regcache-rbtree.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554
  1. // SPDX-License-Identifier: GPL-2.0
  2. //
  3. // Register cache access API - rbtree caching support
  4. //
  5. // Copyright 2011 Wolfson Microelectronics plc
  6. //
  7. // Author: Dimitris Papastamos <[email protected]>
  8. #include <linux/debugfs.h>
  9. #include <linux/device.h>
  10. #include <linux/rbtree.h>
  11. #include <linux/seq_file.h>
  12. #include <linux/slab.h>
  13. #include "internal.h"
  14. static int regcache_rbtree_write(struct regmap *map, unsigned int reg,
  15. unsigned int value);
  16. static int regcache_rbtree_exit(struct regmap *map);
  17. struct regcache_rbtree_node {
  18. /* block of adjacent registers */
  19. void *block;
  20. /* Which registers are present */
  21. long *cache_present;
  22. /* base register handled by this block */
  23. unsigned int base_reg;
  24. /* number of registers available in the block */
  25. unsigned int blklen;
  26. /* the actual rbtree node holding this block */
  27. struct rb_node node;
  28. };
  29. struct regcache_rbtree_ctx {
  30. struct rb_root root;
  31. struct regcache_rbtree_node *cached_rbnode;
  32. };
  33. static inline void regcache_rbtree_get_base_top_reg(
  34. struct regmap *map,
  35. struct regcache_rbtree_node *rbnode,
  36. unsigned int *base, unsigned int *top)
  37. {
  38. *base = rbnode->base_reg;
  39. *top = rbnode->base_reg + ((rbnode->blklen - 1) * map->reg_stride);
  40. }
  41. static unsigned int regcache_rbtree_get_register(struct regmap *map,
  42. struct regcache_rbtree_node *rbnode, unsigned int idx)
  43. {
  44. return regcache_get_val(map, rbnode->block, idx);
  45. }
  46. static void regcache_rbtree_set_register(struct regmap *map,
  47. struct regcache_rbtree_node *rbnode,
  48. unsigned int idx, unsigned int val)
  49. {
  50. set_bit(idx, rbnode->cache_present);
  51. regcache_set_val(map, rbnode->block, idx, val);
  52. }
  53. static struct regcache_rbtree_node *regcache_rbtree_lookup(struct regmap *map,
  54. unsigned int reg)
  55. {
  56. struct regcache_rbtree_ctx *rbtree_ctx = map->cache;
  57. struct rb_node *node;
  58. struct regcache_rbtree_node *rbnode;
  59. unsigned int base_reg, top_reg;
  60. rbnode = rbtree_ctx->cached_rbnode;
  61. if (rbnode) {
  62. regcache_rbtree_get_base_top_reg(map, rbnode, &base_reg,
  63. &top_reg);
  64. if (reg >= base_reg && reg <= top_reg)
  65. return rbnode;
  66. }
  67. node = rbtree_ctx->root.rb_node;
  68. while (node) {
  69. rbnode = rb_entry(node, struct regcache_rbtree_node, node);
  70. regcache_rbtree_get_base_top_reg(map, rbnode, &base_reg,
  71. &top_reg);
  72. if (reg >= base_reg && reg <= top_reg) {
  73. rbtree_ctx->cached_rbnode = rbnode;
  74. return rbnode;
  75. } else if (reg > top_reg) {
  76. node = node->rb_right;
  77. } else if (reg < base_reg) {
  78. node = node->rb_left;
  79. }
  80. }
  81. return NULL;
  82. }
  83. static int regcache_rbtree_insert(struct regmap *map, struct rb_root *root,
  84. struct regcache_rbtree_node *rbnode)
  85. {
  86. struct rb_node **new, *parent;
  87. struct regcache_rbtree_node *rbnode_tmp;
  88. unsigned int base_reg_tmp, top_reg_tmp;
  89. unsigned int base_reg;
  90. parent = NULL;
  91. new = &root->rb_node;
  92. while (*new) {
  93. rbnode_tmp = rb_entry(*new, struct regcache_rbtree_node, node);
  94. /* base and top registers of the current rbnode */
  95. regcache_rbtree_get_base_top_reg(map, rbnode_tmp, &base_reg_tmp,
  96. &top_reg_tmp);
  97. /* base register of the rbnode to be added */
  98. base_reg = rbnode->base_reg;
  99. parent = *new;
  100. /* if this register has already been inserted, just return */
  101. if (base_reg >= base_reg_tmp &&
  102. base_reg <= top_reg_tmp)
  103. return 0;
  104. else if (base_reg > top_reg_tmp)
  105. new = &((*new)->rb_right);
  106. else if (base_reg < base_reg_tmp)
  107. new = &((*new)->rb_left);
  108. }
  109. /* insert the node into the rbtree */
  110. rb_link_node(&rbnode->node, parent, new);
  111. rb_insert_color(&rbnode->node, root);
  112. return 1;
  113. }
  114. #ifdef CONFIG_DEBUG_FS
  115. static int rbtree_show(struct seq_file *s, void *ignored)
  116. {
  117. struct regmap *map = s->private;
  118. struct regcache_rbtree_ctx *rbtree_ctx = map->cache;
  119. struct regcache_rbtree_node *n;
  120. struct rb_node *node;
  121. unsigned int base, top;
  122. size_t mem_size;
  123. int nodes = 0;
  124. int registers = 0;
  125. int this_registers, average;
  126. map->lock(map->lock_arg);
  127. mem_size = sizeof(*rbtree_ctx);
  128. for (node = rb_first(&rbtree_ctx->root); node != NULL;
  129. node = rb_next(node)) {
  130. n = rb_entry(node, struct regcache_rbtree_node, node);
  131. mem_size += sizeof(*n);
  132. mem_size += (n->blklen * map->cache_word_size);
  133. mem_size += BITS_TO_LONGS(n->blklen) * sizeof(long);
  134. regcache_rbtree_get_base_top_reg(map, n, &base, &top);
  135. this_registers = ((top - base) / map->reg_stride) + 1;
  136. seq_printf(s, "%x-%x (%d)\n", base, top, this_registers);
  137. nodes++;
  138. registers += this_registers;
  139. }
  140. if (nodes)
  141. average = registers / nodes;
  142. else
  143. average = 0;
  144. seq_printf(s, "%d nodes, %d registers, average %d registers, used %zu bytes\n",
  145. nodes, registers, average, mem_size);
  146. map->unlock(map->lock_arg);
  147. return 0;
  148. }
  149. DEFINE_SHOW_ATTRIBUTE(rbtree);
  150. static void rbtree_debugfs_init(struct regmap *map)
  151. {
  152. debugfs_create_file("rbtree", 0400, map->debugfs, map, &rbtree_fops);
  153. }
  154. #endif
  155. static int regcache_rbtree_init(struct regmap *map)
  156. {
  157. struct regcache_rbtree_ctx *rbtree_ctx;
  158. int i;
  159. int ret;
  160. map->cache = kmalloc(sizeof *rbtree_ctx, GFP_KERNEL);
  161. if (!map->cache)
  162. return -ENOMEM;
  163. rbtree_ctx = map->cache;
  164. rbtree_ctx->root = RB_ROOT;
  165. rbtree_ctx->cached_rbnode = NULL;
  166. for (i = 0; i < map->num_reg_defaults; i++) {
  167. ret = regcache_rbtree_write(map,
  168. map->reg_defaults[i].reg,
  169. map->reg_defaults[i].def);
  170. if (ret)
  171. goto err;
  172. }
  173. return 0;
  174. err:
  175. regcache_rbtree_exit(map);
  176. return ret;
  177. }
  178. static int regcache_rbtree_exit(struct regmap *map)
  179. {
  180. struct rb_node *next;
  181. struct regcache_rbtree_ctx *rbtree_ctx;
  182. struct regcache_rbtree_node *rbtree_node;
  183. /* if we've already been called then just return */
  184. rbtree_ctx = map->cache;
  185. if (!rbtree_ctx)
  186. return 0;
  187. /* free up the rbtree */
  188. next = rb_first(&rbtree_ctx->root);
  189. while (next) {
  190. rbtree_node = rb_entry(next, struct regcache_rbtree_node, node);
  191. next = rb_next(&rbtree_node->node);
  192. rb_erase(&rbtree_node->node, &rbtree_ctx->root);
  193. kfree(rbtree_node->cache_present);
  194. kfree(rbtree_node->block);
  195. kfree(rbtree_node);
  196. }
  197. /* release the resources */
  198. kfree(map->cache);
  199. map->cache = NULL;
  200. return 0;
  201. }
  202. static int regcache_rbtree_read(struct regmap *map,
  203. unsigned int reg, unsigned int *value)
  204. {
  205. struct regcache_rbtree_node *rbnode;
  206. unsigned int reg_tmp;
  207. rbnode = regcache_rbtree_lookup(map, reg);
  208. if (rbnode) {
  209. reg_tmp = (reg - rbnode->base_reg) / map->reg_stride;
  210. if (!test_bit(reg_tmp, rbnode->cache_present))
  211. return -ENOENT;
  212. *value = regcache_rbtree_get_register(map, rbnode, reg_tmp);
  213. } else {
  214. return -ENOENT;
  215. }
  216. return 0;
  217. }
  218. static int regcache_rbtree_insert_to_block(struct regmap *map,
  219. struct regcache_rbtree_node *rbnode,
  220. unsigned int base_reg,
  221. unsigned int top_reg,
  222. unsigned int reg,
  223. unsigned int value)
  224. {
  225. unsigned int blklen;
  226. unsigned int pos, offset;
  227. unsigned long *present;
  228. u8 *blk;
  229. blklen = (top_reg - base_reg) / map->reg_stride + 1;
  230. pos = (reg - base_reg) / map->reg_stride;
  231. offset = (rbnode->base_reg - base_reg) / map->reg_stride;
  232. blk = krealloc(rbnode->block,
  233. blklen * map->cache_word_size,
  234. map->alloc_flags);
  235. if (!blk)
  236. return -ENOMEM;
  237. rbnode->block = blk;
  238. if (BITS_TO_LONGS(blklen) > BITS_TO_LONGS(rbnode->blklen)) {
  239. present = krealloc(rbnode->cache_present,
  240. BITS_TO_LONGS(blklen) * sizeof(*present),
  241. map->alloc_flags);
  242. if (!present)
  243. return -ENOMEM;
  244. memset(present + BITS_TO_LONGS(rbnode->blklen), 0,
  245. (BITS_TO_LONGS(blklen) - BITS_TO_LONGS(rbnode->blklen))
  246. * sizeof(*present));
  247. } else {
  248. present = rbnode->cache_present;
  249. }
  250. /* insert the register value in the correct place in the rbnode block */
  251. if (pos == 0) {
  252. memmove(blk + offset * map->cache_word_size,
  253. blk, rbnode->blklen * map->cache_word_size);
  254. bitmap_shift_left(present, present, offset, blklen);
  255. }
  256. /* update the rbnode block, its size and the base register */
  257. rbnode->blklen = blklen;
  258. rbnode->base_reg = base_reg;
  259. rbnode->cache_present = present;
  260. regcache_rbtree_set_register(map, rbnode, pos, value);
  261. return 0;
  262. }
  263. static struct regcache_rbtree_node *
  264. regcache_rbtree_node_alloc(struct regmap *map, unsigned int reg)
  265. {
  266. struct regcache_rbtree_node *rbnode;
  267. const struct regmap_range *range;
  268. int i;
  269. rbnode = kzalloc(sizeof(*rbnode), map->alloc_flags);
  270. if (!rbnode)
  271. return NULL;
  272. /* If there is a read table then use it to guess at an allocation */
  273. if (map->rd_table) {
  274. for (i = 0; i < map->rd_table->n_yes_ranges; i++) {
  275. if (regmap_reg_in_range(reg,
  276. &map->rd_table->yes_ranges[i]))
  277. break;
  278. }
  279. if (i != map->rd_table->n_yes_ranges) {
  280. range = &map->rd_table->yes_ranges[i];
  281. rbnode->blklen = (range->range_max - range->range_min) /
  282. map->reg_stride + 1;
  283. rbnode->base_reg = range->range_min;
  284. }
  285. }
  286. if (!rbnode->blklen) {
  287. rbnode->blklen = 1;
  288. rbnode->base_reg = reg;
  289. }
  290. rbnode->block = kmalloc_array(rbnode->blklen, map->cache_word_size,
  291. map->alloc_flags);
  292. if (!rbnode->block)
  293. goto err_free;
  294. rbnode->cache_present = kcalloc(BITS_TO_LONGS(rbnode->blklen),
  295. sizeof(*rbnode->cache_present),
  296. map->alloc_flags);
  297. if (!rbnode->cache_present)
  298. goto err_free_block;
  299. return rbnode;
  300. err_free_block:
  301. kfree(rbnode->block);
  302. err_free:
  303. kfree(rbnode);
  304. return NULL;
  305. }
  306. static int regcache_rbtree_write(struct regmap *map, unsigned int reg,
  307. unsigned int value)
  308. {
  309. struct regcache_rbtree_ctx *rbtree_ctx;
  310. struct regcache_rbtree_node *rbnode, *rbnode_tmp;
  311. struct rb_node *node;
  312. unsigned int reg_tmp;
  313. int ret;
  314. rbtree_ctx = map->cache;
  315. /* if we can't locate it in the cached rbnode we'll have
  316. * to traverse the rbtree looking for it.
  317. */
  318. rbnode = regcache_rbtree_lookup(map, reg);
  319. if (rbnode) {
  320. reg_tmp = (reg - rbnode->base_reg) / map->reg_stride;
  321. regcache_rbtree_set_register(map, rbnode, reg_tmp, value);
  322. } else {
  323. unsigned int base_reg, top_reg;
  324. unsigned int new_base_reg, new_top_reg;
  325. unsigned int min, max;
  326. unsigned int max_dist;
  327. unsigned int dist, best_dist = UINT_MAX;
  328. max_dist = map->reg_stride * sizeof(*rbnode_tmp) /
  329. map->cache_word_size;
  330. if (reg < max_dist)
  331. min = 0;
  332. else
  333. min = reg - max_dist;
  334. max = reg + max_dist;
  335. /* look for an adjacent register to the one we are about to add */
  336. node = rbtree_ctx->root.rb_node;
  337. while (node) {
  338. rbnode_tmp = rb_entry(node, struct regcache_rbtree_node,
  339. node);
  340. regcache_rbtree_get_base_top_reg(map, rbnode_tmp,
  341. &base_reg, &top_reg);
  342. if (base_reg <= max && top_reg >= min) {
  343. if (reg < base_reg)
  344. dist = base_reg - reg;
  345. else if (reg > top_reg)
  346. dist = reg - top_reg;
  347. else
  348. dist = 0;
  349. if (dist < best_dist) {
  350. rbnode = rbnode_tmp;
  351. best_dist = dist;
  352. new_base_reg = min(reg, base_reg);
  353. new_top_reg = max(reg, top_reg);
  354. }
  355. }
  356. /*
  357. * Keep looking, we want to choose the closest block,
  358. * otherwise we might end up creating overlapping
  359. * blocks, which breaks the rbtree.
  360. */
  361. if (reg < base_reg)
  362. node = node->rb_left;
  363. else if (reg > top_reg)
  364. node = node->rb_right;
  365. else
  366. break;
  367. }
  368. if (rbnode) {
  369. ret = regcache_rbtree_insert_to_block(map, rbnode,
  370. new_base_reg,
  371. new_top_reg, reg,
  372. value);
  373. if (ret)
  374. return ret;
  375. rbtree_ctx->cached_rbnode = rbnode;
  376. return 0;
  377. }
  378. /* We did not manage to find a place to insert it in
  379. * an existing block so create a new rbnode.
  380. */
  381. rbnode = regcache_rbtree_node_alloc(map, reg);
  382. if (!rbnode)
  383. return -ENOMEM;
  384. regcache_rbtree_set_register(map, rbnode,
  385. (reg - rbnode->base_reg) / map->reg_stride,
  386. value);
  387. regcache_rbtree_insert(map, &rbtree_ctx->root, rbnode);
  388. rbtree_ctx->cached_rbnode = rbnode;
  389. }
  390. return 0;
  391. }
  392. static int regcache_rbtree_sync(struct regmap *map, unsigned int min,
  393. unsigned int max)
  394. {
  395. struct regcache_rbtree_ctx *rbtree_ctx;
  396. struct rb_node *node;
  397. struct regcache_rbtree_node *rbnode;
  398. unsigned int base_reg, top_reg;
  399. unsigned int start, end;
  400. int ret;
  401. rbtree_ctx = map->cache;
  402. for (node = rb_first(&rbtree_ctx->root); node; node = rb_next(node)) {
  403. rbnode = rb_entry(node, struct regcache_rbtree_node, node);
  404. regcache_rbtree_get_base_top_reg(map, rbnode, &base_reg,
  405. &top_reg);
  406. if (base_reg > max)
  407. break;
  408. if (top_reg < min)
  409. continue;
  410. if (min > base_reg)
  411. start = (min - base_reg) / map->reg_stride;
  412. else
  413. start = 0;
  414. if (max < top_reg)
  415. end = (max - base_reg) / map->reg_stride + 1;
  416. else
  417. end = rbnode->blklen;
  418. ret = regcache_sync_block(map, rbnode->block,
  419. rbnode->cache_present,
  420. rbnode->base_reg, start, end);
  421. if (ret != 0)
  422. return ret;
  423. }
  424. return regmap_async_complete(map);
  425. }
  426. static int regcache_rbtree_drop(struct regmap *map, unsigned int min,
  427. unsigned int max)
  428. {
  429. struct regcache_rbtree_ctx *rbtree_ctx;
  430. struct regcache_rbtree_node *rbnode;
  431. struct rb_node *node;
  432. unsigned int base_reg, top_reg;
  433. unsigned int start, end;
  434. rbtree_ctx = map->cache;
  435. for (node = rb_first(&rbtree_ctx->root); node; node = rb_next(node)) {
  436. rbnode = rb_entry(node, struct regcache_rbtree_node, node);
  437. regcache_rbtree_get_base_top_reg(map, rbnode, &base_reg,
  438. &top_reg);
  439. if (base_reg > max)
  440. break;
  441. if (top_reg < min)
  442. continue;
  443. if (min > base_reg)
  444. start = (min - base_reg) / map->reg_stride;
  445. else
  446. start = 0;
  447. if (max < top_reg)
  448. end = (max - base_reg) / map->reg_stride + 1;
  449. else
  450. end = rbnode->blklen;
  451. bitmap_clear(rbnode->cache_present, start, end - start);
  452. }
  453. return 0;
  454. }
  455. struct regcache_ops regcache_rbtree_ops = {
  456. .type = REGCACHE_RBTREE,
  457. .name = "rbtree",
  458. .init = regcache_rbtree_init,
  459. .exit = regcache_rbtree_exit,
  460. #ifdef CONFIG_DEBUG_FS
  461. .debugfs_init = rbtree_debugfs_init,
  462. #endif
  463. .read = regcache_rbtree_read,
  464. .write = regcache_rbtree_write,
  465. .sync = regcache_rbtree_sync,
  466. .drop = regcache_rbtree_drop,
  467. };