rdbg.c 32 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2013-2021, The Linux Foundation. All rights reserved.
  4. * ​​​​Copyright (c) 2022-2023 Qualcomm Innovation Center, Inc. All rights reserved.
  5. */
  6. #include <linux/cdev.h>
  7. #include <linux/device.h>
  8. #include <linux/fs.h>
  9. #include <linux/slab.h>
  10. #include <linux/module.h>
  11. #include <linux/of_gpio.h>
  12. #include <linux/soc/qcom/smem.h>
  13. #include <linux/uaccess.h>
  14. #include <linux/interrupt.h>
  15. #include <linux/soc/qcom/smem_state.h>
  16. #include <linux/of_irq.h>
  17. #include <linux/of_platform.h>
  18. #define SMP2P_NUM_PROCS 16
  19. #define MAX_RETRIES 20
  20. #define SM_VERSION 1
  21. #define SM_BLOCKSIZE 128
  22. #define SMQ_MAGIC_INIT 0xFF00FF00
  23. #define SMQ_MAGIC_PRODUCER (SMQ_MAGIC_INIT | 0x1)
  24. #define SMQ_MAGIC_CONSUMER (SMQ_MAGIC_INIT | 0x2)
  25. #define SMEM_LC_DEBUGGER 470
  26. enum SMQ_STATUS {
  27. SMQ_SUCCESS = 0,
  28. SMQ_ENOMEMORY = -1,
  29. SMQ_EBADPARM = -2,
  30. SMQ_UNDERFLOW = -3,
  31. SMQ_OVERFLOW = -4
  32. };
  33. enum smq_type {
  34. PRODUCER = 1,
  35. CONSUMER = 2,
  36. INVALID = 3
  37. };
  38. struct smq_block_map {
  39. uint32_t index_read;
  40. uint32_t num_blocks;
  41. uint8_t *map;
  42. };
  43. struct smq_node {
  44. uint16_t index_block;
  45. uint16_t num_blocks;
  46. } __packed;
  47. struct smq_hdr {
  48. uint8_t producer_version;
  49. uint8_t consumer_version;
  50. } __packed;
  51. struct smq_out_state {
  52. uint32_t init;
  53. uint32_t index_check_queue_for_reset;
  54. uint32_t index_sent_write;
  55. uint32_t index_free_read;
  56. } __packed;
  57. struct smq_out {
  58. struct smq_out_state s;
  59. struct smq_node sent[1];
  60. };
  61. struct smq_in_state {
  62. uint32_t init;
  63. uint32_t index_check_queue_for_reset_ack;
  64. uint32_t index_sent_read;
  65. uint32_t index_free_write;
  66. } __packed;
  67. struct smq_in {
  68. struct smq_in_state s;
  69. struct smq_node free[1];
  70. };
  71. struct smq {
  72. struct smq_hdr *hdr;
  73. struct smq_out *out;
  74. struct smq_in *in;
  75. uint8_t *blocks;
  76. uint32_t num_blocks;
  77. struct mutex *lock;
  78. uint32_t initialized;
  79. struct smq_block_map block_map;
  80. enum smq_type type;
  81. };
  82. struct gpio_info {
  83. int gpio_base_id;
  84. int irq_base_id;
  85. unsigned int smem_bit;
  86. struct qcom_smem_state *smem_state;
  87. };
  88. struct rdbg_data {
  89. struct device *device;
  90. struct completion work;
  91. struct gpio_info in;
  92. struct gpio_info out;
  93. bool device_initialized;
  94. int gpio_out_offset;
  95. bool device_opened;
  96. void *smem_addr;
  97. size_t smem_size;
  98. struct smq producer_smrb;
  99. struct smq consumer_smrb;
  100. struct mutex write_mutex;
  101. int smp2p_data[32];
  102. };
  103. struct rdbg_device {
  104. struct cdev cdev;
  105. struct class *class;
  106. dev_t dev_no;
  107. int num_devices;
  108. struct rdbg_data *rdbg_data;
  109. };
  110. static struct rdbg_device g_rdbg_instance = {
  111. .class = NULL,
  112. .dev_no = 0,
  113. .num_devices = SMP2P_NUM_PROCS,
  114. .rdbg_data = NULL,
  115. };
  116. struct processor_specific_info {
  117. char *name;
  118. unsigned int smem_buffer_addr;
  119. size_t smem_buffer_size;
  120. };
  121. static struct processor_specific_info proc_info[SMP2P_NUM_PROCS] = {
  122. {0}, /*APPS*/
  123. {"rdbg_modem", 0, 0}, /*MODEM*/
  124. {"rdbg_adsp", SMEM_LC_DEBUGGER, 16*1024}, /*ADSP*/
  125. {0}, /*SMP2P_RESERVED_PROC_1*/
  126. {"rdbg_wcnss", 0, 0}, /*WCNSS*/
  127. {"rdbg_cdsp", SMEM_LC_DEBUGGER, 16*1024}, /*CDSP*/
  128. {NULL}, /*SMP2P_POWER_PROC*/
  129. {NULL}, /*SMP2P_TZ_PROC*/
  130. {NULL}, /*EMPTY*/
  131. {NULL}, /*EMPTY*/
  132. {NULL}, /*EMPTY*/
  133. {NULL}, /*EMPTY*/
  134. {NULL}, /*EMPTY*/
  135. {NULL}, /*EMPTY*/
  136. {NULL}, /*EMPTY*/
  137. {NULL} /*SMP2P_REMOTE_MOCK_PROC*/
  138. };
  139. static int smq_blockmap_get(struct smq_block_map *block_map,
  140. uint32_t *block_index, uint32_t n)
  141. {
  142. uint32_t start;
  143. uint32_t mark = 0;
  144. uint32_t found = 0;
  145. uint32_t i = 0;
  146. start = block_map->index_read;
  147. if (n == 1) {
  148. do {
  149. if (!block_map->map[block_map->index_read]) {
  150. *block_index = block_map->index_read;
  151. block_map->map[block_map->index_read] = 1;
  152. block_map->index_read++;
  153. block_map->index_read %= block_map->num_blocks;
  154. return SMQ_SUCCESS;
  155. }
  156. block_map->index_read++;
  157. } while (start != (block_map->index_read %=
  158. block_map->num_blocks));
  159. } else {
  160. mark = block_map->num_blocks;
  161. do {
  162. if (!block_map->map[block_map->index_read]) {
  163. if (mark > block_map->index_read) {
  164. mark = block_map->index_read;
  165. start = block_map->index_read;
  166. found = 0;
  167. }
  168. found++;
  169. if (found == n) {
  170. *block_index = mark;
  171. for (i = 0; i < n; i++)
  172. block_map->map[mark + i] =
  173. (uint8_t)(n - i);
  174. block_map->index_read += block_map->map
  175. [block_map->index_read] - 1;
  176. return SMQ_SUCCESS;
  177. }
  178. } else {
  179. found = 0;
  180. block_map->index_read += block_map->map
  181. [block_map->index_read] - 1;
  182. mark = block_map->num_blocks;
  183. }
  184. block_map->index_read++;
  185. } while (start != (block_map->index_read %=
  186. block_map->num_blocks));
  187. }
  188. return SMQ_ENOMEMORY;
  189. }
  190. static void smq_blockmap_put(struct smq_block_map *block_map, uint32_t i)
  191. {
  192. uint32_t num_blocks = block_map->map[i];
  193. while (num_blocks--) {
  194. block_map->map[i] = 0;
  195. i++;
  196. }
  197. }
  198. static int smq_blockmap_reset(struct smq_block_map *block_map)
  199. {
  200. if (!block_map->map)
  201. return SMQ_ENOMEMORY;
  202. memset(block_map->map, 0, block_map->num_blocks + 1);
  203. block_map->index_read = 0;
  204. return SMQ_SUCCESS;
  205. }
  206. static int smq_blockmap_ctor(struct smq_block_map *block_map,
  207. uint32_t num_blocks)
  208. {
  209. if (num_blocks <= 1)
  210. return SMQ_ENOMEMORY;
  211. block_map->map = kcalloc(num_blocks, sizeof(uint8_t), GFP_KERNEL);
  212. if (!block_map->map)
  213. return SMQ_ENOMEMORY;
  214. block_map->num_blocks = num_blocks - 1;
  215. smq_blockmap_reset(block_map);
  216. return SMQ_SUCCESS;
  217. }
  218. static void smq_blockmap_dtor(struct smq_block_map *block_map)
  219. {
  220. kfree(block_map->map);
  221. block_map->map = NULL;
  222. }
  223. static int smq_free(struct smq *smq, void *data)
  224. {
  225. struct smq_node node;
  226. uint32_t index_block;
  227. int err = SMQ_SUCCESS;
  228. if (smq->lock)
  229. mutex_lock(smq->lock);
  230. if ((smq->hdr->producer_version != SM_VERSION) &&
  231. (smq->out->s.init != SMQ_MAGIC_PRODUCER)) {
  232. err = SMQ_UNDERFLOW;
  233. goto bail;
  234. }
  235. index_block = ((uint8_t *)data - smq->blocks) / SM_BLOCKSIZE;
  236. if (index_block >= smq->num_blocks) {
  237. err = SMQ_EBADPARM;
  238. goto bail;
  239. }
  240. node.index_block = (uint16_t)index_block;
  241. node.num_blocks = 0;
  242. *((struct smq_node *)(smq->in->free +
  243. smq->in->s.index_free_write)) = node;
  244. smq->in->s.index_free_write = (smq->in->s.index_free_write + 1)
  245. % smq->num_blocks;
  246. bail:
  247. if (smq->lock)
  248. mutex_unlock(smq->lock);
  249. return err;
  250. }
  251. static int smq_receive(struct smq *smq, void **pp, int *pnsize, int *pbmore)
  252. {
  253. struct smq_node *node;
  254. int err = SMQ_SUCCESS;
  255. int more = 0;
  256. if ((smq->hdr->producer_version != SM_VERSION) &&
  257. (smq->out->s.init != SMQ_MAGIC_PRODUCER))
  258. return SMQ_UNDERFLOW;
  259. if (smq->in->s.index_sent_read == smq->out->s.index_sent_write) {
  260. err = SMQ_UNDERFLOW;
  261. goto bail;
  262. }
  263. node = (struct smq_node *)(smq->out->sent + smq->in->s.index_sent_read);
  264. if (node->index_block >= smq->num_blocks) {
  265. err = SMQ_EBADPARM;
  266. goto bail;
  267. }
  268. smq->in->s.index_sent_read = (smq->in->s.index_sent_read + 1)
  269. % smq->num_blocks;
  270. *pp = smq->blocks + (node->index_block * SM_BLOCKSIZE);
  271. *pnsize = SM_BLOCKSIZE * node->num_blocks;
  272. /*
  273. * Ensure that the reads and writes are updated in the memory
  274. * when they are done and not cached. Also, ensure that the reads
  275. * and writes are not reordered as they are shared between two cores.
  276. */
  277. rmb();
  278. if (smq->in->s.index_sent_read != smq->out->s.index_sent_write)
  279. more = 1;
  280. bail:
  281. *pbmore = more;
  282. return err;
  283. }
  284. static int smq_alloc_send(struct smq *smq, const uint8_t *pcb, int nsize)
  285. {
  286. void *pv = 0;
  287. int num_blocks;
  288. uint32_t index_block = 0;
  289. int err = SMQ_SUCCESS;
  290. struct smq_node *node = NULL;
  291. mutex_lock(smq->lock);
  292. if ((smq->in->s.init == SMQ_MAGIC_CONSUMER) &&
  293. (smq->hdr->consumer_version == SM_VERSION)) {
  294. if (smq->out->s.index_check_queue_for_reset ==
  295. smq->in->s.index_check_queue_for_reset_ack) {
  296. while (smq->out->s.index_free_read !=
  297. smq->in->s.index_free_write) {
  298. node = (struct smq_node *)(
  299. smq->in->free +
  300. smq->out->s.index_free_read);
  301. if (node->index_block >= smq->num_blocks) {
  302. err = SMQ_EBADPARM;
  303. goto bail;
  304. }
  305. smq->out->s.index_free_read =
  306. (smq->out->s.index_free_read + 1)
  307. % smq->num_blocks;
  308. smq_blockmap_put(&smq->block_map,
  309. node->index_block);
  310. /*
  311. * Ensure that the reads and writes are
  312. * updated in the memory when they are done
  313. * and not cached. Also, ensure that the reads
  314. * and writes are not reordered as they are
  315. * shared between two cores.
  316. */
  317. rmb();
  318. }
  319. }
  320. }
  321. num_blocks = ALIGN(nsize, SM_BLOCKSIZE)/SM_BLOCKSIZE;
  322. err = smq_blockmap_get(&smq->block_map, &index_block, num_blocks);
  323. if (err != SMQ_SUCCESS)
  324. goto bail;
  325. pv = smq->blocks + (SM_BLOCKSIZE * index_block);
  326. err = copy_from_user((void *)pv, (void *)pcb, nsize);
  327. if (err != 0)
  328. goto bail;
  329. ((struct smq_node *)(smq->out->sent +
  330. smq->out->s.index_sent_write))->index_block
  331. = (uint16_t)index_block;
  332. ((struct smq_node *)(smq->out->sent +
  333. smq->out->s.index_sent_write))->num_blocks
  334. = (uint16_t)num_blocks;
  335. smq->out->s.index_sent_write = (smq->out->s.index_sent_write + 1)
  336. % smq->num_blocks;
  337. bail:
  338. if (err != SMQ_SUCCESS) {
  339. if (pv)
  340. smq_blockmap_put(&smq->block_map, index_block);
  341. }
  342. mutex_unlock(smq->lock);
  343. return err;
  344. }
  345. static int smq_reset_producer_queue_internal(struct smq *smq,
  346. uint32_t reset_num)
  347. {
  348. int retval = 0;
  349. uint32_t i;
  350. if (smq->type != PRODUCER)
  351. goto bail;
  352. mutex_lock(smq->lock);
  353. if (smq->out->s.index_check_queue_for_reset != reset_num) {
  354. smq->out->s.index_check_queue_for_reset = reset_num;
  355. for (i = 0; i < smq->num_blocks; i++)
  356. (smq->out->sent + i)->index_block = 0xFFFF;
  357. smq_blockmap_reset(&smq->block_map);
  358. smq->out->s.index_sent_write = 0;
  359. smq->out->s.index_free_read = 0;
  360. retval = 1;
  361. }
  362. mutex_unlock(smq->lock);
  363. bail:
  364. return retval;
  365. }
  366. static int smq_check_queue_reset(struct smq *p_cons, struct smq *p_prod)
  367. {
  368. int retval = 0;
  369. uint32_t reset_num, i;
  370. if ((p_cons->type != CONSUMER) ||
  371. (p_cons->out->s.init != SMQ_MAGIC_PRODUCER) ||
  372. (p_cons->hdr->producer_version != SM_VERSION))
  373. goto bail;
  374. reset_num = p_cons->out->s.index_check_queue_for_reset;
  375. if (p_cons->in->s.index_check_queue_for_reset_ack != reset_num) {
  376. p_cons->in->s.index_check_queue_for_reset_ack = reset_num;
  377. for (i = 0; i < p_cons->num_blocks; i++)
  378. (p_cons->in->free + i)->index_block = 0xFFFF;
  379. p_cons->in->s.index_sent_read = 0;
  380. p_cons->in->s.index_free_write = 0;
  381. retval = smq_reset_producer_queue_internal(p_prod, reset_num);
  382. }
  383. bail:
  384. return retval;
  385. }
  386. static int check_subsystem_debug_enabled(void *base_addr, int size)
  387. {
  388. int num_blocks;
  389. uint8_t *pb_orig;
  390. uint8_t *pb;
  391. struct smq smq;
  392. int err = 0;
  393. pb = pb_orig = (uint8_t *)base_addr;
  394. pb += sizeof(struct smq_hdr);
  395. pb = PTR_ALIGN(pb, 8);
  396. size -= pb - (uint8_t *)pb_orig;
  397. num_blocks = (int)((size - sizeof(struct smq_out_state) -
  398. sizeof(struct smq_in_state))/(SM_BLOCKSIZE +
  399. sizeof(struct smq_node) * 2));
  400. if (num_blocks <= 0) {
  401. err = SMQ_EBADPARM;
  402. goto bail;
  403. }
  404. pb += num_blocks * SM_BLOCKSIZE;
  405. smq.out = (struct smq_out *)pb;
  406. pb += sizeof(struct smq_out_state) + (num_blocks *
  407. sizeof(struct smq_node));
  408. smq.in = (struct smq_in *)pb;
  409. if (smq.in->s.init != SMQ_MAGIC_CONSUMER) {
  410. pr_err("%s, smq in consumer not initialized\n", __func__);
  411. err = -ECOMM;
  412. }
  413. bail:
  414. return err;
  415. }
  416. static void smq_dtor(struct smq *smq)
  417. {
  418. if (smq->initialized == SMQ_MAGIC_INIT) {
  419. switch (smq->type) {
  420. case PRODUCER:
  421. smq->out->s.init = 0;
  422. smq_blockmap_dtor(&smq->block_map);
  423. break;
  424. case CONSUMER:
  425. smq->in->s.init = 0;
  426. break;
  427. default:
  428. case INVALID:
  429. break;
  430. }
  431. smq->initialized = 0;
  432. }
  433. }
  434. /*
  435. * The shared memory is used as a circular ring buffer in each direction.
  436. * Thus we have a bi-directional shared memory channel between the AP
  437. * and a subsystem. We call this SMQ. Each memory channel contains a header,
  438. * data and a control mechanism that is used to synchronize read and write
  439. * of data between the AP and the remote subsystem.
  440. *
  441. * Overall SMQ memory view:
  442. *
  443. * +------------------------------------------------+
  444. * | SMEM buffer |
  445. * |-----------------------+------------------------|
  446. * |Producer: LA | Producer: Remote |
  447. * |Consumer: Remote | subsystem |
  448. * | subsystem | Consumer: LA |
  449. * | | |
  450. * | Producer| Consumer|
  451. * +-----------------------+------------------------+
  452. * | |
  453. * | |
  454. * | +--------------------------------------+
  455. * | |
  456. * | |
  457. * v v
  458. * +--------------------------------------------------------------+
  459. * | Header | Data | Control |
  460. * +-----------+---+---+---+-----+----+--+--+-----+---+--+--+-----+
  461. * | | b | b | b | | S |n |n | | S |n |n | |
  462. * | Producer | l | l | l | | M |o |o | | M |o |o | |
  463. * | Ver | o | o | o | | Q |d |d | | Q |d |d | |
  464. * |-----------| c | c | c | ... | |e |e | ... | |e |e | ... |
  465. * | | k | k | k | | O | | | | I | | | |
  466. * | Consumer | | | | | u |0 |1 | | n |0 |1 | |
  467. * | Ver | 0 | 1 | 2 | | t | | | | | | | |
  468. * +-----------+---+---+---+-----+----+--+--+-----+---+--+--+-----+
  469. * | |
  470. * + |
  471. * |
  472. * +------------------------+
  473. * |
  474. * v
  475. * +----+----+----+----+
  476. * | SMQ Nodes |
  477. * |----|----|----|----|
  478. * Node # | 0 | 1 | 2 | ...|
  479. * |----|----|----|----|
  480. * Starting Block Index # | 0 | 3 | 8 | ...|
  481. * |----|----|----|----|
  482. * # of blocks | 3 | 5 | 1 | ...|
  483. * +----+----+----+----+
  484. *
  485. * Header: Contains version numbers for software compatibility to ensure
  486. * that both producers and consumers on the AP and subsystems know how to
  487. * read from and write to the queue.
  488. * Both the producer and consumer versions are 1.
  489. * +---------+-------------------+
  490. * | Size | Field |
  491. * +---------+-------------------+
  492. * | 1 byte | Producer Version |
  493. * +---------+-------------------+
  494. * | 1 byte | Consumer Version |
  495. * +---------+-------------------+
  496. *
  497. * Data: The data portion contains multiple blocks [0..N] of a fixed size.
  498. * The block size SM_BLOCKSIZE is fixed to 128 bytes for header version #1.
  499. * Payload sent from the debug agent app is split (if necessary) and placed
  500. * in these blocks. The first data block is placed at the next 8 byte aligned
  501. * address after the header.
  502. *
  503. * The number of blocks for a given SMEM allocation is derived as follows:
  504. * Number of Blocks = ((Total Size - Alignment - Size of Header
  505. * - Size of SMQIn - Size of SMQOut)/(SM_BLOCKSIZE))
  506. *
  507. * The producer maintains a private block map of each of these blocks to
  508. * determine which of these blocks in the queue is available and which are free.
  509. *
  510. * Control:
  511. * The control portion contains a list of nodes [0..N] where N is number
  512. * of available data blocks. Each node identifies the data
  513. * block indexes that contain a particular debug message to be transferred,
  514. * and the number of blocks it took to hold the contents of the message.
  515. *
  516. * Each node has the following structure:
  517. * +---------+-------------------+
  518. * | Size | Field |
  519. * +---------+-------------------+
  520. * | 2 bytes |Staring Block Index|
  521. * +---------+-------------------+
  522. * | 2 bytes |Number of Blocks |
  523. * +---------+-------------------+
  524. *
  525. * The producer and the consumer update different parts of the control channel
  526. * (SMQOut / SMQIn) respectively. Each of these control data structures contains
  527. * information about the last node that was written / read, and the actual nodes
  528. * that were written/read.
  529. *
  530. * SMQOut Structure (R/W by producer, R by consumer):
  531. * +---------+-------------------+
  532. * | Size | Field |
  533. * +---------+-------------------+
  534. * | 4 bytes | Magic Init Number |
  535. * +---------+-------------------+
  536. * | 4 bytes | Reset |
  537. * +---------+-------------------+
  538. * | 4 bytes | Last Sent Index |
  539. * +---------+-------------------+
  540. * | 4 bytes | Index Free Read |
  541. * +---------+-------------------+
  542. *
  543. * SMQIn Structure (R/W by consumer, R by producer):
  544. * +---------+-------------------+
  545. * | Size | Field |
  546. * +---------+-------------------+
  547. * | 4 bytes | Magic Init Number |
  548. * +---------+-------------------+
  549. * | 4 bytes | Reset ACK |
  550. * +---------+-------------------+
  551. * | 4 bytes | Last Read Index |
  552. * +---------+-------------------+
  553. * | 4 bytes | Index Free Write |
  554. * +---------+-------------------+
  555. *
  556. * Magic Init Number:
  557. * Both SMQ Out and SMQ In initialize this field with a predefined magic
  558. * number so as to make sure that both the consumer and producer blocks
  559. * have fully initialized and have valid data in the shared memory control area.
  560. * Producer Magic #: 0xFF00FF01
  561. * Consumer Magic #: 0xFF00FF02
  562. */
  563. static int smq_ctor(struct smq *smq, void *base_addr, int size,
  564. enum smq_type type, struct mutex *lock_ptr)
  565. {
  566. int num_blocks;
  567. uint8_t *pb_orig;
  568. uint8_t *pb;
  569. uint32_t i;
  570. int err;
  571. if (smq->initialized == SMQ_MAGIC_INIT) {
  572. err = SMQ_EBADPARM;
  573. goto bail;
  574. }
  575. if (!base_addr || !size) {
  576. err = SMQ_EBADPARM;
  577. goto bail;
  578. }
  579. if (type == PRODUCER)
  580. smq->lock = lock_ptr;
  581. pb_orig = (uint8_t *)base_addr;
  582. smq->hdr = (struct smq_hdr *)pb_orig;
  583. pb = pb_orig;
  584. pb += sizeof(struct smq_hdr);
  585. pb = PTR_ALIGN(pb, 8);
  586. size -= pb - (uint8_t *)pb_orig;
  587. num_blocks = (int)((size - sizeof(struct smq_out_state) -
  588. sizeof(struct smq_in_state))/(SM_BLOCKSIZE +
  589. sizeof(struct smq_node) * 2));
  590. if (num_blocks <= 0) {
  591. err = SMQ_ENOMEMORY;
  592. goto bail;
  593. }
  594. smq->blocks = pb;
  595. smq->num_blocks = num_blocks;
  596. pb += num_blocks * SM_BLOCKSIZE;
  597. smq->out = (struct smq_out *)pb;
  598. pb += sizeof(struct smq_out_state) + (num_blocks *
  599. sizeof(struct smq_node));
  600. smq->in = (struct smq_in *)pb;
  601. smq->type = type;
  602. if (type == PRODUCER) {
  603. smq->hdr->producer_version = SM_VERSION;
  604. for (i = 0; i < smq->num_blocks; i++)
  605. (smq->out->sent + i)->index_block = 0xFFFF;
  606. err = smq_blockmap_ctor(&smq->block_map, smq->num_blocks);
  607. if (err != SMQ_SUCCESS)
  608. goto bail;
  609. smq->out->s.index_sent_write = 0;
  610. smq->out->s.index_free_read = 0;
  611. if (smq->out->s.init == SMQ_MAGIC_PRODUCER) {
  612. smq->out->s.index_check_queue_for_reset += 1;
  613. } else {
  614. smq->out->s.index_check_queue_for_reset = 1;
  615. smq->out->s.init = SMQ_MAGIC_PRODUCER;
  616. }
  617. } else {
  618. smq->hdr->consumer_version = SM_VERSION;
  619. for (i = 0; i < smq->num_blocks; i++)
  620. (smq->in->free + i)->index_block = 0xFFFF;
  621. smq->in->s.index_sent_read = 0;
  622. smq->in->s.index_free_write = 0;
  623. if (smq->out->s.init == SMQ_MAGIC_PRODUCER) {
  624. smq->in->s.index_check_queue_for_reset_ack =
  625. smq->out->s.index_check_queue_for_reset;
  626. } else {
  627. smq->in->s.index_check_queue_for_reset_ack = 0;
  628. }
  629. smq->in->s.init = SMQ_MAGIC_CONSUMER;
  630. }
  631. smq->initialized = SMQ_MAGIC_INIT;
  632. err = SMQ_SUCCESS;
  633. bail:
  634. return err;
  635. }
  636. static void send_interrupt_to_subsystem(struct rdbg_data *rdbgdata)
  637. {
  638. unsigned int offset = rdbgdata->gpio_out_offset;
  639. unsigned int val;
  640. val = (rdbgdata->smp2p_data[offset]) ^ (BIT(rdbgdata->out.smem_bit+offset));
  641. qcom_smem_state_update_bits(rdbgdata->out.smem_state,
  642. BIT(rdbgdata->out.smem_bit+offset), val);
  643. rdbgdata->smp2p_data[offset] = val;
  644. rdbgdata->gpio_out_offset = (offset + 1) % 32;
  645. }
  646. static irqreturn_t on_interrupt_from(int irq, void *ptr)
  647. {
  648. struct rdbg_data *rdbgdata = (struct rdbg_data *) ptr;
  649. dev_dbg(rdbgdata->device, "%s: Received interrupt %d from subsystem\n",
  650. __func__, irq);
  651. complete(&(rdbgdata->work));
  652. return IRQ_HANDLED;
  653. }
  654. static int initialize_smq(struct rdbg_data *rdbgdata)
  655. {
  656. int err = 0;
  657. unsigned char *smem_consumer_buffer = rdbgdata->smem_addr;
  658. smem_consumer_buffer += (rdbgdata->smem_size/2);
  659. if (smq_ctor(&(rdbgdata->producer_smrb), (void *)(rdbgdata->smem_addr),
  660. ((rdbgdata->smem_size)/2), PRODUCER, &rdbgdata->write_mutex)) {
  661. dev_err(rdbgdata->device, "%s: smq producer allocation failed\n",
  662. __func__);
  663. err = -ENOMEM;
  664. goto bail;
  665. }
  666. if (smq_ctor(&(rdbgdata->consumer_smrb), (void *)smem_consumer_buffer,
  667. ((rdbgdata->smem_size)/2), CONSUMER, NULL)) {
  668. dev_err(rdbgdata->device, "%s: smq consumer allocation failed\n",
  669. __func__);
  670. err = -ENOMEM;
  671. }
  672. bail:
  673. return err;
  674. }
  675. static int rdbg_open(struct inode *inode, struct file *filp)
  676. {
  677. int device_id = -1;
  678. struct rdbg_device *device = &g_rdbg_instance;
  679. struct rdbg_data *rdbgdata = NULL;
  680. int err = 0;
  681. if (!inode || !device->rdbg_data) {
  682. pr_err("Memory not allocated yet\n");
  683. err = -ENODEV;
  684. goto bail;
  685. }
  686. device_id = MINOR(inode->i_rdev);
  687. rdbgdata = &device->rdbg_data[device_id];
  688. if (rdbgdata->device_opened) {
  689. dev_err(rdbgdata->device, "%s: Device already opened\n",
  690. __func__);
  691. err = -EEXIST;
  692. goto bail;
  693. }
  694. rdbgdata->smem_size = proc_info[device_id].smem_buffer_size;
  695. if (!rdbgdata->smem_size) {
  696. dev_err(rdbgdata->device, "%s: smem not initialized\n",
  697. __func__);
  698. err = -ENOMEM;
  699. goto bail;
  700. }
  701. rdbgdata->smem_addr = qcom_smem_get(QCOM_SMEM_HOST_ANY,
  702. proc_info[device_id].smem_buffer_addr,
  703. &(rdbgdata->smem_size));
  704. if (IS_ERR(rdbgdata->smem_addr)) {
  705. pr_err("rdbg: Can't retrieve data from common SMEM region.\n"
  706. "Retrieving data from device specific partition.\n");
  707. if (PTR_ERR(rdbgdata->smem_addr) == -ENOENT) {
  708. rdbgdata->smem_addr = qcom_smem_get(device_id,
  709. proc_info[device_id].smem_buffer_addr,
  710. &(rdbgdata->smem_size));
  711. }
  712. }
  713. if (!rdbgdata->smem_addr) {
  714. dev_err(rdbgdata->device, "%s: Could not allocate smem memory\n",
  715. __func__);
  716. err = -ENOMEM;
  717. pr_err("rdbg:Could not allocate smem memory\n");
  718. goto bail;
  719. }
  720. dev_dbg(rdbgdata->device, "%s: SMEM address=0x%lx smem_size=%d\n",
  721. __func__, (unsigned long)rdbgdata->smem_addr,
  722. (unsigned int)rdbgdata->smem_size);
  723. if (check_subsystem_debug_enabled(rdbgdata->smem_addr,
  724. rdbgdata->smem_size/2)) {
  725. dev_err(rdbgdata->device, "%s: Subsystem %s is not debug enabled\n",
  726. __func__, proc_info[device_id].name);
  727. pr_err("rdbg:Sub system debug is not enabled\n");
  728. err = -ECOMM;
  729. goto bail;
  730. }
  731. init_completion(&rdbgdata->work);
  732. err = request_threaded_irq(rdbgdata->in.irq_base_id, NULL,
  733. on_interrupt_from,
  734. IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING | IRQF_ONESHOT,
  735. proc_info[device_id].name, (void *)&device->rdbg_data[device_id]);
  736. if (err) {
  737. dev_err(rdbgdata->device,
  738. "%s: Failed to register interrupt.Err=%d,irqid=%d.\n",
  739. __func__, err, rdbgdata->in.irq_base_id);
  740. pr_err("rdbg : Failed to register interrupt %d\n", err);
  741. goto bail;
  742. }
  743. mutex_init(&rdbgdata->write_mutex);
  744. err = initialize_smq(rdbgdata);
  745. if (err) {
  746. dev_err(rdbgdata->device, "Error initializing smq. Err=%d\n",
  747. err);
  748. pr_err("rdbg: initialize_smq() failed with err %d\n", err);
  749. goto smq_bail;
  750. }
  751. rdbgdata->device_opened = true;
  752. filp->private_data = (void *)rdbgdata;
  753. return 0;
  754. smq_bail:
  755. smq_dtor(&(rdbgdata->producer_smrb));
  756. smq_dtor(&(rdbgdata->consumer_smrb));
  757. mutex_destroy(&rdbgdata->write_mutex);
  758. bail:
  759. return err;
  760. }
  761. static int rdbg_release(struct inode *inode, struct file *filp)
  762. {
  763. int device_id = -1;
  764. struct rdbg_device *rdbgdevice = &g_rdbg_instance;
  765. struct rdbg_data *rdbgdata = NULL;
  766. int err = 0;
  767. if (!inode || !rdbgdevice->rdbg_data) {
  768. pr_err("Memory not allocated yet\n");
  769. err = -ENODEV;
  770. goto bail;
  771. }
  772. device_id = MINOR(inode->i_rdev);
  773. rdbgdata = &rdbgdevice->rdbg_data[device_id];
  774. if (rdbgdata->device_opened) {
  775. dev_dbg(rdbgdata->device, "%s: Destroying %s.\n", __func__,
  776. proc_info[device_id].name);
  777. rdbgdata->device_opened = false;
  778. complete(&(rdbgdata->work));
  779. if (rdbgdevice->rdbg_data[device_id].producer_smrb.initialized)
  780. smq_dtor(&(
  781. rdbgdevice->rdbg_data[device_id].producer_smrb));
  782. if (rdbgdevice->rdbg_data[device_id].consumer_smrb.initialized)
  783. smq_dtor(&(
  784. rdbgdevice->rdbg_data[device_id].consumer_smrb));
  785. mutex_destroy(&rdbgdata->write_mutex);
  786. }
  787. filp->private_data = NULL;
  788. bail:
  789. return err;
  790. }
  791. static ssize_t rdbg_read(struct file *filp, char __user *buf, size_t size,
  792. loff_t *offset)
  793. {
  794. int err = 0;
  795. struct rdbg_data *rdbgdata = filp->private_data;
  796. void *p_sent_buffer = NULL;
  797. int nsize = 0;
  798. int more = 0;
  799. if (!rdbgdata) {
  800. pr_err("Invalid argument\n");
  801. err = -EINVAL;
  802. goto bail;
  803. }
  804. dev_dbg(rdbgdata->device, "%s: In receive\n", __func__);
  805. err = wait_for_completion_interruptible(&(rdbgdata->work));
  806. if (err) {
  807. dev_err(rdbgdata->device, "%s: Error in wait\n", __func__);
  808. goto bail;
  809. }
  810. smq_check_queue_reset(&(rdbgdata->consumer_smrb),
  811. &(rdbgdata->producer_smrb));
  812. if (smq_receive(&(rdbgdata->consumer_smrb), &p_sent_buffer,
  813. &nsize, &more) != SMQ_SUCCESS) {
  814. dev_err(rdbgdata->device, "%s: Error in smq_recv(). Err code = %d\n",
  815. __func__, err);
  816. err = -ENODATA;
  817. goto bail;
  818. }
  819. size = ((size < nsize) ? size : nsize);
  820. err = copy_to_user(buf, p_sent_buffer, size);
  821. if (err != 0) {
  822. dev_err(rdbgdata->device, "%s: Error in copy_to_user(). Err code = %d\n",
  823. __func__, err);
  824. err = -ENODATA;
  825. goto bail;
  826. }
  827. smq_free(&(rdbgdata->consumer_smrb), p_sent_buffer);
  828. err = size;
  829. dev_dbg(rdbgdata->device, "%s: Read data to buffer with address 0x%lx\n",
  830. __func__, (unsigned long) buf);
  831. bail:
  832. return err;
  833. }
  834. static ssize_t rdbg_write(struct file *filp, const char __user *buf,
  835. size_t size, loff_t *offset)
  836. {
  837. int err = 0;
  838. int num_retries = 0;
  839. struct rdbg_data *rdbgdata = filp->private_data;
  840. if (!rdbgdata) {
  841. pr_err("Invalid argument\n");
  842. err = -EINVAL;
  843. goto bail;
  844. }
  845. do {
  846. err = smq_alloc_send(&(rdbgdata->producer_smrb), buf, size);
  847. dev_dbg(rdbgdata->device, "%s, smq_alloc_send returned %d.\n",
  848. __func__, err);
  849. } while (err != 0 && num_retries++ < MAX_RETRIES);
  850. if (err != 0) {
  851. pr_err("rdbg: send_interrupt_to_subsystem failed\n");
  852. err = -ECOMM;
  853. goto bail;
  854. }
  855. send_interrupt_to_subsystem(rdbgdata);
  856. err = size;
  857. bail:
  858. return err;
  859. }
  860. static const struct file_operations rdbg_fops = {
  861. .open = rdbg_open,
  862. .read = rdbg_read,
  863. .write = rdbg_write,
  864. .release = rdbg_release,
  865. };
  866. static int register_smp2p_out(struct device *dev, char *node_name,
  867. struct gpio_info *gpio_info_ptr)
  868. {
  869. struct device_node *node = dev->of_node;
  870. if (gpio_info_ptr) {
  871. if (of_find_property(node, "qcom,smem-states", NULL)) {
  872. gpio_info_ptr->smem_state =
  873. qcom_smem_state_get(dev, "rdbg-smp2p-out",
  874. &gpio_info_ptr->smem_bit);
  875. if (IS_ERR_OR_NULL(gpio_info_ptr->smem_state)) {
  876. pr_err("rdbg: failed get smem state\n");
  877. return PTR_ERR(gpio_info_ptr->smem_state);
  878. }
  879. }
  880. return 0;
  881. }
  882. return -EINVAL;
  883. }
  884. static int register_smp2p_in(struct device *dev, char *node_name,
  885. struct gpio_info *gpio_info_ptr)
  886. {
  887. int id = 0;
  888. struct device_node *node = dev->of_node;
  889. if (gpio_info_ptr) {
  890. id = of_irq_get_byname(node, "rdbg-smp2p-in");
  891. gpio_info_ptr->gpio_base_id = id;
  892. gpio_info_ptr->irq_base_id = id;
  893. return 0;
  894. }
  895. return -EINVAL;
  896. }
  897. static int rdbg_probe(struct platform_device *pdev)
  898. {
  899. struct device *dev = &pdev->dev;
  900. struct rdbg_device *rdbgdevice = &g_rdbg_instance;
  901. int minor = 0;
  902. int err = 0;
  903. char *rdbg_compatible_string = "qcom,smp2p-interrupt-rdbg-";
  904. int max_len = strlen(rdbg_compatible_string) + strlen("xx-out");
  905. char *node_name = kcalloc(max_len, sizeof(char), GFP_KERNEL);
  906. if (!node_name) {
  907. err = -ENOMEM;
  908. goto bail;
  909. }
  910. for (minor = 0; minor < rdbgdevice->num_devices; minor++) {
  911. if (!proc_info[minor].name)
  912. continue;
  913. if (snprintf(node_name, max_len, "%s%d-out",
  914. rdbg_compatible_string, minor) <= 0) {
  915. pr_err("Error in snprintf\n");
  916. err = -ENOMEM;
  917. goto bail;
  918. }
  919. if (of_device_is_compatible(dev->of_node, node_name)) {
  920. err = register_smp2p_out(dev, node_name,
  921. &rdbgdevice->rdbg_data[minor].out);
  922. if (err) {
  923. pr_err("%s: register_smp2p_out failed for %s\n",
  924. __func__, proc_info[minor].name);
  925. goto bail;
  926. }
  927. }
  928. if (snprintf(node_name, max_len, "%s%d-in",
  929. rdbg_compatible_string, minor) <= 0) {
  930. pr_err("Error in snprintf\n");
  931. err = -ENOMEM;
  932. goto bail;
  933. }
  934. if (of_device_is_compatible(dev->of_node, node_name)) {
  935. if (register_smp2p_in(dev, node_name,
  936. &rdbgdevice->rdbg_data[minor].in)) {
  937. pr_err("register_smp2p_in failed for %s\n",
  938. proc_info[minor].name);
  939. }
  940. }
  941. }
  942. bail:
  943. kfree(node_name);
  944. return err;
  945. }
  946. static const struct of_device_id rdbg_match_table[] = {
  947. { .compatible = "qcom,smp2p-interrupt-rdbg-2-out", },
  948. { .compatible = "qcom,smp2p-interrupt-rdbg-2-in", },
  949. { .compatible = "qcom,smp2p-interrupt-rdbg-5-out", },
  950. { .compatible = "qcom,smp2p-interrupt-rdbg-5-in", },
  951. {}
  952. };
  953. static struct platform_driver rdbg_driver = {
  954. .probe = rdbg_probe,
  955. .driver = {
  956. .name = "rdbg",
  957. .of_match_table = rdbg_match_table,
  958. },
  959. };
  960. static int __init rdbg_init(void)
  961. {
  962. struct rdbg_device *rdbgdevice = &g_rdbg_instance;
  963. int minor = 0;
  964. int major = 0;
  965. int minor_nodes_created = 0;
  966. int err = 0;
  967. if (rdbgdevice->num_devices < 1 ||
  968. rdbgdevice->num_devices > SMP2P_NUM_PROCS) {
  969. pr_err("rgdb: invalid num_devices\n");
  970. err = -EDOM;
  971. goto bail;
  972. }
  973. rdbgdevice->rdbg_data = kcalloc(rdbgdevice->num_devices,
  974. sizeof(struct rdbg_data), GFP_KERNEL);
  975. if (!rdbgdevice->rdbg_data) {
  976. err = -ENOMEM;
  977. goto bail;
  978. }
  979. err = platform_driver_register(&rdbg_driver);
  980. if (err)
  981. goto bail;
  982. err = alloc_chrdev_region(&rdbgdevice->dev_no, 0,
  983. rdbgdevice->num_devices, "rdbgctl");
  984. if (err) {
  985. pr_err("Error in alloc_chrdev_region.\n");
  986. goto data_bail;
  987. }
  988. major = MAJOR(rdbgdevice->dev_no);
  989. cdev_init(&rdbgdevice->cdev, &rdbg_fops);
  990. rdbgdevice->cdev.owner = THIS_MODULE;
  991. err = cdev_add(&rdbgdevice->cdev, MKDEV(major, 0),
  992. rdbgdevice->num_devices);
  993. if (err) {
  994. pr_err("Error in cdev_add\n");
  995. goto chrdev_bail;
  996. }
  997. rdbgdevice->class = class_create(THIS_MODULE, "rdbg");
  998. if (IS_ERR(rdbgdevice->class)) {
  999. err = PTR_ERR(rdbgdevice->class);
  1000. pr_err("Error in class_create\n");
  1001. goto cdev_bail;
  1002. }
  1003. for (minor = 0; minor < rdbgdevice->num_devices; minor++) {
  1004. if (!proc_info[minor].name)
  1005. continue;
  1006. rdbgdevice->rdbg_data[minor].device = device_create(
  1007. rdbgdevice->class, NULL, MKDEV(major, minor),
  1008. NULL, "%s", proc_info[minor].name);
  1009. if (IS_ERR(rdbgdevice->rdbg_data[minor].device)) {
  1010. err = PTR_ERR(rdbgdevice->rdbg_data[minor].device);
  1011. pr_err("Error in device_create\n");
  1012. goto device_bail;
  1013. }
  1014. rdbgdevice->rdbg_data[minor].device_initialized = true;
  1015. minor_nodes_created++;
  1016. dev_dbg(rdbgdevice->rdbg_data[minor].device,
  1017. "%s: created /dev/%s c %d %d'\n", __func__,
  1018. proc_info[minor].name, major, minor);
  1019. }
  1020. if (!minor_nodes_created) {
  1021. pr_err("No device tree entries found\n");
  1022. err = -EINVAL;
  1023. goto class_bail;
  1024. }
  1025. goto bail;
  1026. device_bail:
  1027. for (--minor; minor >= 0; minor--) {
  1028. if (rdbgdevice->rdbg_data[minor].device_initialized)
  1029. device_destroy(rdbgdevice->class,
  1030. MKDEV(MAJOR(rdbgdevice->dev_no), minor));
  1031. }
  1032. class_bail:
  1033. class_destroy(rdbgdevice->class);
  1034. cdev_bail:
  1035. cdev_del(&rdbgdevice->cdev);
  1036. chrdev_bail:
  1037. unregister_chrdev_region(rdbgdevice->dev_no, rdbgdevice->num_devices);
  1038. data_bail:
  1039. kfree(rdbgdevice->rdbg_data);
  1040. bail:
  1041. return err;
  1042. }
  1043. module_init(rdbg_init);
  1044. static void __exit rdbg_exit(void)
  1045. {
  1046. struct rdbg_device *rdbgdevice = &g_rdbg_instance;
  1047. int minor;
  1048. for (minor = 0; minor < rdbgdevice->num_devices; minor++) {
  1049. if (rdbgdevice->rdbg_data[minor].device_initialized) {
  1050. device_destroy(rdbgdevice->class,
  1051. MKDEV(MAJOR(rdbgdevice->dev_no), minor));
  1052. }
  1053. }
  1054. class_destroy(rdbgdevice->class);
  1055. cdev_del(&rdbgdevice->cdev);
  1056. unregister_chrdev_region(rdbgdevice->dev_no, 1);
  1057. kfree(rdbgdevice->rdbg_data);
  1058. }
  1059. module_exit(rdbg_exit);
  1060. MODULE_DESCRIPTION("rdbg module");
  1061. MODULE_LICENSE("GPL");