ks-sa-rng.c 7.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Random Number Generator driver for the Keystone SOC
  4. *
  5. * Copyright (C) 2016 Texas Instruments Incorporated - https://www.ti.com
  6. *
  7. * Authors: Sandeep Nair
  8. * Vitaly Andrianov
  9. */
  10. #include <linux/hw_random.h>
  11. #include <linux/kernel.h>
  12. #include <linux/module.h>
  13. #include <linux/io.h>
  14. #include <linux/platform_device.h>
  15. #include <linux/clk.h>
  16. #include <linux/pm_runtime.h>
  17. #include <linux/err.h>
  18. #include <linux/regmap.h>
  19. #include <linux/mfd/syscon.h>
  20. #include <linux/of.h>
  21. #include <linux/of_address.h>
  22. #include <linux/delay.h>
  23. #include <linux/timekeeping.h>
  24. #define SA_CMD_STATUS_OFS 0x8
  25. /* TRNG enable control in SA System module*/
  26. #define SA_CMD_STATUS_REG_TRNG_ENABLE BIT(3)
  27. /* TRNG start control in TRNG module */
  28. #define TRNG_CNTL_REG_TRNG_ENABLE BIT(10)
  29. /* Data ready indicator in STATUS register */
  30. #define TRNG_STATUS_REG_READY BIT(0)
  31. /* Data ready clear control in INTACK register */
  32. #define TRNG_INTACK_REG_READY BIT(0)
  33. /*
  34. * Number of samples taken to gather entropy during startup.
  35. * If value is 0, the number of samples is 2^24 else
  36. * equals value times 2^8.
  37. */
  38. #define TRNG_DEF_STARTUP_CYCLES 0
  39. #define TRNG_CNTL_REG_STARTUP_CYCLES_SHIFT 16
  40. /*
  41. * Minimum number of samples taken to regenerate entropy
  42. * If value is 0, the number of samples is 2^24 else
  43. * equals value times 2^6.
  44. */
  45. #define TRNG_DEF_MIN_REFILL_CYCLES 1
  46. #define TRNG_CFG_REG_MIN_REFILL_CYCLES_SHIFT 0
  47. /*
  48. * Maximum number of samples taken to regenerate entropy
  49. * If value is 0, the number of samples is 2^24 else
  50. * equals value times 2^8.
  51. */
  52. #define TRNG_DEF_MAX_REFILL_CYCLES 0
  53. #define TRNG_CFG_REG_MAX_REFILL_CYCLES_SHIFT 16
  54. /* Number of CLK input cycles between samples */
  55. #define TRNG_DEF_CLK_DIV_CYCLES 0
  56. #define TRNG_CFG_REG_SAMPLE_DIV_SHIFT 8
  57. /* Maximum retries to get rng data */
  58. #define SA_MAX_RNG_DATA_RETRIES 5
  59. /* Delay between retries (in usecs) */
  60. #define SA_RNG_DATA_RETRY_DELAY 5
  61. struct trng_regs {
  62. u32 output_l;
  63. u32 output_h;
  64. u32 status;
  65. u32 intmask;
  66. u32 intack;
  67. u32 control;
  68. u32 config;
  69. };
  70. struct ks_sa_rng {
  71. struct device *dev;
  72. struct hwrng rng;
  73. struct clk *clk;
  74. struct regmap *regmap_cfg;
  75. struct trng_regs __iomem *reg_rng;
  76. u64 ready_ts;
  77. unsigned int refill_delay_ns;
  78. };
  79. static unsigned int cycles_to_ns(unsigned long clk_rate, unsigned int cycles)
  80. {
  81. return DIV_ROUND_UP_ULL((TRNG_DEF_CLK_DIV_CYCLES + 1) * 1000000000ull *
  82. cycles, clk_rate);
  83. }
  84. static unsigned int startup_delay_ns(unsigned long clk_rate)
  85. {
  86. if (!TRNG_DEF_STARTUP_CYCLES)
  87. return cycles_to_ns(clk_rate, BIT(24));
  88. return cycles_to_ns(clk_rate, 256 * TRNG_DEF_STARTUP_CYCLES);
  89. }
  90. static unsigned int refill_delay_ns(unsigned long clk_rate)
  91. {
  92. if (!TRNG_DEF_MAX_REFILL_CYCLES)
  93. return cycles_to_ns(clk_rate, BIT(24));
  94. return cycles_to_ns(clk_rate, 256 * TRNG_DEF_MAX_REFILL_CYCLES);
  95. }
  96. static int ks_sa_rng_init(struct hwrng *rng)
  97. {
  98. u32 value;
  99. struct device *dev = (struct device *)rng->priv;
  100. struct ks_sa_rng *ks_sa_rng = dev_get_drvdata(dev);
  101. unsigned long clk_rate = clk_get_rate(ks_sa_rng->clk);
  102. /* Enable RNG module */
  103. regmap_write_bits(ks_sa_rng->regmap_cfg, SA_CMD_STATUS_OFS,
  104. SA_CMD_STATUS_REG_TRNG_ENABLE,
  105. SA_CMD_STATUS_REG_TRNG_ENABLE);
  106. /* Configure RNG module */
  107. writel(0, &ks_sa_rng->reg_rng->control);
  108. value = TRNG_DEF_STARTUP_CYCLES << TRNG_CNTL_REG_STARTUP_CYCLES_SHIFT;
  109. writel(value, &ks_sa_rng->reg_rng->control);
  110. value = (TRNG_DEF_MIN_REFILL_CYCLES <<
  111. TRNG_CFG_REG_MIN_REFILL_CYCLES_SHIFT) |
  112. (TRNG_DEF_MAX_REFILL_CYCLES <<
  113. TRNG_CFG_REG_MAX_REFILL_CYCLES_SHIFT) |
  114. (TRNG_DEF_CLK_DIV_CYCLES <<
  115. TRNG_CFG_REG_SAMPLE_DIV_SHIFT);
  116. writel(value, &ks_sa_rng->reg_rng->config);
  117. /* Disable all interrupts from TRNG */
  118. writel(0, &ks_sa_rng->reg_rng->intmask);
  119. /* Enable RNG */
  120. value = readl(&ks_sa_rng->reg_rng->control);
  121. value |= TRNG_CNTL_REG_TRNG_ENABLE;
  122. writel(value, &ks_sa_rng->reg_rng->control);
  123. ks_sa_rng->refill_delay_ns = refill_delay_ns(clk_rate);
  124. ks_sa_rng->ready_ts = ktime_get_ns() +
  125. startup_delay_ns(clk_rate);
  126. return 0;
  127. }
  128. static void ks_sa_rng_cleanup(struct hwrng *rng)
  129. {
  130. struct device *dev = (struct device *)rng->priv;
  131. struct ks_sa_rng *ks_sa_rng = dev_get_drvdata(dev);
  132. /* Disable RNG */
  133. writel(0, &ks_sa_rng->reg_rng->control);
  134. regmap_write_bits(ks_sa_rng->regmap_cfg, SA_CMD_STATUS_OFS,
  135. SA_CMD_STATUS_REG_TRNG_ENABLE, 0);
  136. }
  137. static int ks_sa_rng_data_read(struct hwrng *rng, u32 *data)
  138. {
  139. struct device *dev = (struct device *)rng->priv;
  140. struct ks_sa_rng *ks_sa_rng = dev_get_drvdata(dev);
  141. /* Read random data */
  142. data[0] = readl(&ks_sa_rng->reg_rng->output_l);
  143. data[1] = readl(&ks_sa_rng->reg_rng->output_h);
  144. writel(TRNG_INTACK_REG_READY, &ks_sa_rng->reg_rng->intack);
  145. ks_sa_rng->ready_ts = ktime_get_ns() + ks_sa_rng->refill_delay_ns;
  146. return sizeof(u32) * 2;
  147. }
  148. static int ks_sa_rng_data_present(struct hwrng *rng, int wait)
  149. {
  150. struct device *dev = (struct device *)rng->priv;
  151. struct ks_sa_rng *ks_sa_rng = dev_get_drvdata(dev);
  152. u64 now = ktime_get_ns();
  153. u32 ready;
  154. int j;
  155. if (wait && now < ks_sa_rng->ready_ts) {
  156. /* Max delay expected here is 81920000 ns */
  157. unsigned long min_delay =
  158. DIV_ROUND_UP((u32)(ks_sa_rng->ready_ts - now), 1000);
  159. usleep_range(min_delay, min_delay + SA_RNG_DATA_RETRY_DELAY);
  160. }
  161. for (j = 0; j < SA_MAX_RNG_DATA_RETRIES; j++) {
  162. ready = readl(&ks_sa_rng->reg_rng->status);
  163. ready &= TRNG_STATUS_REG_READY;
  164. if (ready || !wait)
  165. break;
  166. udelay(SA_RNG_DATA_RETRY_DELAY);
  167. }
  168. return ready;
  169. }
  170. static int ks_sa_rng_probe(struct platform_device *pdev)
  171. {
  172. struct ks_sa_rng *ks_sa_rng;
  173. struct device *dev = &pdev->dev;
  174. int ret;
  175. ks_sa_rng = devm_kzalloc(dev, sizeof(*ks_sa_rng), GFP_KERNEL);
  176. if (!ks_sa_rng)
  177. return -ENOMEM;
  178. ks_sa_rng->dev = dev;
  179. ks_sa_rng->rng = (struct hwrng) {
  180. .name = "ks_sa_hwrng",
  181. .init = ks_sa_rng_init,
  182. .data_read = ks_sa_rng_data_read,
  183. .data_present = ks_sa_rng_data_present,
  184. .cleanup = ks_sa_rng_cleanup,
  185. };
  186. ks_sa_rng->rng.priv = (unsigned long)dev;
  187. ks_sa_rng->reg_rng = devm_platform_ioremap_resource(pdev, 0);
  188. if (IS_ERR(ks_sa_rng->reg_rng))
  189. return PTR_ERR(ks_sa_rng->reg_rng);
  190. ks_sa_rng->regmap_cfg =
  191. syscon_regmap_lookup_by_phandle(dev->of_node,
  192. "ti,syscon-sa-cfg");
  193. if (IS_ERR(ks_sa_rng->regmap_cfg)) {
  194. dev_err(dev, "syscon_node_to_regmap failed\n");
  195. return -EINVAL;
  196. }
  197. pm_runtime_enable(dev);
  198. ret = pm_runtime_resume_and_get(dev);
  199. if (ret < 0) {
  200. dev_err(dev, "Failed to enable SA power-domain\n");
  201. pm_runtime_disable(dev);
  202. return ret;
  203. }
  204. platform_set_drvdata(pdev, ks_sa_rng);
  205. return devm_hwrng_register(&pdev->dev, &ks_sa_rng->rng);
  206. }
  207. static int ks_sa_rng_remove(struct platform_device *pdev)
  208. {
  209. pm_runtime_put_sync(&pdev->dev);
  210. pm_runtime_disable(&pdev->dev);
  211. return 0;
  212. }
  213. static const struct of_device_id ks_sa_rng_dt_match[] = {
  214. {
  215. .compatible = "ti,keystone-rng",
  216. },
  217. { },
  218. };
  219. MODULE_DEVICE_TABLE(of, ks_sa_rng_dt_match);
  220. static struct platform_driver ks_sa_rng_driver = {
  221. .driver = {
  222. .name = "ks-sa-rng",
  223. .of_match_table = ks_sa_rng_dt_match,
  224. },
  225. .probe = ks_sa_rng_probe,
  226. .remove = ks_sa_rng_remove,
  227. };
  228. module_platform_driver(ks_sa_rng_driver);
  229. MODULE_DESCRIPTION("Keystone NETCP SA H/W Random Number Generator driver");
  230. MODULE_AUTHOR("Vitaly Andrianov <[email protected]>");
  231. MODULE_LICENSE("GPL");