main.c 44 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * MHI Endpoint bus stack
  4. *
  5. * Copyright (C) 2022 Linaro Ltd.
  6. * Author: Manivannan Sadhasivam <[email protected]>
  7. */
  8. #include <linux/bitfield.h>
  9. #include <linux/delay.h>
  10. #include <linux/dma-direction.h>
  11. #include <linux/interrupt.h>
  12. #include <linux/io.h>
  13. #include <linux/irq.h>
  14. #include <linux/mhi_ep.h>
  15. #include <linux/mod_devicetable.h>
  16. #include <linux/module.h>
  17. #include "internal.h"
  18. #define M0_WAIT_DELAY_MS 100
  19. #define M0_WAIT_COUNT 100
  20. static DEFINE_IDA(mhi_ep_cntrl_ida);
  21. static int mhi_ep_create_device(struct mhi_ep_cntrl *mhi_cntrl, u32 ch_id);
  22. static int mhi_ep_destroy_device(struct device *dev, void *data);
  23. static int mhi_ep_send_event(struct mhi_ep_cntrl *mhi_cntrl, u32 ring_idx,
  24. struct mhi_ring_element *el, bool bei)
  25. {
  26. struct device *dev = &mhi_cntrl->mhi_dev->dev;
  27. union mhi_ep_ring_ctx *ctx;
  28. struct mhi_ep_ring *ring;
  29. int ret;
  30. mutex_lock(&mhi_cntrl->event_lock);
  31. ring = &mhi_cntrl->mhi_event[ring_idx].ring;
  32. ctx = (union mhi_ep_ring_ctx *)&mhi_cntrl->ev_ctx_cache[ring_idx];
  33. if (!ring->started) {
  34. ret = mhi_ep_ring_start(mhi_cntrl, ring, ctx);
  35. if (ret) {
  36. dev_err(dev, "Error starting event ring (%u)\n", ring_idx);
  37. goto err_unlock;
  38. }
  39. }
  40. /* Add element to the event ring */
  41. ret = mhi_ep_ring_add_element(ring, el);
  42. if (ret) {
  43. dev_err(dev, "Error adding element to event ring (%u)\n", ring_idx);
  44. goto err_unlock;
  45. }
  46. mutex_unlock(&mhi_cntrl->event_lock);
  47. /*
  48. * Raise IRQ to host only if the BEI flag is not set in TRE. Host might
  49. * set this flag for interrupt moderation as per MHI protocol.
  50. */
  51. if (!bei)
  52. mhi_cntrl->raise_irq(mhi_cntrl, ring->irq_vector);
  53. return 0;
  54. err_unlock:
  55. mutex_unlock(&mhi_cntrl->event_lock);
  56. return ret;
  57. }
  58. static int mhi_ep_send_completion_event(struct mhi_ep_cntrl *mhi_cntrl, struct mhi_ep_ring *ring,
  59. struct mhi_ring_element *tre, u32 len, enum mhi_ev_ccs code)
  60. {
  61. struct mhi_ring_element event = {};
  62. event.ptr = cpu_to_le64(ring->rbase + ring->rd_offset * sizeof(*tre));
  63. event.dword[0] = MHI_TRE_EV_DWORD0(code, len);
  64. event.dword[1] = MHI_TRE_EV_DWORD1(ring->ch_id, MHI_PKT_TYPE_TX_EVENT);
  65. return mhi_ep_send_event(mhi_cntrl, ring->er_index, &event, MHI_TRE_DATA_GET_BEI(tre));
  66. }
  67. int mhi_ep_send_state_change_event(struct mhi_ep_cntrl *mhi_cntrl, enum mhi_state state)
  68. {
  69. struct mhi_ring_element event = {};
  70. event.dword[0] = MHI_SC_EV_DWORD0(state);
  71. event.dword[1] = MHI_SC_EV_DWORD1(MHI_PKT_TYPE_STATE_CHANGE_EVENT);
  72. return mhi_ep_send_event(mhi_cntrl, 0, &event, 0);
  73. }
  74. int mhi_ep_send_ee_event(struct mhi_ep_cntrl *mhi_cntrl, enum mhi_ee_type exec_env)
  75. {
  76. struct mhi_ring_element event = {};
  77. event.dword[0] = MHI_EE_EV_DWORD0(exec_env);
  78. event.dword[1] = MHI_SC_EV_DWORD1(MHI_PKT_TYPE_EE_EVENT);
  79. return mhi_ep_send_event(mhi_cntrl, 0, &event, 0);
  80. }
  81. static int mhi_ep_send_cmd_comp_event(struct mhi_ep_cntrl *mhi_cntrl, enum mhi_ev_ccs code)
  82. {
  83. struct mhi_ep_ring *ring = &mhi_cntrl->mhi_cmd->ring;
  84. struct mhi_ring_element event = {};
  85. event.ptr = cpu_to_le64(ring->rbase + ring->rd_offset * sizeof(struct mhi_ring_element));
  86. event.dword[0] = MHI_CC_EV_DWORD0(code);
  87. event.dword[1] = MHI_CC_EV_DWORD1(MHI_PKT_TYPE_CMD_COMPLETION_EVENT);
  88. return mhi_ep_send_event(mhi_cntrl, 0, &event, 0);
  89. }
  90. static int mhi_ep_process_cmd_ring(struct mhi_ep_ring *ring, struct mhi_ring_element *el)
  91. {
  92. struct mhi_ep_cntrl *mhi_cntrl = ring->mhi_cntrl;
  93. struct device *dev = &mhi_cntrl->mhi_dev->dev;
  94. struct mhi_result result = {};
  95. struct mhi_ep_chan *mhi_chan;
  96. struct mhi_ep_ring *ch_ring;
  97. u32 tmp, ch_id;
  98. int ret;
  99. ch_id = MHI_TRE_GET_CMD_CHID(el);
  100. mhi_chan = &mhi_cntrl->mhi_chan[ch_id];
  101. ch_ring = &mhi_cntrl->mhi_chan[ch_id].ring;
  102. switch (MHI_TRE_GET_CMD_TYPE(el)) {
  103. case MHI_PKT_TYPE_START_CHAN_CMD:
  104. dev_dbg(dev, "Received START command for channel (%u)\n", ch_id);
  105. mutex_lock(&mhi_chan->lock);
  106. /* Initialize and configure the corresponding channel ring */
  107. if (!ch_ring->started) {
  108. ret = mhi_ep_ring_start(mhi_cntrl, ch_ring,
  109. (union mhi_ep_ring_ctx *)&mhi_cntrl->ch_ctx_cache[ch_id]);
  110. if (ret) {
  111. dev_err(dev, "Failed to start ring for channel (%u)\n", ch_id);
  112. ret = mhi_ep_send_cmd_comp_event(mhi_cntrl,
  113. MHI_EV_CC_UNDEFINED_ERR);
  114. if (ret)
  115. dev_err(dev, "Error sending completion event: %d\n", ret);
  116. goto err_unlock;
  117. }
  118. }
  119. /* Set channel state to RUNNING */
  120. mhi_chan->state = MHI_CH_STATE_RUNNING;
  121. tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[ch_id].chcfg);
  122. tmp &= ~CHAN_CTX_CHSTATE_MASK;
  123. tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_RUNNING);
  124. mhi_cntrl->ch_ctx_cache[ch_id].chcfg = cpu_to_le32(tmp);
  125. ret = mhi_ep_send_cmd_comp_event(mhi_cntrl, MHI_EV_CC_SUCCESS);
  126. if (ret) {
  127. dev_err(dev, "Error sending command completion event (%u)\n",
  128. MHI_EV_CC_SUCCESS);
  129. goto err_unlock;
  130. }
  131. mutex_unlock(&mhi_chan->lock);
  132. /*
  133. * Create MHI device only during UL channel start. Since the MHI
  134. * channels operate in a pair, we'll associate both UL and DL
  135. * channels to the same device.
  136. *
  137. * We also need to check for mhi_dev != NULL because, the host
  138. * will issue START_CHAN command during resume and we don't
  139. * destroy the device during suspend.
  140. */
  141. if (!(ch_id % 2) && !mhi_chan->mhi_dev) {
  142. ret = mhi_ep_create_device(mhi_cntrl, ch_id);
  143. if (ret) {
  144. dev_err(dev, "Error creating device for channel (%u)\n", ch_id);
  145. mhi_ep_handle_syserr(mhi_cntrl);
  146. return ret;
  147. }
  148. }
  149. /* Finally, enable DB for the channel */
  150. mhi_ep_mmio_enable_chdb(mhi_cntrl, ch_id);
  151. break;
  152. case MHI_PKT_TYPE_STOP_CHAN_CMD:
  153. dev_dbg(dev, "Received STOP command for channel (%u)\n", ch_id);
  154. if (!ch_ring->started) {
  155. dev_err(dev, "Channel (%u) not opened\n", ch_id);
  156. return -ENODEV;
  157. }
  158. mutex_lock(&mhi_chan->lock);
  159. /* Disable DB for the channel */
  160. mhi_ep_mmio_disable_chdb(mhi_cntrl, ch_id);
  161. /* Send channel disconnect status to client drivers */
  162. if (mhi_chan->xfer_cb) {
  163. result.transaction_status = -ENOTCONN;
  164. result.bytes_xferd = 0;
  165. mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
  166. }
  167. /* Set channel state to STOP */
  168. mhi_chan->state = MHI_CH_STATE_STOP;
  169. tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[ch_id].chcfg);
  170. tmp &= ~CHAN_CTX_CHSTATE_MASK;
  171. tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_STOP);
  172. mhi_cntrl->ch_ctx_cache[ch_id].chcfg = cpu_to_le32(tmp);
  173. ret = mhi_ep_send_cmd_comp_event(mhi_cntrl, MHI_EV_CC_SUCCESS);
  174. if (ret) {
  175. dev_err(dev, "Error sending command completion event (%u)\n",
  176. MHI_EV_CC_SUCCESS);
  177. goto err_unlock;
  178. }
  179. mutex_unlock(&mhi_chan->lock);
  180. break;
  181. case MHI_PKT_TYPE_RESET_CHAN_CMD:
  182. dev_dbg(dev, "Received RESET command for channel (%u)\n", ch_id);
  183. if (!ch_ring->started) {
  184. dev_err(dev, "Channel (%u) not opened\n", ch_id);
  185. return -ENODEV;
  186. }
  187. mutex_lock(&mhi_chan->lock);
  188. /* Stop and reset the transfer ring */
  189. mhi_ep_ring_reset(mhi_cntrl, ch_ring);
  190. /* Send channel disconnect status to client driver */
  191. if (mhi_chan->xfer_cb) {
  192. result.transaction_status = -ENOTCONN;
  193. result.bytes_xferd = 0;
  194. mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
  195. }
  196. /* Set channel state to DISABLED */
  197. mhi_chan->state = MHI_CH_STATE_DISABLED;
  198. tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[ch_id].chcfg);
  199. tmp &= ~CHAN_CTX_CHSTATE_MASK;
  200. tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_DISABLED);
  201. mhi_cntrl->ch_ctx_cache[ch_id].chcfg = cpu_to_le32(tmp);
  202. ret = mhi_ep_send_cmd_comp_event(mhi_cntrl, MHI_EV_CC_SUCCESS);
  203. if (ret) {
  204. dev_err(dev, "Error sending command completion event (%u)\n",
  205. MHI_EV_CC_SUCCESS);
  206. goto err_unlock;
  207. }
  208. mutex_unlock(&mhi_chan->lock);
  209. break;
  210. default:
  211. dev_err(dev, "Invalid command received: %lu for channel (%u)\n",
  212. MHI_TRE_GET_CMD_TYPE(el), ch_id);
  213. return -EINVAL;
  214. }
  215. return 0;
  216. err_unlock:
  217. mutex_unlock(&mhi_chan->lock);
  218. return ret;
  219. }
  220. bool mhi_ep_queue_is_empty(struct mhi_ep_device *mhi_dev, enum dma_data_direction dir)
  221. {
  222. struct mhi_ep_chan *mhi_chan = (dir == DMA_FROM_DEVICE) ? mhi_dev->dl_chan :
  223. mhi_dev->ul_chan;
  224. struct mhi_ep_cntrl *mhi_cntrl = mhi_dev->mhi_cntrl;
  225. struct mhi_ep_ring *ring = &mhi_cntrl->mhi_chan[mhi_chan->chan].ring;
  226. return !!(ring->rd_offset == ring->wr_offset);
  227. }
  228. EXPORT_SYMBOL_GPL(mhi_ep_queue_is_empty);
  229. static int mhi_ep_read_channel(struct mhi_ep_cntrl *mhi_cntrl,
  230. struct mhi_ep_ring *ring,
  231. struct mhi_result *result,
  232. u32 len)
  233. {
  234. struct mhi_ep_chan *mhi_chan = &mhi_cntrl->mhi_chan[ring->ch_id];
  235. struct device *dev = &mhi_cntrl->mhi_dev->dev;
  236. size_t tr_len, read_offset, write_offset;
  237. struct mhi_ring_element *el;
  238. bool tr_done = false;
  239. void *write_addr;
  240. u64 read_addr;
  241. u32 buf_left;
  242. int ret;
  243. buf_left = len;
  244. do {
  245. /* Don't process the transfer ring if the channel is not in RUNNING state */
  246. if (mhi_chan->state != MHI_CH_STATE_RUNNING) {
  247. dev_err(dev, "Channel not available\n");
  248. return -ENODEV;
  249. }
  250. el = &ring->ring_cache[ring->rd_offset];
  251. /* Check if there is data pending to be read from previous read operation */
  252. if (mhi_chan->tre_bytes_left) {
  253. dev_dbg(dev, "TRE bytes remaining: %u\n", mhi_chan->tre_bytes_left);
  254. tr_len = min(buf_left, mhi_chan->tre_bytes_left);
  255. } else {
  256. mhi_chan->tre_loc = MHI_TRE_DATA_GET_PTR(el);
  257. mhi_chan->tre_size = MHI_TRE_DATA_GET_LEN(el);
  258. mhi_chan->tre_bytes_left = mhi_chan->tre_size;
  259. tr_len = min(buf_left, mhi_chan->tre_size);
  260. }
  261. read_offset = mhi_chan->tre_size - mhi_chan->tre_bytes_left;
  262. write_offset = len - buf_left;
  263. read_addr = mhi_chan->tre_loc + read_offset;
  264. write_addr = result->buf_addr + write_offset;
  265. dev_dbg(dev, "Reading %zd bytes from channel (%u)\n", tr_len, ring->ch_id);
  266. ret = mhi_cntrl->read_from_host(mhi_cntrl, read_addr, write_addr, tr_len);
  267. if (ret < 0) {
  268. dev_err(&mhi_chan->mhi_dev->dev, "Error reading from channel\n");
  269. return ret;
  270. }
  271. buf_left -= tr_len;
  272. mhi_chan->tre_bytes_left -= tr_len;
  273. /*
  274. * Once the TRE (Transfer Ring Element) of a TD (Transfer Descriptor) has been
  275. * read completely:
  276. *
  277. * 1. Send completion event to the host based on the flags set in TRE.
  278. * 2. Increment the local read offset of the transfer ring.
  279. */
  280. if (!mhi_chan->tre_bytes_left) {
  281. /*
  282. * The host will split the data packet into multiple TREs if it can't fit
  283. * the packet in a single TRE. In that case, CHAIN flag will be set by the
  284. * host for all TREs except the last one.
  285. */
  286. if (MHI_TRE_DATA_GET_CHAIN(el)) {
  287. /*
  288. * IEOB (Interrupt on End of Block) flag will be set by the host if
  289. * it expects the completion event for all TREs of a TD.
  290. */
  291. if (MHI_TRE_DATA_GET_IEOB(el)) {
  292. ret = mhi_ep_send_completion_event(mhi_cntrl, ring, el,
  293. MHI_TRE_DATA_GET_LEN(el),
  294. MHI_EV_CC_EOB);
  295. if (ret < 0) {
  296. dev_err(&mhi_chan->mhi_dev->dev,
  297. "Error sending transfer compl. event\n");
  298. return ret;
  299. }
  300. }
  301. } else {
  302. /*
  303. * IEOT (Interrupt on End of Transfer) flag will be set by the host
  304. * for the last TRE of the TD and expects the completion event for
  305. * the same.
  306. */
  307. if (MHI_TRE_DATA_GET_IEOT(el)) {
  308. ret = mhi_ep_send_completion_event(mhi_cntrl, ring, el,
  309. MHI_TRE_DATA_GET_LEN(el),
  310. MHI_EV_CC_EOT);
  311. if (ret < 0) {
  312. dev_err(&mhi_chan->mhi_dev->dev,
  313. "Error sending transfer compl. event\n");
  314. return ret;
  315. }
  316. }
  317. tr_done = true;
  318. }
  319. mhi_ep_ring_inc_index(ring);
  320. }
  321. result->bytes_xferd += tr_len;
  322. } while (buf_left && !tr_done);
  323. return 0;
  324. }
  325. static int mhi_ep_process_ch_ring(struct mhi_ep_ring *ring, struct mhi_ring_element *el)
  326. {
  327. struct mhi_ep_cntrl *mhi_cntrl = ring->mhi_cntrl;
  328. struct mhi_result result = {};
  329. u32 len = MHI_EP_DEFAULT_MTU;
  330. struct mhi_ep_chan *mhi_chan;
  331. int ret;
  332. mhi_chan = &mhi_cntrl->mhi_chan[ring->ch_id];
  333. /*
  334. * Bail out if transfer callback is not registered for the channel.
  335. * This is most likely due to the client driver not loaded at this point.
  336. */
  337. if (!mhi_chan->xfer_cb) {
  338. dev_err(&mhi_chan->mhi_dev->dev, "Client driver not available\n");
  339. return -ENODEV;
  340. }
  341. if (ring->ch_id % 2) {
  342. /* DL channel */
  343. result.dir = mhi_chan->dir;
  344. mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
  345. } else {
  346. /* UL channel */
  347. result.buf_addr = kzalloc(len, GFP_KERNEL);
  348. if (!result.buf_addr)
  349. return -ENOMEM;
  350. do {
  351. ret = mhi_ep_read_channel(mhi_cntrl, ring, &result, len);
  352. if (ret < 0) {
  353. dev_err(&mhi_chan->mhi_dev->dev, "Failed to read channel\n");
  354. kfree(result.buf_addr);
  355. return ret;
  356. }
  357. result.dir = mhi_chan->dir;
  358. mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
  359. result.bytes_xferd = 0;
  360. memset(result.buf_addr, 0, len);
  361. /* Read until the ring becomes empty */
  362. } while (!mhi_ep_queue_is_empty(mhi_chan->mhi_dev, DMA_TO_DEVICE));
  363. kfree(result.buf_addr);
  364. }
  365. return 0;
  366. }
  367. /* TODO: Handle partially formed TDs */
  368. int mhi_ep_queue_skb(struct mhi_ep_device *mhi_dev, struct sk_buff *skb)
  369. {
  370. struct mhi_ep_cntrl *mhi_cntrl = mhi_dev->mhi_cntrl;
  371. struct mhi_ep_chan *mhi_chan = mhi_dev->dl_chan;
  372. struct device *dev = &mhi_chan->mhi_dev->dev;
  373. struct mhi_ring_element *el;
  374. u32 buf_left, read_offset;
  375. struct mhi_ep_ring *ring;
  376. enum mhi_ev_ccs code;
  377. void *read_addr;
  378. u64 write_addr;
  379. size_t tr_len;
  380. u32 tre_len;
  381. int ret;
  382. buf_left = skb->len;
  383. ring = &mhi_cntrl->mhi_chan[mhi_chan->chan].ring;
  384. mutex_lock(&mhi_chan->lock);
  385. do {
  386. /* Don't process the transfer ring if the channel is not in RUNNING state */
  387. if (mhi_chan->state != MHI_CH_STATE_RUNNING) {
  388. dev_err(dev, "Channel not available\n");
  389. ret = -ENODEV;
  390. goto err_exit;
  391. }
  392. if (mhi_ep_queue_is_empty(mhi_dev, DMA_FROM_DEVICE)) {
  393. dev_err(dev, "TRE not available!\n");
  394. ret = -ENOSPC;
  395. goto err_exit;
  396. }
  397. el = &ring->ring_cache[ring->rd_offset];
  398. tre_len = MHI_TRE_DATA_GET_LEN(el);
  399. tr_len = min(buf_left, tre_len);
  400. read_offset = skb->len - buf_left;
  401. read_addr = skb->data + read_offset;
  402. write_addr = MHI_TRE_DATA_GET_PTR(el);
  403. dev_dbg(dev, "Writing %zd bytes to channel (%u)\n", tr_len, ring->ch_id);
  404. ret = mhi_cntrl->write_to_host(mhi_cntrl, read_addr, write_addr, tr_len);
  405. if (ret < 0) {
  406. dev_err(dev, "Error writing to the channel\n");
  407. goto err_exit;
  408. }
  409. buf_left -= tr_len;
  410. /*
  411. * For all TREs queued by the host for DL channel, only the EOT flag will be set.
  412. * If the packet doesn't fit into a single TRE, send the OVERFLOW event to
  413. * the host so that the host can adjust the packet boundary to next TREs. Else send
  414. * the EOT event to the host indicating the packet boundary.
  415. */
  416. if (buf_left)
  417. code = MHI_EV_CC_OVERFLOW;
  418. else
  419. code = MHI_EV_CC_EOT;
  420. ret = mhi_ep_send_completion_event(mhi_cntrl, ring, el, tr_len, code);
  421. if (ret) {
  422. dev_err(dev, "Error sending transfer completion event\n");
  423. goto err_exit;
  424. }
  425. mhi_ep_ring_inc_index(ring);
  426. } while (buf_left);
  427. mutex_unlock(&mhi_chan->lock);
  428. return 0;
  429. err_exit:
  430. mutex_unlock(&mhi_chan->lock);
  431. return ret;
  432. }
  433. EXPORT_SYMBOL_GPL(mhi_ep_queue_skb);
  434. static int mhi_ep_cache_host_cfg(struct mhi_ep_cntrl *mhi_cntrl)
  435. {
  436. size_t cmd_ctx_host_size, ch_ctx_host_size, ev_ctx_host_size;
  437. struct device *dev = &mhi_cntrl->mhi_dev->dev;
  438. int ret;
  439. /* Update the number of event rings (NER) programmed by the host */
  440. mhi_ep_mmio_update_ner(mhi_cntrl);
  441. dev_dbg(dev, "Number of Event rings: %u, HW Event rings: %u\n",
  442. mhi_cntrl->event_rings, mhi_cntrl->hw_event_rings);
  443. ch_ctx_host_size = sizeof(struct mhi_chan_ctxt) * mhi_cntrl->max_chan;
  444. ev_ctx_host_size = sizeof(struct mhi_event_ctxt) * mhi_cntrl->event_rings;
  445. cmd_ctx_host_size = sizeof(struct mhi_cmd_ctxt) * NR_OF_CMD_RINGS;
  446. /* Get the channel context base pointer from host */
  447. mhi_ep_mmio_get_chc_base(mhi_cntrl);
  448. /* Allocate and map memory for caching host channel context */
  449. ret = mhi_cntrl->alloc_map(mhi_cntrl, mhi_cntrl->ch_ctx_host_pa,
  450. &mhi_cntrl->ch_ctx_cache_phys,
  451. (void __iomem **) &mhi_cntrl->ch_ctx_cache,
  452. ch_ctx_host_size);
  453. if (ret) {
  454. dev_err(dev, "Failed to allocate and map ch_ctx_cache\n");
  455. return ret;
  456. }
  457. /* Get the event context base pointer from host */
  458. mhi_ep_mmio_get_erc_base(mhi_cntrl);
  459. /* Allocate and map memory for caching host event context */
  460. ret = mhi_cntrl->alloc_map(mhi_cntrl, mhi_cntrl->ev_ctx_host_pa,
  461. &mhi_cntrl->ev_ctx_cache_phys,
  462. (void __iomem **) &mhi_cntrl->ev_ctx_cache,
  463. ev_ctx_host_size);
  464. if (ret) {
  465. dev_err(dev, "Failed to allocate and map ev_ctx_cache\n");
  466. goto err_ch_ctx;
  467. }
  468. /* Get the command context base pointer from host */
  469. mhi_ep_mmio_get_crc_base(mhi_cntrl);
  470. /* Allocate and map memory for caching host command context */
  471. ret = mhi_cntrl->alloc_map(mhi_cntrl, mhi_cntrl->cmd_ctx_host_pa,
  472. &mhi_cntrl->cmd_ctx_cache_phys,
  473. (void __iomem **) &mhi_cntrl->cmd_ctx_cache,
  474. cmd_ctx_host_size);
  475. if (ret) {
  476. dev_err(dev, "Failed to allocate and map cmd_ctx_cache\n");
  477. goto err_ev_ctx;
  478. }
  479. /* Initialize command ring */
  480. ret = mhi_ep_ring_start(mhi_cntrl, &mhi_cntrl->mhi_cmd->ring,
  481. (union mhi_ep_ring_ctx *)mhi_cntrl->cmd_ctx_cache);
  482. if (ret) {
  483. dev_err(dev, "Failed to start the command ring\n");
  484. goto err_cmd_ctx;
  485. }
  486. return ret;
  487. err_cmd_ctx:
  488. mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->cmd_ctx_host_pa, mhi_cntrl->cmd_ctx_cache_phys,
  489. (void __iomem *) mhi_cntrl->cmd_ctx_cache, cmd_ctx_host_size);
  490. err_ev_ctx:
  491. mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ev_ctx_host_pa, mhi_cntrl->ev_ctx_cache_phys,
  492. (void __iomem *) mhi_cntrl->ev_ctx_cache, ev_ctx_host_size);
  493. err_ch_ctx:
  494. mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ch_ctx_host_pa, mhi_cntrl->ch_ctx_cache_phys,
  495. (void __iomem *) mhi_cntrl->ch_ctx_cache, ch_ctx_host_size);
  496. return ret;
  497. }
  498. static void mhi_ep_free_host_cfg(struct mhi_ep_cntrl *mhi_cntrl)
  499. {
  500. size_t cmd_ctx_host_size, ch_ctx_host_size, ev_ctx_host_size;
  501. ch_ctx_host_size = sizeof(struct mhi_chan_ctxt) * mhi_cntrl->max_chan;
  502. ev_ctx_host_size = sizeof(struct mhi_event_ctxt) * mhi_cntrl->event_rings;
  503. cmd_ctx_host_size = sizeof(struct mhi_cmd_ctxt) * NR_OF_CMD_RINGS;
  504. mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->cmd_ctx_host_pa, mhi_cntrl->cmd_ctx_cache_phys,
  505. (void __iomem *) mhi_cntrl->cmd_ctx_cache, cmd_ctx_host_size);
  506. mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ev_ctx_host_pa, mhi_cntrl->ev_ctx_cache_phys,
  507. (void __iomem *) mhi_cntrl->ev_ctx_cache, ev_ctx_host_size);
  508. mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ch_ctx_host_pa, mhi_cntrl->ch_ctx_cache_phys,
  509. (void __iomem *) mhi_cntrl->ch_ctx_cache, ch_ctx_host_size);
  510. }
  511. static void mhi_ep_enable_int(struct mhi_ep_cntrl *mhi_cntrl)
  512. {
  513. /*
  514. * Doorbell interrupts are enabled when the corresponding channel gets started.
  515. * Enabling all interrupts here triggers spurious irqs as some of the interrupts
  516. * associated with hw channels always get triggered.
  517. */
  518. mhi_ep_mmio_enable_ctrl_interrupt(mhi_cntrl);
  519. mhi_ep_mmio_enable_cmdb_interrupt(mhi_cntrl);
  520. }
  521. static int mhi_ep_enable(struct mhi_ep_cntrl *mhi_cntrl)
  522. {
  523. struct device *dev = &mhi_cntrl->mhi_dev->dev;
  524. enum mhi_state state;
  525. bool mhi_reset;
  526. u32 count = 0;
  527. int ret;
  528. /* Wait for Host to set the M0 state */
  529. do {
  530. msleep(M0_WAIT_DELAY_MS);
  531. mhi_ep_mmio_get_mhi_state(mhi_cntrl, &state, &mhi_reset);
  532. if (mhi_reset) {
  533. /* Clear the MHI reset if host is in reset state */
  534. mhi_ep_mmio_clear_reset(mhi_cntrl);
  535. dev_info(dev, "Detected Host reset while waiting for M0\n");
  536. }
  537. count++;
  538. } while (state != MHI_STATE_M0 && count < M0_WAIT_COUNT);
  539. if (state != MHI_STATE_M0) {
  540. dev_err(dev, "Host failed to enter M0\n");
  541. return -ETIMEDOUT;
  542. }
  543. ret = mhi_ep_cache_host_cfg(mhi_cntrl);
  544. if (ret) {
  545. dev_err(dev, "Failed to cache host config\n");
  546. return ret;
  547. }
  548. mhi_ep_mmio_set_env(mhi_cntrl, MHI_EE_AMSS);
  549. /* Enable all interrupts now */
  550. mhi_ep_enable_int(mhi_cntrl);
  551. return 0;
  552. }
  553. static void mhi_ep_cmd_ring_worker(struct work_struct *work)
  554. {
  555. struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, cmd_ring_work);
  556. struct mhi_ep_ring *ring = &mhi_cntrl->mhi_cmd->ring;
  557. struct device *dev = &mhi_cntrl->mhi_dev->dev;
  558. struct mhi_ring_element *el;
  559. int ret;
  560. /* Update the write offset for the ring */
  561. ret = mhi_ep_update_wr_offset(ring);
  562. if (ret) {
  563. dev_err(dev, "Error updating write offset for ring\n");
  564. return;
  565. }
  566. /* Sanity check to make sure there are elements in the ring */
  567. if (ring->rd_offset == ring->wr_offset)
  568. return;
  569. /*
  570. * Process command ring element till write offset. In case of an error, just try to
  571. * process next element.
  572. */
  573. while (ring->rd_offset != ring->wr_offset) {
  574. el = &ring->ring_cache[ring->rd_offset];
  575. ret = mhi_ep_process_cmd_ring(ring, el);
  576. if (ret)
  577. dev_err(dev, "Error processing cmd ring element: %zu\n", ring->rd_offset);
  578. mhi_ep_ring_inc_index(ring);
  579. }
  580. }
  581. static void mhi_ep_ch_ring_worker(struct work_struct *work)
  582. {
  583. struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, ch_ring_work);
  584. struct device *dev = &mhi_cntrl->mhi_dev->dev;
  585. struct mhi_ep_ring_item *itr, *tmp;
  586. struct mhi_ring_element *el;
  587. struct mhi_ep_ring *ring;
  588. struct mhi_ep_chan *chan;
  589. unsigned long flags;
  590. LIST_HEAD(head);
  591. int ret;
  592. spin_lock_irqsave(&mhi_cntrl->list_lock, flags);
  593. list_splice_tail_init(&mhi_cntrl->ch_db_list, &head);
  594. spin_unlock_irqrestore(&mhi_cntrl->list_lock, flags);
  595. /* Process each queued channel ring. In case of an error, just process next element. */
  596. list_for_each_entry_safe(itr, tmp, &head, node) {
  597. list_del(&itr->node);
  598. ring = itr->ring;
  599. chan = &mhi_cntrl->mhi_chan[ring->ch_id];
  600. mutex_lock(&chan->lock);
  601. /*
  602. * The ring could've stopped while we waited to grab the (chan->lock), so do
  603. * a sanity check before going further.
  604. */
  605. if (!ring->started) {
  606. mutex_unlock(&chan->lock);
  607. kfree(itr);
  608. continue;
  609. }
  610. /* Update the write offset for the ring */
  611. ret = mhi_ep_update_wr_offset(ring);
  612. if (ret) {
  613. dev_err(dev, "Error updating write offset for ring\n");
  614. mutex_unlock(&chan->lock);
  615. kfree(itr);
  616. continue;
  617. }
  618. /* Sanity check to make sure there are elements in the ring */
  619. if (ring->rd_offset == ring->wr_offset) {
  620. mutex_unlock(&chan->lock);
  621. kfree(itr);
  622. continue;
  623. }
  624. el = &ring->ring_cache[ring->rd_offset];
  625. dev_dbg(dev, "Processing the ring for channel (%u)\n", ring->ch_id);
  626. ret = mhi_ep_process_ch_ring(ring, el);
  627. if (ret) {
  628. dev_err(dev, "Error processing ring for channel (%u): %d\n",
  629. ring->ch_id, ret);
  630. mutex_unlock(&chan->lock);
  631. kfree(itr);
  632. continue;
  633. }
  634. mutex_unlock(&chan->lock);
  635. kfree(itr);
  636. }
  637. }
  638. static void mhi_ep_state_worker(struct work_struct *work)
  639. {
  640. struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, state_work);
  641. struct device *dev = &mhi_cntrl->mhi_dev->dev;
  642. struct mhi_ep_state_transition *itr, *tmp;
  643. unsigned long flags;
  644. LIST_HEAD(head);
  645. int ret;
  646. spin_lock_irqsave(&mhi_cntrl->list_lock, flags);
  647. list_splice_tail_init(&mhi_cntrl->st_transition_list, &head);
  648. spin_unlock_irqrestore(&mhi_cntrl->list_lock, flags);
  649. list_for_each_entry_safe(itr, tmp, &head, node) {
  650. list_del(&itr->node);
  651. dev_dbg(dev, "Handling MHI state transition to %s\n",
  652. mhi_state_str(itr->state));
  653. switch (itr->state) {
  654. case MHI_STATE_M0:
  655. ret = mhi_ep_set_m0_state(mhi_cntrl);
  656. if (ret)
  657. dev_err(dev, "Failed to transition to M0 state\n");
  658. break;
  659. case MHI_STATE_M3:
  660. ret = mhi_ep_set_m3_state(mhi_cntrl);
  661. if (ret)
  662. dev_err(dev, "Failed to transition to M3 state\n");
  663. break;
  664. default:
  665. dev_err(dev, "Invalid MHI state transition: %d\n", itr->state);
  666. break;
  667. }
  668. kfree(itr);
  669. }
  670. }
  671. static void mhi_ep_queue_channel_db(struct mhi_ep_cntrl *mhi_cntrl, unsigned long ch_int,
  672. u32 ch_idx)
  673. {
  674. struct mhi_ep_ring_item *item;
  675. struct mhi_ep_ring *ring;
  676. bool work = !!ch_int;
  677. LIST_HEAD(head);
  678. u32 i;
  679. /* First add the ring items to a local list */
  680. for_each_set_bit(i, &ch_int, 32) {
  681. /* Channel index varies for each register: 0, 32, 64, 96 */
  682. u32 ch_id = ch_idx + i;
  683. ring = &mhi_cntrl->mhi_chan[ch_id].ring;
  684. item = kzalloc(sizeof(*item), GFP_ATOMIC);
  685. if (!item)
  686. return;
  687. item->ring = ring;
  688. list_add_tail(&item->node, &head);
  689. }
  690. /* Now, splice the local list into ch_db_list and queue the work item */
  691. if (work) {
  692. spin_lock(&mhi_cntrl->list_lock);
  693. list_splice_tail_init(&head, &mhi_cntrl->ch_db_list);
  694. spin_unlock(&mhi_cntrl->list_lock);
  695. queue_work(mhi_cntrl->wq, &mhi_cntrl->ch_ring_work);
  696. }
  697. }
  698. /*
  699. * Channel interrupt statuses are contained in 4 registers each of 32bit length.
  700. * For checking all interrupts, we need to loop through each registers and then
  701. * check for bits set.
  702. */
  703. static void mhi_ep_check_channel_interrupt(struct mhi_ep_cntrl *mhi_cntrl)
  704. {
  705. u32 ch_int, ch_idx, i;
  706. /* Bail out if there is no channel doorbell interrupt */
  707. if (!mhi_ep_mmio_read_chdb_status_interrupts(mhi_cntrl))
  708. return;
  709. for (i = 0; i < MHI_MASK_ROWS_CH_DB; i++) {
  710. ch_idx = i * MHI_MASK_CH_LEN;
  711. /* Only process channel interrupt if the mask is enabled */
  712. ch_int = mhi_cntrl->chdb[i].status & mhi_cntrl->chdb[i].mask;
  713. if (ch_int) {
  714. mhi_ep_queue_channel_db(mhi_cntrl, ch_int, ch_idx);
  715. mhi_ep_mmio_write(mhi_cntrl, MHI_CHDB_INT_CLEAR_n(i),
  716. mhi_cntrl->chdb[i].status);
  717. }
  718. }
  719. }
  720. static void mhi_ep_process_ctrl_interrupt(struct mhi_ep_cntrl *mhi_cntrl,
  721. enum mhi_state state)
  722. {
  723. struct mhi_ep_state_transition *item;
  724. item = kzalloc(sizeof(*item), GFP_ATOMIC);
  725. if (!item)
  726. return;
  727. item->state = state;
  728. spin_lock(&mhi_cntrl->list_lock);
  729. list_add_tail(&item->node, &mhi_cntrl->st_transition_list);
  730. spin_unlock(&mhi_cntrl->list_lock);
  731. queue_work(mhi_cntrl->wq, &mhi_cntrl->state_work);
  732. }
  733. /*
  734. * Interrupt handler that services interrupts raised by the host writing to
  735. * MHICTRL and Command ring doorbell (CRDB) registers for state change and
  736. * channel interrupts.
  737. */
  738. static irqreturn_t mhi_ep_irq(int irq, void *data)
  739. {
  740. struct mhi_ep_cntrl *mhi_cntrl = data;
  741. struct device *dev = &mhi_cntrl->mhi_dev->dev;
  742. enum mhi_state state;
  743. u32 int_value;
  744. bool mhi_reset;
  745. /* Acknowledge the ctrl interrupt */
  746. int_value = mhi_ep_mmio_read(mhi_cntrl, MHI_CTRL_INT_STATUS);
  747. mhi_ep_mmio_write(mhi_cntrl, MHI_CTRL_INT_CLEAR, int_value);
  748. /* Check for ctrl interrupt */
  749. if (FIELD_GET(MHI_CTRL_INT_STATUS_MSK, int_value)) {
  750. dev_dbg(dev, "Processing ctrl interrupt\n");
  751. mhi_ep_mmio_get_mhi_state(mhi_cntrl, &state, &mhi_reset);
  752. if (mhi_reset) {
  753. dev_info(dev, "Host triggered MHI reset!\n");
  754. disable_irq_nosync(mhi_cntrl->irq);
  755. schedule_work(&mhi_cntrl->reset_work);
  756. return IRQ_HANDLED;
  757. }
  758. mhi_ep_process_ctrl_interrupt(mhi_cntrl, state);
  759. }
  760. /* Check for command doorbell interrupt */
  761. if (FIELD_GET(MHI_CTRL_INT_STATUS_CRDB_MSK, int_value)) {
  762. dev_dbg(dev, "Processing command doorbell interrupt\n");
  763. queue_work(mhi_cntrl->wq, &mhi_cntrl->cmd_ring_work);
  764. }
  765. /* Check for channel interrupts */
  766. mhi_ep_check_channel_interrupt(mhi_cntrl);
  767. return IRQ_HANDLED;
  768. }
  769. static void mhi_ep_abort_transfer(struct mhi_ep_cntrl *mhi_cntrl)
  770. {
  771. struct mhi_ep_ring *ch_ring, *ev_ring;
  772. struct mhi_result result = {};
  773. struct mhi_ep_chan *mhi_chan;
  774. int i;
  775. /* Stop all the channels */
  776. for (i = 0; i < mhi_cntrl->max_chan; i++) {
  777. mhi_chan = &mhi_cntrl->mhi_chan[i];
  778. if (!mhi_chan->ring.started)
  779. continue;
  780. mutex_lock(&mhi_chan->lock);
  781. /* Send channel disconnect status to client drivers */
  782. if (mhi_chan->xfer_cb) {
  783. result.transaction_status = -ENOTCONN;
  784. result.bytes_xferd = 0;
  785. mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
  786. }
  787. mhi_chan->state = MHI_CH_STATE_DISABLED;
  788. mutex_unlock(&mhi_chan->lock);
  789. }
  790. flush_workqueue(mhi_cntrl->wq);
  791. /* Destroy devices associated with all channels */
  792. device_for_each_child(&mhi_cntrl->mhi_dev->dev, NULL, mhi_ep_destroy_device);
  793. /* Stop and reset the transfer rings */
  794. for (i = 0; i < mhi_cntrl->max_chan; i++) {
  795. mhi_chan = &mhi_cntrl->mhi_chan[i];
  796. if (!mhi_chan->ring.started)
  797. continue;
  798. ch_ring = &mhi_cntrl->mhi_chan[i].ring;
  799. mutex_lock(&mhi_chan->lock);
  800. mhi_ep_ring_reset(mhi_cntrl, ch_ring);
  801. mutex_unlock(&mhi_chan->lock);
  802. }
  803. /* Stop and reset the event rings */
  804. for (i = 0; i < mhi_cntrl->event_rings; i++) {
  805. ev_ring = &mhi_cntrl->mhi_event[i].ring;
  806. if (!ev_ring->started)
  807. continue;
  808. mutex_lock(&mhi_cntrl->event_lock);
  809. mhi_ep_ring_reset(mhi_cntrl, ev_ring);
  810. mutex_unlock(&mhi_cntrl->event_lock);
  811. }
  812. /* Stop and reset the command ring */
  813. mhi_ep_ring_reset(mhi_cntrl, &mhi_cntrl->mhi_cmd->ring);
  814. mhi_ep_free_host_cfg(mhi_cntrl);
  815. mhi_ep_mmio_mask_interrupts(mhi_cntrl);
  816. mhi_cntrl->enabled = false;
  817. }
  818. static void mhi_ep_reset_worker(struct work_struct *work)
  819. {
  820. struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, reset_work);
  821. enum mhi_state cur_state;
  822. mhi_ep_power_down(mhi_cntrl);
  823. mutex_lock(&mhi_cntrl->state_lock);
  824. /* Reset MMIO to signal host that the MHI_RESET is completed in endpoint */
  825. mhi_ep_mmio_reset(mhi_cntrl);
  826. cur_state = mhi_cntrl->mhi_state;
  827. /*
  828. * Only proceed further if the reset is due to SYS_ERR. The host will
  829. * issue reset during shutdown also and we don't need to do re-init in
  830. * that case.
  831. */
  832. if (cur_state == MHI_STATE_SYS_ERR)
  833. mhi_ep_power_up(mhi_cntrl);
  834. mutex_unlock(&mhi_cntrl->state_lock);
  835. }
  836. /*
  837. * We don't need to do anything special other than setting the MHI SYS_ERR
  838. * state. The host will reset all contexts and issue MHI RESET so that we
  839. * could also recover from error state.
  840. */
  841. void mhi_ep_handle_syserr(struct mhi_ep_cntrl *mhi_cntrl)
  842. {
  843. struct device *dev = &mhi_cntrl->mhi_dev->dev;
  844. int ret;
  845. ret = mhi_ep_set_mhi_state(mhi_cntrl, MHI_STATE_SYS_ERR);
  846. if (ret)
  847. return;
  848. /* Signal host that the device went to SYS_ERR state */
  849. ret = mhi_ep_send_state_change_event(mhi_cntrl, MHI_STATE_SYS_ERR);
  850. if (ret)
  851. dev_err(dev, "Failed sending SYS_ERR state change event: %d\n", ret);
  852. }
  853. int mhi_ep_power_up(struct mhi_ep_cntrl *mhi_cntrl)
  854. {
  855. struct device *dev = &mhi_cntrl->mhi_dev->dev;
  856. int ret, i;
  857. /*
  858. * Mask all interrupts until the state machine is ready. Interrupts will
  859. * be enabled later with mhi_ep_enable().
  860. */
  861. mhi_ep_mmio_mask_interrupts(mhi_cntrl);
  862. mhi_ep_mmio_init(mhi_cntrl);
  863. mhi_cntrl->mhi_event = kzalloc(mhi_cntrl->event_rings * (sizeof(*mhi_cntrl->mhi_event)),
  864. GFP_KERNEL);
  865. if (!mhi_cntrl->mhi_event)
  866. return -ENOMEM;
  867. /* Initialize command, channel and event rings */
  868. mhi_ep_ring_init(&mhi_cntrl->mhi_cmd->ring, RING_TYPE_CMD, 0);
  869. for (i = 0; i < mhi_cntrl->max_chan; i++)
  870. mhi_ep_ring_init(&mhi_cntrl->mhi_chan[i].ring, RING_TYPE_CH, i);
  871. for (i = 0; i < mhi_cntrl->event_rings; i++)
  872. mhi_ep_ring_init(&mhi_cntrl->mhi_event[i].ring, RING_TYPE_ER, i);
  873. mhi_cntrl->mhi_state = MHI_STATE_RESET;
  874. /* Set AMSS EE before signaling ready state */
  875. mhi_ep_mmio_set_env(mhi_cntrl, MHI_EE_AMSS);
  876. /* All set, notify the host that we are ready */
  877. ret = mhi_ep_set_ready_state(mhi_cntrl);
  878. if (ret)
  879. goto err_free_event;
  880. dev_dbg(dev, "READY state notification sent to the host\n");
  881. ret = mhi_ep_enable(mhi_cntrl);
  882. if (ret) {
  883. dev_err(dev, "Failed to enable MHI endpoint\n");
  884. goto err_free_event;
  885. }
  886. enable_irq(mhi_cntrl->irq);
  887. mhi_cntrl->enabled = true;
  888. return 0;
  889. err_free_event:
  890. kfree(mhi_cntrl->mhi_event);
  891. return ret;
  892. }
  893. EXPORT_SYMBOL_GPL(mhi_ep_power_up);
  894. void mhi_ep_power_down(struct mhi_ep_cntrl *mhi_cntrl)
  895. {
  896. if (mhi_cntrl->enabled) {
  897. mhi_ep_abort_transfer(mhi_cntrl);
  898. kfree(mhi_cntrl->mhi_event);
  899. disable_irq(mhi_cntrl->irq);
  900. }
  901. }
  902. EXPORT_SYMBOL_GPL(mhi_ep_power_down);
  903. void mhi_ep_suspend_channels(struct mhi_ep_cntrl *mhi_cntrl)
  904. {
  905. struct mhi_ep_chan *mhi_chan;
  906. u32 tmp;
  907. int i;
  908. for (i = 0; i < mhi_cntrl->max_chan; i++) {
  909. mhi_chan = &mhi_cntrl->mhi_chan[i];
  910. if (!mhi_chan->mhi_dev)
  911. continue;
  912. mutex_lock(&mhi_chan->lock);
  913. /* Skip if the channel is not currently running */
  914. tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[i].chcfg);
  915. if (FIELD_GET(CHAN_CTX_CHSTATE_MASK, tmp) != MHI_CH_STATE_RUNNING) {
  916. mutex_unlock(&mhi_chan->lock);
  917. continue;
  918. }
  919. dev_dbg(&mhi_chan->mhi_dev->dev, "Suspending channel\n");
  920. /* Set channel state to SUSPENDED */
  921. mhi_chan->state = MHI_CH_STATE_SUSPENDED;
  922. tmp &= ~CHAN_CTX_CHSTATE_MASK;
  923. tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_SUSPENDED);
  924. mhi_cntrl->ch_ctx_cache[i].chcfg = cpu_to_le32(tmp);
  925. mutex_unlock(&mhi_chan->lock);
  926. }
  927. }
  928. void mhi_ep_resume_channels(struct mhi_ep_cntrl *mhi_cntrl)
  929. {
  930. struct mhi_ep_chan *mhi_chan;
  931. u32 tmp;
  932. int i;
  933. for (i = 0; i < mhi_cntrl->max_chan; i++) {
  934. mhi_chan = &mhi_cntrl->mhi_chan[i];
  935. if (!mhi_chan->mhi_dev)
  936. continue;
  937. mutex_lock(&mhi_chan->lock);
  938. /* Skip if the channel is not currently suspended */
  939. tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[i].chcfg);
  940. if (FIELD_GET(CHAN_CTX_CHSTATE_MASK, tmp) != MHI_CH_STATE_SUSPENDED) {
  941. mutex_unlock(&mhi_chan->lock);
  942. continue;
  943. }
  944. dev_dbg(&mhi_chan->mhi_dev->dev, "Resuming channel\n");
  945. /* Set channel state to RUNNING */
  946. mhi_chan->state = MHI_CH_STATE_RUNNING;
  947. tmp &= ~CHAN_CTX_CHSTATE_MASK;
  948. tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_RUNNING);
  949. mhi_cntrl->ch_ctx_cache[i].chcfg = cpu_to_le32(tmp);
  950. mutex_unlock(&mhi_chan->lock);
  951. }
  952. }
  953. static void mhi_ep_release_device(struct device *dev)
  954. {
  955. struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
  956. if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER)
  957. mhi_dev->mhi_cntrl->mhi_dev = NULL;
  958. /*
  959. * We need to set the mhi_chan->mhi_dev to NULL here since the MHI
  960. * devices for the channels will only get created in mhi_ep_create_device()
  961. * if the mhi_dev associated with it is NULL.
  962. */
  963. if (mhi_dev->ul_chan)
  964. mhi_dev->ul_chan->mhi_dev = NULL;
  965. if (mhi_dev->dl_chan)
  966. mhi_dev->dl_chan->mhi_dev = NULL;
  967. kfree(mhi_dev);
  968. }
  969. static struct mhi_ep_device *mhi_ep_alloc_device(struct mhi_ep_cntrl *mhi_cntrl,
  970. enum mhi_device_type dev_type)
  971. {
  972. struct mhi_ep_device *mhi_dev;
  973. struct device *dev;
  974. mhi_dev = kzalloc(sizeof(*mhi_dev), GFP_KERNEL);
  975. if (!mhi_dev)
  976. return ERR_PTR(-ENOMEM);
  977. dev = &mhi_dev->dev;
  978. device_initialize(dev);
  979. dev->bus = &mhi_ep_bus_type;
  980. dev->release = mhi_ep_release_device;
  981. /* Controller device is always allocated first */
  982. if (dev_type == MHI_DEVICE_CONTROLLER)
  983. /* for MHI controller device, parent is the bus device (e.g. PCI EPF) */
  984. dev->parent = mhi_cntrl->cntrl_dev;
  985. else
  986. /* for MHI client devices, parent is the MHI controller device */
  987. dev->parent = &mhi_cntrl->mhi_dev->dev;
  988. mhi_dev->mhi_cntrl = mhi_cntrl;
  989. mhi_dev->dev_type = dev_type;
  990. return mhi_dev;
  991. }
  992. /*
  993. * MHI channels are always defined in pairs with UL as the even numbered
  994. * channel and DL as odd numbered one. This function gets UL channel (primary)
  995. * as the ch_id and always looks after the next entry in channel list for
  996. * the corresponding DL channel (secondary).
  997. */
  998. static int mhi_ep_create_device(struct mhi_ep_cntrl *mhi_cntrl, u32 ch_id)
  999. {
  1000. struct mhi_ep_chan *mhi_chan = &mhi_cntrl->mhi_chan[ch_id];
  1001. struct device *dev = mhi_cntrl->cntrl_dev;
  1002. struct mhi_ep_device *mhi_dev;
  1003. int ret;
  1004. /* Check if the channel name is same for both UL and DL */
  1005. if (strcmp(mhi_chan->name, mhi_chan[1].name)) {
  1006. dev_err(dev, "UL and DL channel names are not same: (%s) != (%s)\n",
  1007. mhi_chan->name, mhi_chan[1].name);
  1008. return -EINVAL;
  1009. }
  1010. mhi_dev = mhi_ep_alloc_device(mhi_cntrl, MHI_DEVICE_XFER);
  1011. if (IS_ERR(mhi_dev))
  1012. return PTR_ERR(mhi_dev);
  1013. /* Configure primary channel */
  1014. mhi_dev->ul_chan = mhi_chan;
  1015. get_device(&mhi_dev->dev);
  1016. mhi_chan->mhi_dev = mhi_dev;
  1017. /* Configure secondary channel as well */
  1018. mhi_chan++;
  1019. mhi_dev->dl_chan = mhi_chan;
  1020. get_device(&mhi_dev->dev);
  1021. mhi_chan->mhi_dev = mhi_dev;
  1022. /* Channel name is same for both UL and DL */
  1023. mhi_dev->name = mhi_chan->name;
  1024. ret = dev_set_name(&mhi_dev->dev, "%s_%s",
  1025. dev_name(&mhi_cntrl->mhi_dev->dev),
  1026. mhi_dev->name);
  1027. if (ret) {
  1028. put_device(&mhi_dev->dev);
  1029. return ret;
  1030. }
  1031. ret = device_add(&mhi_dev->dev);
  1032. if (ret)
  1033. put_device(&mhi_dev->dev);
  1034. return ret;
  1035. }
  1036. static int mhi_ep_destroy_device(struct device *dev, void *data)
  1037. {
  1038. struct mhi_ep_device *mhi_dev;
  1039. struct mhi_ep_cntrl *mhi_cntrl;
  1040. struct mhi_ep_chan *ul_chan, *dl_chan;
  1041. if (dev->bus != &mhi_ep_bus_type)
  1042. return 0;
  1043. mhi_dev = to_mhi_ep_device(dev);
  1044. mhi_cntrl = mhi_dev->mhi_cntrl;
  1045. /* Only destroy devices created for channels */
  1046. if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER)
  1047. return 0;
  1048. ul_chan = mhi_dev->ul_chan;
  1049. dl_chan = mhi_dev->dl_chan;
  1050. if (ul_chan)
  1051. put_device(&ul_chan->mhi_dev->dev);
  1052. if (dl_chan)
  1053. put_device(&dl_chan->mhi_dev->dev);
  1054. dev_dbg(&mhi_cntrl->mhi_dev->dev, "Destroying device for chan:%s\n",
  1055. mhi_dev->name);
  1056. /* Notify the client and remove the device from MHI bus */
  1057. device_del(dev);
  1058. put_device(dev);
  1059. return 0;
  1060. }
  1061. static int mhi_ep_chan_init(struct mhi_ep_cntrl *mhi_cntrl,
  1062. const struct mhi_ep_cntrl_config *config)
  1063. {
  1064. const struct mhi_ep_channel_config *ch_cfg;
  1065. struct device *dev = mhi_cntrl->cntrl_dev;
  1066. u32 chan, i;
  1067. int ret = -EINVAL;
  1068. mhi_cntrl->max_chan = config->max_channels;
  1069. /*
  1070. * Allocate max_channels supported by the MHI endpoint and populate
  1071. * only the defined channels
  1072. */
  1073. mhi_cntrl->mhi_chan = kcalloc(mhi_cntrl->max_chan, sizeof(*mhi_cntrl->mhi_chan),
  1074. GFP_KERNEL);
  1075. if (!mhi_cntrl->mhi_chan)
  1076. return -ENOMEM;
  1077. for (i = 0; i < config->num_channels; i++) {
  1078. struct mhi_ep_chan *mhi_chan;
  1079. ch_cfg = &config->ch_cfg[i];
  1080. chan = ch_cfg->num;
  1081. if (chan >= mhi_cntrl->max_chan) {
  1082. dev_err(dev, "Channel (%u) exceeds maximum available channels (%u)\n",
  1083. chan, mhi_cntrl->max_chan);
  1084. goto error_chan_cfg;
  1085. }
  1086. /* Bi-directional and direction less channels are not supported */
  1087. if (ch_cfg->dir == DMA_BIDIRECTIONAL || ch_cfg->dir == DMA_NONE) {
  1088. dev_err(dev, "Invalid direction (%u) for channel (%u)\n",
  1089. ch_cfg->dir, chan);
  1090. goto error_chan_cfg;
  1091. }
  1092. mhi_chan = &mhi_cntrl->mhi_chan[chan];
  1093. mhi_chan->name = ch_cfg->name;
  1094. mhi_chan->chan = chan;
  1095. mhi_chan->dir = ch_cfg->dir;
  1096. mutex_init(&mhi_chan->lock);
  1097. }
  1098. return 0;
  1099. error_chan_cfg:
  1100. kfree(mhi_cntrl->mhi_chan);
  1101. return ret;
  1102. }
  1103. /*
  1104. * Allocate channel and command rings here. Event rings will be allocated
  1105. * in mhi_ep_power_up() as the config comes from the host.
  1106. */
  1107. int mhi_ep_register_controller(struct mhi_ep_cntrl *mhi_cntrl,
  1108. const struct mhi_ep_cntrl_config *config)
  1109. {
  1110. struct mhi_ep_device *mhi_dev;
  1111. int ret;
  1112. if (!mhi_cntrl || !mhi_cntrl->cntrl_dev || !mhi_cntrl->mmio || !mhi_cntrl->irq)
  1113. return -EINVAL;
  1114. ret = mhi_ep_chan_init(mhi_cntrl, config);
  1115. if (ret)
  1116. return ret;
  1117. mhi_cntrl->mhi_cmd = kcalloc(NR_OF_CMD_RINGS, sizeof(*mhi_cntrl->mhi_cmd), GFP_KERNEL);
  1118. if (!mhi_cntrl->mhi_cmd) {
  1119. ret = -ENOMEM;
  1120. goto err_free_ch;
  1121. }
  1122. INIT_WORK(&mhi_cntrl->state_work, mhi_ep_state_worker);
  1123. INIT_WORK(&mhi_cntrl->reset_work, mhi_ep_reset_worker);
  1124. INIT_WORK(&mhi_cntrl->cmd_ring_work, mhi_ep_cmd_ring_worker);
  1125. INIT_WORK(&mhi_cntrl->ch_ring_work, mhi_ep_ch_ring_worker);
  1126. mhi_cntrl->wq = alloc_workqueue("mhi_ep_wq", 0, 0);
  1127. if (!mhi_cntrl->wq) {
  1128. ret = -ENOMEM;
  1129. goto err_free_cmd;
  1130. }
  1131. INIT_LIST_HEAD(&mhi_cntrl->st_transition_list);
  1132. INIT_LIST_HEAD(&mhi_cntrl->ch_db_list);
  1133. spin_lock_init(&mhi_cntrl->list_lock);
  1134. mutex_init(&mhi_cntrl->state_lock);
  1135. mutex_init(&mhi_cntrl->event_lock);
  1136. /* Set MHI version and AMSS EE before enumeration */
  1137. mhi_ep_mmio_write(mhi_cntrl, EP_MHIVER, config->mhi_version);
  1138. mhi_ep_mmio_set_env(mhi_cntrl, MHI_EE_AMSS);
  1139. /* Set controller index */
  1140. ret = ida_alloc(&mhi_ep_cntrl_ida, GFP_KERNEL);
  1141. if (ret < 0)
  1142. goto err_destroy_wq;
  1143. mhi_cntrl->index = ret;
  1144. irq_set_status_flags(mhi_cntrl->irq, IRQ_NOAUTOEN);
  1145. ret = request_irq(mhi_cntrl->irq, mhi_ep_irq, IRQF_TRIGGER_HIGH,
  1146. "doorbell_irq", mhi_cntrl);
  1147. if (ret) {
  1148. dev_err(mhi_cntrl->cntrl_dev, "Failed to request Doorbell IRQ\n");
  1149. goto err_ida_free;
  1150. }
  1151. /* Allocate the controller device */
  1152. mhi_dev = mhi_ep_alloc_device(mhi_cntrl, MHI_DEVICE_CONTROLLER);
  1153. if (IS_ERR(mhi_dev)) {
  1154. dev_err(mhi_cntrl->cntrl_dev, "Failed to allocate controller device\n");
  1155. ret = PTR_ERR(mhi_dev);
  1156. goto err_free_irq;
  1157. }
  1158. ret = dev_set_name(&mhi_dev->dev, "mhi_ep%u", mhi_cntrl->index);
  1159. if (ret)
  1160. goto err_put_dev;
  1161. mhi_dev->name = dev_name(&mhi_dev->dev);
  1162. mhi_cntrl->mhi_dev = mhi_dev;
  1163. ret = device_add(&mhi_dev->dev);
  1164. if (ret)
  1165. goto err_put_dev;
  1166. dev_dbg(&mhi_dev->dev, "MHI EP Controller registered\n");
  1167. return 0;
  1168. err_put_dev:
  1169. put_device(&mhi_dev->dev);
  1170. err_free_irq:
  1171. free_irq(mhi_cntrl->irq, mhi_cntrl);
  1172. err_ida_free:
  1173. ida_free(&mhi_ep_cntrl_ida, mhi_cntrl->index);
  1174. err_destroy_wq:
  1175. destroy_workqueue(mhi_cntrl->wq);
  1176. err_free_cmd:
  1177. kfree(mhi_cntrl->mhi_cmd);
  1178. err_free_ch:
  1179. kfree(mhi_cntrl->mhi_chan);
  1180. return ret;
  1181. }
  1182. EXPORT_SYMBOL_GPL(mhi_ep_register_controller);
  1183. /*
  1184. * It is expected that the controller drivers will power down the MHI EP stack
  1185. * using "mhi_ep_power_down()" before calling this function to unregister themselves.
  1186. */
  1187. void mhi_ep_unregister_controller(struct mhi_ep_cntrl *mhi_cntrl)
  1188. {
  1189. struct mhi_ep_device *mhi_dev = mhi_cntrl->mhi_dev;
  1190. destroy_workqueue(mhi_cntrl->wq);
  1191. free_irq(mhi_cntrl->irq, mhi_cntrl);
  1192. kfree(mhi_cntrl->mhi_cmd);
  1193. kfree(mhi_cntrl->mhi_chan);
  1194. device_del(&mhi_dev->dev);
  1195. put_device(&mhi_dev->dev);
  1196. ida_free(&mhi_ep_cntrl_ida, mhi_cntrl->index);
  1197. }
  1198. EXPORT_SYMBOL_GPL(mhi_ep_unregister_controller);
  1199. static int mhi_ep_driver_probe(struct device *dev)
  1200. {
  1201. struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
  1202. struct mhi_ep_driver *mhi_drv = to_mhi_ep_driver(dev->driver);
  1203. struct mhi_ep_chan *ul_chan = mhi_dev->ul_chan;
  1204. struct mhi_ep_chan *dl_chan = mhi_dev->dl_chan;
  1205. ul_chan->xfer_cb = mhi_drv->ul_xfer_cb;
  1206. dl_chan->xfer_cb = mhi_drv->dl_xfer_cb;
  1207. return mhi_drv->probe(mhi_dev, mhi_dev->id);
  1208. }
  1209. static int mhi_ep_driver_remove(struct device *dev)
  1210. {
  1211. struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
  1212. struct mhi_ep_driver *mhi_drv = to_mhi_ep_driver(dev->driver);
  1213. struct mhi_result result = {};
  1214. struct mhi_ep_chan *mhi_chan;
  1215. int dir;
  1216. /* Skip if it is a controller device */
  1217. if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER)
  1218. return 0;
  1219. /* Disconnect the channels associated with the driver */
  1220. for (dir = 0; dir < 2; dir++) {
  1221. mhi_chan = dir ? mhi_dev->ul_chan : mhi_dev->dl_chan;
  1222. if (!mhi_chan)
  1223. continue;
  1224. mutex_lock(&mhi_chan->lock);
  1225. /* Send channel disconnect status to the client driver */
  1226. if (mhi_chan->xfer_cb) {
  1227. result.transaction_status = -ENOTCONN;
  1228. result.bytes_xferd = 0;
  1229. mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
  1230. }
  1231. mhi_chan->state = MHI_CH_STATE_DISABLED;
  1232. mhi_chan->xfer_cb = NULL;
  1233. mutex_unlock(&mhi_chan->lock);
  1234. }
  1235. /* Remove the client driver now */
  1236. mhi_drv->remove(mhi_dev);
  1237. return 0;
  1238. }
  1239. int __mhi_ep_driver_register(struct mhi_ep_driver *mhi_drv, struct module *owner)
  1240. {
  1241. struct device_driver *driver = &mhi_drv->driver;
  1242. if (!mhi_drv->probe || !mhi_drv->remove)
  1243. return -EINVAL;
  1244. /* Client drivers should have callbacks defined for both channels */
  1245. if (!mhi_drv->ul_xfer_cb || !mhi_drv->dl_xfer_cb)
  1246. return -EINVAL;
  1247. driver->bus = &mhi_ep_bus_type;
  1248. driver->owner = owner;
  1249. driver->probe = mhi_ep_driver_probe;
  1250. driver->remove = mhi_ep_driver_remove;
  1251. return driver_register(driver);
  1252. }
  1253. EXPORT_SYMBOL_GPL(__mhi_ep_driver_register);
  1254. void mhi_ep_driver_unregister(struct mhi_ep_driver *mhi_drv)
  1255. {
  1256. driver_unregister(&mhi_drv->driver);
  1257. }
  1258. EXPORT_SYMBOL_GPL(mhi_ep_driver_unregister);
  1259. static int mhi_ep_uevent(struct device *dev, struct kobj_uevent_env *env)
  1260. {
  1261. struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
  1262. return add_uevent_var(env, "MODALIAS=" MHI_EP_DEVICE_MODALIAS_FMT,
  1263. mhi_dev->name);
  1264. }
  1265. static int mhi_ep_match(struct device *dev, struct device_driver *drv)
  1266. {
  1267. struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
  1268. struct mhi_ep_driver *mhi_drv = to_mhi_ep_driver(drv);
  1269. const struct mhi_device_id *id;
  1270. /*
  1271. * If the device is a controller type then there is no client driver
  1272. * associated with it
  1273. */
  1274. if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER)
  1275. return 0;
  1276. for (id = mhi_drv->id_table; id->chan[0]; id++)
  1277. if (!strcmp(mhi_dev->name, id->chan)) {
  1278. mhi_dev->id = id;
  1279. return 1;
  1280. }
  1281. return 0;
  1282. };
  1283. struct bus_type mhi_ep_bus_type = {
  1284. .name = "mhi_ep",
  1285. .dev_name = "mhi_ep",
  1286. .match = mhi_ep_match,
  1287. .uevent = mhi_ep_uevent,
  1288. };
  1289. static int __init mhi_ep_init(void)
  1290. {
  1291. return bus_register(&mhi_ep_bus_type);
  1292. }
  1293. static void __exit mhi_ep_exit(void)
  1294. {
  1295. bus_unregister(&mhi_ep_bus_type);
  1296. }
  1297. postcore_initcall(mhi_ep_init);
  1298. module_exit(mhi_ep_exit);
  1299. MODULE_LICENSE("GPL v2");
  1300. MODULE_DESCRIPTION("MHI Bus Endpoint stack");
  1301. MODULE_AUTHOR("Manivannan Sadhasivam <[email protected]>");