. c->desc_rx_np = false;
  1160. c->flags |= DEVICE_ALLOC_DESC;
  1161. c->onoff = DMA_CH_OFF;
  1162. c->rst = DMA_CHAN_RST;
  1163. c->abc_en = true;
  1164. c->hdrm_csum = false;
  1165. c->boff_len = 0;
  1166. c->nr = i;
  1167. c->vchan.desc_free = dma_free_desc_resource;
  1168. vchan_init(&c->vchan, &d->dma_dev);
  1169. }
  1170. static int ldma_init_v22(struct ldma_dev *d, struct platform_device *pdev)
  1171. {
  1172. int ret;
  1173. ret = device_property_read_u32(d->dev, "dma-channels", &d->chan_nrs);
  1174. if (ret < 0) {
  1175. dev_err(d->dev, "unable to read dma-channels property\n");
  1176. return ret;
  1177. }
  1178. d->irq = platform_get_irq(pdev, 0);
  1179. if (d->irq < 0)
  1180. return d->irq;
  1181. ret = devm_request_irq(&pdev->dev, d->irq, dma_interrupt, 0,
  1182. DRIVER_NAME, d);
  1183. if (ret)
  1184. return ret;
  1185. d->wq = alloc_ordered_workqueue("dma_wq", WQ_MEM_RECLAIM |
  1186. WQ_HIGHPRI);
  1187. if (!d->wq)
  1188. return -ENOMEM;
  1189. return 0;
  1190. }
  1191. static void ldma_clk_disable(void *data)
  1192. {
  1193. struct ldma_dev *d = data;
  1194. clk_disable_unprepare(d->core_clk);
  1195. reset_control_assert(d->rst);
  1196. }
  1197. static const struct ldma_inst_data dma0 = {
  1198. .name = "dma0",
  1199. .chan_fc = false,
  1200. .desc_fod = false,
  1201. .desc_in_sram = false,
  1202. .valid_desc_fetch_ack = false,
  1203. };
  1204. static const struct ldma_inst_data dma2tx = {
  1205. .name = "dma2tx",
  1206. .type = DMA_TYPE_TX,
  1207. .orrc = 16,
  1208. .chan_fc = true,
  1209. .desc_fod = true,
  1210. .desc_in_sram = true,
  1211. .valid_desc_fetch_ack = true,
  1212. };
  1213. static const struct ldma_inst_data dma1rx = {
  1214. .name = "dma1rx",
  1215. .type = DMA_TYPE_RX,
  1216. .orrc = 16,
  1217. .chan_fc = false,
  1218. .desc_fod = true,
  1219. .desc_in_sram = true,
  1220. .valid_desc_fetch_ack = false,
  1221. };
  1222. static const struct ldma_inst_data dma1tx = {
  1223. .name = "dma1tx",
  1224. .type = DMA_TYPE_TX,
  1225. .orrc = 16,
  1226. .chan_fc = true,
  1227. .desc_fod = true,
  1228. .desc_in_sram = true,
  1229. .valid_desc_fetch_ack = true,
  1230. };
  1231. static const struct ldma_inst_data dma0tx = {
  1232. .name = "dma0tx",
  1233. .type = DMA_TYPE_TX,
  1234. .orrc = 16,
  1235. .chan_fc = true,
  1236. .desc_fod = true,
  1237. .desc_in_sram = true,
  1238. .valid_desc_fetch_ack = true,
  1239. };
  1240. static const struct ldma_inst_data dma3 = {
  1241. .name = "dma3",
  1242. .type = DMA_TYPE_MCPY,
  1243. .orrc = 16,
  1244. .chan_fc = false,
  1245. .desc_fod = false,
  1246. .desc_in_sram = true,
  1247. .valid_desc_fetch_ack = false,
  1248. };
  1249. static const struct ldma_inst_data toe_dma30 = {
  1250. .name = "toe_dma30",
  1251. .type = DMA_TYPE_MCPY,
  1252. .orrc = 16,
  1253. .chan_fc = false,
  1254. .desc_fod = false,
  1255. .desc_in_sram = true,
  1256. .valid_desc_fetch_ack = true,
  1257. };
  1258. static const struct ldma_inst_data toe_dma31 = {
  1259. .name = "toe_dma31",
  1260. .type = DMA_TYPE_MCPY,
  1261. .orrc = 16,
  1262. .chan_fc = false,
  1263. .desc_fod = false,
  1264. .desc_in_sram = true,
  1265. .valid_desc_fetch_ack = true,
  1266. };
  1267. static const struct of_device_id intel_ldma_match[] = {
  1268. { .compatible = "intel,lgm-cdma", .data = &dma0},
  1269. { .compatible = "intel,lgm-dma2tx", .data = &dma2tx},
  1270. { .compatible = "intel,lgm-dma1rx", .data = &dma1rx},
  1271. { .compatible = "intel,lgm-dma1tx", .data = &dma1tx},
  1272. { .compatible = "intel,lgm-dma0tx", .data = &dma0tx},
  1273. { .compatible = "intel,lgm-dma3", .data = &dma3},
  1274. { .compatible = "intel,lgm-toe-dma30", .data = &toe_dma30},
  1275. { .compatible = "intel,lgm-toe-dma31", .data = &toe_dma31},
  1276. {}
  1277. };
  1278. static int intel_ldma_probe(struct platform_device *pdev)
  1279. {
  1280. struct device *dev = &pdev->dev;
  1281. struct dma_device *dma_dev;
  1282. unsigned long ch_mask;
  1283. struct ldma_chan *c;
  1284. struct ldma_port *p;
  1285. struct ldma_dev *d;
  1286. u32 id, bitn = 32, j;
  1287. int i, ret;
  1288. d = devm_kzalloc(dev, sizeof(*d), GFP_KERNEL);
  1289. if (!d)
  1290. return -ENOMEM;
  1291. /* Link controller to platform device */
  1292. d->dev = &pdev->dev;
  1293. d->inst = device_get_match_data(dev);
  1294. if (!d->inst) {
  1295. dev_err(dev, "No device match found\n");
  1296. return -ENODEV;
  1297. }
  1298. d->base = devm_platform_ioremap_resource(pdev, 0);
  1299. if (IS_ERR(d->base))
  1300. return PTR_ERR(d->base);
  1301. /* Power up and reset the dma engine, some DMAs always on?? */
  1302. d->core_clk = devm_clk_get_optional(dev, NULL);
  1303. if (IS_ERR(d->core_clk))
  1304. return PTR_ERR(d->core_clk);
  1305. d->rst = devm_reset_control_get_optional(dev, NULL);
  1306. if (IS_ERR(d->rst))
  1307. return PTR_ERR(d->rst);
  1308. clk_prepare_enable(d->core_clk);
  1309. reset_control_deassert(d->rst);
  1310. ret = devm_add_action_or_reset(dev, ldma_clk_disable, d);
  1311. if (ret) {
  1312. dev_err(dev, "Failed to devm_add_action_or_reset, %d\n", ret);
  1313. return ret;
  1314. }
  1315. id = readl(d->base + DMA_ID);
  1316. d->chan_nrs = FIELD_GET(DMA_ID_CHNR, id);
  1317. d->port_nrs = FIELD_GET(DMA_ID_PNR, id);
  1318. d->ver = FIELD_GET(DMA_ID_REV, id);
  1319. if (id & DMA_ID_AW_36B)
  1320. d->flags |= DMA_ADDR_36BIT;
  1321. if (IS_ENABLED(CONFIG_64BIT) && (id & DMA_ID_AW_36B))
  1322. bitn = 36;
  1323. if (id & DMA_ID_DW_128B)
  1324. d->flags |= DMA_DATA_128BIT;
  1325. ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(bitn));
  1326. if (ret) {
  1327. dev_err(dev, "No usable DMA configuration\n");
  1328. return ret;
  1329. }
  1330. if (d->ver == DMA_VER22) {
  1331. ret = ldma_init_v22(d, pdev);
  1332. if (ret)
  1333. return ret;
  1334. }
  1335. ret = device_property_read_u32(dev, "dma-channel-mask", &d->channels_mask);
  1336. if (ret < 0)
  1337. d->channels_mask = GENMASK(d->chan_nrs - 1, 0);
  1338. dma_dev = &d->dma_dev;
  1339. dma_cap_zero(dma_dev->cap_mask);
  1340. dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
  1341. /* Channel initializations */
  1342. INIT_LIST_HEAD(&dma_dev->channels);
  1343. /* Port Initializations */
  1344. d->ports = devm_kcalloc(dev, d->port_nrs, sizeof(*p), GFP_KERNEL);
  1345. if (!d->ports)
  1346. return -ENOMEM;
  1347. /* Channels Initializations */
  1348. d->chans = devm_kcalloc(d->dev, d->chan_nrs, sizeof(*c), GFP_KERNEL);
  1349. if (!d->chans)
  1350. return -ENOMEM;
  1351. for (i = 0; i < d->port_nrs; i++) {
  1352. p = &d->ports[i];
  1353. p->portid = i;
  1354. p->ldev = d;
  1355. }
  1356. dma_dev->dev = &pdev->dev;
  1357. ch_mask = (unsigned long)d->channels_mask;
  1358. for_each_set_bit(j, &ch_mask, d->chan_nrs) {
  1359. if (d->ver == DMA_VER22)
  1360. ldma_dma_init_v22(j, d);
  1361. else
  1362. ldma_dma_init_v3X(j, d);
  1363. }
  1364. ret = ldma_parse_dt(d);
  1365. if (ret)
  1366. return ret;
  1367. dma_dev->device_alloc_chan_resources = ldma_alloc_chan_resources;
  1368. dma_dev->device_free_chan_resources = ldma_free_chan_resources;
  1369. dma_dev->device_terminate_all = ldma_terminate_all;
  1370. dma_dev->device_issue_pending = ldma_issue_pending;
  1371. dma_dev->device_tx_status = ldma_tx_status;
  1372. dma_dev->device_resume = ldma_resume_chan;
  1373. dma_dev->device_pause = ldma_pause_chan;
  1374. dma_dev->device_prep_slave_sg = ldma_prep_slave_sg;
  1375. if (d->ver == DMA_VER22) {
  1376. dma_dev->device_config = ldma_slave_config;
  1377. dma_dev->device_synchronize = ldma_synchronize;
  1378. dma_dev->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
  1379. dma_dev->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
  1380. dma_dev->directions = BIT(DMA_MEM_TO_DEV) |
  1381. BIT(DMA_DEV_TO_MEM);
  1382. dma_dev->residue_granularity =
  1383. DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
  1384. }
  1385. platform_set_drvdata(pdev, d);
  1386. ldma_dev_init(d);
  1387. ret = dma_async_device_register(dma_dev);
  1388. if (ret) {
  1389. dev_err(dev, "Failed to register slave DMA engine device\n");
  1390. return ret;
  1391. }
  1392. ret = of_dma_controller_register(pdev->dev.of_node, ldma_xlate, d);
  1393. if (ret) {
  1394. dev_err(dev, "Failed to register of DMA controller\n");
  1395. dma_async_device_unregister(dma_dev);
  1396. return ret;
  1397. }
  1398. dev_info(dev, "Init done - rev: %x, ports: %d channels: %d\n", d->ver,
  1399. d->port_nrs, d->chan_nrs);
  1400. return 0;
  1401. }
  1402. static struct platform_driver intel_ldma_driver = {
  1403. .probe = intel_ldma_probe,
  1404. .driver = {
  1405. .name = DRIVER_NAME,
  1406. .of_match_table = intel_ldma_match,
  1407. },
  1408. };
  1409. /*
  1410. * Perform this driver as device_initcall to make sure initialization happens
  1411. * before its DMA clients of some are platform specific and also to provide
  1412. * registered DMA channels and DMA capabilities to clients before their
  1413. * initialization.
  1414. */
  1415. static int __init intel_ldma_init(void)
  1416. {
  1417. return platform_driver_register(&intel_ldma_driver);
  1418. }
  1419. device_initcall(intel_ldma_init);