123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472 |
- // SPDX-License-Identifier: GPL-2.0
- /*
- * Copyright 2019 Google LLC
- */
- /*
- * Refer to Documentation/block/inline-encryption.rst for detailed explanation.
- */
- #define pr_fmt(fmt) "blk-crypto: " fmt
- #include <linux/bio.h>
- #include <linux/blkdev.h>
- #include <linux/blk-crypto-profile.h>
- #include <linux/module.h>
- #include <linux/ratelimit.h>
- #include <linux/slab.h>
- #include "blk-crypto-internal.h"
- const struct blk_crypto_mode blk_crypto_modes[] = {
- [BLK_ENCRYPTION_MODE_AES_256_XTS] = {
- .name = "AES-256-XTS",
- .cipher_str = "xts(aes)",
- .keysize = 64,
- .security_strength = 32,
- .ivsize = 16,
- },
- [BLK_ENCRYPTION_MODE_AES_128_CBC_ESSIV] = {
- .name = "AES-128-CBC-ESSIV",
- .cipher_str = "essiv(cbc(aes),sha256)",
- .keysize = 16,
- .security_strength = 16,
- .ivsize = 16,
- },
- [BLK_ENCRYPTION_MODE_ADIANTUM] = {
- .name = "Adiantum",
- .cipher_str = "adiantum(xchacha12,aes)",
- .keysize = 32,
- .security_strength = 32,
- .ivsize = 32,
- },
- [BLK_ENCRYPTION_MODE_SM4_XTS] = {
- .name = "SM4-XTS",
- .cipher_str = "xts(sm4)",
- .keysize = 32,
- .security_strength = 16,
- .ivsize = 16,
- },
- };
- /*
- * This number needs to be at least (the number of threads doing IO
- * concurrently) * (maximum recursive depth of a bio), so that we don't
- * deadlock on crypt_ctx allocations. The default is chosen to be the same
- * as the default number of post read contexts in both EXT4 and F2FS.
- */
- static int num_prealloc_crypt_ctxs = 128;
- module_param(num_prealloc_crypt_ctxs, int, 0444);
- MODULE_PARM_DESC(num_prealloc_crypt_ctxs,
- "Number of bio crypto contexts to preallocate");
- static struct kmem_cache *bio_crypt_ctx_cache;
- static mempool_t *bio_crypt_ctx_pool;
- static int __init bio_crypt_ctx_init(void)
- {
- size_t i;
- bio_crypt_ctx_cache = KMEM_CACHE(bio_crypt_ctx, 0);
- if (!bio_crypt_ctx_cache)
- goto out_no_mem;
- bio_crypt_ctx_pool = mempool_create_slab_pool(num_prealloc_crypt_ctxs,
- bio_crypt_ctx_cache);
- if (!bio_crypt_ctx_pool)
- goto out_no_mem;
- /* This is assumed in various places. */
- BUILD_BUG_ON(BLK_ENCRYPTION_MODE_INVALID != 0);
- /*
- * Validate the crypto mode properties. This ideally would be done with
- * static assertions, but boot-time checks are the next best thing.
- */
- for (i = 0; i < BLK_ENCRYPTION_MODE_MAX; i++) {
- BUG_ON(blk_crypto_modes[i].keysize >
- BLK_CRYPTO_MAX_STANDARD_KEY_SIZE);
- BUG_ON(blk_crypto_modes[i].security_strength >
- blk_crypto_modes[i].keysize);
- BUG_ON(blk_crypto_modes[i].ivsize > BLK_CRYPTO_MAX_IV_SIZE);
- }
- return 0;
- out_no_mem:
- panic("Failed to allocate mem for bio crypt ctxs\n");
- }
- subsys_initcall(bio_crypt_ctx_init);
- void bio_crypt_set_ctx(struct bio *bio, const struct blk_crypto_key *key,
- const u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE], gfp_t gfp_mask)
- {
- struct bio_crypt_ctx *bc;
- /*
- * The caller must use a gfp_mask that contains __GFP_DIRECT_RECLAIM so
- * that the mempool_alloc() can't fail.
- */
- WARN_ON_ONCE(!(gfp_mask & __GFP_DIRECT_RECLAIM));
- bc = mempool_alloc(bio_crypt_ctx_pool, gfp_mask);
- bc->bc_key = key;
- memcpy(bc->bc_dun, dun, sizeof(bc->bc_dun));
- bio->bi_crypt_context = bc;
- }
- EXPORT_SYMBOL_GPL(bio_crypt_set_ctx);
- void __bio_crypt_free_ctx(struct bio *bio)
- {
- mempool_free(bio->bi_crypt_context, bio_crypt_ctx_pool);
- bio->bi_crypt_context = NULL;
- }
- int __bio_crypt_clone(struct bio *dst, struct bio *src, gfp_t gfp_mask)
- {
- dst->bi_crypt_context = mempool_alloc(bio_crypt_ctx_pool, gfp_mask);
- if (!dst->bi_crypt_context)
- return -ENOMEM;
- *dst->bi_crypt_context = *src->bi_crypt_context;
- return 0;
- }
- /* Increments @dun by @inc, treating @dun as a multi-limb integer. */
- void bio_crypt_dun_increment(u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE],
- unsigned int inc)
- {
- int i;
- for (i = 0; inc && i < BLK_CRYPTO_DUN_ARRAY_SIZE; i++) {
- dun[i] += inc;
- /*
- * If the addition in this limb overflowed, then we need to
- * carry 1 into the next limb. Else the carry is 0.
- */
- if (dun[i] < inc)
- inc = 1;
- else
- inc = 0;
- }
- }
- void __bio_crypt_advance(struct bio *bio, unsigned int bytes)
- {
- struct bio_crypt_ctx *bc = bio->bi_crypt_context;
- bio_crypt_dun_increment(bc->bc_dun,
- bytes >> bc->bc_key->data_unit_size_bits);
- }
- /*
- * Returns true if @bc->bc_dun plus @bytes converted to data units is equal to
- * @next_dun, treating the DUNs as multi-limb integers.
- */
- bool bio_crypt_dun_is_contiguous(const struct bio_crypt_ctx *bc,
- unsigned int bytes,
- const u64 next_dun[BLK_CRYPTO_DUN_ARRAY_SIZE])
- {
- int i;
- unsigned int carry = bytes >> bc->bc_key->data_unit_size_bits;
- for (i = 0; i < BLK_CRYPTO_DUN_ARRAY_SIZE; i++) {
- if (bc->bc_dun[i] + carry != next_dun[i])
- return false;
- /*
- * If the addition in this limb overflowed, then we need to
- * carry 1 into the next limb. Else the carry is 0.
- */
- if ((bc->bc_dun[i] + carry) < carry)
- carry = 1;
- else
- carry = 0;
- }
- /* If the DUN wrapped through 0, don't treat it as contiguous. */
- return carry == 0;
- }
- /*
- * Checks that two bio crypt contexts are compatible - i.e. that
- * they are mergeable except for data_unit_num continuity.
- */
- static bool bio_crypt_ctx_compatible(struct bio_crypt_ctx *bc1,
- struct bio_crypt_ctx *bc2)
- {
- if (!bc1)
- return !bc2;
- return bc2 && bc1->bc_key == bc2->bc_key;
- }
- bool bio_crypt_rq_ctx_compatible(struct request *rq, struct bio *bio)
- {
- return bio_crypt_ctx_compatible(rq->crypt_ctx, bio->bi_crypt_context);
- }
- /*
- * Checks that two bio crypt contexts are compatible, and also
- * that their data_unit_nums are continuous (and can hence be merged)
- * in the order @bc1 followed by @bc2.
- */
- bool bio_crypt_ctx_mergeable(struct bio_crypt_ctx *bc1, unsigned int bc1_bytes,
- struct bio_crypt_ctx *bc2)
- {
- if (!bio_crypt_ctx_compatible(bc1, bc2))
- return false;
- return !bc1 || bio_crypt_dun_is_contiguous(bc1, bc1_bytes, bc2->bc_dun);
- }
- /* Check that all I/O segments are data unit aligned. */
- static bool bio_crypt_check_alignment(struct bio *bio)
- {
- const unsigned int data_unit_size =
- bio->bi_crypt_context->bc_key->crypto_cfg.data_unit_size;
- struct bvec_iter iter;
- struct bio_vec bv;
- bio_for_each_segment(bv, bio, iter) {
- if (!IS_ALIGNED(bv.bv_len | bv.bv_offset, data_unit_size))
- return false;
- }
- return true;
- }
- blk_status_t __blk_crypto_rq_get_keyslot(struct request *rq)
- {
- return blk_crypto_get_keyslot(rq->q->crypto_profile,
- rq->crypt_ctx->bc_key,
- &rq->crypt_keyslot);
- }
- void __blk_crypto_rq_put_keyslot(struct request *rq)
- {
- blk_crypto_put_keyslot(rq->crypt_keyslot);
- rq->crypt_keyslot = NULL;
- }
- void __blk_crypto_free_request(struct request *rq)
- {
- /* The keyslot, if one was needed, should have been released earlier. */
- if (WARN_ON_ONCE(rq->crypt_keyslot))
- __blk_crypto_rq_put_keyslot(rq);
- mempool_free(rq->crypt_ctx, bio_crypt_ctx_pool);
- rq->crypt_ctx = NULL;
- }
- /**
- * __blk_crypto_bio_prep - Prepare bio for inline encryption
- *
- * @bio_ptr: pointer to original bio pointer
- *
- * If the bio crypt context provided for the bio is supported by the underlying
- * device's inline encryption hardware, do nothing.
- *
- * Otherwise, try to perform en/decryption for this bio by falling back to the
- * kernel crypto API. When the crypto API fallback is used for encryption,
- * blk-crypto may choose to split the bio into 2 - the first one that will
- * continue to be processed and the second one that will be resubmitted via
- * submit_bio_noacct. A bounce bio will be allocated to encrypt the contents
- * of the aforementioned "first one", and *bio_ptr will be updated to this
- * bounce bio.
- *
- * Caller must ensure bio has bio_crypt_ctx.
- *
- * Return: true on success; false on error (and bio->bi_status will be set
- * appropriately, and bio_endio() will have been called so bio
- * submission should abort).
- */
- bool __blk_crypto_bio_prep(struct bio **bio_ptr)
- {
- struct bio *bio = *bio_ptr;
- const struct blk_crypto_key *bc_key = bio->bi_crypt_context->bc_key;
- /* Error if bio has no data. */
- if (WARN_ON_ONCE(!bio_has_data(bio))) {
- bio->bi_status = BLK_STS_IOERR;
- goto fail;
- }
- if (!bio_crypt_check_alignment(bio)) {
- bio->bi_status = BLK_STS_IOERR;
- goto fail;
- }
- /*
- * Success if device supports the encryption context, or if we succeeded
- * in falling back to the crypto API.
- */
- if (blk_crypto_config_supported_natively(bio->bi_bdev,
- &bc_key->crypto_cfg))
- return true;
- if (blk_crypto_fallback_bio_prep(bio_ptr))
- return true;
- fail:
- bio_endio(*bio_ptr);
- return false;
- }
- int __blk_crypto_rq_bio_prep(struct request *rq, struct bio *bio,
- gfp_t gfp_mask)
- {
- if (!rq->crypt_ctx) {
- rq->crypt_ctx = mempool_alloc(bio_crypt_ctx_pool, gfp_mask);
- if (!rq->crypt_ctx)
- return -ENOMEM;
- }
- *rq->crypt_ctx = *bio->bi_crypt_context;
- return 0;
- }
- /**
- * blk_crypto_init_key() - Prepare a key for use with blk-crypto
- * @blk_key: Pointer to the blk_crypto_key to initialize.
- * @raw_key: the raw bytes of the key
- * @raw_key_size: size of the raw key in bytes
- * @key_type: type of the key -- either standard or hardware-wrapped
- * @crypto_mode: identifier for the encryption algorithm to use
- * @dun_bytes: number of bytes that will be used to specify the DUN when this
- * key is used
- * @data_unit_size: the data unit size to use for en/decryption
- *
- * Return: 0 on success, -errno on failure. The caller is responsible for
- * zeroizing both blk_key and raw_key when done with them.
- */
- int blk_crypto_init_key(struct blk_crypto_key *blk_key,
- const u8 *raw_key, size_t raw_key_size,
- enum blk_crypto_key_type key_type,
- enum blk_crypto_mode_num crypto_mode,
- unsigned int dun_bytes,
- unsigned int data_unit_size)
- {
- const struct blk_crypto_mode *mode;
- memset(blk_key, 0, sizeof(*blk_key));
- if (crypto_mode >= ARRAY_SIZE(blk_crypto_modes))
- return -EINVAL;
- mode = &blk_crypto_modes[crypto_mode];
- switch (key_type) {
- case BLK_CRYPTO_KEY_TYPE_STANDARD:
- if (raw_key_size != mode->keysize)
- return -EINVAL;
- break;
- case BLK_CRYPTO_KEY_TYPE_HW_WRAPPED:
- if (raw_key_size < mode->security_strength ||
- raw_key_size > BLK_CRYPTO_MAX_HW_WRAPPED_KEY_SIZE)
- return -EINVAL;
- break;
- default:
- return -EINVAL;
- }
- if (dun_bytes == 0 || dun_bytes > mode->ivsize)
- return -EINVAL;
- if (!is_power_of_2(data_unit_size))
- return -EINVAL;
- blk_key->crypto_cfg.crypto_mode = crypto_mode;
- blk_key->crypto_cfg.dun_bytes = dun_bytes;
- blk_key->crypto_cfg.data_unit_size = data_unit_size;
- blk_key->crypto_cfg.key_type = key_type;
- blk_key->data_unit_size_bits = ilog2(data_unit_size);
- blk_key->size = raw_key_size;
- memcpy(blk_key->raw, raw_key, raw_key_size);
- return 0;
- }
- EXPORT_SYMBOL_GPL(blk_crypto_init_key);
- bool blk_crypto_config_supported_natively(struct block_device *bdev,
- const struct blk_crypto_config *cfg)
- {
- return __blk_crypto_cfg_supported(bdev_get_queue(bdev)->crypto_profile,
- cfg);
- }
- /*
- * Check if bios with @cfg can be en/decrypted by blk-crypto (i.e. either the
- * block_device it's submitted to supports inline crypto, or the
- * blk-crypto-fallback is enabled and supports the cfg).
- */
- bool blk_crypto_config_supported(struct block_device *bdev,
- const struct blk_crypto_config *cfg)
- {
- if (IS_ENABLED(CONFIG_BLK_INLINE_ENCRYPTION_FALLBACK) &&
- cfg->key_type == BLK_CRYPTO_KEY_TYPE_STANDARD)
- return true;
- return blk_crypto_config_supported_natively(bdev, cfg);
- }
- /**
- * blk_crypto_start_using_key() - Start using a blk_crypto_key on a device
- * @bdev: block device to operate on
- * @key: A key to use on the device
- *
- * Upper layers must call this function to ensure that either the hardware
- * supports the key's crypto settings, or the crypto API fallback has transforms
- * for the needed mode allocated and ready to go. This function may allocate
- * an skcipher, and *should not* be called from the data path, since that might
- * cause a deadlock
- *
- * Return: 0 on success; -ENOPKG if the hardware doesn't support the key and
- * blk-crypto-fallback is either disabled or the needed algorithm
- * is disabled in the crypto API; or another -errno code.
- */
- int blk_crypto_start_using_key(struct block_device *bdev,
- const struct blk_crypto_key *key)
- {
- if (blk_crypto_config_supported_natively(bdev, &key->crypto_cfg))
- return 0;
- if (key->crypto_cfg.key_type != BLK_CRYPTO_KEY_TYPE_STANDARD) {
- pr_warn_once("tried to use wrapped key, but hardware doesn't support it\n");
- return -EOPNOTSUPP;
- }
- return blk_crypto_fallback_start_using_mode(key->crypto_cfg.crypto_mode);
- }
- EXPORT_SYMBOL_GPL(blk_crypto_start_using_key);
- /**
- * blk_crypto_evict_key() - Evict a blk_crypto_key from a block_device
- * @bdev: a block_device on which I/O using the key may have been done
- * @key: the key to evict
- *
- * For a given block_device, this function removes the given blk_crypto_key from
- * the keyslot management structures and evicts it from any underlying hardware
- * keyslot(s) or blk-crypto-fallback keyslot it may have been programmed into.
- *
- * Upper layers must call this before freeing the blk_crypto_key. It must be
- * called for every block_device the key may have been used on. The key must no
- * longer be in use by any I/O when this function is called.
- *
- * Context: May sleep.
- */
- void blk_crypto_evict_key(struct block_device *bdev,
- const struct blk_crypto_key *key)
- {
- struct request_queue *q = bdev_get_queue(bdev);
- int err;
- if (blk_crypto_config_supported_natively(bdev, &key->crypto_cfg))
- err = __blk_crypto_evict_key(q->crypto_profile, key);
- else
- err = blk_crypto_fallback_evict_key(key);
- /*
- * An error can only occur here if the key failed to be evicted from a
- * keyslot (due to a hardware or driver issue) or is allegedly still in
- * use by I/O (due to a kernel bug). Even in these cases, the key is
- * still unlinked from the keyslot management structures, and the caller
- * is allowed and expected to free it right away. There's nothing
- * callers can do to handle errors, so just log them and return void.
- */
- if (err)
- pr_warn_ratelimited("%pg: error %d evicting key\n", bdev, err);
- }
- EXPORT_SYMBOL_GPL(blk_crypto_evict_key);
|