ip_defrag.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472
  1. // SPDX-License-Identifier: GPL-2.0
  2. #define _GNU_SOURCE
  3. #include <arpa/inet.h>
  4. #include <errno.h>
  5. #include <error.h>
  6. #include <linux/in.h>
  7. #include <netinet/ip.h>
  8. #include <netinet/ip6.h>
  9. #include <netinet/udp.h>
  10. #include <stdbool.h>
  11. #include <stdio.h>
  12. #include <stdlib.h>
  13. #include <string.h>
  14. #include <time.h>
  15. #include <unistd.h>
  16. static bool cfg_do_ipv4;
  17. static bool cfg_do_ipv6;
  18. static bool cfg_verbose;
  19. static bool cfg_overlap;
  20. static bool cfg_permissive;
  21. static unsigned short cfg_port = 9000;
  22. const struct in_addr addr4 = { .s_addr = __constant_htonl(INADDR_LOOPBACK + 2) };
  23. const struct in6_addr addr6 = IN6ADDR_LOOPBACK_INIT;
  24. #define IP4_HLEN (sizeof(struct iphdr))
  25. #define IP6_HLEN (sizeof(struct ip6_hdr))
  26. #define UDP_HLEN (sizeof(struct udphdr))
  27. /* IPv6 fragment header lenth. */
  28. #define FRAG_HLEN 8
  29. static int payload_len;
  30. static int max_frag_len;
  31. #define MSG_LEN_MAX 10000 /* Max UDP payload length. */
  32. #define IP4_MF (1u << 13) /* IPv4 MF flag. */
  33. #define IP6_MF (1) /* IPv6 MF flag. */
  34. #define CSUM_MANGLED_0 (0xffff)
  35. static uint8_t udp_payload[MSG_LEN_MAX];
  36. static uint8_t ip_frame[IP_MAXPACKET];
  37. static uint32_t ip_id = 0xabcd;
  38. static int msg_counter;
  39. static int frag_counter;
  40. static unsigned int seed;
  41. /* Receive a UDP packet. Validate it matches udp_payload. */
  42. static void recv_validate_udp(int fd_udp)
  43. {
  44. ssize_t ret;
  45. static uint8_t recv_buff[MSG_LEN_MAX];
  46. ret = recv(fd_udp, recv_buff, payload_len, 0);
  47. msg_counter++;
  48. if (cfg_overlap) {
  49. if (ret == -1 && (errno == ETIMEDOUT || errno == EAGAIN))
  50. return; /* OK */
  51. if (!cfg_permissive) {
  52. if (ret != -1)
  53. error(1, 0, "recv: expected timeout; got %d",
  54. (int)ret);
  55. error(1, errno, "recv: expected timeout: %d", errno);
  56. }
  57. }
  58. if (ret == -1)
  59. error(1, errno, "recv: payload_len = %d max_frag_len = %d",
  60. payload_len, max_frag_len);
  61. if (ret != payload_len)
  62. error(1, 0, "recv: wrong size: %d vs %d", (int)ret, payload_len);
  63. if (memcmp(udp_payload, recv_buff, payload_len))
  64. error(1, 0, "recv: wrong data");
  65. }
  66. static uint32_t raw_checksum(uint8_t *buf, int len, uint32_t sum)
  67. {
  68. int i;
  69. for (i = 0; i < (len & ~1U); i += 2) {
  70. sum += (u_int16_t)ntohs(*((u_int16_t *)(buf + i)));
  71. if (sum > 0xffff)
  72. sum -= 0xffff;
  73. }
  74. if (i < len) {
  75. sum += buf[i] << 8;
  76. if (sum > 0xffff)
  77. sum -= 0xffff;
  78. }
  79. return sum;
  80. }
  81. static uint16_t udp_checksum(struct ip *iphdr, struct udphdr *udphdr)
  82. {
  83. uint32_t sum = 0;
  84. uint16_t res;
  85. sum = raw_checksum((uint8_t *)&iphdr->ip_src, 2 * sizeof(iphdr->ip_src),
  86. IPPROTO_UDP + (uint32_t)(UDP_HLEN + payload_len));
  87. sum = raw_checksum((uint8_t *)udphdr, UDP_HLEN, sum);
  88. sum = raw_checksum((uint8_t *)udp_payload, payload_len, sum);
  89. res = 0xffff & ~sum;
  90. if (res)
  91. return htons(res);
  92. else
  93. return CSUM_MANGLED_0;
  94. }
  95. static uint16_t udp6_checksum(struct ip6_hdr *iphdr, struct udphdr *udphdr)
  96. {
  97. uint32_t sum = 0;
  98. uint16_t res;
  99. sum = raw_checksum((uint8_t *)&iphdr->ip6_src, 2 * sizeof(iphdr->ip6_src),
  100. IPPROTO_UDP);
  101. sum = raw_checksum((uint8_t *)&udphdr->len, sizeof(udphdr->len), sum);
  102. sum = raw_checksum((uint8_t *)udphdr, UDP_HLEN, sum);
  103. sum = raw_checksum((uint8_t *)udp_payload, payload_len, sum);
  104. res = 0xffff & ~sum;
  105. if (res)
  106. return htons(res);
  107. else
  108. return CSUM_MANGLED_0;
  109. }
  110. static void send_fragment(int fd_raw, struct sockaddr *addr, socklen_t alen,
  111. int offset, bool ipv6)
  112. {
  113. int frag_len;
  114. int res;
  115. int payload_offset = offset > 0 ? offset - UDP_HLEN : 0;
  116. uint8_t *frag_start = ipv6 ? ip_frame + IP6_HLEN + FRAG_HLEN :
  117. ip_frame + IP4_HLEN;
  118. if (offset == 0) {
  119. struct udphdr udphdr;
  120. udphdr.source = htons(cfg_port + 1);
  121. udphdr.dest = htons(cfg_port);
  122. udphdr.len = htons(UDP_HLEN + payload_len);
  123. udphdr.check = 0;
  124. if (ipv6)
  125. udphdr.check = udp6_checksum((struct ip6_hdr *)ip_frame, &udphdr);
  126. else
  127. udphdr.check = udp_checksum((struct ip *)ip_frame, &udphdr);
  128. memcpy(frag_start, &udphdr, UDP_HLEN);
  129. }
  130. if (ipv6) {
  131. struct ip6_hdr *ip6hdr = (struct ip6_hdr *)ip_frame;
  132. struct ip6_frag *fraghdr = (struct ip6_frag *)(ip_frame + IP6_HLEN);
  133. if (payload_len - payload_offset <= max_frag_len && offset > 0) {
  134. /* This is the last fragment. */
  135. frag_len = FRAG_HLEN + payload_len - payload_offset;
  136. fraghdr->ip6f_offlg = htons(offset);
  137. } else {
  138. frag_len = FRAG_HLEN + max_frag_len;
  139. fraghdr->ip6f_offlg = htons(offset | IP6_MF);
  140. }
  141. ip6hdr->ip6_plen = htons(frag_len);
  142. if (offset == 0)
  143. memcpy(frag_start + UDP_HLEN, udp_payload,
  144. frag_len - FRAG_HLEN - UDP_HLEN);
  145. else
  146. memcpy(frag_start, udp_payload + payload_offset,
  147. frag_len - FRAG_HLEN);
  148. frag_len += IP6_HLEN;
  149. } else {
  150. struct ip *iphdr = (struct ip *)ip_frame;
  151. if (payload_len - payload_offset <= max_frag_len && offset > 0) {
  152. /* This is the last fragment. */
  153. frag_len = IP4_HLEN + payload_len - payload_offset;
  154. iphdr->ip_off = htons(offset / 8);
  155. } else {
  156. frag_len = IP4_HLEN + max_frag_len;
  157. iphdr->ip_off = htons(offset / 8 | IP4_MF);
  158. }
  159. iphdr->ip_len = htons(frag_len);
  160. if (offset == 0)
  161. memcpy(frag_start + UDP_HLEN, udp_payload,
  162. frag_len - IP4_HLEN - UDP_HLEN);
  163. else
  164. memcpy(frag_start, udp_payload + payload_offset,
  165. frag_len - IP4_HLEN);
  166. }
  167. res = sendto(fd_raw, ip_frame, frag_len, 0, addr, alen);
  168. if (res < 0 && errno != EPERM)
  169. error(1, errno, "send_fragment");
  170. if (res >= 0 && res != frag_len)
  171. error(1, 0, "send_fragment: %d vs %d", res, frag_len);
  172. frag_counter++;
  173. }
  174. static void send_udp_frags(int fd_raw, struct sockaddr *addr,
  175. socklen_t alen, bool ipv6)
  176. {
  177. struct ip *iphdr = (struct ip *)ip_frame;
  178. struct ip6_hdr *ip6hdr = (struct ip6_hdr *)ip_frame;
  179. int res;
  180. int offset;
  181. int frag_len;
  182. /* Send the UDP datagram using raw IP fragments: the 0th fragment
  183. * has the UDP header; other fragments are pieces of udp_payload
  184. * split in chunks of frag_len size.
  185. *
  186. * Odd fragments (1st, 3rd, 5th, etc.) are sent out first, then
  187. * even fragments (0th, 2nd, etc.) are sent out.
  188. */
  189. if (ipv6) {
  190. struct ip6_frag *fraghdr = (struct ip6_frag *)(ip_frame + IP6_HLEN);
  191. ((struct sockaddr_in6 *)addr)->sin6_port = 0;
  192. memset(ip6hdr, 0, sizeof(*ip6hdr));
  193. ip6hdr->ip6_flow = htonl(6<<28); /* Version. */
  194. ip6hdr->ip6_nxt = IPPROTO_FRAGMENT;
  195. ip6hdr->ip6_hops = 255;
  196. ip6hdr->ip6_src = addr6;
  197. ip6hdr->ip6_dst = addr6;
  198. fraghdr->ip6f_nxt = IPPROTO_UDP;
  199. fraghdr->ip6f_reserved = 0;
  200. fraghdr->ip6f_ident = htonl(ip_id++);
  201. } else {
  202. memset(iphdr, 0, sizeof(*iphdr));
  203. iphdr->ip_hl = 5;
  204. iphdr->ip_v = 4;
  205. iphdr->ip_tos = 0;
  206. iphdr->ip_id = htons(ip_id++);
  207. iphdr->ip_ttl = 0x40;
  208. iphdr->ip_p = IPPROTO_UDP;
  209. iphdr->ip_src.s_addr = htonl(INADDR_LOOPBACK);
  210. iphdr->ip_dst = addr4;
  211. iphdr->ip_sum = 0;
  212. }
  213. /* Occasionally test in-order fragments. */
  214. if (!cfg_overlap && (rand() % 100 < 15)) {
  215. offset = 0;
  216. while (offset < (UDP_HLEN + payload_len)) {
  217. send_fragment(fd_raw, addr, alen, offset, ipv6);
  218. offset += max_frag_len;
  219. }
  220. return;
  221. }
  222. /* Occasionally test IPv4 "runs" (see net/ipv4/ip_fragment.c) */
  223. if (!cfg_overlap && (rand() % 100 < 20) &&
  224. (payload_len > 9 * max_frag_len)) {
  225. offset = 6 * max_frag_len;
  226. while (offset < (UDP_HLEN + payload_len)) {
  227. send_fragment(fd_raw, addr, alen, offset, ipv6);
  228. offset += max_frag_len;
  229. }
  230. offset = 3 * max_frag_len;
  231. while (offset < 6 * max_frag_len) {
  232. send_fragment(fd_raw, addr, alen, offset, ipv6);
  233. offset += max_frag_len;
  234. }
  235. offset = 0;
  236. while (offset < 3 * max_frag_len) {
  237. send_fragment(fd_raw, addr, alen, offset, ipv6);
  238. offset += max_frag_len;
  239. }
  240. return;
  241. }
  242. /* Odd fragments. */
  243. offset = max_frag_len;
  244. while (offset < (UDP_HLEN + payload_len)) {
  245. send_fragment(fd_raw, addr, alen, offset, ipv6);
  246. /* IPv4 ignores duplicates, so randomly send a duplicate. */
  247. if (rand() % 100 == 1)
  248. send_fragment(fd_raw, addr, alen, offset, ipv6);
  249. offset += 2 * max_frag_len;
  250. }
  251. if (cfg_overlap) {
  252. /* Send an extra random fragment.
  253. *
  254. * Duplicates and some fragments completely inside
  255. * previously sent fragments are dropped/ignored. So
  256. * random offset and frag_len can result in a dropped
  257. * fragment instead of a dropped queue/packet. Thus we
  258. * hard-code offset and frag_len.
  259. */
  260. if (max_frag_len * 4 < payload_len || max_frag_len < 16) {
  261. /* not enough payload for random offset and frag_len. */
  262. offset = 8;
  263. frag_len = UDP_HLEN + max_frag_len;
  264. } else {
  265. offset = rand() % (payload_len / 2);
  266. frag_len = 2 * max_frag_len + 1 + rand() % 256;
  267. }
  268. if (ipv6) {
  269. struct ip6_frag *fraghdr = (struct ip6_frag *)(ip_frame + IP6_HLEN);
  270. /* sendto() returns EINVAL if offset + frag_len is too small. */
  271. /* In IPv6 if !!(frag_len % 8), the fragment is dropped. */
  272. frag_len &= ~0x7;
  273. fraghdr->ip6f_offlg = htons(offset / 8 | IP6_MF);
  274. ip6hdr->ip6_plen = htons(frag_len);
  275. frag_len += IP6_HLEN;
  276. } else {
  277. frag_len += IP4_HLEN;
  278. iphdr->ip_off = htons(offset / 8 | IP4_MF);
  279. iphdr->ip_len = htons(frag_len);
  280. }
  281. res = sendto(fd_raw, ip_frame, frag_len, 0, addr, alen);
  282. if (res < 0 && errno != EPERM)
  283. error(1, errno, "sendto overlap: %d", frag_len);
  284. if (res >= 0 && res != frag_len)
  285. error(1, 0, "sendto overlap: %d vs %d", (int)res, frag_len);
  286. frag_counter++;
  287. }
  288. /* Event fragments. */
  289. offset = 0;
  290. while (offset < (UDP_HLEN + payload_len)) {
  291. send_fragment(fd_raw, addr, alen, offset, ipv6);
  292. /* IPv4 ignores duplicates, so randomly send a duplicate. */
  293. if (rand() % 100 == 1)
  294. send_fragment(fd_raw, addr, alen, offset, ipv6);
  295. offset += 2 * max_frag_len;
  296. }
  297. }
  298. static void run_test(struct sockaddr *addr, socklen_t alen, bool ipv6)
  299. {
  300. int fd_tx_raw, fd_rx_udp;
  301. /* Frag queue timeout is set to one second in the calling script;
  302. * socket timeout should be just a bit longer to avoid tests interfering
  303. * with each other.
  304. */
  305. struct timeval tv = { .tv_sec = 1, .tv_usec = 10 };
  306. int idx;
  307. int min_frag_len = 8;
  308. /* Initialize the payload. */
  309. for (idx = 0; idx < MSG_LEN_MAX; ++idx)
  310. udp_payload[idx] = idx % 256;
  311. /* Open sockets. */
  312. fd_tx_raw = socket(addr->sa_family, SOCK_RAW, IPPROTO_RAW);
  313. if (fd_tx_raw == -1)
  314. error(1, errno, "socket tx_raw");
  315. fd_rx_udp = socket(addr->sa_family, SOCK_DGRAM, 0);
  316. if (fd_rx_udp == -1)
  317. error(1, errno, "socket rx_udp");
  318. if (bind(fd_rx_udp, addr, alen))
  319. error(1, errno, "bind");
  320. /* Fail fast. */
  321. if (setsockopt(fd_rx_udp, SOL_SOCKET, SO_RCVTIMEO, &tv, sizeof(tv)))
  322. error(1, errno, "setsockopt rcv timeout");
  323. for (payload_len = min_frag_len; payload_len < MSG_LEN_MAX;
  324. payload_len += (rand() % 4096)) {
  325. if (cfg_verbose)
  326. printf("payload_len: %d\n", payload_len);
  327. if (cfg_overlap) {
  328. /* With overlaps, one send/receive pair below takes
  329. * at least one second (== timeout) to run, so there
  330. * is not enough test time to run a nested loop:
  331. * the full overlap test takes 20-30 seconds.
  332. */
  333. max_frag_len = min_frag_len +
  334. rand() % (1500 - FRAG_HLEN - min_frag_len);
  335. send_udp_frags(fd_tx_raw, addr, alen, ipv6);
  336. recv_validate_udp(fd_rx_udp);
  337. } else {
  338. /* Without overlaps, each packet reassembly (== one
  339. * send/receive pair below) takes very little time to
  340. * run, so we can easily afford more thourough testing
  341. * with a nested loop: the full non-overlap test takes
  342. * less than one second).
  343. */
  344. max_frag_len = min_frag_len;
  345. do {
  346. send_udp_frags(fd_tx_raw, addr, alen, ipv6);
  347. recv_validate_udp(fd_rx_udp);
  348. max_frag_len += 8 * (rand() % 8);
  349. } while (max_frag_len < (1500 - FRAG_HLEN) &&
  350. max_frag_len <= payload_len);
  351. }
  352. }
  353. /* Cleanup. */
  354. if (close(fd_tx_raw))
  355. error(1, errno, "close tx_raw");
  356. if (close(fd_rx_udp))
  357. error(1, errno, "close rx_udp");
  358. if (cfg_verbose)
  359. printf("processed %d messages, %d fragments\n",
  360. msg_counter, frag_counter);
  361. fprintf(stderr, "PASS\n");
  362. }
  363. static void run_test_v4(void)
  364. {
  365. struct sockaddr_in addr = {0};
  366. addr.sin_family = AF_INET;
  367. addr.sin_port = htons(cfg_port);
  368. addr.sin_addr = addr4;
  369. run_test((void *)&addr, sizeof(addr), false /* !ipv6 */);
  370. }
  371. static void run_test_v6(void)
  372. {
  373. struct sockaddr_in6 addr = {0};
  374. addr.sin6_family = AF_INET6;
  375. addr.sin6_port = htons(cfg_port);
  376. addr.sin6_addr = addr6;
  377. run_test((void *)&addr, sizeof(addr), true /* ipv6 */);
  378. }
  379. static void parse_opts(int argc, char **argv)
  380. {
  381. int c;
  382. while ((c = getopt(argc, argv, "46opv")) != -1) {
  383. switch (c) {
  384. case '4':
  385. cfg_do_ipv4 = true;
  386. break;
  387. case '6':
  388. cfg_do_ipv6 = true;
  389. break;
  390. case 'o':
  391. cfg_overlap = true;
  392. break;
  393. case 'p':
  394. cfg_permissive = true;
  395. break;
  396. case 'v':
  397. cfg_verbose = true;
  398. break;
  399. default:
  400. error(1, 0, "%s: parse error", argv[0]);
  401. }
  402. }
  403. }
  404. int main(int argc, char **argv)
  405. {
  406. parse_opts(argc, argv);
  407. seed = time(NULL);
  408. srand(seed);
  409. /* Print the seed to track/reproduce potential failures. */
  410. printf("seed = %d\n", seed);
  411. if (cfg_do_ipv4)
  412. run_test_v4();
  413. if (cfg_do_ipv6)
  414. run_test_v6();
  415. return 0;
  416. }