123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713 |
- // SPDX-License-Identifier: GPL-2.0
- //
- // Register map access API - SPI AVMM support
- //
- // Copyright (C) 2018-2020 Intel Corporation. All rights reserved.
- #include <linux/module.h>
- #include <linux/regmap.h>
- #include <linux/spi/spi.h>
- #include <linux/swab.h>
- /*
- * This driver implements the regmap operations for a generic SPI
- * master to access the registers of the spi slave chip which has an
- * Avalone bus in it.
- *
- * The "SPI slave to Avalon Master Bridge" (spi-avmm) IP should be integrated
- * in the spi slave chip. The IP acts as a bridge to convert encoded streams of
- * bytes from the host to the internal register read/write on Avalon bus. In
- * order to issue register access requests to the slave chip, the host should
- * send formatted bytes that conform to the transfer protocol.
- * The transfer protocol contains 3 layers: transaction layer, packet layer
- * and physical layer.
- *
- * Reference Documents could be found at:
- * https://www.intel.com/content/www/us/en/programmable/documentation/sfo1400787952932.html
- *
- * Chapter "SPI Slave/JTAG to Avalon Master Bridge Cores" is a general
- * introduction to the protocol.
- *
- * Chapter "Avalon Packets to Transactions Converter Core" describes
- * the transaction layer.
- *
- * Chapter "Avalon-ST Bytes to Packets and Packets to Bytes Converter Cores"
- * describes the packet layer.
- *
- * Chapter "Avalon-ST Serial Peripheral Interface Core" describes the
- * physical layer.
- *
- *
- * When host issues a regmap read/write, the driver will transform the request
- * to byte stream layer by layer. It formats the register addr, value and
- * length to the transaction layer request, then converts the request to packet
- * layer bytes stream and then to physical layer bytes stream. Finally the
- * driver sends the formatted byte stream over SPI bus to the slave chip.
- *
- * The spi-avmm IP on the slave chip decodes the byte stream and initiates
- * register read/write on its internal Avalon bus, and then encodes the
- * response to byte stream and sends back to host.
- *
- * The driver receives the byte stream, reverses the 3 layers transformation,
- * and finally gets the response value (read out data for register read,
- * successful written size for register write).
- */
- #define PKT_SOP 0x7a
- #define PKT_EOP 0x7b
- #define PKT_CHANNEL 0x7c
- #define PKT_ESC 0x7d
- #define PHY_IDLE 0x4a
- #define PHY_ESC 0x4d
- #define TRANS_CODE_WRITE 0x0
- #define TRANS_CODE_SEQ_WRITE 0x4
- #define TRANS_CODE_READ 0x10
- #define TRANS_CODE_SEQ_READ 0x14
- #define TRANS_CODE_NO_TRANS 0x7f
- #define SPI_AVMM_XFER_TIMEOUT (msecs_to_jiffies(200))
- /* slave's register addr is 32 bits */
- #define SPI_AVMM_REG_SIZE 4UL
- /* slave's register value is 32 bits */
- #define SPI_AVMM_VAL_SIZE 4UL
- /*
- * max rx size could be larger. But considering the buffer consuming,
- * it is proper that we limit 1KB xfer at max.
- */
- #define MAX_READ_CNT 256UL
- #define MAX_WRITE_CNT 1UL
- struct trans_req_header {
- u8 code;
- u8 rsvd;
- __be16 size;
- __be32 addr;
- } __packed;
- struct trans_resp_header {
- u8 r_code;
- u8 rsvd;
- __be16 size;
- } __packed;
- #define TRANS_REQ_HD_SIZE (sizeof(struct trans_req_header))
- #define TRANS_RESP_HD_SIZE (sizeof(struct trans_resp_header))
- /*
- * In transaction layer,
- * the write request format is: Transaction request header + data
- * the read request format is: Transaction request header
- * the write response format is: Transaction response header
- * the read response format is: pure data, no Transaction response header
- */
- #define TRANS_WR_TX_SIZE(n) (TRANS_REQ_HD_SIZE + SPI_AVMM_VAL_SIZE * (n))
- #define TRANS_RD_TX_SIZE TRANS_REQ_HD_SIZE
- #define TRANS_TX_MAX TRANS_WR_TX_SIZE(MAX_WRITE_CNT)
- #define TRANS_RD_RX_SIZE(n) (SPI_AVMM_VAL_SIZE * (n))
- #define TRANS_WR_RX_SIZE TRANS_RESP_HD_SIZE
- #define TRANS_RX_MAX TRANS_RD_RX_SIZE(MAX_READ_CNT)
- /* tx & rx share one transaction layer buffer */
- #define TRANS_BUF_SIZE ((TRANS_TX_MAX > TRANS_RX_MAX) ? \
- TRANS_TX_MAX : TRANS_RX_MAX)
- /*
- * In tx phase, the host prepares all the phy layer bytes of a request in the
- * phy buffer and sends them in a batch.
- *
- * The packet layer and physical layer defines several special chars for
- * various purpose, when a transaction layer byte hits one of these special
- * chars, it should be escaped. The escape rule is, "Escape char first,
- * following the byte XOR'ed with 0x20".
- *
- * This macro defines the max possible length of the phy data. In the worst
- * case, all transaction layer bytes need to be escaped (so the data length
- * doubles), plus 4 special chars (SOP, CHANNEL, CHANNEL_NUM, EOP). Finally
- * we should make sure the length is aligned to SPI BPW.
- */
- #define PHY_TX_MAX ALIGN(2 * TRANS_TX_MAX + 4, 4)
- /*
- * Unlike tx, phy rx is affected by possible PHY_IDLE bytes from slave, the max
- * length of the rx bit stream is unpredictable. So the driver reads the words
- * one by one, and parses each word immediately into transaction layer buffer.
- * Only one word length of phy buffer is used for rx.
- */
- #define PHY_BUF_SIZE PHY_TX_MAX
- /**
- * struct spi_avmm_bridge - SPI slave to AVMM bus master bridge
- *
- * @spi: spi slave associated with this bridge.
- * @word_len: bytes of word for spi transfer.
- * @trans_len: length of valid data in trans_buf.
- * @phy_len: length of valid data in phy_buf.
- * @trans_buf: the bridge buffer for transaction layer data.
- * @phy_buf: the bridge buffer for physical layer data.
- * @swap_words: the word swapping cb for phy data. NULL if not needed.
- *
- * As a device's registers are implemented on the AVMM bus address space, it
- * requires the driver to issue formatted requests to spi slave to AVMM bus
- * master bridge to perform register access.
- */
- struct spi_avmm_bridge {
- struct spi_device *spi;
- unsigned char word_len;
- unsigned int trans_len;
- unsigned int phy_len;
- /* bridge buffer used in translation between protocol layers */
- char trans_buf[TRANS_BUF_SIZE];
- char phy_buf[PHY_BUF_SIZE];
- void (*swap_words)(void *buf, unsigned int len);
- };
- static void br_swap_words_32(void *buf, unsigned int len)
- {
- swab32_array(buf, len / 4);
- }
- /*
- * Format transaction layer data in br->trans_buf according to the register
- * access request, Store valid transaction layer data length in br->trans_len.
- */
- static int br_trans_tx_prepare(struct spi_avmm_bridge *br, bool is_read, u32 reg,
- u32 *wr_val, u32 count)
- {
- struct trans_req_header *header;
- unsigned int trans_len;
- u8 code;
- __le32 *data;
- int i;
- if (is_read) {
- if (count == 1)
- code = TRANS_CODE_READ;
- else
- code = TRANS_CODE_SEQ_READ;
- } else {
- if (count == 1)
- code = TRANS_CODE_WRITE;
- else
- code = TRANS_CODE_SEQ_WRITE;
- }
- header = (struct trans_req_header *)br->trans_buf;
- header->code = code;
- header->rsvd = 0;
- header->size = cpu_to_be16((u16)count * SPI_AVMM_VAL_SIZE);
- header->addr = cpu_to_be32(reg);
- trans_len = TRANS_REQ_HD_SIZE;
- if (!is_read) {
- trans_len += SPI_AVMM_VAL_SIZE * count;
- if (trans_len > sizeof(br->trans_buf))
- return -ENOMEM;
- data = (__le32 *)(br->trans_buf + TRANS_REQ_HD_SIZE);
- for (i = 0; i < count; i++)
- *data++ = cpu_to_le32(*wr_val++);
- }
- /* Store valid trans data length for next layer */
- br->trans_len = trans_len;
- return 0;
- }
- /*
- * Convert transaction layer data (in br->trans_buf) to phy layer data, store
- * them in br->phy_buf. Pad the phy_buf aligned with SPI's BPW. Store valid phy
- * layer data length in br->phy_len.
- *
- * phy_buf len should be aligned with SPI's BPW. Spare bytes should be padded
- * with PHY_IDLE, then the slave will just drop them.
- *
- * The driver will not simply pad 4a at the tail. The concern is that driver
- * will not store MISO data during tx phase, if the driver pads 4a at the tail,
- * it is possible that if the slave is fast enough to response at the padding
- * time. As a result these rx bytes are lost. In the following case, 7a,7c,00
- * will lost.
- * MOSI ...|7a|7c|00|10| |00|00|04|02| |4b|7d|5a|7b| |40|4a|4a|4a| |XX|XX|...
- * MISO ...|4a|4a|4a|4a| |4a|4a|4a|4a| |4a|4a|4a|4a| |4a|7a|7c|00| |78|56|...
- *
- * So the driver moves EOP and bytes after EOP to the end of the aligned size,
- * then fill the hole with PHY_IDLE. As following:
- * before pad ...|7a|7c|00|10| |00|00|04|02| |4b|7d|5a|7b| |40|
- * after pad ...|7a|7c|00|10| |00|00|04|02| |4b|7d|5a|4a| |4a|4a|7b|40|
- * Then if the slave will not get the entire packet before the tx phase is
- * over, it can't responsed to anything either.
- */
- static int br_pkt_phy_tx_prepare(struct spi_avmm_bridge *br)
- {
- char *tb, *tb_end, *pb, *pb_limit, *pb_eop = NULL;
- unsigned int aligned_phy_len, move_size;
- bool need_esc = false;
- tb = br->trans_buf;
- tb_end = tb + br->trans_len;
- pb = br->phy_buf;
- pb_limit = pb + ARRAY_SIZE(br->phy_buf);
- *pb++ = PKT_SOP;
- /*
- * The driver doesn't support multiple channels so the channel number
- * is always 0.
- */
- *pb++ = PKT_CHANNEL;
- *pb++ = 0x0;
- for (; pb < pb_limit && tb < tb_end; pb++) {
- if (need_esc) {
- *pb = *tb++ ^ 0x20;
- need_esc = false;
- continue;
- }
- /* EOP should be inserted before the last valid char */
- if (tb == tb_end - 1 && !pb_eop) {
- *pb = PKT_EOP;
- pb_eop = pb;
- continue;
- }
- /*
- * insert an ESCAPE char if the data value equals any special
- * char.
- */
- switch (*tb) {
- case PKT_SOP:
- case PKT_EOP:
- case PKT_CHANNEL:
- case PKT_ESC:
- *pb = PKT_ESC;
- need_esc = true;
- break;
- case PHY_IDLE:
- case PHY_ESC:
- *pb = PHY_ESC;
- need_esc = true;
- break;
- default:
- *pb = *tb++;
- break;
- }
- }
- /* The phy buffer is used out but transaction layer data remains */
- if (tb < tb_end)
- return -ENOMEM;
- /* Store valid phy data length for spi transfer */
- br->phy_len = pb - br->phy_buf;
- if (br->word_len == 1)
- return 0;
- /* Do phy buf padding if word_len > 1 byte. */
- aligned_phy_len = ALIGN(br->phy_len, br->word_len);
- if (aligned_phy_len > sizeof(br->phy_buf))
- return -ENOMEM;
- if (aligned_phy_len == br->phy_len)
- return 0;
- /* move EOP and bytes after EOP to the end of aligned size */
- move_size = pb - pb_eop;
- memmove(&br->phy_buf[aligned_phy_len - move_size], pb_eop, move_size);
- /* fill the hole with PHY_IDLEs */
- memset(pb_eop, PHY_IDLE, aligned_phy_len - br->phy_len);
- /* update the phy data length */
- br->phy_len = aligned_phy_len;
- return 0;
- }
- /*
- * In tx phase, the slave only returns PHY_IDLE (0x4a). So the driver will
- * ignore rx in tx phase.
- */
- static int br_do_tx(struct spi_avmm_bridge *br)
- {
- /* reorder words for spi transfer */
- if (br->swap_words)
- br->swap_words(br->phy_buf, br->phy_len);
- /* send all data in phy_buf */
- return spi_write(br->spi, br->phy_buf, br->phy_len);
- }
- /*
- * This function read the rx byte stream from SPI word by word and convert
- * them to transaction layer data in br->trans_buf. It also stores the length
- * of rx transaction layer data in br->trans_len
- *
- * The slave may send an unknown number of PHY_IDLEs in rx phase, so we cannot
- * prepare a fixed length buffer to receive all of the rx data in a batch. We
- * have to read word by word and convert them to transaction layer data at
- * once.
- */
- static int br_do_rx_and_pkt_phy_parse(struct spi_avmm_bridge *br)
- {
- bool eop_found = false, channel_found = false, esc_found = false;
- bool valid_word = false, last_try = false;
- struct device *dev = &br->spi->dev;
- char *pb, *tb_limit, *tb = NULL;
- unsigned long poll_timeout;
- int ret, i;
- tb_limit = br->trans_buf + ARRAY_SIZE(br->trans_buf);
- pb = br->phy_buf;
- poll_timeout = jiffies + SPI_AVMM_XFER_TIMEOUT;
- while (tb < tb_limit) {
- ret = spi_read(br->spi, pb, br->word_len);
- if (ret)
- return ret;
- /* reorder the word back */
- if (br->swap_words)
- br->swap_words(pb, br->word_len);
- valid_word = false;
- for (i = 0; i < br->word_len; i++) {
- /* drop everything before first SOP */
- if (!tb && pb[i] != PKT_SOP)
- continue;
- /* drop PHY_IDLE */
- if (pb[i] == PHY_IDLE)
- continue;
- valid_word = true;
- /*
- * We don't support multiple channels, so error out if
- * a non-zero channel number is found.
- */
- if (channel_found) {
- if (pb[i] != 0) {
- dev_err(dev, "%s channel num != 0\n",
- __func__);
- return -EFAULT;
- }
- channel_found = false;
- continue;
- }
- switch (pb[i]) {
- case PKT_SOP:
- /*
- * reset the parsing if a second SOP appears.
- */
- tb = br->trans_buf;
- eop_found = false;
- channel_found = false;
- esc_found = false;
- break;
- case PKT_EOP:
- /*
- * No special char is expected after ESC char.
- * No special char (except ESC & PHY_IDLE) is
- * expected after EOP char.
- *
- * The special chars are all dropped.
- */
- if (esc_found || eop_found)
- return -EFAULT;
- eop_found = true;
- break;
- case PKT_CHANNEL:
- if (esc_found || eop_found)
- return -EFAULT;
- channel_found = true;
- break;
- case PKT_ESC:
- case PHY_ESC:
- if (esc_found)
- return -EFAULT;
- esc_found = true;
- break;
- default:
- /* Record the normal byte in trans_buf. */
- if (esc_found) {
- *tb++ = pb[i] ^ 0x20;
- esc_found = false;
- } else {
- *tb++ = pb[i];
- }
- /*
- * We get the last normal byte after EOP, it is
- * time we finish. Normally the function should
- * return here.
- */
- if (eop_found) {
- br->trans_len = tb - br->trans_buf;
- return 0;
- }
- }
- }
- if (valid_word) {
- /* update poll timeout when we get valid word */
- poll_timeout = jiffies + SPI_AVMM_XFER_TIMEOUT;
- last_try = false;
- } else {
- /*
- * We timeout when rx keeps invalid for some time. But
- * it is possible we are scheduled out for long time
- * after a spi_read. So when we are scheduled in, a SW
- * timeout happens. But actually HW may have worked fine and
- * has been ready long time ago. So we need to do an extra
- * read, if we get a valid word then we could continue rx,
- * otherwise real a HW issue happens.
- */
- if (last_try)
- return -ETIMEDOUT;
- if (time_after(jiffies, poll_timeout))
- last_try = true;
- }
- }
- /*
- * We have used out all transfer layer buffer but cannot find the end
- * of the byte stream.
- */
- dev_err(dev, "%s transfer buffer is full but rx doesn't end\n",
- __func__);
- return -EFAULT;
- }
- /*
- * For read transactions, the avmm bus will directly return register values
- * without transaction response header.
- */
- static int br_rd_trans_rx_parse(struct spi_avmm_bridge *br,
- u32 *val, unsigned int expected_count)
- {
- unsigned int i, trans_len = br->trans_len;
- __le32 *data;
- if (expected_count * SPI_AVMM_VAL_SIZE != trans_len)
- return -EFAULT;
- data = (__le32 *)br->trans_buf;
- for (i = 0; i < expected_count; i++)
- *val++ = le32_to_cpu(*data++);
- return 0;
- }
- /*
- * For write transactions, the slave will return a transaction response
- * header.
- */
- static int br_wr_trans_rx_parse(struct spi_avmm_bridge *br,
- unsigned int expected_count)
- {
- unsigned int trans_len = br->trans_len;
- struct trans_resp_header *resp;
- u8 code;
- u16 val_len;
- if (trans_len != TRANS_RESP_HD_SIZE)
- return -EFAULT;
- resp = (struct trans_resp_header *)br->trans_buf;
- code = resp->r_code ^ 0x80;
- val_len = be16_to_cpu(resp->size);
- if (!val_len || val_len != expected_count * SPI_AVMM_VAL_SIZE)
- return -EFAULT;
- /* error out if the trans code doesn't align with the val size */
- if ((val_len == SPI_AVMM_VAL_SIZE && code != TRANS_CODE_WRITE) ||
- (val_len > SPI_AVMM_VAL_SIZE && code != TRANS_CODE_SEQ_WRITE))
- return -EFAULT;
- return 0;
- }
- static int do_reg_access(void *context, bool is_read, unsigned int reg,
- unsigned int *value, unsigned int count)
- {
- struct spi_avmm_bridge *br = context;
- int ret;
- /* invalidate bridge buffers first */
- br->trans_len = 0;
- br->phy_len = 0;
- ret = br_trans_tx_prepare(br, is_read, reg, value, count);
- if (ret)
- return ret;
- ret = br_pkt_phy_tx_prepare(br);
- if (ret)
- return ret;
- ret = br_do_tx(br);
- if (ret)
- return ret;
- ret = br_do_rx_and_pkt_phy_parse(br);
- if (ret)
- return ret;
- if (is_read)
- return br_rd_trans_rx_parse(br, value, count);
- else
- return br_wr_trans_rx_parse(br, count);
- }
- static int regmap_spi_avmm_gather_write(void *context,
- const void *reg_buf, size_t reg_len,
- const void *val_buf, size_t val_len)
- {
- if (reg_len != SPI_AVMM_REG_SIZE)
- return -EINVAL;
- if (!IS_ALIGNED(val_len, SPI_AVMM_VAL_SIZE))
- return -EINVAL;
- return do_reg_access(context, false, *(u32 *)reg_buf, (u32 *)val_buf,
- val_len / SPI_AVMM_VAL_SIZE);
- }
- static int regmap_spi_avmm_write(void *context, const void *data, size_t bytes)
- {
- if (bytes < SPI_AVMM_REG_SIZE + SPI_AVMM_VAL_SIZE)
- return -EINVAL;
- return regmap_spi_avmm_gather_write(context, data, SPI_AVMM_REG_SIZE,
- data + SPI_AVMM_REG_SIZE,
- bytes - SPI_AVMM_REG_SIZE);
- }
- static int regmap_spi_avmm_read(void *context,
- const void *reg_buf, size_t reg_len,
- void *val_buf, size_t val_len)
- {
- if (reg_len != SPI_AVMM_REG_SIZE)
- return -EINVAL;
- if (!IS_ALIGNED(val_len, SPI_AVMM_VAL_SIZE))
- return -EINVAL;
- return do_reg_access(context, true, *(u32 *)reg_buf, val_buf,
- (val_len / SPI_AVMM_VAL_SIZE));
- }
- static struct spi_avmm_bridge *
- spi_avmm_bridge_ctx_gen(struct spi_device *spi)
- {
- struct spi_avmm_bridge *br;
- if (!spi)
- return ERR_PTR(-ENODEV);
- /* Only support BPW == 8 or 32 now. Try 32 BPW first. */
- spi->mode = SPI_MODE_1;
- spi->bits_per_word = 32;
- if (spi_setup(spi)) {
- spi->bits_per_word = 8;
- if (spi_setup(spi))
- return ERR_PTR(-EINVAL);
- }
- br = kzalloc(sizeof(*br), GFP_KERNEL);
- if (!br)
- return ERR_PTR(-ENOMEM);
- br->spi = spi;
- br->word_len = spi->bits_per_word / 8;
- if (br->word_len == 4) {
- /*
- * The protocol requires little endian byte order but MSB
- * first. So driver needs to swap the byte order word by word
- * if word length > 1.
- */
- br->swap_words = br_swap_words_32;
- }
- return br;
- }
- static void spi_avmm_bridge_ctx_free(void *context)
- {
- kfree(context);
- }
- static const struct regmap_bus regmap_spi_avmm_bus = {
- .write = regmap_spi_avmm_write,
- .gather_write = regmap_spi_avmm_gather_write,
- .read = regmap_spi_avmm_read,
- .reg_format_endian_default = REGMAP_ENDIAN_NATIVE,
- .val_format_endian_default = REGMAP_ENDIAN_NATIVE,
- .max_raw_read = SPI_AVMM_VAL_SIZE * MAX_READ_CNT,
- .max_raw_write = SPI_AVMM_VAL_SIZE * MAX_WRITE_CNT,
- .free_context = spi_avmm_bridge_ctx_free,
- };
- struct regmap *__regmap_init_spi_avmm(struct spi_device *spi,
- const struct regmap_config *config,
- struct lock_class_key *lock_key,
- const char *lock_name)
- {
- struct spi_avmm_bridge *bridge;
- struct regmap *map;
- bridge = spi_avmm_bridge_ctx_gen(spi);
- if (IS_ERR(bridge))
- return ERR_CAST(bridge);
- map = __regmap_init(&spi->dev, ®map_spi_avmm_bus,
- bridge, config, lock_key, lock_name);
- if (IS_ERR(map)) {
- spi_avmm_bridge_ctx_free(bridge);
- return ERR_CAST(map);
- }
- return map;
- }
- EXPORT_SYMBOL_GPL(__regmap_init_spi_avmm);
- struct regmap *__devm_regmap_init_spi_avmm(struct spi_device *spi,
- const struct regmap_config *config,
- struct lock_class_key *lock_key,
- const char *lock_name)
- {
- struct spi_avmm_bridge *bridge;
- struct regmap *map;
- bridge = spi_avmm_bridge_ctx_gen(spi);
- if (IS_ERR(bridge))
- return ERR_CAST(bridge);
- map = __devm_regmap_init(&spi->dev, ®map_spi_avmm_bus,
- bridge, config, lock_key, lock_name);
- if (IS_ERR(map)) {
- spi_avmm_bridge_ctx_free(bridge);
- return ERR_CAST(map);
- }
- return map;
- }
- EXPORT_SYMBOL_GPL(__devm_regmap_init_spi_avmm);
- MODULE_LICENSE("GPL v2");
|