timerfd.c 2.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133
  1. // SPDX-License-Identifier: GPL-2.0
  2. #define _GNU_SOURCE
  3. #include <sched.h>
  4. #include <sys/timerfd.h>
  5. #include <sys/syscall.h>
  6. #include <sys/types.h>
  7. #include <sys/wait.h>
  8. #include <time.h>
  9. #include <unistd.h>
  10. #include <stdlib.h>
  11. #include <stdio.h>
  12. #include <stdint.h>
  13. #include "log.h"
  14. #include "timens.h"
  15. static int tclock_gettime(clock_t clockid, struct timespec *now)
  16. {
  17. if (clockid == CLOCK_BOOTTIME_ALARM)
  18. clockid = CLOCK_BOOTTIME;
  19. return clock_gettime(clockid, now);
  20. }
  21. int run_test(int clockid, struct timespec now)
  22. {
  23. struct itimerspec new_value;
  24. long long elapsed;
  25. int fd, i;
  26. if (check_skip(clockid))
  27. return 0;
  28. if (tclock_gettime(clockid, &now))
  29. return pr_perror("clock_gettime(%d)", clockid);
  30. for (i = 0; i < 2; i++) {
  31. int flags = 0;
  32. new_value.it_value.tv_sec = 3600;
  33. new_value.it_value.tv_nsec = 0;
  34. new_value.it_interval.tv_sec = 1;
  35. new_value.it_interval.tv_nsec = 0;
  36. if (i == 1) {
  37. new_value.it_value.tv_sec += now.tv_sec;
  38. new_value.it_value.tv_nsec += now.tv_nsec;
  39. }
  40. fd = timerfd_create(clockid, 0);
  41. if (fd == -1)
  42. return pr_perror("timerfd_create(%d)", clockid);
  43. if (i == 1)
  44. flags |= TFD_TIMER_ABSTIME;
  45. if (timerfd_settime(fd, flags, &new_value, NULL))
  46. return pr_perror("timerfd_settime(%d)", clockid);
  47. if (timerfd_gettime(fd, &new_value))
  48. return pr_perror("timerfd_gettime(%d)", clockid);
  49. elapsed = new_value.it_value.tv_sec;
  50. if (abs(elapsed - 3600) > 60) {
  51. ksft_test_result_fail("clockid: %d elapsed: %lld\n",
  52. clockid, elapsed);
  53. return 1;
  54. }
  55. close(fd);
  56. }
  57. ksft_test_result_pass("clockid=%d\n", clockid);
  58. return 0;
  59. }
  60. int main(int argc, char *argv[])
  61. {
  62. int ret, status, len, fd;
  63. char buf[4096];
  64. pid_t pid;
  65. struct timespec btime_now, mtime_now;
  66. nscheck();
  67. check_supported_timers();
  68. ksft_set_plan(3);
  69. clock_gettime(CLOCK_MONOTONIC, &mtime_now);
  70. clock_gettime(CLOCK_BOOTTIME, &btime_now);
  71. if (unshare_timens())
  72. return 1;
  73. len = snprintf(buf, sizeof(buf), "%d %d 0\n%d %d 0",
  74. CLOCK_MONOTONIC, 70 * 24 * 3600,
  75. CLOCK_BOOTTIME, 9 * 24 * 3600);
  76. fd = open("/proc/self/timens_offsets", O_WRONLY);
  77. if (fd < 0)
  78. return pr_perror("/proc/self/timens_offsets");
  79. if (write(fd, buf, len) != len)
  80. return pr_perror("/proc/self/timens_offsets");
  81. close(fd);
  82. mtime_now.tv_sec += 70 * 24 * 3600;
  83. btime_now.tv_sec += 9 * 24 * 3600;
  84. pid = fork();
  85. if (pid < 0)
  86. return pr_perror("Unable to fork");
  87. if (pid == 0) {
  88. ret = 0;
  89. ret |= run_test(CLOCK_BOOTTIME, btime_now);
  90. ret |= run_test(CLOCK_MONOTONIC, mtime_now);
  91. ret |= run_test(CLOCK_BOOTTIME_ALARM, btime_now);
  92. if (ret)
  93. ksft_exit_fail();
  94. ksft_exit_pass();
  95. return ret;
  96. }
  97. if (waitpid(pid, &status, 0) != pid)
  98. return pr_perror("Unable to wait the child process");
  99. if (WIFEXITED(status))
  100. return WEXITSTATUS(status);
  101. return 1;
  102. }