123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145 |
- // SPDX-License-Identifier: GPL-2.0-or-later
- #include <string.h>
- #include <objtool/special.h>
- #include <objtool/builtin.h>
- #define X86_FEATURE_POPCNT (4 * 32 + 23)
- #define X86_FEATURE_SMAP (9 * 32 + 20)
- void arch_handle_alternative(unsigned short feature, struct special_alt *alt)
- {
- switch (feature) {
- case X86_FEATURE_SMAP:
- /*
- * If UACCESS validation is enabled; force that alternative;
- * otherwise force it the other way.
- *
- * What we want to avoid is having both the original and the
- * alternative code flow at the same time, in that case we can
- * find paths that see the STAC but take the NOP instead of
- * CLAC and the other way around.
- */
- if (opts.uaccess)
- alt->skip_orig = true;
- else
- alt->skip_alt = true;
- break;
- case X86_FEATURE_POPCNT:
- /*
- * It has been requested that we don't validate the !POPCNT
- * feature path which is a "very very small percentage of
- * machines".
- */
- alt->skip_orig = true;
- break;
- default:
- break;
- }
- }
- bool arch_support_alt_relocation(struct special_alt *special_alt,
- struct instruction *insn,
- struct reloc *reloc)
- {
- /*
- * The x86 alternatives code adjusts the offsets only when it
- * encounters a branch instruction at the very beginning of the
- * replacement group.
- */
- return insn->offset == special_alt->new_off &&
- (insn->type == INSN_CALL || is_jump(insn));
- }
- /*
- * There are 3 basic jump table patterns:
- *
- * 1. jmpq *[rodata addr](,%reg,8)
- *
- * This is the most common case by far. It jumps to an address in a simple
- * jump table which is stored in .rodata.
- *
- * 2. jmpq *[rodata addr](%rip)
- *
- * This is caused by a rare GCC quirk, currently only seen in three driver
- * functions in the kernel, only with certain obscure non-distro configs.
- *
- * As part of an optimization, GCC makes a copy of an existing switch jump
- * table, modifies it, and then hard-codes the jump (albeit with an indirect
- * jump) to use a single entry in the table. The rest of the jump table and
- * some of its jump targets remain as dead code.
- *
- * In such a case we can just crudely ignore all unreachable instruction
- * warnings for the entire object file. Ideally we would just ignore them
- * for the function, but that would require redesigning the code quite a
- * bit. And honestly that's just not worth doing: unreachable instruction
- * warnings are of questionable value anyway, and this is such a rare issue.
- *
- * 3. mov [rodata addr],%reg1
- * ... some instructions ...
- * jmpq *(%reg1,%reg2,8)
- *
- * This is a fairly uncommon pattern which is new for GCC 6. As of this
- * writing, there are 11 occurrences of it in the allmodconfig kernel.
- *
- * As of GCC 7 there are quite a few more of these and the 'in between' code
- * is significant. Esp. with KASAN enabled some of the code between the mov
- * and jmpq uses .rodata itself, which can confuse things.
- *
- * TODO: Once we have DWARF CFI and smarter instruction decoding logic,
- * ensure the same register is used in the mov and jump instructions.
- *
- * NOTE: RETPOLINE made it harder still to decode dynamic jumps.
- */
- struct reloc *arch_find_switch_table(struct objtool_file *file,
- struct instruction *insn)
- {
- struct reloc *text_reloc, *rodata_reloc;
- struct section *table_sec;
- unsigned long table_offset;
- /* look for a relocation which references .rodata */
- text_reloc = find_reloc_by_dest_range(file->elf, insn->sec,
- insn->offset, insn->len);
- if (!text_reloc || text_reloc->sym->type != STT_SECTION ||
- !text_reloc->sym->sec->rodata)
- return NULL;
- table_offset = text_reloc->addend;
- table_sec = text_reloc->sym->sec;
- if (text_reloc->type == R_X86_64_PC32)
- table_offset += 4;
- /*
- * Make sure the .rodata address isn't associated with a
- * symbol. GCC jump tables are anonymous data.
- *
- * Also support C jump tables which are in the same format as
- * switch jump tables. For objtool to recognize them, they
- * need to be placed in the C_JUMP_TABLE_SECTION section. They
- * have symbols associated with them.
- */
- if (find_symbol_containing(table_sec, table_offset) &&
- strcmp(table_sec->name, C_JUMP_TABLE_SECTION))
- return NULL;
- /*
- * Each table entry has a rela associated with it. The rela
- * should reference text in the same function as the original
- * instruction.
- */
- rodata_reloc = find_reloc_by_dest(file->elf, table_sec, table_offset);
- if (!rodata_reloc)
- return NULL;
- /*
- * Use of RIP-relative switch jumps is quite rare, and
- * indicates a rare GCC quirk/bug which can leave dead
- * code behind.
- */
- if (text_reloc->type == R_X86_64_PC32)
- file->ignore_unreachables = true;
- return rodata_reloc;
- }
|