so_txtime.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Test the SO_TXTIME API
  4. *
  5. * Takes a stream of { payload, delivery time }[], to be sent across two
  6. * processes. Start this program on two separate network namespaces or
  7. * connected hosts, one instance in transmit mode and the other in receive
  8. * mode using the '-r' option. Receiver will compare arrival timestamps to
  9. * the expected stream. Sender will read transmit timestamps from the error
  10. * queue. The streams can differ due to out-of-order delivery and drops.
  11. */
  12. #define _GNU_SOURCE
  13. #include <arpa/inet.h>
  14. #include <error.h>
  15. #include <errno.h>
  16. #include <inttypes.h>
  17. #include <linux/net_tstamp.h>
  18. #include <linux/errqueue.h>
  19. #include <linux/if_ether.h>
  20. #include <linux/ipv6.h>
  21. #include <linux/udp.h>
  22. #include <stdbool.h>
  23. #include <stdlib.h>
  24. #include <stdio.h>
  25. #include <string.h>
  26. #include <sys/socket.h>
  27. #include <sys/stat.h>
  28. #include <sys/time.h>
  29. #include <sys/types.h>
  30. #include <time.h>
  31. #include <unistd.h>
  32. #include <poll.h>
  33. static int cfg_clockid = CLOCK_TAI;
  34. static uint16_t cfg_port = 8000;
  35. static int cfg_variance_us = 4000;
  36. static uint64_t cfg_start_time_ns;
  37. static int cfg_mark;
  38. static bool cfg_rx;
  39. static uint64_t glob_tstart;
  40. static uint64_t tdeliver_max;
  41. /* encode one timed transmission (of a 1B payload) */
  42. struct timed_send {
  43. char data;
  44. int64_t delay_us;
  45. };
  46. #define MAX_NUM_PKT 8
  47. static struct timed_send cfg_buf[MAX_NUM_PKT];
  48. static int cfg_num_pkt;
  49. static int cfg_errq_level;
  50. static int cfg_errq_type;
  51. static struct sockaddr_storage cfg_dst_addr;
  52. static struct sockaddr_storage cfg_src_addr;
  53. static socklen_t cfg_alen;
  54. static uint64_t gettime_ns(clockid_t clock)
  55. {
  56. struct timespec ts;
  57. if (clock_gettime(clock, &ts))
  58. error(1, errno, "gettime");
  59. return ts.tv_sec * (1000ULL * 1000 * 1000) + ts.tv_nsec;
  60. }
  61. static void do_send_one(int fdt, struct timed_send *ts)
  62. {
  63. char control[CMSG_SPACE(sizeof(uint64_t))];
  64. struct msghdr msg = {0};
  65. struct iovec iov = {0};
  66. struct cmsghdr *cm;
  67. uint64_t tdeliver;
  68. int ret;
  69. iov.iov_base = &ts->data;
  70. iov.iov_len = 1;
  71. msg.msg_iov = &iov;
  72. msg.msg_iovlen = 1;
  73. msg.msg_name = (struct sockaddr *)&cfg_dst_addr;
  74. msg.msg_namelen = cfg_alen;
  75. if (ts->delay_us >= 0) {
  76. memset(control, 0, sizeof(control));
  77. msg.msg_control = &control;
  78. msg.msg_controllen = sizeof(control);
  79. tdeliver = glob_tstart + ts->delay_us * 1000;
  80. tdeliver_max = tdeliver_max > tdeliver ?
  81. tdeliver_max : tdeliver;
  82. cm = CMSG_FIRSTHDR(&msg);
  83. cm->cmsg_level = SOL_SOCKET;
  84. cm->cmsg_type = SCM_TXTIME;
  85. cm->cmsg_len = CMSG_LEN(sizeof(tdeliver));
  86. memcpy(CMSG_DATA(cm), &tdeliver, sizeof(tdeliver));
  87. }
  88. ret = sendmsg(fdt, &msg, 0);
  89. if (ret == -1)
  90. error(1, errno, "write");
  91. if (ret == 0)
  92. error(1, 0, "write: 0B");
  93. }
  94. static void do_recv_one(int fdr, struct timed_send *ts)
  95. {
  96. int64_t tstop, texpect;
  97. char rbuf[2];
  98. int ret;
  99. ret = recv(fdr, rbuf, sizeof(rbuf), 0);
  100. if (ret == -1 && errno == EAGAIN)
  101. error(1, EAGAIN, "recv: timeout");
  102. if (ret == -1)
  103. error(1, errno, "read");
  104. if (ret != 1)
  105. error(1, 0, "read: %dB", ret);
  106. tstop = (gettime_ns(cfg_clockid) - glob_tstart) / 1000;
  107. texpect = ts->delay_us >= 0 ? ts->delay_us : 0;
  108. fprintf(stderr, "payload:%c delay:%lld expected:%lld (us)\n",
  109. rbuf[0], (long long)tstop, (long long)texpect);
  110. if (rbuf[0] != ts->data)
  111. error(1, 0, "payload mismatch. expected %c", ts->data);
  112. if (llabs(tstop - texpect) > cfg_variance_us)
  113. error(1, 0, "exceeds variance (%d us)", cfg_variance_us);
  114. }
  115. static void do_recv_verify_empty(int fdr)
  116. {
  117. char rbuf[1];
  118. int ret;
  119. ret = recv(fdr, rbuf, sizeof(rbuf), 0);
  120. if (ret != -1 || errno != EAGAIN)
  121. error(1, 0, "recv: not empty as expected (%d, %d)", ret, errno);
  122. }
  123. static int do_recv_errqueue_timeout(int fdt)
  124. {
  125. char control[CMSG_SPACE(sizeof(struct sock_extended_err)) +
  126. CMSG_SPACE(sizeof(struct sockaddr_in6))] = {0};
  127. char data[sizeof(struct ethhdr) + sizeof(struct ipv6hdr) +
  128. sizeof(struct udphdr) + 1];
  129. struct sock_extended_err *err;
  130. int ret, num_tstamp = 0;
  131. struct msghdr msg = {0};
  132. struct iovec iov = {0};
  133. struct cmsghdr *cm;
  134. int64_t tstamp = 0;
  135. iov.iov_base = data;
  136. iov.iov_len = sizeof(data);
  137. msg.msg_iov = &iov;
  138. msg.msg_iovlen = 1;
  139. msg.msg_control = control;
  140. msg.msg_controllen = sizeof(control);
  141. while (1) {
  142. const char *reason;
  143. ret = recvmsg(fdt, &msg, MSG_ERRQUEUE);
  144. if (ret == -1 && errno == EAGAIN)
  145. break;
  146. if (ret == -1)
  147. error(1, errno, "errqueue");
  148. if (msg.msg_flags != MSG_ERRQUEUE)
  149. error(1, 0, "errqueue: flags 0x%x\n", msg.msg_flags);
  150. cm = CMSG_FIRSTHDR(&msg);
  151. if (cm->cmsg_level != cfg_errq_level ||
  152. cm->cmsg_type != cfg_errq_type)
  153. error(1, 0, "errqueue: type 0x%x.0x%x\n",
  154. cm->cmsg_level, cm->cmsg_type);
  155. err = (struct sock_extended_err *)CMSG_DATA(cm);
  156. if (err->ee_origin != SO_EE_ORIGIN_TXTIME)
  157. error(1, 0, "errqueue: origin 0x%x\n", err->ee_origin);
  158. switch (err->ee_errno) {
  159. case ECANCELED:
  160. if (err->ee_code != SO_EE_CODE_TXTIME_MISSED)
  161. error(1, 0, "errqueue: unknown ECANCELED %u\n",
  162. err->ee_code);
  163. reason = "missed txtime";
  164. break;
  165. case EINVAL:
  166. if (err->ee_code != SO_EE_CODE_TXTIME_INVALID_PARAM)
  167. error(1, 0, "errqueue: unknown EINVAL %u\n",
  168. err->ee_code);
  169. reason = "invalid txtime";
  170. break;
  171. default:
  172. error(1, 0, "errqueue: errno %u code %u\n",
  173. err->ee_errno, err->ee_code);
  174. }
  175. tstamp = ((int64_t) err->ee_data) << 32 | err->ee_info;
  176. tstamp -= (int64_t) glob_tstart;
  177. tstamp /= 1000 * 1000;
  178. fprintf(stderr, "send: pkt %c at %" PRId64 "ms dropped: %s\n",
  179. data[ret - 1], tstamp, reason);
  180. msg.msg_flags = 0;
  181. msg.msg_controllen = sizeof(control);
  182. num_tstamp++;
  183. }
  184. return num_tstamp;
  185. }
  186. static void recv_errqueue_msgs(int fdt)
  187. {
  188. struct pollfd pfd = { .fd = fdt, .events = POLLERR };
  189. const int timeout_ms = 10;
  190. int ret, num_tstamp = 0;
  191. do {
  192. ret = poll(&pfd, 1, timeout_ms);
  193. if (ret == -1)
  194. error(1, errno, "poll");
  195. if (ret && (pfd.revents & POLLERR))
  196. num_tstamp += do_recv_errqueue_timeout(fdt);
  197. if (num_tstamp == cfg_num_pkt)
  198. break;
  199. } while (gettime_ns(cfg_clockid) < tdeliver_max);
  200. }
  201. static void start_time_wait(void)
  202. {
  203. uint64_t now;
  204. int err;
  205. if (!cfg_start_time_ns)
  206. return;
  207. now = gettime_ns(CLOCK_REALTIME);
  208. if (cfg_start_time_ns < now)
  209. return;
  210. err = usleep((cfg_start_time_ns - now) / 1000);
  211. if (err)
  212. error(1, errno, "usleep");
  213. }
  214. static void setsockopt_txtime(int fd)
  215. {
  216. struct sock_txtime so_txtime_val = { .clockid = cfg_clockid };
  217. struct sock_txtime so_txtime_val_read = { 0 };
  218. socklen_t vallen = sizeof(so_txtime_val);
  219. so_txtime_val.flags = SOF_TXTIME_REPORT_ERRORS;
  220. if (setsockopt(fd, SOL_SOCKET, SO_TXTIME,
  221. &so_txtime_val, sizeof(so_txtime_val)))
  222. error(1, errno, "setsockopt txtime");
  223. if (getsockopt(fd, SOL_SOCKET, SO_TXTIME,
  224. &so_txtime_val_read, &vallen))
  225. error(1, errno, "getsockopt txtime");
  226. if (vallen != sizeof(so_txtime_val) ||
  227. memcmp(&so_txtime_val, &so_txtime_val_read, vallen))
  228. error(1, 0, "getsockopt txtime: mismatch");
  229. }
  230. static int setup_tx(struct sockaddr *addr, socklen_t alen)
  231. {
  232. int fd;
  233. fd = socket(addr->sa_family, SOCK_DGRAM, 0);
  234. if (fd == -1)
  235. error(1, errno, "socket t");
  236. if (connect(fd, addr, alen))
  237. error(1, errno, "connect");
  238. setsockopt_txtime(fd);
  239. if (cfg_mark &&
  240. setsockopt(fd, SOL_SOCKET, SO_MARK, &cfg_mark, sizeof(cfg_mark)))
  241. error(1, errno, "setsockopt mark");
  242. return fd;
  243. }
  244. static int setup_rx(struct sockaddr *addr, socklen_t alen)
  245. {
  246. struct timeval tv = { .tv_usec = 100 * 1000 };
  247. int fd;
  248. fd = socket(addr->sa_family, SOCK_DGRAM, 0);
  249. if (fd == -1)
  250. error(1, errno, "socket r");
  251. if (bind(fd, addr, alen))
  252. error(1, errno, "bind");
  253. if (setsockopt(fd, SOL_SOCKET, SO_RCVTIMEO, &tv, sizeof(tv)))
  254. error(1, errno, "setsockopt rcv timeout");
  255. return fd;
  256. }
  257. static void do_test_tx(struct sockaddr *addr, socklen_t alen)
  258. {
  259. int fdt, i;
  260. fprintf(stderr, "\nSO_TXTIME ipv%c clock %s\n",
  261. addr->sa_family == PF_INET ? '4' : '6',
  262. cfg_clockid == CLOCK_TAI ? "tai" : "monotonic");
  263. fdt = setup_tx(addr, alen);
  264. start_time_wait();
  265. glob_tstart = gettime_ns(cfg_clockid);
  266. for (i = 0; i < cfg_num_pkt; i++)
  267. do_send_one(fdt, &cfg_buf[i]);
  268. recv_errqueue_msgs(fdt);
  269. if (close(fdt))
  270. error(1, errno, "close t");
  271. }
  272. static void do_test_rx(struct sockaddr *addr, socklen_t alen)
  273. {
  274. int fdr, i;
  275. fdr = setup_rx(addr, alen);
  276. start_time_wait();
  277. glob_tstart = gettime_ns(cfg_clockid);
  278. for (i = 0; i < cfg_num_pkt; i++)
  279. do_recv_one(fdr, &cfg_buf[i]);
  280. do_recv_verify_empty(fdr);
  281. if (close(fdr))
  282. error(1, errno, "close r");
  283. }
  284. static void setup_sockaddr(int domain, const char *str_addr,
  285. struct sockaddr_storage *sockaddr)
  286. {
  287. struct sockaddr_in6 *addr6 = (void *) sockaddr;
  288. struct sockaddr_in *addr4 = (void *) sockaddr;
  289. switch (domain) {
  290. case PF_INET:
  291. memset(addr4, 0, sizeof(*addr4));
  292. addr4->sin_family = AF_INET;
  293. addr4->sin_port = htons(cfg_port);
  294. if (str_addr &&
  295. inet_pton(AF_INET, str_addr, &(addr4->sin_addr)) != 1)
  296. error(1, 0, "ipv4 parse error: %s", str_addr);
  297. break;
  298. case PF_INET6:
  299. memset(addr6, 0, sizeof(*addr6));
  300. addr6->sin6_family = AF_INET6;
  301. addr6->sin6_port = htons(cfg_port);
  302. if (str_addr &&
  303. inet_pton(AF_INET6, str_addr, &(addr6->sin6_addr)) != 1)
  304. error(1, 0, "ipv6 parse error: %s", str_addr);
  305. break;
  306. }
  307. }
  308. static int parse_io(const char *optarg, struct timed_send *array)
  309. {
  310. char *arg, *tok;
  311. int aoff = 0;
  312. arg = strdup(optarg);
  313. if (!arg)
  314. error(1, errno, "strdup");
  315. while ((tok = strtok(arg, ","))) {
  316. arg = NULL; /* only pass non-zero on first call */
  317. if (aoff / 2 == MAX_NUM_PKT)
  318. error(1, 0, "exceeds max pkt count (%d)", MAX_NUM_PKT);
  319. if (aoff & 1) { /* parse delay */
  320. array->delay_us = strtol(tok, NULL, 0) * 1000;
  321. array++;
  322. } else { /* parse character */
  323. array->data = tok[0];
  324. }
  325. aoff++;
  326. }
  327. free(arg);
  328. return aoff / 2;
  329. }
  330. static void usage(const char *progname)
  331. {
  332. fprintf(stderr, "\nUsage: %s [options] <payload>\n"
  333. "Options:\n"
  334. " -4 only IPv4\n"
  335. " -6 only IPv6\n"
  336. " -c <clock> monotonic or tai (default)\n"
  337. " -D <addr> destination IP address (server)\n"
  338. " -S <addr> source IP address (client)\n"
  339. " -r run rx mode\n"
  340. " -t <nsec> start time (UTC nanoseconds)\n"
  341. " -m <mark> socket mark\n"
  342. "\n",
  343. progname);
  344. exit(1);
  345. }
  346. static void parse_opts(int argc, char **argv)
  347. {
  348. char *daddr = NULL, *saddr = NULL;
  349. int domain = PF_UNSPEC;
  350. int c;
  351. while ((c = getopt(argc, argv, "46c:S:D:rt:m:")) != -1) {
  352. switch (c) {
  353. case '4':
  354. if (domain != PF_UNSPEC)
  355. error(1, 0, "Pass one of -4 or -6");
  356. domain = PF_INET;
  357. cfg_alen = sizeof(struct sockaddr_in);
  358. cfg_errq_level = SOL_IP;
  359. cfg_errq_type = IP_RECVERR;
  360. break;
  361. case '6':
  362. if (domain != PF_UNSPEC)
  363. error(1, 0, "Pass one of -4 or -6");
  364. domain = PF_INET6;
  365. cfg_alen = sizeof(struct sockaddr_in6);
  366. cfg_errq_level = SOL_IPV6;
  367. cfg_errq_type = IPV6_RECVERR;
  368. break;
  369. case 'c':
  370. if (!strcmp(optarg, "tai"))
  371. cfg_clockid = CLOCK_TAI;
  372. else if (!strcmp(optarg, "monotonic") ||
  373. !strcmp(optarg, "mono"))
  374. cfg_clockid = CLOCK_MONOTONIC;
  375. else
  376. error(1, 0, "unknown clock id %s", optarg);
  377. break;
  378. case 'S':
  379. saddr = optarg;
  380. break;
  381. case 'D':
  382. daddr = optarg;
  383. break;
  384. case 'r':
  385. cfg_rx = true;
  386. break;
  387. case 't':
  388. cfg_start_time_ns = strtoll(optarg, NULL, 0);
  389. break;
  390. case 'm':
  391. cfg_mark = strtol(optarg, NULL, 0);
  392. break;
  393. default:
  394. usage(argv[0]);
  395. }
  396. }
  397. if (argc - optind != 1)
  398. usage(argv[0]);
  399. if (domain == PF_UNSPEC)
  400. error(1, 0, "Pass one of -4 or -6");
  401. if (!daddr)
  402. error(1, 0, "-D <server addr> required\n");
  403. if (!cfg_rx && !saddr)
  404. error(1, 0, "-S <client addr> required\n");
  405. setup_sockaddr(domain, daddr, &cfg_dst_addr);
  406. setup_sockaddr(domain, saddr, &cfg_src_addr);
  407. cfg_num_pkt = parse_io(argv[optind], cfg_buf);
  408. }
  409. int main(int argc, char **argv)
  410. {
  411. parse_opts(argc, argv);
  412. if (cfg_rx)
  413. do_test_rx((void *)&cfg_dst_addr, cfg_alen);
  414. else
  415. do_test_tx((void *)&cfg_src_addr, cfg_alen);
  416. return 0;
  417. }