rz-ssi.c 27 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085
  1. // SPDX-License-Identifier: GPL-2.0
  2. //
  3. // Renesas RZ/G2L ASoC Serial Sound Interface (SSIF-2) Driver
  4. //
  5. // Copyright (C) 2021 Renesas Electronics Corp.
  6. // Copyright (C) 2019 Chris Brandt.
  7. //
  8. #include <linux/clk.h>
  9. #include <linux/dmaengine.h>
  10. #include <linux/io.h>
  11. #include <linux/module.h>
  12. #include <linux/of_device.h>
  13. #include <linux/pm_runtime.h>
  14. #include <linux/reset.h>
  15. #include <sound/soc.h>
  16. /* REGISTER OFFSET */
  17. #define SSICR 0x000
  18. #define SSISR 0x004
  19. #define SSIFCR 0x010
  20. #define SSIFSR 0x014
  21. #define SSIFTDR 0x018
  22. #define SSIFRDR 0x01c
  23. #define SSIOFR 0x020
  24. #define SSISCR 0x024
  25. /* SSI REGISTER BITS */
  26. #define SSICR_DWL(x) (((x) & 0x7) << 19)
  27. #define SSICR_SWL(x) (((x) & 0x7) << 16)
  28. #define SSICR_CKS BIT(30)
  29. #define SSICR_TUIEN BIT(29)
  30. #define SSICR_TOIEN BIT(28)
  31. #define SSICR_RUIEN BIT(27)
  32. #define SSICR_ROIEN BIT(26)
  33. #define SSICR_MST BIT(14)
  34. #define SSICR_BCKP BIT(13)
  35. #define SSICR_LRCKP BIT(12)
  36. #define SSICR_CKDV(x) (((x) & 0xf) << 4)
  37. #define SSICR_TEN BIT(1)
  38. #define SSICR_REN BIT(0)
  39. #define SSISR_TUIRQ BIT(29)
  40. #define SSISR_TOIRQ BIT(28)
  41. #define SSISR_RUIRQ BIT(27)
  42. #define SSISR_ROIRQ BIT(26)
  43. #define SSISR_IIRQ BIT(25)
  44. #define SSIFCR_AUCKE BIT(31)
  45. #define SSIFCR_SSIRST BIT(16)
  46. #define SSIFCR_TIE BIT(3)
  47. #define SSIFCR_RIE BIT(2)
  48. #define SSIFCR_TFRST BIT(1)
  49. #define SSIFCR_RFRST BIT(0)
  50. #define SSIFSR_TDC_MASK 0x3f
  51. #define SSIFSR_TDC_SHIFT 24
  52. #define SSIFSR_RDC_MASK 0x3f
  53. #define SSIFSR_RDC_SHIFT 8
  54. #define SSIFSR_TDE BIT(16)
  55. #define SSIFSR_RDF BIT(0)
  56. #define SSIOFR_LRCONT BIT(8)
  57. #define SSISCR_TDES(x) (((x) & 0x1f) << 8)
  58. #define SSISCR_RDFS(x) (((x) & 0x1f) << 0)
  59. /* Pre allocated buffers sizes */
  60. #define PREALLOC_BUFFER (SZ_32K)
  61. #define PREALLOC_BUFFER_MAX (SZ_32K)
  62. #define SSI_RATES SNDRV_PCM_RATE_8000_48000 /* 8k-44.1kHz */
  63. #define SSI_FMTS SNDRV_PCM_FMTBIT_S16_LE
  64. #define SSI_CHAN_MIN 2
  65. #define SSI_CHAN_MAX 2
  66. #define SSI_FIFO_DEPTH 32
  67. struct rz_ssi_priv;
  68. struct rz_ssi_stream {
  69. struct rz_ssi_priv *priv;
  70. struct snd_pcm_substream *substream;
  71. int fifo_sample_size; /* sample capacity of SSI FIFO */
  72. int dma_buffer_pos; /* The address for the next DMA descriptor */
  73. int period_counter; /* for keeping track of periods transferred */
  74. int sample_width;
  75. int buffer_pos; /* current frame position in the buffer */
  76. int running; /* 0=stopped, 1=running */
  77. int uerr_num;
  78. int oerr_num;
  79. struct dma_chan *dma_ch;
  80. int (*transfer)(struct rz_ssi_priv *ssi, struct rz_ssi_stream *strm);
  81. };
  82. struct rz_ssi_priv {
  83. void __iomem *base;
  84. struct platform_device *pdev;
  85. struct reset_control *rstc;
  86. struct device *dev;
  87. struct clk *sfr_clk;
  88. struct clk *clk;
  89. phys_addr_t phys;
  90. int irq_int;
  91. int irq_tx;
  92. int irq_rx;
  93. spinlock_t lock;
  94. /*
  95. * The SSI supports full-duplex transmission and reception.
  96. * However, if an error occurs, channel reset (both transmission
  97. * and reception reset) is required.
  98. * So it is better to use as half-duplex (playing and recording
  99. * should be done on separate channels).
  100. */
  101. struct rz_ssi_stream playback;
  102. struct rz_ssi_stream capture;
  103. /* clock */
  104. unsigned long audio_mck;
  105. unsigned long audio_clk_1;
  106. unsigned long audio_clk_2;
  107. bool lrckp_fsync_fall; /* LR clock polarity (SSICR.LRCKP) */
  108. bool bckp_rise; /* Bit clock polarity (SSICR.BCKP) */
  109. bool dma_rt;
  110. };
  111. static void rz_ssi_dma_complete(void *data);
  112. static void rz_ssi_reg_writel(struct rz_ssi_priv *priv, uint reg, u32 data)
  113. {
  114. writel(data, (priv->base + reg));
  115. }
  116. static u32 rz_ssi_reg_readl(struct rz_ssi_priv *priv, uint reg)
  117. {
  118. return readl(priv->base + reg);
  119. }
  120. static void rz_ssi_reg_mask_setl(struct rz_ssi_priv *priv, uint reg,
  121. u32 bclr, u32 bset)
  122. {
  123. u32 val;
  124. val = readl(priv->base + reg);
  125. val = (val & ~bclr) | bset;
  126. writel(val, (priv->base + reg));
  127. }
  128. static inline struct snd_soc_dai *
  129. rz_ssi_get_dai(struct snd_pcm_substream *substream)
  130. {
  131. struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
  132. return asoc_rtd_to_cpu(rtd, 0);
  133. }
  134. static inline bool rz_ssi_stream_is_play(struct rz_ssi_priv *ssi,
  135. struct snd_pcm_substream *substream)
  136. {
  137. return substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
  138. }
  139. static inline struct rz_ssi_stream *
  140. rz_ssi_stream_get(struct rz_ssi_priv *ssi, struct snd_pcm_substream *substream)
  141. {
  142. struct rz_ssi_stream *stream = &ssi->playback;
  143. if (substream->stream != SNDRV_PCM_STREAM_PLAYBACK)
  144. stream = &ssi->capture;
  145. return stream;
  146. }
  147. static inline bool rz_ssi_is_dma_enabled(struct rz_ssi_priv *ssi)
  148. {
  149. return (ssi->playback.dma_ch && (ssi->dma_rt || ssi->capture.dma_ch));
  150. }
  151. static void rz_ssi_set_substream(struct rz_ssi_stream *strm,
  152. struct snd_pcm_substream *substream)
  153. {
  154. struct rz_ssi_priv *ssi = strm->priv;
  155. unsigned long flags;
  156. spin_lock_irqsave(&ssi->lock, flags);
  157. strm->substream = substream;
  158. spin_unlock_irqrestore(&ssi->lock, flags);
  159. }
  160. static bool rz_ssi_stream_is_valid(struct rz_ssi_priv *ssi,
  161. struct rz_ssi_stream *strm)
  162. {
  163. unsigned long flags;
  164. bool ret;
  165. spin_lock_irqsave(&ssi->lock, flags);
  166. ret = strm->substream && strm->substream->runtime;
  167. spin_unlock_irqrestore(&ssi->lock, flags);
  168. return ret;
  169. }
  170. static void rz_ssi_stream_init(struct rz_ssi_stream *strm,
  171. struct snd_pcm_substream *substream)
  172. {
  173. struct snd_pcm_runtime *runtime = substream->runtime;
  174. rz_ssi_set_substream(strm, substream);
  175. strm->sample_width = samples_to_bytes(runtime, 1);
  176. strm->dma_buffer_pos = 0;
  177. strm->period_counter = 0;
  178. strm->buffer_pos = 0;
  179. strm->oerr_num = 0;
  180. strm->uerr_num = 0;
  181. strm->running = 0;
  182. /* fifo init */
  183. strm->fifo_sample_size = SSI_FIFO_DEPTH;
  184. }
  185. static void rz_ssi_stream_quit(struct rz_ssi_priv *ssi,
  186. struct rz_ssi_stream *strm)
  187. {
  188. struct snd_soc_dai *dai = rz_ssi_get_dai(strm->substream);
  189. rz_ssi_set_substream(strm, NULL);
  190. if (strm->oerr_num > 0)
  191. dev_info(dai->dev, "overrun = %d\n", strm->oerr_num);
  192. if (strm->uerr_num > 0)
  193. dev_info(dai->dev, "underrun = %d\n", strm->uerr_num);
  194. }
  195. static int rz_ssi_clk_setup(struct rz_ssi_priv *ssi, unsigned int rate,
  196. unsigned int channels)
  197. {
  198. static s8 ckdv[16] = { 1, 2, 4, 8, 16, 32, 64, 128,
  199. 6, 12, 24, 48, 96, -1, -1, -1 };
  200. unsigned int channel_bits = 32; /* System Word Length */
  201. unsigned long bclk_rate = rate * channels * channel_bits;
  202. unsigned int div;
  203. unsigned int i;
  204. u32 ssicr = 0;
  205. u32 clk_ckdv;
  206. /* Clear AUCKE so we can set MST */
  207. rz_ssi_reg_writel(ssi, SSIFCR, 0);
  208. /* Continue to output LRCK pin even when idle */
  209. rz_ssi_reg_writel(ssi, SSIOFR, SSIOFR_LRCONT);
  210. if (ssi->audio_clk_1 && ssi->audio_clk_2) {
  211. if (ssi->audio_clk_1 % bclk_rate)
  212. ssi->audio_mck = ssi->audio_clk_2;
  213. else
  214. ssi->audio_mck = ssi->audio_clk_1;
  215. }
  216. /* Clock setting */
  217. ssicr |= SSICR_MST;
  218. if (ssi->audio_mck == ssi->audio_clk_1)
  219. ssicr |= SSICR_CKS;
  220. if (ssi->bckp_rise)
  221. ssicr |= SSICR_BCKP;
  222. if (ssi->lrckp_fsync_fall)
  223. ssicr |= SSICR_LRCKP;
  224. /* Determine the clock divider */
  225. clk_ckdv = 0;
  226. div = ssi->audio_mck / bclk_rate;
  227. /* try to find an match */
  228. for (i = 0; i < ARRAY_SIZE(ckdv); i++) {
  229. if (ckdv[i] == div) {
  230. clk_ckdv = i;
  231. break;
  232. }
  233. }
  234. if (i == ARRAY_SIZE(ckdv)) {
  235. dev_err(ssi->dev, "Rate not divisible by audio clock source\n");
  236. return -EINVAL;
  237. }
  238. /*
  239. * DWL: Data Word Length = 16 bits
  240. * SWL: System Word Length = 32 bits
  241. */
  242. ssicr |= SSICR_CKDV(clk_ckdv);
  243. ssicr |= SSICR_DWL(1) | SSICR_SWL(3);
  244. rz_ssi_reg_writel(ssi, SSICR, ssicr);
  245. rz_ssi_reg_writel(ssi, SSIFCR,
  246. (SSIFCR_AUCKE | SSIFCR_TFRST | SSIFCR_RFRST));
  247. return 0;
  248. }
  249. static int rz_ssi_start(struct rz_ssi_priv *ssi, struct rz_ssi_stream *strm)
  250. {
  251. bool is_play = rz_ssi_stream_is_play(ssi, strm->substream);
  252. u32 ssicr, ssifcr;
  253. ssicr = rz_ssi_reg_readl(ssi, SSICR);
  254. ssifcr = rz_ssi_reg_readl(ssi, SSIFCR) & ~0xF;
  255. /* FIFO interrupt thresholds */
  256. if (rz_ssi_is_dma_enabled(ssi))
  257. rz_ssi_reg_writel(ssi, SSISCR, 0);
  258. else
  259. rz_ssi_reg_writel(ssi, SSISCR,
  260. SSISCR_TDES(strm->fifo_sample_size / 2 - 1) |
  261. SSISCR_RDFS(0));
  262. /* enable IRQ */
  263. if (is_play) {
  264. ssicr |= SSICR_TUIEN | SSICR_TOIEN;
  265. ssifcr |= SSIFCR_TIE | SSIFCR_RFRST;
  266. } else {
  267. ssicr |= SSICR_RUIEN | SSICR_ROIEN;
  268. ssifcr |= SSIFCR_RIE | SSIFCR_TFRST;
  269. }
  270. rz_ssi_reg_writel(ssi, SSICR, ssicr);
  271. rz_ssi_reg_writel(ssi, SSIFCR, ssifcr);
  272. /* Clear all error flags */
  273. rz_ssi_reg_mask_setl(ssi, SSISR,
  274. (SSISR_TOIRQ | SSISR_TUIRQ | SSISR_ROIRQ |
  275. SSISR_RUIRQ), 0);
  276. strm->running = 1;
  277. ssicr |= is_play ? SSICR_TEN : SSICR_REN;
  278. rz_ssi_reg_writel(ssi, SSICR, ssicr);
  279. return 0;
  280. }
  281. static int rz_ssi_stop(struct rz_ssi_priv *ssi, struct rz_ssi_stream *strm)
  282. {
  283. int timeout;
  284. strm->running = 0;
  285. /* Disable TX/RX */
  286. rz_ssi_reg_mask_setl(ssi, SSICR, SSICR_TEN | SSICR_REN, 0);
  287. /* Cancel all remaining DMA transactions */
  288. if (rz_ssi_is_dma_enabled(ssi))
  289. dmaengine_terminate_async(strm->dma_ch);
  290. /* Disable irqs */
  291. rz_ssi_reg_mask_setl(ssi, SSICR, SSICR_TUIEN | SSICR_TOIEN |
  292. SSICR_RUIEN | SSICR_ROIEN, 0);
  293. rz_ssi_reg_mask_setl(ssi, SSIFCR, SSIFCR_TIE | SSIFCR_RIE, 0);
  294. /* Clear all error flags */
  295. rz_ssi_reg_mask_setl(ssi, SSISR,
  296. (SSISR_TOIRQ | SSISR_TUIRQ | SSISR_ROIRQ |
  297. SSISR_RUIRQ), 0);
  298. /* Wait for idle */
  299. timeout = 100;
  300. while (--timeout) {
  301. if (rz_ssi_reg_readl(ssi, SSISR) & SSISR_IIRQ)
  302. break;
  303. udelay(1);
  304. }
  305. if (!timeout)
  306. dev_info(ssi->dev, "timeout waiting for SSI idle\n");
  307. /* Hold FIFOs in reset */
  308. rz_ssi_reg_mask_setl(ssi, SSIFCR, 0,
  309. SSIFCR_TFRST | SSIFCR_RFRST);
  310. return 0;
  311. }
  312. static void rz_ssi_pointer_update(struct rz_ssi_stream *strm, int frames)
  313. {
  314. struct snd_pcm_substream *substream = strm->substream;
  315. struct snd_pcm_runtime *runtime;
  316. int current_period;
  317. if (!strm->running || !substream || !substream->runtime)
  318. return;
  319. runtime = substream->runtime;
  320. strm->buffer_pos += frames;
  321. WARN_ON(strm->buffer_pos > runtime->buffer_size);
  322. /* ring buffer */
  323. if (strm->buffer_pos == runtime->buffer_size)
  324. strm->buffer_pos = 0;
  325. current_period = strm->buffer_pos / runtime->period_size;
  326. if (strm->period_counter != current_period) {
  327. snd_pcm_period_elapsed(strm->substream);
  328. strm->period_counter = current_period;
  329. }
  330. }
  331. static int rz_ssi_pio_recv(struct rz_ssi_priv *ssi, struct rz_ssi_stream *strm)
  332. {
  333. struct snd_pcm_substream *substream = strm->substream;
  334. struct snd_pcm_runtime *runtime;
  335. u16 *buf;
  336. int fifo_samples;
  337. int frames_left;
  338. int samples;
  339. int i;
  340. if (!rz_ssi_stream_is_valid(ssi, strm))
  341. return -EINVAL;
  342. runtime = substream->runtime;
  343. do {
  344. /* frames left in this period */
  345. frames_left = runtime->period_size -
  346. (strm->buffer_pos % runtime->period_size);
  347. if (!frames_left)
  348. frames_left = runtime->period_size;
  349. /* Samples in RX FIFO */
  350. fifo_samples = (rz_ssi_reg_readl(ssi, SSIFSR) >>
  351. SSIFSR_RDC_SHIFT) & SSIFSR_RDC_MASK;
  352. /* Only read full frames at a time */
  353. samples = 0;
  354. while (frames_left && (fifo_samples >= runtime->channels)) {
  355. samples += runtime->channels;
  356. fifo_samples -= runtime->channels;
  357. frames_left--;
  358. }
  359. /* not enough samples yet */
  360. if (!samples)
  361. break;
  362. /* calculate new buffer index */
  363. buf = (u16 *)runtime->dma_area;
  364. buf += strm->buffer_pos * runtime->channels;
  365. /* Note, only supports 16-bit samples */
  366. for (i = 0; i < samples; i++)
  367. *buf++ = (u16)(rz_ssi_reg_readl(ssi, SSIFRDR) >> 16);
  368. rz_ssi_reg_mask_setl(ssi, SSIFSR, SSIFSR_RDF, 0);
  369. rz_ssi_pointer_update(strm, samples / runtime->channels);
  370. } while (!frames_left && fifo_samples >= runtime->channels);
  371. return 0;
  372. }
  373. static int rz_ssi_pio_send(struct rz_ssi_priv *ssi, struct rz_ssi_stream *strm)
  374. {
  375. struct snd_pcm_substream *substream = strm->substream;
  376. struct snd_pcm_runtime *runtime = substream->runtime;
  377. int sample_space;
  378. int samples = 0;
  379. int frames_left;
  380. int i;
  381. u32 ssifsr;
  382. u16 *buf;
  383. if (!rz_ssi_stream_is_valid(ssi, strm))
  384. return -EINVAL;
  385. /* frames left in this period */
  386. frames_left = runtime->period_size - (strm->buffer_pos %
  387. runtime->period_size);
  388. if (frames_left == 0)
  389. frames_left = runtime->period_size;
  390. sample_space = strm->fifo_sample_size;
  391. ssifsr = rz_ssi_reg_readl(ssi, SSIFSR);
  392. sample_space -= (ssifsr >> SSIFSR_TDC_SHIFT) & SSIFSR_TDC_MASK;
  393. /* Only add full frames at a time */
  394. while (frames_left && (sample_space >= runtime->channels)) {
  395. samples += runtime->channels;
  396. sample_space -= runtime->channels;
  397. frames_left--;
  398. }
  399. /* no space to send anything right now */
  400. if (samples == 0)
  401. return 0;
  402. /* calculate new buffer index */
  403. buf = (u16 *)(runtime->dma_area);
  404. buf += strm->buffer_pos * runtime->channels;
  405. /* Note, only supports 16-bit samples */
  406. for (i = 0; i < samples; i++)
  407. rz_ssi_reg_writel(ssi, SSIFTDR, ((u32)(*buf++) << 16));
  408. rz_ssi_reg_mask_setl(ssi, SSIFSR, SSIFSR_TDE, 0);
  409. rz_ssi_pointer_update(strm, samples / runtime->channels);
  410. return 0;
  411. }
  412. static irqreturn_t rz_ssi_interrupt(int irq, void *data)
  413. {
  414. struct rz_ssi_stream *strm = NULL;
  415. struct rz_ssi_priv *ssi = data;
  416. u32 ssisr = rz_ssi_reg_readl(ssi, SSISR);
  417. if (ssi->playback.substream)
  418. strm = &ssi->playback;
  419. else if (ssi->capture.substream)
  420. strm = &ssi->capture;
  421. else
  422. return IRQ_HANDLED; /* Left over TX/RX interrupt */
  423. if (irq == ssi->irq_int) { /* error or idle */
  424. if (ssisr & SSISR_TUIRQ)
  425. strm->uerr_num++;
  426. if (ssisr & SSISR_TOIRQ)
  427. strm->oerr_num++;
  428. if (ssisr & SSISR_RUIRQ)
  429. strm->uerr_num++;
  430. if (ssisr & SSISR_ROIRQ)
  431. strm->oerr_num++;
  432. if (ssisr & (SSISR_TUIRQ | SSISR_TOIRQ | SSISR_RUIRQ |
  433. SSISR_ROIRQ)) {
  434. /* Error handling */
  435. /* You must reset (stop/restart) after each interrupt */
  436. rz_ssi_stop(ssi, strm);
  437. /* Clear all flags */
  438. rz_ssi_reg_mask_setl(ssi, SSISR, SSISR_TOIRQ |
  439. SSISR_TUIRQ | SSISR_ROIRQ |
  440. SSISR_RUIRQ, 0);
  441. /* Add/remove more data */
  442. strm->transfer(ssi, strm);
  443. /* Resume */
  444. rz_ssi_start(ssi, strm);
  445. }
  446. }
  447. if (!strm->running)
  448. return IRQ_HANDLED;
  449. /* tx data empty */
  450. if (irq == ssi->irq_tx)
  451. strm->transfer(ssi, &ssi->playback);
  452. /* rx data full */
  453. if (irq == ssi->irq_rx) {
  454. strm->transfer(ssi, &ssi->capture);
  455. rz_ssi_reg_mask_setl(ssi, SSIFSR, SSIFSR_RDF, 0);
  456. }
  457. return IRQ_HANDLED;
  458. }
  459. static int rz_ssi_dma_slave_config(struct rz_ssi_priv *ssi,
  460. struct dma_chan *dma_ch, bool is_play)
  461. {
  462. struct dma_slave_config cfg;
  463. memset(&cfg, 0, sizeof(cfg));
  464. cfg.direction = is_play ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM;
  465. cfg.dst_addr = ssi->phys + SSIFTDR;
  466. cfg.src_addr = ssi->phys + SSIFRDR;
  467. cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
  468. cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
  469. return dmaengine_slave_config(dma_ch, &cfg);
  470. }
  471. static int rz_ssi_dma_transfer(struct rz_ssi_priv *ssi,
  472. struct rz_ssi_stream *strm)
  473. {
  474. struct snd_pcm_substream *substream = strm->substream;
  475. struct dma_async_tx_descriptor *desc;
  476. struct snd_pcm_runtime *runtime;
  477. enum dma_transfer_direction dir;
  478. u32 dma_paddr, dma_size;
  479. int amount;
  480. if (!rz_ssi_stream_is_valid(ssi, strm))
  481. return -EINVAL;
  482. runtime = substream->runtime;
  483. if (runtime->state == SNDRV_PCM_STATE_DRAINING)
  484. /*
  485. * Stream is ending, so do not queue up any more DMA
  486. * transfers otherwise we play partial sound clips
  487. * because we can't shut off the DMA quick enough.
  488. */
  489. return 0;
  490. dir = rz_ssi_stream_is_play(ssi, substream) ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM;
  491. /* Always transfer 1 period */
  492. amount = runtime->period_size;
  493. /* DMA physical address and size */
  494. dma_paddr = runtime->dma_addr + frames_to_bytes(runtime,
  495. strm->dma_buffer_pos);
  496. dma_size = frames_to_bytes(runtime, amount);
  497. desc = dmaengine_prep_slave_single(strm->dma_ch, dma_paddr, dma_size,
  498. dir,
  499. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  500. if (!desc) {
  501. dev_err(ssi->dev, "dmaengine_prep_slave_single() fail\n");
  502. return -ENOMEM;
  503. }
  504. desc->callback = rz_ssi_dma_complete;
  505. desc->callback_param = strm;
  506. if (dmaengine_submit(desc) < 0) {
  507. dev_err(ssi->dev, "dmaengine_submit() fail\n");
  508. return -EIO;
  509. }
  510. /* Update DMA pointer */
  511. strm->dma_buffer_pos += amount;
  512. if (strm->dma_buffer_pos >= runtime->buffer_size)
  513. strm->dma_buffer_pos = 0;
  514. /* Start DMA */
  515. dma_async_issue_pending(strm->dma_ch);
  516. return 0;
  517. }
  518. static void rz_ssi_dma_complete(void *data)
  519. {
  520. struct rz_ssi_stream *strm = (struct rz_ssi_stream *)data;
  521. if (!strm->running || !strm->substream || !strm->substream->runtime)
  522. return;
  523. /* Note that next DMA transaction has probably already started */
  524. rz_ssi_pointer_update(strm, strm->substream->runtime->period_size);
  525. /* Queue up another DMA transaction */
  526. rz_ssi_dma_transfer(strm->priv, strm);
  527. }
  528. static void rz_ssi_release_dma_channels(struct rz_ssi_priv *ssi)
  529. {
  530. if (ssi->playback.dma_ch) {
  531. dma_release_channel(ssi->playback.dma_ch);
  532. ssi->playback.dma_ch = NULL;
  533. if (ssi->dma_rt)
  534. ssi->dma_rt = false;
  535. }
  536. if (ssi->capture.dma_ch) {
  537. dma_release_channel(ssi->capture.dma_ch);
  538. ssi->capture.dma_ch = NULL;
  539. }
  540. }
  541. static int rz_ssi_dma_request(struct rz_ssi_priv *ssi, struct device *dev)
  542. {
  543. ssi->playback.dma_ch = dma_request_chan(dev, "tx");
  544. if (IS_ERR(ssi->playback.dma_ch))
  545. ssi->playback.dma_ch = NULL;
  546. ssi->capture.dma_ch = dma_request_chan(dev, "rx");
  547. if (IS_ERR(ssi->capture.dma_ch))
  548. ssi->capture.dma_ch = NULL;
  549. if (!ssi->playback.dma_ch && !ssi->capture.dma_ch) {
  550. ssi->playback.dma_ch = dma_request_chan(dev, "rt");
  551. if (IS_ERR(ssi->playback.dma_ch)) {
  552. ssi->playback.dma_ch = NULL;
  553. goto no_dma;
  554. }
  555. ssi->dma_rt = true;
  556. }
  557. if (!rz_ssi_is_dma_enabled(ssi))
  558. goto no_dma;
  559. if (ssi->playback.dma_ch &&
  560. (rz_ssi_dma_slave_config(ssi, ssi->playback.dma_ch, true) < 0))
  561. goto no_dma;
  562. if (ssi->capture.dma_ch &&
  563. (rz_ssi_dma_slave_config(ssi, ssi->capture.dma_ch, false) < 0))
  564. goto no_dma;
  565. return 0;
  566. no_dma:
  567. rz_ssi_release_dma_channels(ssi);
  568. return -ENODEV;
  569. }
  570. static int rz_ssi_dai_trigger(struct snd_pcm_substream *substream, int cmd,
  571. struct snd_soc_dai *dai)
  572. {
  573. struct rz_ssi_priv *ssi = snd_soc_dai_get_drvdata(dai);
  574. struct rz_ssi_stream *strm = rz_ssi_stream_get(ssi, substream);
  575. int ret = 0, i, num_transfer = 1;
  576. switch (cmd) {
  577. case SNDRV_PCM_TRIGGER_START:
  578. /* Soft Reset */
  579. rz_ssi_reg_mask_setl(ssi, SSIFCR, 0, SSIFCR_SSIRST);
  580. rz_ssi_reg_mask_setl(ssi, SSIFCR, SSIFCR_SSIRST, 0);
  581. udelay(5);
  582. rz_ssi_stream_init(strm, substream);
  583. if (ssi->dma_rt) {
  584. bool is_playback;
  585. is_playback = rz_ssi_stream_is_play(ssi, substream);
  586. ret = rz_ssi_dma_slave_config(ssi, ssi->playback.dma_ch,
  587. is_playback);
  588. /* Fallback to pio */
  589. if (ret < 0) {
  590. ssi->playback.transfer = rz_ssi_pio_send;
  591. ssi->capture.transfer = rz_ssi_pio_recv;
  592. rz_ssi_release_dma_channels(ssi);
  593. }
  594. }
  595. /* For DMA, queue up multiple DMA descriptors */
  596. if (rz_ssi_is_dma_enabled(ssi))
  597. num_transfer = 4;
  598. for (i = 0; i < num_transfer; i++) {
  599. ret = strm->transfer(ssi, strm);
  600. if (ret)
  601. goto done;
  602. }
  603. ret = rz_ssi_start(ssi, strm);
  604. break;
  605. case SNDRV_PCM_TRIGGER_STOP:
  606. rz_ssi_stop(ssi, strm);
  607. rz_ssi_stream_quit(ssi, strm);
  608. break;
  609. }
  610. done:
  611. return ret;
  612. }
  613. static int rz_ssi_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
  614. {
  615. struct rz_ssi_priv *ssi = snd_soc_dai_get_drvdata(dai);
  616. switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
  617. case SND_SOC_DAIFMT_BP_FP:
  618. break;
  619. default:
  620. dev_err(ssi->dev, "Codec should be clk and frame consumer\n");
  621. return -EINVAL;
  622. }
  623. /*
  624. * set clock polarity
  625. *
  626. * "normal" BCLK = Signal is available at rising edge of BCLK
  627. * "normal" FSYNC = (I2S) Left ch starts with falling FSYNC edge
  628. */
  629. switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
  630. case SND_SOC_DAIFMT_NB_NF:
  631. ssi->bckp_rise = false;
  632. ssi->lrckp_fsync_fall = false;
  633. break;
  634. case SND_SOC_DAIFMT_NB_IF:
  635. ssi->bckp_rise = false;
  636. ssi->lrckp_fsync_fall = true;
  637. break;
  638. case SND_SOC_DAIFMT_IB_NF:
  639. ssi->bckp_rise = true;
  640. ssi->lrckp_fsync_fall = false;
  641. break;
  642. case SND_SOC_DAIFMT_IB_IF:
  643. ssi->bckp_rise = true;
  644. ssi->lrckp_fsync_fall = true;
  645. break;
  646. default:
  647. return -EINVAL;
  648. }
  649. /* only i2s support */
  650. switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
  651. case SND_SOC_DAIFMT_I2S:
  652. break;
  653. default:
  654. dev_err(ssi->dev, "Only I2S mode is supported.\n");
  655. return -EINVAL;
  656. }
  657. return 0;
  658. }
  659. static int rz_ssi_dai_hw_params(struct snd_pcm_substream *substream,
  660. struct snd_pcm_hw_params *params,
  661. struct snd_soc_dai *dai)
  662. {
  663. struct rz_ssi_priv *ssi = snd_soc_dai_get_drvdata(dai);
  664. unsigned int sample_bits = hw_param_interval(params,
  665. SNDRV_PCM_HW_PARAM_SAMPLE_BITS)->min;
  666. unsigned int channels = params_channels(params);
  667. if (sample_bits != 16) {
  668. dev_err(ssi->dev, "Unsupported sample width: %d\n",
  669. sample_bits);
  670. return -EINVAL;
  671. }
  672. if (channels != 2) {
  673. dev_err(ssi->dev, "Number of channels not matched: %d\n",
  674. channels);
  675. return -EINVAL;
  676. }
  677. return rz_ssi_clk_setup(ssi, params_rate(params),
  678. params_channels(params));
  679. }
  680. static const struct snd_soc_dai_ops rz_ssi_dai_ops = {
  681. .trigger = rz_ssi_dai_trigger,
  682. .set_fmt = rz_ssi_dai_set_fmt,
  683. .hw_params = rz_ssi_dai_hw_params,
  684. };
  685. static const struct snd_pcm_hardware rz_ssi_pcm_hardware = {
  686. .info = SNDRV_PCM_INFO_INTERLEAVED |
  687. SNDRV_PCM_INFO_MMAP |
  688. SNDRV_PCM_INFO_MMAP_VALID,
  689. .buffer_bytes_max = PREALLOC_BUFFER,
  690. .period_bytes_min = 32,
  691. .period_bytes_max = 8192,
  692. .channels_min = SSI_CHAN_MIN,
  693. .channels_max = SSI_CHAN_MAX,
  694. .periods_min = 1,
  695. .periods_max = 32,
  696. .fifo_size = 32 * 2,
  697. };
  698. static int rz_ssi_pcm_open(struct snd_soc_component *component,
  699. struct snd_pcm_substream *substream)
  700. {
  701. snd_soc_set_runtime_hwparams(substream, &rz_ssi_pcm_hardware);
  702. return snd_pcm_hw_constraint_integer(substream->runtime,
  703. SNDRV_PCM_HW_PARAM_PERIODS);
  704. }
  705. static snd_pcm_uframes_t rz_ssi_pcm_pointer(struct snd_soc_component *component,
  706. struct snd_pcm_substream *substream)
  707. {
  708. struct snd_soc_dai *dai = rz_ssi_get_dai(substream);
  709. struct rz_ssi_priv *ssi = snd_soc_dai_get_drvdata(dai);
  710. struct rz_ssi_stream *strm = rz_ssi_stream_get(ssi, substream);
  711. return strm->buffer_pos;
  712. }
  713. static int rz_ssi_pcm_new(struct snd_soc_component *component,
  714. struct snd_soc_pcm_runtime *rtd)
  715. {
  716. snd_pcm_set_managed_buffer_all(rtd->pcm, SNDRV_DMA_TYPE_DEV,
  717. rtd->card->snd_card->dev,
  718. PREALLOC_BUFFER, PREALLOC_BUFFER_MAX);
  719. return 0;
  720. }
  721. static struct snd_soc_dai_driver rz_ssi_soc_dai[] = {
  722. {
  723. .name = "rz-ssi-dai",
  724. .playback = {
  725. .rates = SSI_RATES,
  726. .formats = SSI_FMTS,
  727. .channels_min = SSI_CHAN_MIN,
  728. .channels_max = SSI_CHAN_MAX,
  729. },
  730. .capture = {
  731. .rates = SSI_RATES,
  732. .formats = SSI_FMTS,
  733. .channels_min = SSI_CHAN_MIN,
  734. .channels_max = SSI_CHAN_MAX,
  735. },
  736. .ops = &rz_ssi_dai_ops,
  737. },
  738. };
  739. static const struct snd_soc_component_driver rz_ssi_soc_component = {
  740. .name = "rz-ssi",
  741. .open = rz_ssi_pcm_open,
  742. .pointer = rz_ssi_pcm_pointer,
  743. .pcm_construct = rz_ssi_pcm_new,
  744. .legacy_dai_naming = 1,
  745. };
  746. static int rz_ssi_probe(struct platform_device *pdev)
  747. {
  748. struct rz_ssi_priv *ssi;
  749. struct clk *audio_clk;
  750. struct resource *res;
  751. int ret;
  752. ssi = devm_kzalloc(&pdev->dev, sizeof(*ssi), GFP_KERNEL);
  753. if (!ssi)
  754. return -ENOMEM;
  755. ssi->pdev = pdev;
  756. ssi->dev = &pdev->dev;
  757. ssi->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
  758. if (IS_ERR(ssi->base))
  759. return PTR_ERR(ssi->base);
  760. ssi->phys = res->start;
  761. ssi->clk = devm_clk_get(&pdev->dev, "ssi");
  762. if (IS_ERR(ssi->clk))
  763. return PTR_ERR(ssi->clk);
  764. ssi->sfr_clk = devm_clk_get(&pdev->dev, "ssi_sfr");
  765. if (IS_ERR(ssi->sfr_clk))
  766. return PTR_ERR(ssi->sfr_clk);
  767. audio_clk = devm_clk_get(&pdev->dev, "audio_clk1");
  768. if (IS_ERR(audio_clk))
  769. return dev_err_probe(&pdev->dev, PTR_ERR(audio_clk),
  770. "no audio clk1");
  771. ssi->audio_clk_1 = clk_get_rate(audio_clk);
  772. audio_clk = devm_clk_get(&pdev->dev, "audio_clk2");
  773. if (IS_ERR(audio_clk))
  774. return dev_err_probe(&pdev->dev, PTR_ERR(audio_clk),
  775. "no audio clk2");
  776. ssi->audio_clk_2 = clk_get_rate(audio_clk);
  777. if (!(ssi->audio_clk_1 || ssi->audio_clk_2))
  778. return dev_err_probe(&pdev->dev, -EINVAL,
  779. "no audio clk1 or audio clk2");
  780. ssi->audio_mck = ssi->audio_clk_1 ? ssi->audio_clk_1 : ssi->audio_clk_2;
  781. /* Detect DMA support */
  782. ret = rz_ssi_dma_request(ssi, &pdev->dev);
  783. if (ret < 0) {
  784. dev_warn(&pdev->dev, "DMA not available, using PIO\n");
  785. ssi->playback.transfer = rz_ssi_pio_send;
  786. ssi->capture.transfer = rz_ssi_pio_recv;
  787. } else {
  788. dev_info(&pdev->dev, "DMA enabled");
  789. ssi->playback.transfer = rz_ssi_dma_transfer;
  790. ssi->capture.transfer = rz_ssi_dma_transfer;
  791. }
  792. ssi->playback.priv = ssi;
  793. ssi->capture.priv = ssi;
  794. spin_lock_init(&ssi->lock);
  795. dev_set_drvdata(&pdev->dev, ssi);
  796. /* Error Interrupt */
  797. ssi->irq_int = platform_get_irq_byname(pdev, "int_req");
  798. if (ssi->irq_int < 0) {
  799. rz_ssi_release_dma_channels(ssi);
  800. return ssi->irq_int;
  801. }
  802. ret = devm_request_irq(&pdev->dev, ssi->irq_int, &rz_ssi_interrupt,
  803. 0, dev_name(&pdev->dev), ssi);
  804. if (ret < 0) {
  805. rz_ssi_release_dma_channels(ssi);
  806. return dev_err_probe(&pdev->dev, ret,
  807. "irq request error (int_req)\n");
  808. }
  809. if (!rz_ssi_is_dma_enabled(ssi)) {
  810. /* Tx and Rx interrupts (pio only) */
  811. ssi->irq_tx = platform_get_irq_byname(pdev, "dma_tx");
  812. if (ssi->irq_tx < 0)
  813. return ssi->irq_tx;
  814. ret = devm_request_irq(&pdev->dev, ssi->irq_tx,
  815. &rz_ssi_interrupt, 0,
  816. dev_name(&pdev->dev), ssi);
  817. if (ret < 0)
  818. return dev_err_probe(&pdev->dev, ret,
  819. "irq request error (dma_tx)\n");
  820. ssi->irq_rx = platform_get_irq_byname(pdev, "dma_rx");
  821. if (ssi->irq_rx < 0)
  822. return ssi->irq_rx;
  823. ret = devm_request_irq(&pdev->dev, ssi->irq_rx,
  824. &rz_ssi_interrupt, 0,
  825. dev_name(&pdev->dev), ssi);
  826. if (ret < 0)
  827. return dev_err_probe(&pdev->dev, ret,
  828. "irq request error (dma_rx)\n");
  829. }
  830. ssi->rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL);
  831. if (IS_ERR(ssi->rstc)) {
  832. ret = PTR_ERR(ssi->rstc);
  833. goto err_reset;
  834. }
  835. reset_control_deassert(ssi->rstc);
  836. pm_runtime_enable(&pdev->dev);
  837. ret = pm_runtime_resume_and_get(&pdev->dev);
  838. if (ret < 0) {
  839. dev_err(&pdev->dev, "pm_runtime_resume_and_get failed\n");
  840. goto err_pm;
  841. }
  842. ret = devm_snd_soc_register_component(&pdev->dev, &rz_ssi_soc_component,
  843. rz_ssi_soc_dai,
  844. ARRAY_SIZE(rz_ssi_soc_dai));
  845. if (ret < 0) {
  846. dev_err(&pdev->dev, "failed to register snd component\n");
  847. goto err_snd_soc;
  848. }
  849. return 0;
  850. err_snd_soc:
  851. pm_runtime_put(ssi->dev);
  852. err_pm:
  853. pm_runtime_disable(ssi->dev);
  854. reset_control_assert(ssi->rstc);
  855. err_reset:
  856. rz_ssi_release_dma_channels(ssi);
  857. return ret;
  858. }
  859. static int rz_ssi_remove(struct platform_device *pdev)
  860. {
  861. struct rz_ssi_priv *ssi = dev_get_drvdata(&pdev->dev);
  862. rz_ssi_release_dma_channels(ssi);
  863. pm_runtime_put(ssi->dev);
  864. pm_runtime_disable(ssi->dev);
  865. reset_control_assert(ssi->rstc);
  866. return 0;
  867. }
  868. static const struct of_device_id rz_ssi_of_match[] = {
  869. { .compatible = "renesas,rz-ssi", },
  870. {/* Sentinel */},
  871. };
  872. MODULE_DEVICE_TABLE(of, rz_ssi_of_match);
  873. static struct platform_driver rz_ssi_driver = {
  874. .driver = {
  875. .name = "rz-ssi-pcm-audio",
  876. .of_match_table = rz_ssi_of_match,
  877. },
  878. .probe = rz_ssi_probe,
  879. .remove = rz_ssi_remove,
  880. };
  881. module_platform_driver(rz_ssi_driver);
  882. MODULE_LICENSE("GPL v2");
  883. MODULE_DESCRIPTION("Renesas RZ/G2L ASoC Serial Sound Interface Driver");
  884. MODULE_AUTHOR("Biju Das <[email protected]>");