hmm-tests.c 50 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * HMM stands for Heterogeneous Memory Management, it is a helper layer inside
  4. * the linux kernel to help device drivers mirror a process address space in
  5. * the device. This allows the device to use the same address space which
  6. * makes communication and data exchange a lot easier.
  7. *
  8. * This framework's sole purpose is to exercise various code paths inside
  9. * the kernel to make sure that HMM performs as expected and to flush out any
  10. * bugs.
  11. */
  12. #include "../kselftest_harness.h"
  13. #include <errno.h>
  14. #include <fcntl.h>
  15. #include <stdio.h>
  16. #include <stdlib.h>
  17. #include <stdint.h>
  18. #include <unistd.h>
  19. #include <strings.h>
  20. #include <time.h>
  21. #include <pthread.h>
  22. #include <sys/types.h>
  23. #include <sys/stat.h>
  24. #include <sys/mman.h>
  25. #include <sys/ioctl.h>
  26. /*
  27. * This is a private UAPI to the kernel test module so it isn't exported
  28. * in the usual include/uapi/... directory.
  29. */
  30. #include <lib/test_hmm_uapi.h>
  31. #include <mm/gup_test.h>
  32. struct hmm_buffer {
  33. void *ptr;
  34. void *mirror;
  35. unsigned long size;
  36. int fd;
  37. uint64_t cpages;
  38. uint64_t faults;
  39. };
  40. enum {
  41. HMM_PRIVATE_DEVICE_ONE,
  42. HMM_PRIVATE_DEVICE_TWO,
  43. HMM_COHERENCE_DEVICE_ONE,
  44. HMM_COHERENCE_DEVICE_TWO,
  45. };
  46. #define TWOMEG (1 << 21)
  47. #define HMM_BUFFER_SIZE (1024 << 12)
  48. #define HMM_PATH_MAX 64
  49. #define NTIMES 10
  50. #define ALIGN(x, a) (((x) + (a - 1)) & (~((a) - 1)))
  51. /* Just the flags we need, copied from mm.h: */
  52. #define FOLL_WRITE 0x01 /* check pte is writable */
  53. #define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite */
  54. FIXTURE(hmm)
  55. {
  56. int fd;
  57. unsigned int page_size;
  58. unsigned int page_shift;
  59. };
  60. FIXTURE_VARIANT(hmm)
  61. {
  62. int device_number;
  63. };
  64. FIXTURE_VARIANT_ADD(hmm, hmm_device_private)
  65. {
  66. .device_number = HMM_PRIVATE_DEVICE_ONE,
  67. };
  68. FIXTURE_VARIANT_ADD(hmm, hmm_device_coherent)
  69. {
  70. .device_number = HMM_COHERENCE_DEVICE_ONE,
  71. };
  72. FIXTURE(hmm2)
  73. {
  74. int fd0;
  75. int fd1;
  76. unsigned int page_size;
  77. unsigned int page_shift;
  78. };
  79. FIXTURE_VARIANT(hmm2)
  80. {
  81. int device_number0;
  82. int device_number1;
  83. };
  84. FIXTURE_VARIANT_ADD(hmm2, hmm2_device_private)
  85. {
  86. .device_number0 = HMM_PRIVATE_DEVICE_ONE,
  87. .device_number1 = HMM_PRIVATE_DEVICE_TWO,
  88. };
  89. FIXTURE_VARIANT_ADD(hmm2, hmm2_device_coherent)
  90. {
  91. .device_number0 = HMM_COHERENCE_DEVICE_ONE,
  92. .device_number1 = HMM_COHERENCE_DEVICE_TWO,
  93. };
  94. static int hmm_open(int unit)
  95. {
  96. char pathname[HMM_PATH_MAX];
  97. int fd;
  98. snprintf(pathname, sizeof(pathname), "/dev/hmm_dmirror%d", unit);
  99. fd = open(pathname, O_RDWR, 0);
  100. if (fd < 0)
  101. fprintf(stderr, "could not open hmm dmirror driver (%s)\n",
  102. pathname);
  103. return fd;
  104. }
  105. static bool hmm_is_coherent_type(int dev_num)
  106. {
  107. return (dev_num >= HMM_COHERENCE_DEVICE_ONE);
  108. }
  109. FIXTURE_SETUP(hmm)
  110. {
  111. self->page_size = sysconf(_SC_PAGE_SIZE);
  112. self->page_shift = ffs(self->page_size) - 1;
  113. self->fd = hmm_open(variant->device_number);
  114. if (self->fd < 0 && hmm_is_coherent_type(variant->device_number))
  115. SKIP(exit(0), "DEVICE_COHERENT not available");
  116. ASSERT_GE(self->fd, 0);
  117. }
  118. FIXTURE_SETUP(hmm2)
  119. {
  120. self->page_size = sysconf(_SC_PAGE_SIZE);
  121. self->page_shift = ffs(self->page_size) - 1;
  122. self->fd0 = hmm_open(variant->device_number0);
  123. if (self->fd0 < 0 && hmm_is_coherent_type(variant->device_number0))
  124. SKIP(exit(0), "DEVICE_COHERENT not available");
  125. ASSERT_GE(self->fd0, 0);
  126. self->fd1 = hmm_open(variant->device_number1);
  127. ASSERT_GE(self->fd1, 0);
  128. }
  129. FIXTURE_TEARDOWN(hmm)
  130. {
  131. int ret = close(self->fd);
  132. ASSERT_EQ(ret, 0);
  133. self->fd = -1;
  134. }
  135. FIXTURE_TEARDOWN(hmm2)
  136. {
  137. int ret = close(self->fd0);
  138. ASSERT_EQ(ret, 0);
  139. self->fd0 = -1;
  140. ret = close(self->fd1);
  141. ASSERT_EQ(ret, 0);
  142. self->fd1 = -1;
  143. }
  144. static int hmm_dmirror_cmd(int fd,
  145. unsigned long request,
  146. struct hmm_buffer *buffer,
  147. unsigned long npages)
  148. {
  149. struct hmm_dmirror_cmd cmd;
  150. int ret;
  151. /* Simulate a device reading system memory. */
  152. cmd.addr = (__u64)buffer->ptr;
  153. cmd.ptr = (__u64)buffer->mirror;
  154. cmd.npages = npages;
  155. for (;;) {
  156. ret = ioctl(fd, request, &cmd);
  157. if (ret == 0)
  158. break;
  159. if (errno == EINTR)
  160. continue;
  161. return -errno;
  162. }
  163. buffer->cpages = cmd.cpages;
  164. buffer->faults = cmd.faults;
  165. return 0;
  166. }
  167. static void hmm_buffer_free(struct hmm_buffer *buffer)
  168. {
  169. if (buffer == NULL)
  170. return;
  171. if (buffer->ptr)
  172. munmap(buffer->ptr, buffer->size);
  173. free(buffer->mirror);
  174. free(buffer);
  175. }
  176. /*
  177. * Create a temporary file that will be deleted on close.
  178. */
  179. static int hmm_create_file(unsigned long size)
  180. {
  181. char path[HMM_PATH_MAX];
  182. int fd;
  183. strcpy(path, "/tmp");
  184. fd = open(path, O_TMPFILE | O_EXCL | O_RDWR, 0600);
  185. if (fd >= 0) {
  186. int r;
  187. do {
  188. r = ftruncate(fd, size);
  189. } while (r == -1 && errno == EINTR);
  190. if (!r)
  191. return fd;
  192. close(fd);
  193. }
  194. return -1;
  195. }
  196. /*
  197. * Return a random unsigned number.
  198. */
  199. static unsigned int hmm_random(void)
  200. {
  201. static int fd = -1;
  202. unsigned int r;
  203. if (fd < 0) {
  204. fd = open("/dev/urandom", O_RDONLY);
  205. if (fd < 0) {
  206. fprintf(stderr, "%s:%d failed to open /dev/urandom\n",
  207. __FILE__, __LINE__);
  208. return ~0U;
  209. }
  210. }
  211. read(fd, &r, sizeof(r));
  212. return r;
  213. }
  214. static void hmm_nanosleep(unsigned int n)
  215. {
  216. struct timespec t;
  217. t.tv_sec = 0;
  218. t.tv_nsec = n;
  219. nanosleep(&t, NULL);
  220. }
  221. static int hmm_migrate_sys_to_dev(int fd,
  222. struct hmm_buffer *buffer,
  223. unsigned long npages)
  224. {
  225. return hmm_dmirror_cmd(fd, HMM_DMIRROR_MIGRATE_TO_DEV, buffer, npages);
  226. }
  227. static int hmm_migrate_dev_to_sys(int fd,
  228. struct hmm_buffer *buffer,
  229. unsigned long npages)
  230. {
  231. return hmm_dmirror_cmd(fd, HMM_DMIRROR_MIGRATE_TO_SYS, buffer, npages);
  232. }
  233. /*
  234. * Simple NULL test of device open/close.
  235. */
  236. TEST_F(hmm, open_close)
  237. {
  238. }
  239. /*
  240. * Read private anonymous memory.
  241. */
  242. TEST_F(hmm, anon_read)
  243. {
  244. struct hmm_buffer *buffer;
  245. unsigned long npages;
  246. unsigned long size;
  247. unsigned long i;
  248. int *ptr;
  249. int ret;
  250. int val;
  251. npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
  252. ASSERT_NE(npages, 0);
  253. size = npages << self->page_shift;
  254. buffer = malloc(sizeof(*buffer));
  255. ASSERT_NE(buffer, NULL);
  256. buffer->fd = -1;
  257. buffer->size = size;
  258. buffer->mirror = malloc(size);
  259. ASSERT_NE(buffer->mirror, NULL);
  260. buffer->ptr = mmap(NULL, size,
  261. PROT_READ | PROT_WRITE,
  262. MAP_PRIVATE | MAP_ANONYMOUS,
  263. buffer->fd, 0);
  264. ASSERT_NE(buffer->ptr, MAP_FAILED);
  265. /*
  266. * Initialize buffer in system memory but leave the first two pages
  267. * zero (pte_none and pfn_zero).
  268. */
  269. i = 2 * self->page_size / sizeof(*ptr);
  270. for (ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
  271. ptr[i] = i;
  272. /* Set buffer permission to read-only. */
  273. ret = mprotect(buffer->ptr, size, PROT_READ);
  274. ASSERT_EQ(ret, 0);
  275. /* Populate the CPU page table with a special zero page. */
  276. val = *(int *)(buffer->ptr + self->page_size);
  277. ASSERT_EQ(val, 0);
  278. /* Simulate a device reading system memory. */
  279. ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_READ, buffer, npages);
  280. ASSERT_EQ(ret, 0);
  281. ASSERT_EQ(buffer->cpages, npages);
  282. ASSERT_EQ(buffer->faults, 1);
  283. /* Check what the device read. */
  284. ptr = buffer->mirror;
  285. for (i = 0; i < 2 * self->page_size / sizeof(*ptr); ++i)
  286. ASSERT_EQ(ptr[i], 0);
  287. for (; i < size / sizeof(*ptr); ++i)
  288. ASSERT_EQ(ptr[i], i);
  289. hmm_buffer_free(buffer);
  290. }
  291. /*
  292. * Read private anonymous memory which has been protected with
  293. * mprotect() PROT_NONE.
  294. */
  295. TEST_F(hmm, anon_read_prot)
  296. {
  297. struct hmm_buffer *buffer;
  298. unsigned long npages;
  299. unsigned long size;
  300. unsigned long i;
  301. int *ptr;
  302. int ret;
  303. npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
  304. ASSERT_NE(npages, 0);
  305. size = npages << self->page_shift;
  306. buffer = malloc(sizeof(*buffer));
  307. ASSERT_NE(buffer, NULL);
  308. buffer->fd = -1;
  309. buffer->size = size;
  310. buffer->mirror = malloc(size);
  311. ASSERT_NE(buffer->mirror, NULL);
  312. buffer->ptr = mmap(NULL, size,
  313. PROT_READ | PROT_WRITE,
  314. MAP_PRIVATE | MAP_ANONYMOUS,
  315. buffer->fd, 0);
  316. ASSERT_NE(buffer->ptr, MAP_FAILED);
  317. /* Initialize buffer in system memory. */
  318. for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
  319. ptr[i] = i;
  320. /* Initialize mirror buffer so we can verify it isn't written. */
  321. for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
  322. ptr[i] = -i;
  323. /* Protect buffer from reading. */
  324. ret = mprotect(buffer->ptr, size, PROT_NONE);
  325. ASSERT_EQ(ret, 0);
  326. /* Simulate a device reading system memory. */
  327. ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_READ, buffer, npages);
  328. ASSERT_EQ(ret, -EFAULT);
  329. /* Allow CPU to read the buffer so we can check it. */
  330. ret = mprotect(buffer->ptr, size, PROT_READ);
  331. ASSERT_EQ(ret, 0);
  332. for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
  333. ASSERT_EQ(ptr[i], i);
  334. /* Check what the device read. */
  335. for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
  336. ASSERT_EQ(ptr[i], -i);
  337. hmm_buffer_free(buffer);
  338. }
  339. /*
  340. * Write private anonymous memory.
  341. */
  342. TEST_F(hmm, anon_write)
  343. {
  344. struct hmm_buffer *buffer;
  345. unsigned long npages;
  346. unsigned long size;
  347. unsigned long i;
  348. int *ptr;
  349. int ret;
  350. npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
  351. ASSERT_NE(npages, 0);
  352. size = npages << self->page_shift;
  353. buffer = malloc(sizeof(*buffer));
  354. ASSERT_NE(buffer, NULL);
  355. buffer->fd = -1;
  356. buffer->size = size;
  357. buffer->mirror = malloc(size);
  358. ASSERT_NE(buffer->mirror, NULL);
  359. buffer->ptr = mmap(NULL, size,
  360. PROT_READ | PROT_WRITE,
  361. MAP_PRIVATE | MAP_ANONYMOUS,
  362. buffer->fd, 0);
  363. ASSERT_NE(buffer->ptr, MAP_FAILED);
  364. /* Initialize data that the device will write to buffer->ptr. */
  365. for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
  366. ptr[i] = i;
  367. /* Simulate a device writing system memory. */
  368. ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_WRITE, buffer, npages);
  369. ASSERT_EQ(ret, 0);
  370. ASSERT_EQ(buffer->cpages, npages);
  371. ASSERT_EQ(buffer->faults, 1);
  372. /* Check what the device wrote. */
  373. for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
  374. ASSERT_EQ(ptr[i], i);
  375. hmm_buffer_free(buffer);
  376. }
  377. /*
  378. * Write private anonymous memory which has been protected with
  379. * mprotect() PROT_READ.
  380. */
  381. TEST_F(hmm, anon_write_prot)
  382. {
  383. struct hmm_buffer *buffer;
  384. unsigned long npages;
  385. unsigned long size;
  386. unsigned long i;
  387. int *ptr;
  388. int ret;
  389. npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
  390. ASSERT_NE(npages, 0);
  391. size = npages << self->page_shift;
  392. buffer = malloc(sizeof(*buffer));
  393. ASSERT_NE(buffer, NULL);
  394. buffer->fd = -1;
  395. buffer->size = size;
  396. buffer->mirror = malloc(size);
  397. ASSERT_NE(buffer->mirror, NULL);
  398. buffer->ptr = mmap(NULL, size,
  399. PROT_READ,
  400. MAP_PRIVATE | MAP_ANONYMOUS,
  401. buffer->fd, 0);
  402. ASSERT_NE(buffer->ptr, MAP_FAILED);
  403. /* Simulate a device reading a zero page of memory. */
  404. ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_READ, buffer, 1);
  405. ASSERT_EQ(ret, 0);
  406. ASSERT_EQ(buffer->cpages, 1);
  407. ASSERT_EQ(buffer->faults, 1);
  408. /* Initialize data that the device will write to buffer->ptr. */
  409. for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
  410. ptr[i] = i;
  411. /* Simulate a device writing system memory. */
  412. ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_WRITE, buffer, npages);
  413. ASSERT_EQ(ret, -EPERM);
  414. /* Check what the device wrote. */
  415. for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
  416. ASSERT_EQ(ptr[i], 0);
  417. /* Now allow writing and see that the zero page is replaced. */
  418. ret = mprotect(buffer->ptr, size, PROT_WRITE | PROT_READ);
  419. ASSERT_EQ(ret, 0);
  420. /* Simulate a device writing system memory. */
  421. ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_WRITE, buffer, npages);
  422. ASSERT_EQ(ret, 0);
  423. ASSERT_EQ(buffer->cpages, npages);
  424. ASSERT_EQ(buffer->faults, 1);
  425. /* Check what the device wrote. */
  426. for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
  427. ASSERT_EQ(ptr[i], i);
  428. hmm_buffer_free(buffer);
  429. }
  430. /*
  431. * Check that a device writing an anonymous private mapping
  432. * will copy-on-write if a child process inherits the mapping.
  433. */
  434. TEST_F(hmm, anon_write_child)
  435. {
  436. struct hmm_buffer *buffer;
  437. unsigned long npages;
  438. unsigned long size;
  439. unsigned long i;
  440. int *ptr;
  441. pid_t pid;
  442. int child_fd;
  443. int ret;
  444. npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
  445. ASSERT_NE(npages, 0);
  446. size = npages << self->page_shift;
  447. buffer = malloc(sizeof(*buffer));
  448. ASSERT_NE(buffer, NULL);
  449. buffer->fd = -1;
  450. buffer->size = size;
  451. buffer->mirror = malloc(size);
  452. ASSERT_NE(buffer->mirror, NULL);
  453. buffer->ptr = mmap(NULL, size,
  454. PROT_READ | PROT_WRITE,
  455. MAP_PRIVATE | MAP_ANONYMOUS,
  456. buffer->fd, 0);
  457. ASSERT_NE(buffer->ptr, MAP_FAILED);
  458. /* Initialize buffer->ptr so we can tell if it is written. */
  459. for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
  460. ptr[i] = i;
  461. /* Initialize data that the device will write to buffer->ptr. */
  462. for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
  463. ptr[i] = -i;
  464. pid = fork();
  465. if (pid == -1)
  466. ASSERT_EQ(pid, 0);
  467. if (pid != 0) {
  468. waitpid(pid, &ret, 0);
  469. ASSERT_EQ(WIFEXITED(ret), 1);
  470. /* Check that the parent's buffer did not change. */
  471. for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
  472. ASSERT_EQ(ptr[i], i);
  473. return;
  474. }
  475. /* Check that we see the parent's values. */
  476. for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
  477. ASSERT_EQ(ptr[i], i);
  478. for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
  479. ASSERT_EQ(ptr[i], -i);
  480. /* The child process needs its own mirror to its own mm. */
  481. child_fd = hmm_open(0);
  482. ASSERT_GE(child_fd, 0);
  483. /* Simulate a device writing system memory. */
  484. ret = hmm_dmirror_cmd(child_fd, HMM_DMIRROR_WRITE, buffer, npages);
  485. ASSERT_EQ(ret, 0);
  486. ASSERT_EQ(buffer->cpages, npages);
  487. ASSERT_EQ(buffer->faults, 1);
  488. /* Check what the device wrote. */
  489. for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
  490. ASSERT_EQ(ptr[i], -i);
  491. close(child_fd);
  492. exit(0);
  493. }
  494. /*
  495. * Check that a device writing an anonymous shared mapping
  496. * will not copy-on-write if a child process inherits the mapping.
  497. */
  498. TEST_F(hmm, anon_write_child_shared)
  499. {
  500. struct hmm_buffer *buffer;
  501. unsigned long npages;
  502. unsigned long size;
  503. unsigned long i;
  504. int *ptr;
  505. pid_t pid;
  506. int child_fd;
  507. int ret;
  508. npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
  509. ASSERT_NE(npages, 0);
  510. size = npages << self->page_shift;
  511. buffer = malloc(sizeof(*buffer));
  512. ASSERT_NE(buffer, NULL);
  513. buffer->fd = -1;
  514. buffer->size = size;
  515. buffer->mirror = malloc(size);
  516. ASSERT_NE(buffer->mirror, NULL);
  517. buffer->ptr = mmap(NULL, size,
  518. PROT_READ | PROT_WRITE,
  519. MAP_SHARED | MAP_ANONYMOUS,
  520. buffer->fd, 0);
  521. ASSERT_NE(buffer->ptr, MAP_FAILED);
  522. /* Initialize buffer->ptr so we can tell if it is written. */
  523. for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
  524. ptr[i] = i;
  525. /* Initialize data that the device will write to buffer->ptr. */
  526. for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
  527. ptr[i] = -i;
  528. pid = fork();
  529. if (pid == -1)
  530. ASSERT_EQ(pid, 0);
  531. if (pid != 0) {
  532. waitpid(pid, &ret, 0);
  533. ASSERT_EQ(WIFEXITED(ret), 1);
  534. /* Check that the parent's buffer did change. */
  535. for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
  536. ASSERT_EQ(ptr[i], -i);
  537. return;
  538. }
  539. /* Check that we see the parent's values. */
  540. for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
  541. ASSERT_EQ(ptr[i], i);
  542. for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
  543. ASSERT_EQ(ptr[i], -i);
  544. /* The child process needs its own mirror to its own mm. */
  545. child_fd = hmm_open(0);
  546. ASSERT_GE(child_fd, 0);
  547. /* Simulate a device writing system memory. */
  548. ret = hmm_dmirror_cmd(child_fd, HMM_DMIRROR_WRITE, buffer, npages);
  549. ASSERT_EQ(ret, 0);
  550. ASSERT_EQ(buffer->cpages, npages);
  551. ASSERT_EQ(buffer->faults, 1);
  552. /* Check what the device wrote. */
  553. for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
  554. ASSERT_EQ(ptr[i], -i);
  555. close(child_fd);
  556. exit(0);
  557. }
  558. /*
  559. * Write private anonymous huge page.
  560. */
  561. TEST_F(hmm, anon_write_huge)
  562. {
  563. struct hmm_buffer *buffer;
  564. unsigned long npages;
  565. unsigned long size;
  566. unsigned long i;
  567. void *old_ptr;
  568. void *map;
  569. int *ptr;
  570. int ret;
  571. size = 2 * TWOMEG;
  572. buffer = malloc(sizeof(*buffer));
  573. ASSERT_NE(buffer, NULL);
  574. buffer->fd = -1;
  575. buffer->size = size;
  576. buffer->mirror = malloc(size);
  577. ASSERT_NE(buffer->mirror, NULL);
  578. buffer->ptr = mmap(NULL, size,
  579. PROT_READ | PROT_WRITE,
  580. MAP_PRIVATE | MAP_ANONYMOUS,
  581. buffer->fd, 0);
  582. ASSERT_NE(buffer->ptr, MAP_FAILED);
  583. size = TWOMEG;
  584. npages = size >> self->page_shift;
  585. map = (void *)ALIGN((uintptr_t)buffer->ptr, size);
  586. ret = madvise(map, size, MADV_HUGEPAGE);
  587. ASSERT_EQ(ret, 0);
  588. old_ptr = buffer->ptr;
  589. buffer->ptr = map;
  590. /* Initialize data that the device will write to buffer->ptr. */
  591. for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
  592. ptr[i] = i;
  593. /* Simulate a device writing system memory. */
  594. ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_WRITE, buffer, npages);
  595. ASSERT_EQ(ret, 0);
  596. ASSERT_EQ(buffer->cpages, npages);
  597. ASSERT_EQ(buffer->faults, 1);
  598. /* Check what the device wrote. */
  599. for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
  600. ASSERT_EQ(ptr[i], i);
  601. buffer->ptr = old_ptr;
  602. hmm_buffer_free(buffer);
  603. }
  604. /*
  605. * Read numeric data from raw and tagged kernel status files. Used to read
  606. * /proc and /sys data (without a tag) and from /proc/meminfo (with a tag).
  607. */
  608. static long file_read_ulong(char *file, const char *tag)
  609. {
  610. int fd;
  611. char buf[2048];
  612. int len;
  613. char *p, *q;
  614. long val;
  615. fd = open(file, O_RDONLY);
  616. if (fd < 0) {
  617. /* Error opening the file */
  618. return -1;
  619. }
  620. len = read(fd, buf, sizeof(buf));
  621. close(fd);
  622. if (len < 0) {
  623. /* Error in reading the file */
  624. return -1;
  625. }
  626. if (len == sizeof(buf)) {
  627. /* Error file is too large */
  628. return -1;
  629. }
  630. buf[len] = '\0';
  631. /* Search for a tag if provided */
  632. if (tag) {
  633. p = strstr(buf, tag);
  634. if (!p)
  635. return -1; /* looks like the line we want isn't there */
  636. p += strlen(tag);
  637. } else
  638. p = buf;
  639. val = strtol(p, &q, 0);
  640. if (*q != ' ') {
  641. /* Error parsing the file */
  642. return -1;
  643. }
  644. return val;
  645. }
  646. /*
  647. * Write huge TLBFS page.
  648. */
  649. TEST_F(hmm, anon_write_hugetlbfs)
  650. {
  651. struct hmm_buffer *buffer;
  652. unsigned long npages;
  653. unsigned long size;
  654. unsigned long default_hsize;
  655. unsigned long i;
  656. int *ptr;
  657. int ret;
  658. default_hsize = file_read_ulong("/proc/meminfo", "Hugepagesize:");
  659. if (default_hsize < 0 || default_hsize*1024 < default_hsize)
  660. SKIP(return, "Huge page size could not be determined");
  661. default_hsize = default_hsize*1024; /* KB to B */
  662. size = ALIGN(TWOMEG, default_hsize);
  663. npages = size >> self->page_shift;
  664. buffer = malloc(sizeof(*buffer));
  665. ASSERT_NE(buffer, NULL);
  666. buffer->ptr = mmap(NULL, size,
  667. PROT_READ | PROT_WRITE,
  668. MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB,
  669. -1, 0);
  670. if (buffer->ptr == MAP_FAILED) {
  671. free(buffer);
  672. SKIP(return, "Huge page could not be allocated");
  673. }
  674. buffer->fd = -1;
  675. buffer->size = size;
  676. buffer->mirror = malloc(size);
  677. ASSERT_NE(buffer->mirror, NULL);
  678. /* Initialize data that the device will write to buffer->ptr. */
  679. for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
  680. ptr[i] = i;
  681. /* Simulate a device writing system memory. */
  682. ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_WRITE, buffer, npages);
  683. ASSERT_EQ(ret, 0);
  684. ASSERT_EQ(buffer->cpages, npages);
  685. ASSERT_EQ(buffer->faults, 1);
  686. /* Check what the device wrote. */
  687. for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
  688. ASSERT_EQ(ptr[i], i);
  689. munmap(buffer->ptr, buffer->size);
  690. buffer->ptr = NULL;
  691. hmm_buffer_free(buffer);
  692. }
  693. /*
  694. * Read mmap'ed file memory.
  695. */
  696. TEST_F(hmm, file_read)
  697. {
  698. struct hmm_buffer *buffer;
  699. unsigned long npages;
  700. unsigned long size;
  701. unsigned long i;
  702. int *ptr;
  703. int ret;
  704. int fd;
  705. ssize_t len;
  706. npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
  707. ASSERT_NE(npages, 0);
  708. size = npages << self->page_shift;
  709. fd = hmm_create_file(size);
  710. ASSERT_GE(fd, 0);
  711. buffer = malloc(sizeof(*buffer));
  712. ASSERT_NE(buffer, NULL);
  713. buffer->fd = fd;
  714. buffer->size = size;
  715. buffer->mirror = malloc(size);
  716. ASSERT_NE(buffer->mirror, NULL);
  717. /* Write initial contents of the file. */
  718. for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
  719. ptr[i] = i;
  720. len = pwrite(fd, buffer->mirror, size, 0);
  721. ASSERT_EQ(len, size);
  722. memset(buffer->mirror, 0, size);
  723. buffer->ptr = mmap(NULL, size,
  724. PROT_READ,
  725. MAP_SHARED,
  726. buffer->fd, 0);
  727. ASSERT_NE(buffer->ptr, MAP_FAILED);
  728. /* Simulate a device reading system memory. */
  729. ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_READ, buffer, npages);
  730. ASSERT_EQ(ret, 0);
  731. ASSERT_EQ(buffer->cpages, npages);
  732. ASSERT_EQ(buffer->faults, 1);
  733. /* Check what the device read. */
  734. for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
  735. ASSERT_EQ(ptr[i], i);
  736. hmm_buffer_free(buffer);
  737. }
  738. /*
  739. * Write mmap'ed file memory.
  740. */
  741. TEST_F(hmm, file_write)
  742. {
  743. struct hmm_buffer *buffer;
  744. unsigned long npages;
  745. unsigned long size;
  746. unsigned long i;
  747. int *ptr;
  748. int ret;
  749. int fd;
  750. ssize_t len;
  751. npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
  752. ASSERT_NE(npages, 0);
  753. size = npages << self->page_shift;
  754. fd = hmm_create_file(size);
  755. ASSERT_GE(fd, 0);
  756. buffer = malloc(sizeof(*buffer));
  757. ASSERT_NE(buffer, NULL);
  758. buffer->fd = fd;
  759. buffer->size = size;
  760. buffer->mirror = malloc(size);
  761. ASSERT_NE(buffer->mirror, NULL);
  762. buffer->ptr = mmap(NULL, size,
  763. PROT_READ | PROT_WRITE,
  764. MAP_SHARED,
  765. buffer->fd, 0);
  766. ASSERT_NE(buffer->ptr, MAP_FAILED);
  767. /* Initialize data that the device will write to buffer->ptr. */
  768. for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
  769. ptr[i] = i;
  770. /* Simulate a device writing system memory. */
  771. ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_WRITE, buffer, npages);
  772. ASSERT_EQ(ret, 0);
  773. ASSERT_EQ(buffer->cpages, npages);
  774. ASSERT_EQ(buffer->faults, 1);
  775. /* Check what the device wrote. */
  776. for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
  777. ASSERT_EQ(ptr[i], i);
  778. /* Check that the device also wrote the file. */
  779. len = pread(fd, buffer->mirror, size, 0);
  780. ASSERT_EQ(len, size);
  781. for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
  782. ASSERT_EQ(ptr[i], i);
  783. hmm_buffer_free(buffer);
  784. }
  785. /*
  786. * Migrate anonymous memory to device private memory.
  787. */
  788. TEST_F(hmm, migrate)
  789. {
  790. struct hmm_buffer *buffer;
  791. unsigned long npages;
  792. unsigned long size;
  793. unsigned long i;
  794. int *ptr;
  795. int ret;
  796. npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
  797. ASSERT_NE(npages, 0);
  798. size = npages << self->page_shift;
  799. buffer = malloc(sizeof(*buffer));
  800. ASSERT_NE(buffer, NULL);
  801. buffer->fd = -1;
  802. buffer->size = size;
  803. buffer->mirror = malloc(size);
  804. ASSERT_NE(buffer->mirror, NULL);
  805. buffer->ptr = mmap(NULL, size,
  806. PROT_READ | PROT_WRITE,
  807. MAP_PRIVATE | MAP_ANONYMOUS,
  808. buffer->fd, 0);
  809. ASSERT_NE(buffer->ptr, MAP_FAILED);
  810. /* Initialize buffer in system memory. */
  811. for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
  812. ptr[i] = i;
  813. /* Migrate memory to device. */
  814. ret = hmm_migrate_sys_to_dev(self->fd, buffer, npages);
  815. ASSERT_EQ(ret, 0);
  816. ASSERT_EQ(buffer->cpages, npages);
  817. /* Check what the device read. */
  818. for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
  819. ASSERT_EQ(ptr[i], i);
  820. hmm_buffer_free(buffer);
  821. }
  822. /*
  823. * Migrate anonymous memory to device private memory and fault some of it back
  824. * to system memory, then try migrating the resulting mix of system and device
  825. * private memory to the device.
  826. */
  827. TEST_F(hmm, migrate_fault)
  828. {
  829. struct hmm_buffer *buffer;
  830. unsigned long npages;
  831. unsigned long size;
  832. unsigned long i;
  833. int *ptr;
  834. int ret;
  835. npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
  836. ASSERT_NE(npages, 0);
  837. size = npages << self->page_shift;
  838. buffer = malloc(sizeof(*buffer));
  839. ASSERT_NE(buffer, NULL);
  840. buffer->fd = -1;
  841. buffer->size = size;
  842. buffer->mirror = malloc(size);
  843. ASSERT_NE(buffer->mirror, NULL);
  844. buffer->ptr = mmap(NULL, size,
  845. PROT_READ | PROT_WRITE,
  846. MAP_PRIVATE | MAP_ANONYMOUS,
  847. buffer->fd, 0);
  848. ASSERT_NE(buffer->ptr, MAP_FAILED);
  849. /* Initialize buffer in system memory. */
  850. for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
  851. ptr[i] = i;
  852. /* Migrate memory to device. */
  853. ret = hmm_migrate_sys_to_dev(self->fd, buffer, npages);
  854. ASSERT_EQ(ret, 0);
  855. ASSERT_EQ(buffer->cpages, npages);
  856. /* Check what the device read. */
  857. for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
  858. ASSERT_EQ(ptr[i], i);
  859. /* Fault half the pages back to system memory and check them. */
  860. for (i = 0, ptr = buffer->ptr; i < size / (2 * sizeof(*ptr)); ++i)
  861. ASSERT_EQ(ptr[i], i);
  862. /* Migrate memory to the device again. */
  863. ret = hmm_migrate_sys_to_dev(self->fd, buffer, npages);
  864. ASSERT_EQ(ret, 0);
  865. ASSERT_EQ(buffer->cpages, npages);
  866. /* Check what the device read. */
  867. for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
  868. ASSERT_EQ(ptr[i], i);
  869. hmm_buffer_free(buffer);
  870. }
  871. TEST_F(hmm, migrate_release)
  872. {
  873. struct hmm_buffer *buffer;
  874. unsigned long npages;
  875. unsigned long size;
  876. unsigned long i;
  877. int *ptr;
  878. int ret;
  879. npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
  880. ASSERT_NE(npages, 0);
  881. size = npages << self->page_shift;
  882. buffer = malloc(sizeof(*buffer));
  883. ASSERT_NE(buffer, NULL);
  884. buffer->fd = -1;
  885. buffer->size = size;
  886. buffer->mirror = malloc(size);
  887. ASSERT_NE(buffer->mirror, NULL);
  888. buffer->ptr = mmap(NULL, size, PROT_READ | PROT_WRITE,
  889. MAP_PRIVATE | MAP_ANONYMOUS, buffer->fd, 0);
  890. ASSERT_NE(buffer->ptr, MAP_FAILED);
  891. /* Initialize buffer in system memory. */
  892. for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
  893. ptr[i] = i;
  894. /* Migrate memory to device. */
  895. ret = hmm_migrate_sys_to_dev(self->fd, buffer, npages);
  896. ASSERT_EQ(ret, 0);
  897. ASSERT_EQ(buffer->cpages, npages);
  898. /* Check what the device read. */
  899. for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
  900. ASSERT_EQ(ptr[i], i);
  901. /* Release device memory. */
  902. ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_RELEASE, buffer, npages);
  903. ASSERT_EQ(ret, 0);
  904. /* Fault pages back to system memory and check them. */
  905. for (i = 0, ptr = buffer->ptr; i < size / (2 * sizeof(*ptr)); ++i)
  906. ASSERT_EQ(ptr[i], i);
  907. hmm_buffer_free(buffer);
  908. }
  909. /*
  910. * Migrate anonymous shared memory to device private memory.
  911. */
  912. TEST_F(hmm, migrate_shared)
  913. {
  914. struct hmm_buffer *buffer;
  915. unsigned long npages;
  916. unsigned long size;
  917. int ret;
  918. npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
  919. ASSERT_NE(npages, 0);
  920. size = npages << self->page_shift;
  921. buffer = malloc(sizeof(*buffer));
  922. ASSERT_NE(buffer, NULL);
  923. buffer->fd = -1;
  924. buffer->size = size;
  925. buffer->mirror = malloc(size);
  926. ASSERT_NE(buffer->mirror, NULL);
  927. buffer->ptr = mmap(NULL, size,
  928. PROT_READ | PROT_WRITE,
  929. MAP_SHARED | MAP_ANONYMOUS,
  930. buffer->fd, 0);
  931. ASSERT_NE(buffer->ptr, MAP_FAILED);
  932. /* Migrate memory to device. */
  933. ret = hmm_migrate_sys_to_dev(self->fd, buffer, npages);
  934. ASSERT_EQ(ret, -ENOENT);
  935. hmm_buffer_free(buffer);
  936. }
  937. /*
  938. * Try to migrate various memory types to device private memory.
  939. */
  940. TEST_F(hmm2, migrate_mixed)
  941. {
  942. struct hmm_buffer *buffer;
  943. unsigned long npages;
  944. unsigned long size;
  945. int *ptr;
  946. unsigned char *p;
  947. int ret;
  948. int val;
  949. npages = 6;
  950. size = npages << self->page_shift;
  951. buffer = malloc(sizeof(*buffer));
  952. ASSERT_NE(buffer, NULL);
  953. buffer->fd = -1;
  954. buffer->size = size;
  955. buffer->mirror = malloc(size);
  956. ASSERT_NE(buffer->mirror, NULL);
  957. /* Reserve a range of addresses. */
  958. buffer->ptr = mmap(NULL, size,
  959. PROT_NONE,
  960. MAP_PRIVATE | MAP_ANONYMOUS,
  961. buffer->fd, 0);
  962. ASSERT_NE(buffer->ptr, MAP_FAILED);
  963. p = buffer->ptr;
  964. /* Migrating a protected area should be an error. */
  965. ret = hmm_migrate_sys_to_dev(self->fd1, buffer, npages);
  966. ASSERT_EQ(ret, -EINVAL);
  967. /* Punch a hole after the first page address. */
  968. ret = munmap(buffer->ptr + self->page_size, self->page_size);
  969. ASSERT_EQ(ret, 0);
  970. /* We expect an error if the vma doesn't cover the range. */
  971. ret = hmm_migrate_sys_to_dev(self->fd1, buffer, 3);
  972. ASSERT_EQ(ret, -EINVAL);
  973. /* Page 2 will be a read-only zero page. */
  974. ret = mprotect(buffer->ptr + 2 * self->page_size, self->page_size,
  975. PROT_READ);
  976. ASSERT_EQ(ret, 0);
  977. ptr = (int *)(buffer->ptr + 2 * self->page_size);
  978. val = *ptr + 3;
  979. ASSERT_EQ(val, 3);
  980. /* Page 3 will be read-only. */
  981. ret = mprotect(buffer->ptr + 3 * self->page_size, self->page_size,
  982. PROT_READ | PROT_WRITE);
  983. ASSERT_EQ(ret, 0);
  984. ptr = (int *)(buffer->ptr + 3 * self->page_size);
  985. *ptr = val;
  986. ret = mprotect(buffer->ptr + 3 * self->page_size, self->page_size,
  987. PROT_READ);
  988. ASSERT_EQ(ret, 0);
  989. /* Page 4-5 will be read-write. */
  990. ret = mprotect(buffer->ptr + 4 * self->page_size, 2 * self->page_size,
  991. PROT_READ | PROT_WRITE);
  992. ASSERT_EQ(ret, 0);
  993. ptr = (int *)(buffer->ptr + 4 * self->page_size);
  994. *ptr = val;
  995. ptr = (int *)(buffer->ptr + 5 * self->page_size);
  996. *ptr = val;
  997. /* Now try to migrate pages 2-5 to device 1. */
  998. buffer->ptr = p + 2 * self->page_size;
  999. ret = hmm_migrate_sys_to_dev(self->fd1, buffer, 4);
  1000. ASSERT_EQ(ret, 0);
  1001. ASSERT_EQ(buffer->cpages, 4);
  1002. /* Page 5 won't be migrated to device 0 because it's on device 1. */
  1003. buffer->ptr = p + 5 * self->page_size;
  1004. ret = hmm_migrate_sys_to_dev(self->fd0, buffer, 1);
  1005. ASSERT_EQ(ret, -ENOENT);
  1006. buffer->ptr = p;
  1007. buffer->ptr = p;
  1008. hmm_buffer_free(buffer);
  1009. }
  1010. /*
  1011. * Migrate anonymous memory to device memory and back to system memory
  1012. * multiple times. In case of private zone configuration, this is done
  1013. * through fault pages accessed by CPU. In case of coherent zone configuration,
  1014. * the pages from the device should be explicitly migrated back to system memory.
  1015. * The reason is Coherent device zone has coherent access by CPU, therefore
  1016. * it will not generate any page fault.
  1017. */
  1018. TEST_F(hmm, migrate_multiple)
  1019. {
  1020. struct hmm_buffer *buffer;
  1021. unsigned long npages;
  1022. unsigned long size;
  1023. unsigned long i;
  1024. unsigned long c;
  1025. int *ptr;
  1026. int ret;
  1027. npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
  1028. ASSERT_NE(npages, 0);
  1029. size = npages << self->page_shift;
  1030. for (c = 0; c < NTIMES; c++) {
  1031. buffer = malloc(sizeof(*buffer));
  1032. ASSERT_NE(buffer, NULL);
  1033. buffer->fd = -1;
  1034. buffer->size = size;
  1035. buffer->mirror = malloc(size);
  1036. ASSERT_NE(buffer->mirror, NULL);
  1037. buffer->ptr = mmap(NULL, size,
  1038. PROT_READ | PROT_WRITE,
  1039. MAP_PRIVATE | MAP_ANONYMOUS,
  1040. buffer->fd, 0);
  1041. ASSERT_NE(buffer->ptr, MAP_FAILED);
  1042. /* Initialize buffer in system memory. */
  1043. for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
  1044. ptr[i] = i;
  1045. /* Migrate memory to device. */
  1046. ret = hmm_migrate_sys_to_dev(self->fd, buffer, npages);
  1047. ASSERT_EQ(ret, 0);
  1048. ASSERT_EQ(buffer->cpages, npages);
  1049. /* Check what the device read. */
  1050. for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
  1051. ASSERT_EQ(ptr[i], i);
  1052. /* Migrate back to system memory and check them. */
  1053. if (hmm_is_coherent_type(variant->device_number)) {
  1054. ret = hmm_migrate_dev_to_sys(self->fd, buffer, npages);
  1055. ASSERT_EQ(ret, 0);
  1056. ASSERT_EQ(buffer->cpages, npages);
  1057. }
  1058. for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
  1059. ASSERT_EQ(ptr[i], i);
  1060. hmm_buffer_free(buffer);
  1061. }
  1062. }
  1063. /*
  1064. * Read anonymous memory multiple times.
  1065. */
  1066. TEST_F(hmm, anon_read_multiple)
  1067. {
  1068. struct hmm_buffer *buffer;
  1069. unsigned long npages;
  1070. unsigned long size;
  1071. unsigned long i;
  1072. unsigned long c;
  1073. int *ptr;
  1074. int ret;
  1075. npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
  1076. ASSERT_NE(npages, 0);
  1077. size = npages << self->page_shift;
  1078. for (c = 0; c < NTIMES; c++) {
  1079. buffer = malloc(sizeof(*buffer));
  1080. ASSERT_NE(buffer, NULL);
  1081. buffer->fd = -1;
  1082. buffer->size = size;
  1083. buffer->mirror = malloc(size);
  1084. ASSERT_NE(buffer->mirror, NULL);
  1085. buffer->ptr = mmap(NULL, size,
  1086. PROT_READ | PROT_WRITE,
  1087. MAP_PRIVATE | MAP_ANONYMOUS,
  1088. buffer->fd, 0);
  1089. ASSERT_NE(buffer->ptr, MAP_FAILED);
  1090. /* Initialize buffer in system memory. */
  1091. for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
  1092. ptr[i] = i + c;
  1093. /* Simulate a device reading system memory. */
  1094. ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_READ, buffer,
  1095. npages);
  1096. ASSERT_EQ(ret, 0);
  1097. ASSERT_EQ(buffer->cpages, npages);
  1098. ASSERT_EQ(buffer->faults, 1);
  1099. /* Check what the device read. */
  1100. for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
  1101. ASSERT_EQ(ptr[i], i + c);
  1102. hmm_buffer_free(buffer);
  1103. }
  1104. }
  1105. void *unmap_buffer(void *p)
  1106. {
  1107. struct hmm_buffer *buffer = p;
  1108. /* Delay for a bit and then unmap buffer while it is being read. */
  1109. hmm_nanosleep(hmm_random() % 32000);
  1110. munmap(buffer->ptr + buffer->size / 2, buffer->size / 2);
  1111. buffer->ptr = NULL;
  1112. return NULL;
  1113. }
  1114. /*
  1115. * Try reading anonymous memory while it is being unmapped.
  1116. */
  1117. TEST_F(hmm, anon_teardown)
  1118. {
  1119. unsigned long npages;
  1120. unsigned long size;
  1121. unsigned long c;
  1122. void *ret;
  1123. npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
  1124. ASSERT_NE(npages, 0);
  1125. size = npages << self->page_shift;
  1126. for (c = 0; c < NTIMES; ++c) {
  1127. pthread_t thread;
  1128. struct hmm_buffer *buffer;
  1129. unsigned long i;
  1130. int *ptr;
  1131. int rc;
  1132. buffer = malloc(sizeof(*buffer));
  1133. ASSERT_NE(buffer, NULL);
  1134. buffer->fd = -1;
  1135. buffer->size = size;
  1136. buffer->mirror = malloc(size);
  1137. ASSERT_NE(buffer->mirror, NULL);
  1138. buffer->ptr = mmap(NULL, size,
  1139. PROT_READ | PROT_WRITE,
  1140. MAP_PRIVATE | MAP_ANONYMOUS,
  1141. buffer->fd, 0);
  1142. ASSERT_NE(buffer->ptr, MAP_FAILED);
  1143. /* Initialize buffer in system memory. */
  1144. for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
  1145. ptr[i] = i + c;
  1146. rc = pthread_create(&thread, NULL, unmap_buffer, buffer);
  1147. ASSERT_EQ(rc, 0);
  1148. /* Simulate a device reading system memory. */
  1149. rc = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_READ, buffer,
  1150. npages);
  1151. if (rc == 0) {
  1152. ASSERT_EQ(buffer->cpages, npages);
  1153. ASSERT_EQ(buffer->faults, 1);
  1154. /* Check what the device read. */
  1155. for (i = 0, ptr = buffer->mirror;
  1156. i < size / sizeof(*ptr);
  1157. ++i)
  1158. ASSERT_EQ(ptr[i], i + c);
  1159. }
  1160. pthread_join(thread, &ret);
  1161. hmm_buffer_free(buffer);
  1162. }
  1163. }
  1164. /*
  1165. * Test memory snapshot without faulting in pages accessed by the device.
  1166. */
  1167. TEST_F(hmm, mixedmap)
  1168. {
  1169. struct hmm_buffer *buffer;
  1170. unsigned long npages;
  1171. unsigned long size;
  1172. unsigned char *m;
  1173. int ret;
  1174. npages = 1;
  1175. size = npages << self->page_shift;
  1176. buffer = malloc(sizeof(*buffer));
  1177. ASSERT_NE(buffer, NULL);
  1178. buffer->fd = -1;
  1179. buffer->size = size;
  1180. buffer->mirror = malloc(npages);
  1181. ASSERT_NE(buffer->mirror, NULL);
  1182. /* Reserve a range of addresses. */
  1183. buffer->ptr = mmap(NULL, size,
  1184. PROT_READ | PROT_WRITE,
  1185. MAP_PRIVATE,
  1186. self->fd, 0);
  1187. ASSERT_NE(buffer->ptr, MAP_FAILED);
  1188. /* Simulate a device snapshotting CPU pagetables. */
  1189. ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_SNAPSHOT, buffer, npages);
  1190. ASSERT_EQ(ret, 0);
  1191. ASSERT_EQ(buffer->cpages, npages);
  1192. /* Check what the device saw. */
  1193. m = buffer->mirror;
  1194. ASSERT_EQ(m[0], HMM_DMIRROR_PROT_READ);
  1195. hmm_buffer_free(buffer);
  1196. }
  1197. /*
  1198. * Test memory snapshot without faulting in pages accessed by the device.
  1199. */
  1200. TEST_F(hmm2, snapshot)
  1201. {
  1202. struct hmm_buffer *buffer;
  1203. unsigned long npages;
  1204. unsigned long size;
  1205. int *ptr;
  1206. unsigned char *p;
  1207. unsigned char *m;
  1208. int ret;
  1209. int val;
  1210. npages = 7;
  1211. size = npages << self->page_shift;
  1212. buffer = malloc(sizeof(*buffer));
  1213. ASSERT_NE(buffer, NULL);
  1214. buffer->fd = -1;
  1215. buffer->size = size;
  1216. buffer->mirror = malloc(npages);
  1217. ASSERT_NE(buffer->mirror, NULL);
  1218. /* Reserve a range of addresses. */
  1219. buffer->ptr = mmap(NULL, size,
  1220. PROT_NONE,
  1221. MAP_PRIVATE | MAP_ANONYMOUS,
  1222. buffer->fd, 0);
  1223. ASSERT_NE(buffer->ptr, MAP_FAILED);
  1224. p = buffer->ptr;
  1225. /* Punch a hole after the first page address. */
  1226. ret = munmap(buffer->ptr + self->page_size, self->page_size);
  1227. ASSERT_EQ(ret, 0);
  1228. /* Page 2 will be read-only zero page. */
  1229. ret = mprotect(buffer->ptr + 2 * self->page_size, self->page_size,
  1230. PROT_READ);
  1231. ASSERT_EQ(ret, 0);
  1232. ptr = (int *)(buffer->ptr + 2 * self->page_size);
  1233. val = *ptr + 3;
  1234. ASSERT_EQ(val, 3);
  1235. /* Page 3 will be read-only. */
  1236. ret = mprotect(buffer->ptr + 3 * self->page_size, self->page_size,
  1237. PROT_READ | PROT_WRITE);
  1238. ASSERT_EQ(ret, 0);
  1239. ptr = (int *)(buffer->ptr + 3 * self->page_size);
  1240. *ptr = val;
  1241. ret = mprotect(buffer->ptr + 3 * self->page_size, self->page_size,
  1242. PROT_READ);
  1243. ASSERT_EQ(ret, 0);
  1244. /* Page 4-6 will be read-write. */
  1245. ret = mprotect(buffer->ptr + 4 * self->page_size, 3 * self->page_size,
  1246. PROT_READ | PROT_WRITE);
  1247. ASSERT_EQ(ret, 0);
  1248. ptr = (int *)(buffer->ptr + 4 * self->page_size);
  1249. *ptr = val;
  1250. /* Page 5 will be migrated to device 0. */
  1251. buffer->ptr = p + 5 * self->page_size;
  1252. ret = hmm_migrate_sys_to_dev(self->fd0, buffer, 1);
  1253. ASSERT_EQ(ret, 0);
  1254. ASSERT_EQ(buffer->cpages, 1);
  1255. /* Page 6 will be migrated to device 1. */
  1256. buffer->ptr = p + 6 * self->page_size;
  1257. ret = hmm_migrate_sys_to_dev(self->fd1, buffer, 1);
  1258. ASSERT_EQ(ret, 0);
  1259. ASSERT_EQ(buffer->cpages, 1);
  1260. /* Simulate a device snapshotting CPU pagetables. */
  1261. buffer->ptr = p;
  1262. ret = hmm_dmirror_cmd(self->fd0, HMM_DMIRROR_SNAPSHOT, buffer, npages);
  1263. ASSERT_EQ(ret, 0);
  1264. ASSERT_EQ(buffer->cpages, npages);
  1265. /* Check what the device saw. */
  1266. m = buffer->mirror;
  1267. ASSERT_EQ(m[0], HMM_DMIRROR_PROT_ERROR);
  1268. ASSERT_EQ(m[1], HMM_DMIRROR_PROT_ERROR);
  1269. ASSERT_EQ(m[2], HMM_DMIRROR_PROT_ZERO | HMM_DMIRROR_PROT_READ);
  1270. ASSERT_EQ(m[3], HMM_DMIRROR_PROT_READ);
  1271. ASSERT_EQ(m[4], HMM_DMIRROR_PROT_WRITE);
  1272. if (!hmm_is_coherent_type(variant->device_number0)) {
  1273. ASSERT_EQ(m[5], HMM_DMIRROR_PROT_DEV_PRIVATE_LOCAL |
  1274. HMM_DMIRROR_PROT_WRITE);
  1275. ASSERT_EQ(m[6], HMM_DMIRROR_PROT_NONE);
  1276. } else {
  1277. ASSERT_EQ(m[5], HMM_DMIRROR_PROT_DEV_COHERENT_LOCAL |
  1278. HMM_DMIRROR_PROT_WRITE);
  1279. ASSERT_EQ(m[6], HMM_DMIRROR_PROT_DEV_COHERENT_REMOTE |
  1280. HMM_DMIRROR_PROT_WRITE);
  1281. }
  1282. hmm_buffer_free(buffer);
  1283. }
  1284. /*
  1285. * Test the hmm_range_fault() HMM_PFN_PMD flag for large pages that
  1286. * should be mapped by a large page table entry.
  1287. */
  1288. TEST_F(hmm, compound)
  1289. {
  1290. struct hmm_buffer *buffer;
  1291. unsigned long npages;
  1292. unsigned long size;
  1293. unsigned long default_hsize;
  1294. int *ptr;
  1295. unsigned char *m;
  1296. int ret;
  1297. unsigned long i;
  1298. /* Skip test if we can't allocate a hugetlbfs page. */
  1299. default_hsize = file_read_ulong("/proc/meminfo", "Hugepagesize:");
  1300. if (default_hsize < 0 || default_hsize*1024 < default_hsize)
  1301. SKIP(return, "Huge page size could not be determined");
  1302. default_hsize = default_hsize*1024; /* KB to B */
  1303. size = ALIGN(TWOMEG, default_hsize);
  1304. npages = size >> self->page_shift;
  1305. buffer = malloc(sizeof(*buffer));
  1306. ASSERT_NE(buffer, NULL);
  1307. buffer->ptr = mmap(NULL, size,
  1308. PROT_READ | PROT_WRITE,
  1309. MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB,
  1310. -1, 0);
  1311. if (buffer->ptr == MAP_FAILED) {
  1312. free(buffer);
  1313. return;
  1314. }
  1315. buffer->size = size;
  1316. buffer->mirror = malloc(npages);
  1317. ASSERT_NE(buffer->mirror, NULL);
  1318. /* Initialize the pages the device will snapshot in buffer->ptr. */
  1319. for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
  1320. ptr[i] = i;
  1321. /* Simulate a device snapshotting CPU pagetables. */
  1322. ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_SNAPSHOT, buffer, npages);
  1323. ASSERT_EQ(ret, 0);
  1324. ASSERT_EQ(buffer->cpages, npages);
  1325. /* Check what the device saw. */
  1326. m = buffer->mirror;
  1327. for (i = 0; i < npages; ++i)
  1328. ASSERT_EQ(m[i], HMM_DMIRROR_PROT_WRITE |
  1329. HMM_DMIRROR_PROT_PMD);
  1330. /* Make the region read-only. */
  1331. ret = mprotect(buffer->ptr, size, PROT_READ);
  1332. ASSERT_EQ(ret, 0);
  1333. /* Simulate a device snapshotting CPU pagetables. */
  1334. ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_SNAPSHOT, buffer, npages);
  1335. ASSERT_EQ(ret, 0);
  1336. ASSERT_EQ(buffer->cpages, npages);
  1337. /* Check what the device saw. */
  1338. m = buffer->mirror;
  1339. for (i = 0; i < npages; ++i)
  1340. ASSERT_EQ(m[i], HMM_DMIRROR_PROT_READ |
  1341. HMM_DMIRROR_PROT_PMD);
  1342. munmap(buffer->ptr, buffer->size);
  1343. buffer->ptr = NULL;
  1344. hmm_buffer_free(buffer);
  1345. }
  1346. /*
  1347. * Test two devices reading the same memory (double mapped).
  1348. */
  1349. TEST_F(hmm2, double_map)
  1350. {
  1351. struct hmm_buffer *buffer;
  1352. unsigned long npages;
  1353. unsigned long size;
  1354. unsigned long i;
  1355. int *ptr;
  1356. int ret;
  1357. npages = 6;
  1358. size = npages << self->page_shift;
  1359. buffer = malloc(sizeof(*buffer));
  1360. ASSERT_NE(buffer, NULL);
  1361. buffer->fd = -1;
  1362. buffer->size = size;
  1363. buffer->mirror = malloc(npages);
  1364. ASSERT_NE(buffer->mirror, NULL);
  1365. /* Reserve a range of addresses. */
  1366. buffer->ptr = mmap(NULL, size,
  1367. PROT_READ | PROT_WRITE,
  1368. MAP_PRIVATE | MAP_ANONYMOUS,
  1369. buffer->fd, 0);
  1370. ASSERT_NE(buffer->ptr, MAP_FAILED);
  1371. /* Initialize buffer in system memory. */
  1372. for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
  1373. ptr[i] = i;
  1374. /* Make region read-only. */
  1375. ret = mprotect(buffer->ptr, size, PROT_READ);
  1376. ASSERT_EQ(ret, 0);
  1377. /* Simulate device 0 reading system memory. */
  1378. ret = hmm_dmirror_cmd(self->fd0, HMM_DMIRROR_READ, buffer, npages);
  1379. ASSERT_EQ(ret, 0);
  1380. ASSERT_EQ(buffer->cpages, npages);
  1381. ASSERT_EQ(buffer->faults, 1);
  1382. /* Check what the device read. */
  1383. for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
  1384. ASSERT_EQ(ptr[i], i);
  1385. /* Simulate device 1 reading system memory. */
  1386. ret = hmm_dmirror_cmd(self->fd1, HMM_DMIRROR_READ, buffer, npages);
  1387. ASSERT_EQ(ret, 0);
  1388. ASSERT_EQ(buffer->cpages, npages);
  1389. ASSERT_EQ(buffer->faults, 1);
  1390. /* Check what the device read. */
  1391. for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
  1392. ASSERT_EQ(ptr[i], i);
  1393. /* Migrate pages to device 1 and try to read from device 0. */
  1394. ret = hmm_migrate_sys_to_dev(self->fd1, buffer, npages);
  1395. ASSERT_EQ(ret, 0);
  1396. ASSERT_EQ(buffer->cpages, npages);
  1397. ret = hmm_dmirror_cmd(self->fd0, HMM_DMIRROR_READ, buffer, npages);
  1398. ASSERT_EQ(ret, 0);
  1399. ASSERT_EQ(buffer->cpages, npages);
  1400. ASSERT_EQ(buffer->faults, 1);
  1401. /* Check what device 0 read. */
  1402. for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
  1403. ASSERT_EQ(ptr[i], i);
  1404. hmm_buffer_free(buffer);
  1405. }
  1406. /*
  1407. * Basic check of exclusive faulting.
  1408. */
  1409. TEST_F(hmm, exclusive)
  1410. {
  1411. struct hmm_buffer *buffer;
  1412. unsigned long npages;
  1413. unsigned long size;
  1414. unsigned long i;
  1415. int *ptr;
  1416. int ret;
  1417. npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
  1418. ASSERT_NE(npages, 0);
  1419. size = npages << self->page_shift;
  1420. buffer = malloc(sizeof(*buffer));
  1421. ASSERT_NE(buffer, NULL);
  1422. buffer->fd = -1;
  1423. buffer->size = size;
  1424. buffer->mirror = malloc(size);
  1425. ASSERT_NE(buffer->mirror, NULL);
  1426. buffer->ptr = mmap(NULL, size,
  1427. PROT_READ | PROT_WRITE,
  1428. MAP_PRIVATE | MAP_ANONYMOUS,
  1429. buffer->fd, 0);
  1430. ASSERT_NE(buffer->ptr, MAP_FAILED);
  1431. /* Initialize buffer in system memory. */
  1432. for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
  1433. ptr[i] = i;
  1434. /* Map memory exclusively for device access. */
  1435. ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_EXCLUSIVE, buffer, npages);
  1436. ASSERT_EQ(ret, 0);
  1437. ASSERT_EQ(buffer->cpages, npages);
  1438. /* Check what the device read. */
  1439. for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
  1440. ASSERT_EQ(ptr[i], i);
  1441. /* Fault pages back to system memory and check them. */
  1442. for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
  1443. ASSERT_EQ(ptr[i]++, i);
  1444. for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
  1445. ASSERT_EQ(ptr[i], i+1);
  1446. /* Check atomic access revoked */
  1447. ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_CHECK_EXCLUSIVE, buffer, npages);
  1448. ASSERT_EQ(ret, 0);
  1449. hmm_buffer_free(buffer);
  1450. }
  1451. TEST_F(hmm, exclusive_mprotect)
  1452. {
  1453. struct hmm_buffer *buffer;
  1454. unsigned long npages;
  1455. unsigned long size;
  1456. unsigned long i;
  1457. int *ptr;
  1458. int ret;
  1459. npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
  1460. ASSERT_NE(npages, 0);
  1461. size = npages << self->page_shift;
  1462. buffer = malloc(sizeof(*buffer));
  1463. ASSERT_NE(buffer, NULL);
  1464. buffer->fd = -1;
  1465. buffer->size = size;
  1466. buffer->mirror = malloc(size);
  1467. ASSERT_NE(buffer->mirror, NULL);
  1468. buffer->ptr = mmap(NULL, size,
  1469. PROT_READ | PROT_WRITE,
  1470. MAP_PRIVATE | MAP_ANONYMOUS,
  1471. buffer->fd, 0);
  1472. ASSERT_NE(buffer->ptr, MAP_FAILED);
  1473. /* Initialize buffer in system memory. */
  1474. for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
  1475. ptr[i] = i;
  1476. /* Map memory exclusively for device access. */
  1477. ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_EXCLUSIVE, buffer, npages);
  1478. ASSERT_EQ(ret, 0);
  1479. ASSERT_EQ(buffer->cpages, npages);
  1480. /* Check what the device read. */
  1481. for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
  1482. ASSERT_EQ(ptr[i], i);
  1483. ret = mprotect(buffer->ptr, size, PROT_READ);
  1484. ASSERT_EQ(ret, 0);
  1485. /* Simulate a device writing system memory. */
  1486. ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_WRITE, buffer, npages);
  1487. ASSERT_EQ(ret, -EPERM);
  1488. hmm_buffer_free(buffer);
  1489. }
  1490. /*
  1491. * Check copy-on-write works.
  1492. */
  1493. TEST_F(hmm, exclusive_cow)
  1494. {
  1495. struct hmm_buffer *buffer;
  1496. unsigned long npages;
  1497. unsigned long size;
  1498. unsigned long i;
  1499. int *ptr;
  1500. int ret;
  1501. npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
  1502. ASSERT_NE(npages, 0);
  1503. size = npages << self->page_shift;
  1504. buffer = malloc(sizeof(*buffer));
  1505. ASSERT_NE(buffer, NULL);
  1506. buffer->fd = -1;
  1507. buffer->size = size;
  1508. buffer->mirror = malloc(size);
  1509. ASSERT_NE(buffer->mirror, NULL);
  1510. buffer->ptr = mmap(NULL, size,
  1511. PROT_READ | PROT_WRITE,
  1512. MAP_PRIVATE | MAP_ANONYMOUS,
  1513. buffer->fd, 0);
  1514. ASSERT_NE(buffer->ptr, MAP_FAILED);
  1515. /* Initialize buffer in system memory. */
  1516. for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
  1517. ptr[i] = i;
  1518. /* Map memory exclusively for device access. */
  1519. ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_EXCLUSIVE, buffer, npages);
  1520. ASSERT_EQ(ret, 0);
  1521. ASSERT_EQ(buffer->cpages, npages);
  1522. fork();
  1523. /* Fault pages back to system memory and check them. */
  1524. for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
  1525. ASSERT_EQ(ptr[i]++, i);
  1526. for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
  1527. ASSERT_EQ(ptr[i], i+1);
  1528. hmm_buffer_free(buffer);
  1529. }
  1530. static int gup_test_exec(int gup_fd, unsigned long addr, int cmd,
  1531. int npages, int size, int flags)
  1532. {
  1533. struct gup_test gup = {
  1534. .nr_pages_per_call = npages,
  1535. .addr = addr,
  1536. .gup_flags = FOLL_WRITE | flags,
  1537. .size = size,
  1538. };
  1539. if (ioctl(gup_fd, cmd, &gup)) {
  1540. perror("ioctl on error\n");
  1541. return errno;
  1542. }
  1543. return 0;
  1544. }
  1545. /*
  1546. * Test get user device pages through gup_test. Setting PIN_LONGTERM flag.
  1547. * This should trigger a migration back to system memory for both, private
  1548. * and coherent type pages.
  1549. * This test makes use of gup_test module. Make sure GUP_TEST_CONFIG is added
  1550. * to your configuration before you run it.
  1551. */
  1552. TEST_F(hmm, hmm_gup_test)
  1553. {
  1554. struct hmm_buffer *buffer;
  1555. int gup_fd;
  1556. unsigned long npages;
  1557. unsigned long size;
  1558. unsigned long i;
  1559. int *ptr;
  1560. int ret;
  1561. unsigned char *m;
  1562. gup_fd = open("/sys/kernel/debug/gup_test", O_RDWR);
  1563. if (gup_fd == -1)
  1564. SKIP(return, "Skipping test, could not find gup_test driver");
  1565. npages = 4;
  1566. size = npages << self->page_shift;
  1567. buffer = malloc(sizeof(*buffer));
  1568. ASSERT_NE(buffer, NULL);
  1569. buffer->fd = -1;
  1570. buffer->size = size;
  1571. buffer->mirror = malloc(size);
  1572. ASSERT_NE(buffer->mirror, NULL);
  1573. buffer->ptr = mmap(NULL, size,
  1574. PROT_READ | PROT_WRITE,
  1575. MAP_PRIVATE | MAP_ANONYMOUS,
  1576. buffer->fd, 0);
  1577. ASSERT_NE(buffer->ptr, MAP_FAILED);
  1578. /* Initialize buffer in system memory. */
  1579. for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
  1580. ptr[i] = i;
  1581. /* Migrate memory to device. */
  1582. ret = hmm_migrate_sys_to_dev(self->fd, buffer, npages);
  1583. ASSERT_EQ(ret, 0);
  1584. ASSERT_EQ(buffer->cpages, npages);
  1585. /* Check what the device read. */
  1586. for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
  1587. ASSERT_EQ(ptr[i], i);
  1588. ASSERT_EQ(gup_test_exec(gup_fd,
  1589. (unsigned long)buffer->ptr,
  1590. GUP_BASIC_TEST, 1, self->page_size, 0), 0);
  1591. ASSERT_EQ(gup_test_exec(gup_fd,
  1592. (unsigned long)buffer->ptr + 1 * self->page_size,
  1593. GUP_FAST_BENCHMARK, 1, self->page_size, 0), 0);
  1594. ASSERT_EQ(gup_test_exec(gup_fd,
  1595. (unsigned long)buffer->ptr + 2 * self->page_size,
  1596. PIN_FAST_BENCHMARK, 1, self->page_size, FOLL_LONGTERM), 0);
  1597. ASSERT_EQ(gup_test_exec(gup_fd,
  1598. (unsigned long)buffer->ptr + 3 * self->page_size,
  1599. PIN_LONGTERM_BENCHMARK, 1, self->page_size, 0), 0);
  1600. /* Take snapshot to CPU pagetables */
  1601. ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_SNAPSHOT, buffer, npages);
  1602. ASSERT_EQ(ret, 0);
  1603. ASSERT_EQ(buffer->cpages, npages);
  1604. m = buffer->mirror;
  1605. if (hmm_is_coherent_type(variant->device_number)) {
  1606. ASSERT_EQ(HMM_DMIRROR_PROT_DEV_COHERENT_LOCAL | HMM_DMIRROR_PROT_WRITE, m[0]);
  1607. ASSERT_EQ(HMM_DMIRROR_PROT_DEV_COHERENT_LOCAL | HMM_DMIRROR_PROT_WRITE, m[1]);
  1608. } else {
  1609. ASSERT_EQ(HMM_DMIRROR_PROT_WRITE, m[0]);
  1610. ASSERT_EQ(HMM_DMIRROR_PROT_WRITE, m[1]);
  1611. }
  1612. ASSERT_EQ(HMM_DMIRROR_PROT_WRITE, m[2]);
  1613. ASSERT_EQ(HMM_DMIRROR_PROT_WRITE, m[3]);
  1614. /*
  1615. * Check again the content on the pages. Make sure there's no
  1616. * corrupted data.
  1617. */
  1618. for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
  1619. ASSERT_EQ(ptr[i], i);
  1620. close(gup_fd);
  1621. hmm_buffer_free(buffer);
  1622. }
  1623. /*
  1624. * Test copy-on-write in device pages.
  1625. * In case of writing to COW private page(s), a page fault will migrate pages
  1626. * back to system memory first. Then, these pages will be duplicated. In case
  1627. * of COW device coherent type, pages are duplicated directly from device
  1628. * memory.
  1629. */
  1630. TEST_F(hmm, hmm_cow_in_device)
  1631. {
  1632. struct hmm_buffer *buffer;
  1633. unsigned long npages;
  1634. unsigned long size;
  1635. unsigned long i;
  1636. int *ptr;
  1637. int ret;
  1638. unsigned char *m;
  1639. pid_t pid;
  1640. int status;
  1641. npages = 4;
  1642. size = npages << self->page_shift;
  1643. buffer = malloc(sizeof(*buffer));
  1644. ASSERT_NE(buffer, NULL);
  1645. buffer->fd = -1;
  1646. buffer->size = size;
  1647. buffer->mirror = malloc(size);
  1648. ASSERT_NE(buffer->mirror, NULL);
  1649. buffer->ptr = mmap(NULL, size,
  1650. PROT_READ | PROT_WRITE,
  1651. MAP_PRIVATE | MAP_ANONYMOUS,
  1652. buffer->fd, 0);
  1653. ASSERT_NE(buffer->ptr, MAP_FAILED);
  1654. /* Initialize buffer in system memory. */
  1655. for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
  1656. ptr[i] = i;
  1657. /* Migrate memory to device. */
  1658. ret = hmm_migrate_sys_to_dev(self->fd, buffer, npages);
  1659. ASSERT_EQ(ret, 0);
  1660. ASSERT_EQ(buffer->cpages, npages);
  1661. pid = fork();
  1662. if (pid == -1)
  1663. ASSERT_EQ(pid, 0);
  1664. if (!pid) {
  1665. /* Child process waitd for SIGTERM from the parent. */
  1666. while (1) {
  1667. }
  1668. perror("Should not reach this\n");
  1669. exit(0);
  1670. }
  1671. /* Parent process writes to COW pages(s) and gets a
  1672. * new copy in system. In case of device private pages,
  1673. * this write causes a migration to system mem first.
  1674. */
  1675. for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
  1676. ptr[i] = i;
  1677. /* Terminate child and wait */
  1678. EXPECT_EQ(0, kill(pid, SIGTERM));
  1679. EXPECT_EQ(pid, waitpid(pid, &status, 0));
  1680. EXPECT_NE(0, WIFSIGNALED(status));
  1681. EXPECT_EQ(SIGTERM, WTERMSIG(status));
  1682. /* Take snapshot to CPU pagetables */
  1683. ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_SNAPSHOT, buffer, npages);
  1684. ASSERT_EQ(ret, 0);
  1685. ASSERT_EQ(buffer->cpages, npages);
  1686. m = buffer->mirror;
  1687. for (i = 0; i < npages; i++)
  1688. ASSERT_EQ(HMM_DMIRROR_PROT_WRITE, m[i]);
  1689. hmm_buffer_free(buffer);
  1690. }
  1691. TEST_HARNESS_MAIN