k3dma.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2013 - 2015 Linaro Ltd.
  4. * Copyright (c) 2013 HiSilicon Limited.
  5. */
  6. #include <linux/sched.h>
  7. #include <linux/device.h>
  8. #include <linux/dma-mapping.h>
  9. #include <linux/dmapool.h>
  10. #include <linux/dmaengine.h>
  11. #include <linux/init.h>
  12. #include <linux/interrupt.h>
  13. #include <linux/kernel.h>
  14. #include <linux/module.h>
  15. #include <linux/platform_device.h>
  16. #include <linux/slab.h>
  17. #include <linux/spinlock.h>
  18. #include <linux/of_device.h>
  19. #include <linux/of.h>
  20. #include <linux/clk.h>
  21. #include <linux/of_dma.h>
  22. #include "virt-dma.h"
  23. #define DRIVER_NAME "k3-dma"
  24. #define DMA_MAX_SIZE 0x1ffc
  25. #define DMA_CYCLIC_MAX_PERIOD 0x1000
  26. #define LLI_BLOCK_SIZE (4 * PAGE_SIZE)
  27. #define INT_STAT 0x00
  28. #define INT_TC1 0x04
  29. #define INT_TC2 0x08
  30. #define INT_ERR1 0x0c
  31. #define INT_ERR2 0x10
  32. #define INT_TC1_MASK 0x18
  33. #define INT_TC2_MASK 0x1c
  34. #define INT_ERR1_MASK 0x20
  35. #define INT_ERR2_MASK 0x24
  36. #define INT_TC1_RAW 0x600
  37. #define INT_TC2_RAW 0x608
  38. #define INT_ERR1_RAW 0x610
  39. #define INT_ERR2_RAW 0x618
  40. #define CH_PRI 0x688
  41. #define CH_STAT 0x690
  42. #define CX_CUR_CNT 0x704
  43. #define CX_LLI 0x800
  44. #define CX_CNT1 0x80c
  45. #define CX_CNT0 0x810
  46. #define CX_SRC 0x814
  47. #define CX_DST 0x818
  48. #define CX_CFG 0x81c
  49. #define CX_LLI_CHAIN_EN 0x2
  50. #define CX_CFG_EN 0x1
  51. #define CX_CFG_NODEIRQ BIT(1)
  52. #define CX_CFG_MEM2PER (0x1 << 2)
  53. #define CX_CFG_PER2MEM (0x2 << 2)
  54. #define CX_CFG_SRCINCR (0x1 << 31)
  55. #define CX_CFG_DSTINCR (0x1 << 30)
  56. struct k3_desc_hw {
  57. u32 lli;
  58. u32 reserved[3];
  59. u32 count;
  60. u32 saddr;
  61. u32 daddr;
  62. u32 config;
  63. } __aligned(32);
  64. struct k3_dma_desc_sw {
  65. struct virt_dma_desc vd;
  66. dma_addr_t desc_hw_lli;
  67. size_t desc_num;
  68. size_t size;
  69. struct k3_desc_hw *desc_hw;
  70. };
  71. struct k3_dma_phy;
  72. struct k3_dma_chan {
  73. u32 ccfg;
  74. struct virt_dma_chan vc;
  75. struct k3_dma_phy *phy;
  76. struct list_head node;
  77. dma_addr_t dev_addr;
  78. enum dma_status status;
  79. bool cyclic;
  80. struct dma_slave_config slave_config;
  81. };
  82. struct k3_dma_phy {
  83. u32 idx;
  84. void __iomem *base;
  85. struct k3_dma_chan *vchan;
  86. struct k3_dma_desc_sw *ds_run;
  87. struct k3_dma_desc_sw *ds_done;
  88. };
  89. struct k3_dma_dev {
  90. struct dma_device slave;
  91. void __iomem *base;
  92. struct tasklet_struct task;
  93. spinlock_t lock;
  94. struct list_head chan_pending;
  95. struct k3_dma_phy *phy;
  96. struct k3_dma_chan *chans;
  97. struct clk *clk;
  98. struct dma_pool *pool;
  99. u32 dma_channels;
  100. u32 dma_requests;
  101. u32 dma_channel_mask;
  102. unsigned int irq;
  103. };
  104. #define K3_FLAG_NOCLK BIT(1)
  105. struct k3dma_soc_data {
  106. unsigned long flags;
  107. };
  108. #define to_k3_dma(dmadev) container_of(dmadev, struct k3_dma_dev, slave)
  109. static int k3_dma_config_write(struct dma_chan *chan,
  110. enum dma_transfer_direction dir,
  111. struct dma_slave_config *cfg);
  112. static struct k3_dma_chan *to_k3_chan(struct dma_chan *chan)
  113. {
  114. return container_of(chan, struct k3_dma_chan, vc.chan);
  115. }
  116. static void k3_dma_pause_dma(struct k3_dma_phy *phy, bool on)
  117. {
  118. u32 val = 0;
  119. if (on) {
  120. val = readl_relaxed(phy->base + CX_CFG);
  121. val |= CX_CFG_EN;
  122. writel_relaxed(val, phy->base + CX_CFG);
  123. } else {
  124. val = readl_relaxed(phy->base + CX_CFG);
  125. val &= ~CX_CFG_EN;
  126. writel_relaxed(val, phy->base + CX_CFG);
  127. }
  128. }
  129. static void k3_dma_terminate_chan(struct k3_dma_phy *phy, struct k3_dma_dev *d)
  130. {
  131. u32 val = 0;
  132. k3_dma_pause_dma(phy, false);
  133. val = 0x1 << phy->idx;
  134. writel_relaxed(val, d->base + INT_TC1_RAW);
  135. writel_relaxed(val, d->base + INT_TC2_RAW);
  136. writel_relaxed(val, d->base + INT_ERR1_RAW);
  137. writel_relaxed(val, d->base + INT_ERR2_RAW);
  138. }
  139. static void k3_dma_set_desc(struct k3_dma_phy *phy, struct k3_desc_hw *hw)
  140. {
  141. writel_relaxed(hw->lli, phy->base + CX_LLI);
  142. writel_relaxed(hw->count, phy->base + CX_CNT0);
  143. writel_relaxed(hw->saddr, phy->base + CX_SRC);
  144. writel_relaxed(hw->daddr, phy->base + CX_DST);
  145. writel_relaxed(hw->config, phy->base + CX_CFG);
  146. }
  147. static u32 k3_dma_get_curr_cnt(struct k3_dma_dev *d, struct k3_dma_phy *phy)
  148. {
  149. u32 cnt = 0;
  150. cnt = readl_relaxed(d->base + CX_CUR_CNT + phy->idx * 0x10);
  151. cnt &= 0xffff;
  152. return cnt;
  153. }
  154. static u32 k3_dma_get_curr_lli(struct k3_dma_phy *phy)
  155. {
  156. return readl_relaxed(phy->base + CX_LLI);
  157. }
  158. static u32 k3_dma_get_chan_stat(struct k3_dma_dev *d)
  159. {
  160. return readl_relaxed(d->base + CH_STAT);
  161. }
  162. static void k3_dma_enable_dma(struct k3_dma_dev *d, bool on)
  163. {
  164. if (on) {
  165. /* set same priority */
  166. writel_relaxed(0x0, d->base + CH_PRI);
  167. /* unmask irq */
  168. writel_relaxed(0xffff, d->base + INT_TC1_MASK);
  169. writel_relaxed(0xffff, d->base + INT_TC2_MASK);
  170. writel_relaxed(0xffff, d->base + INT_ERR1_MASK);
  171. writel_relaxed(0xffff, d->base + INT_ERR2_MASK);
  172. } else {
  173. /* mask irq */
  174. writel_relaxed(0x0, d->base + INT_TC1_MASK);
  175. writel_relaxed(0x0, d->base + INT_TC2_MASK);
  176. writel_relaxed(0x0, d->base + INT_ERR1_MASK);
  177. writel_relaxed(0x0, d->base + INT_ERR2_MASK);
  178. }
  179. }
  180. static irqreturn_t k3_dma_int_handler(int irq, void *dev_id)
  181. {
  182. struct k3_dma_dev *d = (struct k3_dma_dev *)dev_id;
  183. struct k3_dma_phy *p;
  184. struct k3_dma_chan *c;
  185. u32 stat = readl_relaxed(d->base + INT_STAT);
  186. u32 tc1 = readl_relaxed(d->base + INT_TC1);
  187. u32 tc2 = readl_relaxed(d->base + INT_TC2);
  188. u32 err1 = readl_relaxed(d->base + INT_ERR1);
  189. u32 err2 = readl_relaxed(d->base + INT_ERR2);
  190. u32 i, irq_chan = 0;
  191. while (stat) {
  192. i = __ffs(stat);
  193. stat &= ~BIT(i);
  194. if (likely(tc1 & BIT(i)) || (tc2 & BIT(i))) {
  195. p = &d->phy[i];
  196. c = p->vchan;
  197. if (c && (tc1 & BIT(i))) {
  198. spin_lock(&c->vc.lock);
  199. if (p->ds_run != NULL) {
  200. vchan_cookie_complete(&p->ds_run->vd);
  201. p->ds_done = p->ds_run;
  202. p->ds_run = NULL;
  203. }
  204. spin_unlock(&c->vc.lock);
  205. }
  206. if (c && (tc2 & BIT(i))) {
  207. spin_lock(&c->vc.lock);
  208. if (p->ds_run != NULL)
  209. vchan_cyclic_callback(&p->ds_run->vd);
  210. spin_unlock(&c->vc.lock);
  211. }
  212. irq_chan |= BIT(i);
  213. }
  214. if (unlikely((err1 & BIT(i)) || (err2 & BIT(i))))
  215. dev_warn(d->slave.dev, "DMA ERR\n");
  216. }
  217. writel_relaxed(irq_chan, d->base + INT_TC1_RAW);
  218. writel_relaxed(irq_chan, d->base + INT_TC2_RAW);
  219. writel_relaxed(err1, d->base + INT_ERR1_RAW);
  220. writel_relaxed(err2, d->base + INT_ERR2_RAW);
  221. if (irq_chan)
  222. tasklet_schedule(&d->task);
  223. if (irq_chan || err1 || err2)
  224. return IRQ_HANDLED;
  225. return IRQ_NONE;
  226. }
  227. static int k3_dma_start_txd(struct k3_dma_chan *c)
  228. {
  229. struct k3_dma_dev *d = to_k3_dma(c->vc.chan.device);
  230. struct virt_dma_desc *vd = vchan_next_desc(&c->vc);
  231. if (!c->phy)
  232. return -EAGAIN;
  233. if (BIT(c->phy->idx) & k3_dma_get_chan_stat(d))
  234. return -EAGAIN;
  235. /* Avoid losing track of ds_run if a transaction is in flight */
  236. if (c->phy->ds_run)
  237. return -EAGAIN;
  238. if (vd) {
  239. struct k3_dma_desc_sw *ds =
  240. container_of(vd, struct k3_dma_desc_sw, vd);
  241. /*
  242. * fetch and remove request from vc->desc_issued
  243. * so vc->desc_issued only contains desc pending
  244. */
  245. list_del(&ds->vd.node);
  246. c->phy->ds_run = ds;
  247. c->phy->ds_done = NULL;
  248. /* start dma */
  249. k3_dma_set_desc(c->phy, &ds->desc_hw[0]);
  250. return 0;
  251. }
  252. c->phy->ds_run = NULL;
  253. c->phy->ds_done = NULL;
  254. return -EAGAIN;
  255. }
  256. static void k3_dma_tasklet(struct tasklet_struct *t)
  257. {
  258. struct k3_dma_dev *d = from_tasklet(d, t, task);
  259. struct k3_dma_phy *p;
  260. struct k3_dma_chan *c, *cn;
  261. unsigned pch, pch_alloc = 0;
  262. /* check new dma request of running channel in vc->desc_issued */
  263. list_for_each_entry_safe(c, cn, &d->slave.channels, vc.chan.device_node) {
  264. spin_lock_irq(&c->vc.lock);
  265. p = c->phy;
  266. if (p && p->ds_done) {
  267. if (k3_dma_start_txd(c)) {
  268. /* No current txd associated with this channel */
  269. dev_dbg(d->slave.dev, "pchan %u: free\n", p->idx);
  270. /* Mark this channel free */
  271. c->phy = NULL;
  272. p->vchan = NULL;
  273. }
  274. }
  275. spin_unlock_irq(&c->vc.lock);
  276. }
  277. /* check new channel request in d->chan_pending */
  278. spin_lock_irq(&d->lock);
  279. for (pch = 0; pch < d->dma_channels; pch++) {
  280. if (!(d->dma_channel_mask & (1 << pch)))
  281. continue;
  282. p = &d->phy[pch];
  283. if (p->vchan == NULL && !list_empty(&d->chan_pending)) {
  284. c = list_first_entry(&d->chan_pending,
  285. struct k3_dma_chan, node);
  286. /* remove from d->chan_pending */
  287. list_del_init(&c->node);
  288. pch_alloc |= 1 << pch;
  289. /* Mark this channel allocated */
  290. p->vchan = c;
  291. c->phy = p;
  292. dev_dbg(d->slave.dev, "pchan %u: alloc vchan %p\n", pch, &c->vc);
  293. }
  294. }
  295. spin_unlock_irq(&d->lock);
  296. for (pch = 0; pch < d->dma_channels; pch++) {
  297. if (!(d->dma_channel_mask & (1 << pch)))
  298. continue;
  299. if (pch_alloc & (1 << pch)) {
  300. p = &d->phy[pch];
  301. c = p->vchan;
  302. if (c) {
  303. spin_lock_irq(&c->vc.lock);
  304. k3_dma_start_txd(c);
  305. spin_unlock_irq(&c->vc.lock);
  306. }
  307. }
  308. }
  309. }
  310. static void k3_dma_free_chan_resources(struct dma_chan *chan)
  311. {
  312. struct k3_dma_chan *c = to_k3_chan(chan);
  313. struct k3_dma_dev *d = to_k3_dma(chan->device);
  314. unsigned long flags;
  315. spin_lock_irqsave(&d->lock, flags);
  316. list_del_init(&c->node);
  317. spin_unlock_irqrestore(&d->lock, flags);
  318. vchan_free_chan_resources(&c->vc);
  319. c->ccfg = 0;
  320. }
  321. static enum dma_status k3_dma_tx_status(struct dma_chan *chan,
  322. dma_cookie_t cookie, struct dma_tx_state *state)
  323. {
  324. struct k3_dma_chan *c = to_k3_chan(chan);
  325. struct k3_dma_dev *d = to_k3_dma(chan->device);
  326. struct k3_dma_phy *p;
  327. struct virt_dma_desc *vd;
  328. unsigned long flags;
  329. enum dma_status ret;
  330. size_t bytes = 0;
  331. ret = dma_cookie_status(&c->vc.chan, cookie, state);
  332. if (ret == DMA_COMPLETE)
  333. return ret;
  334. spin_lock_irqsave(&c->vc.lock, flags);
  335. p = c->phy;
  336. ret = c->status;
  337. /*
  338. * If the cookie is on our issue queue, then the residue is
  339. * its total size.
  340. */
  341. vd = vchan_find_desc(&c->vc, cookie);
  342. if (vd && !c->cyclic) {
  343. bytes = container_of(vd, struct k3_dma_desc_sw, vd)->size;
  344. } else if ((!p) || (!p->ds_run)) {
  345. bytes = 0;
  346. } else {
  347. struct k3_dma_desc_sw *ds = p->ds_run;
  348. u32 clli = 0, index = 0;
  349. bytes = k3_dma_get_curr_cnt(d, p);
  350. clli = k3_dma_get_curr_lli(p);
  351. index = ((clli - ds->desc_hw_lli) /
  352. sizeof(struct k3_desc_hw)) + 1;
  353. for (; index < ds->desc_num; index++) {
  354. bytes += ds->desc_hw[index].count;
  355. /* end of lli */
  356. if (!ds->desc_hw[index].lli)
  357. break;
  358. }
  359. }
  360. spin_unlock_irqrestore(&c->vc.lock, flags);
  361. dma_set_residue(state, bytes);
  362. return ret;
  363. }
  364. static void k3_dma_issue_pending(struct dma_chan *chan)
  365. {
  366. struct k3_dma_chan *c = to_k3_chan(chan);
  367. struct k3_dma_dev *d = to_k3_dma(chan->device);
  368. unsigned long flags;
  369. spin_lock_irqsave(&c->vc.lock, flags);
  370. /* add request to vc->desc_issued */
  371. if (vchan_issue_pending(&c->vc)) {
  372. spin_lock(&d->lock);
  373. if (!c->phy) {
  374. if (list_empty(&c->node)) {
  375. /* if new channel, add chan_pending */
  376. list_add_tail(&c->node, &d->chan_pending);
  377. /* check in tasklet */
  378. tasklet_schedule(&d->task);
  379. dev_dbg(d->slave.dev, "vchan %p: issued\n", &c->vc);
  380. }
  381. }
  382. spin_unlock(&d->lock);
  383. } else
  384. dev_dbg(d->slave.dev, "vchan %p: nothing to issue\n", &c->vc);
  385. spin_unlock_irqrestore(&c->vc.lock, flags);
  386. }
  387. static void k3_dma_fill_desc(struct k3_dma_desc_sw *ds, dma_addr_t dst,
  388. dma_addr_t src, size_t len, u32 num, u32 ccfg)
  389. {
  390. if (num != ds->desc_num - 1)
  391. ds->desc_hw[num].lli = ds->desc_hw_lli + (num + 1) *
  392. sizeof(struct k3_desc_hw);
  393. ds->desc_hw[num].lli |= CX_LLI_CHAIN_EN;
  394. ds->desc_hw[num].count = len;
  395. ds->desc_hw[num].saddr = src;
  396. ds->desc_hw[num].daddr = dst;
  397. ds->desc_hw[num].config = ccfg;
  398. }
  399. static struct k3_dma_desc_sw *k3_dma_alloc_desc_resource(int num,
  400. struct dma_chan *chan)
  401. {
  402. struct k3_dma_chan *c = to_k3_chan(chan);
  403. struct k3_dma_desc_sw *ds;
  404. struct k3_dma_dev *d = to_k3_dma(chan->device);
  405. int lli_limit = LLI_BLOCK_SIZE / sizeof(struct k3_desc_hw);
  406. if (num > lli_limit) {
  407. dev_dbg(chan->device->dev, "vch %p: sg num %d exceed max %d\n",
  408. &c->vc, num, lli_limit);
  409. return NULL;
  410. }
  411. ds = kzalloc(sizeof(*ds), GFP_NOWAIT);
  412. if (!ds)
  413. return NULL;
  414. ds->desc_hw = dma_pool_zalloc(d->pool, GFP_NOWAIT, &ds->desc_hw_lli);
  415. if (!ds->desc_hw) {
  416. dev_dbg(chan->device->dev, "vch %p: dma alloc fail\n", &c->vc);
  417. kfree(ds);
  418. return NULL;
  419. }
  420. ds->desc_num = num;
  421. return ds;
  422. }
  423. static struct dma_async_tx_descriptor *k3_dma_prep_memcpy(
  424. struct dma_chan *chan, dma_addr_t dst, dma_addr_t src,
  425. size_t len, unsigned long flags)
  426. {
  427. struct k3_dma_chan *c = to_k3_chan(chan);
  428. struct k3_dma_desc_sw *ds;
  429. size_t copy = 0;
  430. int num = 0;
  431. if (!len)
  432. return NULL;
  433. num = DIV_ROUND_UP(len, DMA_MAX_SIZE);
  434. ds = k3_dma_alloc_desc_resource(num, chan);
  435. if (!ds)
  436. return NULL;
  437. c->cyclic = 0;
  438. ds->size = len;
  439. num = 0;
  440. if (!c->ccfg) {
  441. /* default is memtomem, without calling device_config */
  442. c->ccfg = CX_CFG_SRCINCR | CX_CFG_DSTINCR | CX_CFG_EN;
  443. c->ccfg |= (0xf << 20) | (0xf << 24); /* burst = 16 */
  444. c->ccfg |= (0x3 << 12) | (0x3 << 16); /* width = 64 bit */
  445. }
  446. do {
  447. copy = min_t(size_t, len, DMA_MAX_SIZE);
  448. k3_dma_fill_desc(ds, dst, src, copy, num++, c->ccfg);
  449. src += copy;
  450. dst += copy;
  451. len -= copy;
  452. } while (len);
  453. ds->desc_hw[num-1].lli = 0; /* end of link */
  454. return vchan_tx_prep(&c->vc, &ds->vd, flags);
  455. }
  456. static struct dma_async_tx_descriptor *k3_dma_prep_slave_sg(
  457. struct dma_chan *chan, struct scatterlist *sgl, unsigned int sglen,
  458. enum dma_transfer_direction dir, unsigned long flags, void *context)
  459. {
  460. struct k3_dma_chan *c = to_k3_chan(chan);
  461. struct k3_dma_desc_sw *ds;
  462. size_t len, avail, total = 0;
  463. struct scatterlist *sg;
  464. dma_addr_t addr, src = 0, dst = 0;
  465. int num = sglen, i;
  466. if (sgl == NULL)
  467. return NULL;
  468. c->cyclic = 0;
  469. for_each_sg(sgl, sg, sglen, i) {
  470. avail = sg_dma_len(sg);
  471. if (avail > DMA_MAX_SIZE)
  472. num += DIV_ROUND_UP(avail, DMA_MAX_SIZE) - 1;
  473. }
  474. ds = k3_dma_alloc_desc_resource(num, chan);
  475. if (!ds)
  476. return NULL;
  477. num = 0;
  478. k3_dma_config_write(chan, dir, &c->slave_config);
  479. for_each_sg(sgl, sg, sglen, i) {
  480. addr = sg_dma_address(sg);
  481. avail = sg_dma_len(sg);
  482. total += avail;
  483. do {
  484. len = min_t(size_t, avail, DMA_MAX_SIZE);
  485. if (dir == DMA_MEM_TO_DEV) {
  486. src = addr;
  487. dst = c->dev_addr;
  488. } else if (dir == DMA_DEV_TO_MEM) {
  489. src = c->dev_addr;
  490. dst = addr;
  491. }
  492. k3_dma_fill_desc(ds, dst, src, len, num++, c->ccfg);
  493. addr += len;
  494. avail -= len;
  495. } while (avail);
  496. }
  497. ds->desc_hw[num-1].lli = 0; /* end of link */
  498. ds->size = total;
  499. return vchan_tx_prep(&c->vc, &ds->vd, flags);
  500. }
  501. static struct dma_async_tx_descriptor *
  502. k3_dma_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr,
  503. size_t buf_len, size_t period_len,
  504. enum dma_transfer_direction dir,
  505. unsigned long flags)
  506. {
  507. struct k3_dma_chan *c = to_k3_chan(chan);
  508. struct k3_dma_desc_sw *ds;
  509. size_t len, avail, total = 0;
  510. dma_addr_t addr, src = 0, dst = 0;
  511. int num = 1, since = 0;
  512. size_t modulo = DMA_CYCLIC_MAX_PERIOD;
  513. u32 en_tc2 = 0;
  514. dev_dbg(chan->device->dev, "%s: buf %pad, dst %pad, buf len %zu, period_len = %zu, dir %d\n",
  515. __func__, &buf_addr, &to_k3_chan(chan)->dev_addr,
  516. buf_len, period_len, (int)dir);
  517. avail = buf_len;
  518. if (avail > modulo)
  519. num += DIV_ROUND_UP(avail, modulo) - 1;
  520. ds = k3_dma_alloc_desc_resource(num, chan);
  521. if (!ds)
  522. return NULL;
  523. c->cyclic = 1;
  524. addr = buf_addr;
  525. avail = buf_len;
  526. total = avail;
  527. num = 0;
  528. k3_dma_config_write(chan, dir, &c->slave_config);
  529. if (period_len < modulo)
  530. modulo = period_len;
  531. do {
  532. len = min_t(size_t, avail, modulo);
  533. if (dir == DMA_MEM_TO_DEV) {
  534. src = addr;
  535. dst = c->dev_addr;
  536. } else if (dir == DMA_DEV_TO_MEM) {
  537. src = c->dev_addr;
  538. dst = addr;
  539. }
  540. since += len;
  541. if (since >= period_len) {
  542. /* descriptor asks for TC2 interrupt on completion */
  543. en_tc2 = CX_CFG_NODEIRQ;
  544. since -= period_len;
  545. } else
  546. en_tc2 = 0;
  547. k3_dma_fill_desc(ds, dst, src, len, num++, c->ccfg | en_tc2);
  548. addr += len;
  549. avail -= len;
  550. } while (avail);
  551. /* "Cyclic" == end of link points back to start of link */
  552. ds->desc_hw[num - 1].lli |= ds->desc_hw_lli;
  553. ds->size = total;
  554. return vchan_tx_prep(&c->vc, &ds->vd, flags);
  555. }
  556. static int k3_dma_config(struct dma_chan *chan,
  557. struct dma_slave_config *cfg)
  558. {
  559. struct k3_dma_chan *c = to_k3_chan(chan);
  560. memcpy(&c->slave_config, cfg, sizeof(*cfg));
  561. return 0;
  562. }
  563. static int k3_dma_config_write(struct dma_chan *chan,
  564. enum dma_transfer_direction dir,
  565. struct dma_slave_config *cfg)
  566. {
  567. struct k3_dma_chan *c = to_k3_chan(chan);
  568. u32 maxburst = 0, val = 0;
  569. enum dma_slave_buswidth width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
  570. if (dir == DMA_DEV_TO_MEM) {
  571. c->ccfg = CX_CFG_DSTINCR;
  572. c->dev_addr = cfg->src_addr;
  573. maxburst = cfg->src_maxburst;
  574. width = cfg->src_addr_width;
  575. } else if (dir == DMA_MEM_TO_DEV) {
  576. c->ccfg = CX_CFG_SRCINCR;
  577. c->dev_addr = cfg->dst_addr;
  578. maxburst = cfg->dst_maxburst;
  579. width = cfg->dst_addr_width;
  580. }
  581. switch (width) {
  582. case DMA_SLAVE_BUSWIDTH_1_BYTE:
  583. case DMA_SLAVE_BUSWIDTH_2_BYTES:
  584. case DMA_SLAVE_BUSWIDTH_4_BYTES:
  585. case DMA_SLAVE_BUSWIDTH_8_BYTES:
  586. val = __ffs(width);
  587. break;
  588. default:
  589. val = 3;
  590. break;
  591. }
  592. c->ccfg |= (val << 12) | (val << 16);
  593. if ((maxburst == 0) || (maxburst > 16))
  594. val = 15;
  595. else
  596. val = maxburst - 1;
  597. c->ccfg |= (val << 20) | (val << 24);
  598. c->ccfg |= CX_CFG_MEM2PER | CX_CFG_EN;
  599. /* specific request line */
  600. c->ccfg |= c->vc.chan.chan_id << 4;
  601. return 0;
  602. }
  603. static void k3_dma_free_desc(struct virt_dma_desc *vd)
  604. {
  605. struct k3_dma_desc_sw *ds =
  606. container_of(vd, struct k3_dma_desc_sw, vd);
  607. struct k3_dma_dev *d = to_k3_dma(vd->tx.chan->device);
  608. dma_pool_free(d->pool, ds->desc_hw, ds->desc_hw_lli);
  609. kfree(ds);
  610. }
  611. static int k3_dma_terminate_all(struct dma_chan *chan)
  612. {
  613. struct k3_dma_chan *c = to_k3_chan(chan);
  614. struct k3_dma_dev *d = to_k3_dma(chan->device);
  615. struct k3_dma_phy *p = c->phy;
  616. unsigned long flags;
  617. LIST_HEAD(head);
  618. dev_dbg(d->slave.dev, "vchan %p: terminate all\n", &c->vc);
  619. /* Prevent this channel being scheduled */
  620. spin_lock(&d->lock);
  621. list_del_init(&c->node);
  622. spin_unlock(&d->lock);
  623. /* Clear the tx descriptor lists */
  624. spin_lock_irqsave(&c->vc.lock, flags);
  625. vchan_get_all_descriptors(&c->vc, &head);
  626. if (p) {
  627. /* vchan is assigned to a pchan - stop the channel */
  628. k3_dma_terminate_chan(p, d);
  629. c->phy = NULL;
  630. p->vchan = NULL;
  631. if (p->ds_run) {
  632. vchan_terminate_vdesc(&p->ds_run->vd);
  633. p->ds_run = NULL;
  634. }
  635. p->ds_done = NULL;
  636. }
  637. spin_unlock_irqrestore(&c->vc.lock, flags);
  638. vchan_dma_desc_free_list(&c->vc, &head);
  639. return 0;
  640. }
  641. static void k3_dma_synchronize(struct dma_chan *chan)
  642. {
  643. struct k3_dma_chan *c = to_k3_chan(chan);
  644. vchan_synchronize(&c->vc);
  645. }
  646. static int k3_dma_transfer_pause(struct dma_chan *chan)
  647. {
  648. struct k3_dma_chan *c = to_k3_chan(chan);
  649. struct k3_dma_dev *d = to_k3_dma(chan->device);
  650. struct k3_dma_phy *p = c->phy;
  651. dev_dbg(d->slave.dev, "vchan %p: pause\n", &c->vc);
  652. if (c->status == DMA_IN_PROGRESS) {
  653. c->status = DMA_PAUSED;
  654. if (p) {
  655. k3_dma_pause_dma(p, false);
  656. } else {
  657. spin_lock(&d->lock);
  658. list_del_init(&c->node);
  659. spin_unlock(&d->lock);
  660. }
  661. }
  662. return 0;
  663. }
  664. static int k3_dma_transfer_resume(struct dma_chan *chan)
  665. {
  666. struct k3_dma_chan *c = to_k3_chan(chan);
  667. struct k3_dma_dev *d = to_k3_dma(chan->device);
  668. struct k3_dma_phy *p = c->phy;
  669. unsigned long flags;
  670. dev_dbg(d->slave.dev, "vchan %p: resume\n", &c->vc);
  671. spin_lock_irqsave(&c->vc.lock, flags);
  672. if (c->status == DMA_PAUSED) {
  673. c->status = DMA_IN_PROGRESS;
  674. if (p) {
  675. k3_dma_pause_dma(p, true);
  676. } else if (!list_empty(&c->vc.desc_issued)) {
  677. spin_lock(&d->lock);
  678. list_add_tail(&c->node, &d->chan_pending);
  679. spin_unlock(&d->lock);
  680. }
  681. }
  682. spin_unlock_irqrestore(&c->vc.lock, flags);
  683. return 0;
  684. }
  685. static const struct k3dma_soc_data k3_v1_dma_data = {
  686. .flags = 0,
  687. };
  688. static const struct k3dma_soc_data asp_v1_dma_data = {
  689. .flags = K3_FLAG_NOCLK,
  690. };
  691. static const struct of_device_id k3_pdma_dt_ids[] = {
  692. { .compatible = "hisilicon,k3-dma-1.0",
  693. .data = &k3_v1_dma_data
  694. },
  695. { .compatible = "hisilicon,hisi-pcm-asp-dma-1.0",
  696. .data = &asp_v1_dma_data
  697. },
  698. {}
  699. };
  700. MODULE_DEVICE_TABLE(of, k3_pdma_dt_ids);
  701. static struct dma_chan *k3_of_dma_simple_xlate(struct of_phandle_args *dma_spec,
  702. struct of_dma *ofdma)
  703. {
  704. struct k3_dma_dev *d = ofdma->of_dma_data;
  705. unsigned int request = dma_spec->args[0];
  706. if (request >= d->dma_requests)
  707. return NULL;
  708. return dma_get_slave_channel(&(d->chans[request].vc.chan));
  709. }
  710. static int k3_dma_probe(struct platform_device *op)
  711. {
  712. const struct k3dma_soc_data *soc_data;
  713. struct k3_dma_dev *d;
  714. const struct of_device_id *of_id;
  715. int i, ret, irq = 0;
  716. d = devm_kzalloc(&op->dev, sizeof(*d), GFP_KERNEL);
  717. if (!d)
  718. return -ENOMEM;
  719. soc_data = device_get_match_data(&op->dev);
  720. if (!soc_data)
  721. return -EINVAL;
  722. d->base = devm_platform_ioremap_resource(op, 0);
  723. if (IS_ERR(d->base))
  724. return PTR_ERR(d->base);
  725. of_id = of_match_device(k3_pdma_dt_ids, &op->dev);
  726. if (of_id) {
  727. of_property_read_u32((&op->dev)->of_node,
  728. "dma-channels", &d->dma_channels);
  729. of_property_read_u32((&op->dev)->of_node,
  730. "dma-requests", &d->dma_requests);
  731. ret = of_property_read_u32((&op->dev)->of_node,
  732. "dma-channel-mask", &d->dma_channel_mask);
  733. if (ret) {
  734. dev_warn(&op->dev,
  735. "dma-channel-mask doesn't exist, considering all as available.\n");
  736. d->dma_channel_mask = (u32)~0UL;
  737. }
  738. }
  739. if (!(soc_data->flags & K3_FLAG_NOCLK)) {
  740. d->clk = devm_clk_get(&op->dev, NULL);
  741. if (IS_ERR(d->clk)) {
  742. dev_err(&op->dev, "no dma clk\n");
  743. return PTR_ERR(d->clk);
  744. }
  745. }
  746. irq = platform_get_irq(op, 0);
  747. ret = devm_request_irq(&op->dev, irq,
  748. k3_dma_int_handler, 0, DRIVER_NAME, d);
  749. if (ret)
  750. return ret;
  751. d->irq = irq;
  752. /* A DMA memory pool for LLIs, align on 32-byte boundary */
  753. d->pool = dmam_pool_create(DRIVER_NAME, &op->dev,
  754. LLI_BLOCK_SIZE, 32, 0);
  755. if (!d->pool)
  756. return -ENOMEM;
  757. /* init phy channel */
  758. d->phy = devm_kcalloc(&op->dev,
  759. d->dma_channels, sizeof(struct k3_dma_phy), GFP_KERNEL);
  760. if (d->phy == NULL)
  761. return -ENOMEM;
  762. for (i = 0; i < d->dma_channels; i++) {
  763. struct k3_dma_phy *p;
  764. if (!(d->dma_channel_mask & BIT(i)))
  765. continue;
  766. p = &d->phy[i];
  767. p->idx = i;
  768. p->base = d->base + i * 0x40;
  769. }
  770. INIT_LIST_HEAD(&d->slave.channels);
  771. dma_cap_set(DMA_SLAVE, d->slave.cap_mask);
  772. dma_cap_set(DMA_MEMCPY, d->slave.cap_mask);
  773. dma_cap_set(DMA_CYCLIC, d->slave.cap_mask);
  774. d->slave.dev = &op->dev;
  775. d->slave.device_free_chan_resources = k3_dma_free_chan_resources;
  776. d->slave.device_tx_status = k3_dma_tx_status;
  777. d->slave.device_prep_dma_memcpy = k3_dma_prep_memcpy;
  778. d->slave.device_prep_slave_sg = k3_dma_prep_slave_sg;
  779. d->slave.device_prep_dma_cyclic = k3_dma_prep_dma_cyclic;
  780. d->slave.device_issue_pending = k3_dma_issue_pending;
  781. d->slave.device_config = k3_dma_config;
  782. d->slave.device_pause = k3_dma_transfer_pause;
  783. d->slave.device_resume = k3_dma_transfer_resume;
  784. d->slave.device_terminate_all = k3_dma_terminate_all;
  785. d->slave.device_synchronize = k3_dma_synchronize;
  786. d->slave.copy_align = DMAENGINE_ALIGN_8_BYTES;
  787. /* init virtual channel */
  788. d->chans = devm_kcalloc(&op->dev,
  789. d->dma_requests, sizeof(struct k3_dma_chan), GFP_KERNEL);
  790. if (d->chans == NULL)
  791. return -ENOMEM;
  792. for (i = 0; i < d->dma_requests; i++) {
  793. struct k3_dma_chan *c = &d->chans[i];
  794. c->status = DMA_IN_PROGRESS;
  795. INIT_LIST_HEAD(&c->node);
  796. c->vc.desc_free = k3_dma_free_desc;
  797. vchan_init(&c->vc, &d->slave);
  798. }
  799. /* Enable clock before accessing registers */
  800. ret = clk_prepare_enable(d->clk);
  801. if (ret < 0) {
  802. dev_err(&op->dev, "clk_prepare_enable failed: %d\n", ret);
  803. return ret;
  804. }
  805. k3_dma_enable_dma(d, true);
  806. ret = dma_async_device_register(&d->slave);
  807. if (ret)
  808. goto dma_async_register_fail;
  809. ret = of_dma_controller_register((&op->dev)->of_node,
  810. k3_of_dma_simple_xlate, d);
  811. if (ret)
  812. goto of_dma_register_fail;
  813. spin_lock_init(&d->lock);
  814. INIT_LIST_HEAD(&d->chan_pending);
  815. tasklet_setup(&d->task, k3_dma_tasklet);
  816. platform_set_drvdata(op, d);
  817. dev_info(&op->dev, "initialized\n");
  818. return 0;
  819. of_dma_register_fail:
  820. dma_async_device_unregister(&d->slave);
  821. dma_async_register_fail:
  822. clk_disable_unprepare(d->clk);
  823. return ret;
  824. }
  825. static int k3_dma_remove(struct platform_device *op)
  826. {
  827. struct k3_dma_chan *c, *cn;
  828. struct k3_dma_dev *d = platform_get_drvdata(op);
  829. dma_async_device_unregister(&d->slave);
  830. of_dma_controller_free((&op->dev)->of_node);
  831. devm_free_irq(&op->dev, d->irq, d);
  832. list_for_each_entry_safe(c, cn, &d->slave.channels, vc.chan.device_node) {
  833. list_del(&c->vc.chan.device_node);
  834. tasklet_kill(&c->vc.task);
  835. }
  836. tasklet_kill(&d->task);
  837. clk_disable_unprepare(d->clk);
  838. return 0;
  839. }
  840. #ifdef CONFIG_PM_SLEEP
  841. static int k3_dma_suspend_dev(struct device *dev)
  842. {
  843. struct k3_dma_dev *d = dev_get_drvdata(dev);
  844. u32 stat = 0;
  845. stat = k3_dma_get_chan_stat(d);
  846. if (stat) {
  847. dev_warn(d->slave.dev,
  848. "chan %d is running fail to suspend\n", stat);
  849. return -1;
  850. }
  851. k3_dma_enable_dma(d, false);
  852. clk_disable_unprepare(d->clk);
  853. return 0;
  854. }
  855. static int k3_dma_resume_dev(struct device *dev)
  856. {
  857. struct k3_dma_dev *d = dev_get_drvdata(dev);
  858. int ret = 0;
  859. ret = clk_prepare_enable(d->clk);
  860. if (ret < 0) {
  861. dev_err(d->slave.dev, "clk_prepare_enable failed: %d\n", ret);
  862. return ret;
  863. }
  864. k3_dma_enable_dma(d, true);
  865. return 0;
  866. }
  867. #endif
  868. static SIMPLE_DEV_PM_OPS(k3_dma_pmops, k3_dma_suspend_dev, k3_dma_resume_dev);
  869. static struct platform_driver k3_pdma_driver = {
  870. .driver = {
  871. .name = DRIVER_NAME,
  872. .pm = &k3_dma_pmops,
  873. .of_match_table = k3_pdma_dt_ids,
  874. },
  875. .probe = k3_dma_probe,
  876. .remove = k3_dma_remove,
  877. };
  878. module_platform_driver(k3_pdma_driver);
  879. MODULE_DESCRIPTION("HiSilicon k3 DMA Driver");
  880. MODULE_ALIAS("platform:k3dma");
  881. MODULE_LICENSE("GPL v2");