mt8183-dai-adda.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510
  1. // SPDX-License-Identifier: GPL-2.0
  2. //
  3. // MediaTek ALSA SoC Audio DAI ADDA Control
  4. //
  5. // Copyright (c) 2018 MediaTek Inc.
  6. // Author: KaiChieh Chuang <[email protected]>
  7. #include <linux/regmap.h>
  8. #include <linux/delay.h>
  9. #include "mt8183-afe-common.h"
  10. #include "mt8183-interconnection.h"
  11. #include "mt8183-reg.h"
  12. enum {
  13. AUDIO_SDM_LEVEL_MUTE = 0,
  14. AUDIO_SDM_LEVEL_NORMAL = 0x1d,
  15. /* if you change level normal */
  16. /* you need to change formula of hp impedance and dc trim too */
  17. };
  18. enum {
  19. DELAY_DATA_MISO1 = 0,
  20. DELAY_DATA_MISO2,
  21. };
  22. enum {
  23. MTK_AFE_ADDA_DL_RATE_8K = 0,
  24. MTK_AFE_ADDA_DL_RATE_11K = 1,
  25. MTK_AFE_ADDA_DL_RATE_12K = 2,
  26. MTK_AFE_ADDA_DL_RATE_16K = 3,
  27. MTK_AFE_ADDA_DL_RATE_22K = 4,
  28. MTK_AFE_ADDA_DL_RATE_24K = 5,
  29. MTK_AFE_ADDA_DL_RATE_32K = 6,
  30. MTK_AFE_ADDA_DL_RATE_44K = 7,
  31. MTK_AFE_ADDA_DL_RATE_48K = 8,
  32. MTK_AFE_ADDA_DL_RATE_96K = 9,
  33. MTK_AFE_ADDA_DL_RATE_192K = 10,
  34. };
  35. enum {
  36. MTK_AFE_ADDA_UL_RATE_8K = 0,
  37. MTK_AFE_ADDA_UL_RATE_16K = 1,
  38. MTK_AFE_ADDA_UL_RATE_32K = 2,
  39. MTK_AFE_ADDA_UL_RATE_48K = 3,
  40. MTK_AFE_ADDA_UL_RATE_96K = 4,
  41. MTK_AFE_ADDA_UL_RATE_192K = 5,
  42. MTK_AFE_ADDA_UL_RATE_48K_HD = 6,
  43. };
  44. static unsigned int adda_dl_rate_transform(struct mtk_base_afe *afe,
  45. unsigned int rate)
  46. {
  47. switch (rate) {
  48. case 8000:
  49. return MTK_AFE_ADDA_DL_RATE_8K;
  50. case 11025:
  51. return MTK_AFE_ADDA_DL_RATE_11K;
  52. case 12000:
  53. return MTK_AFE_ADDA_DL_RATE_12K;
  54. case 16000:
  55. return MTK_AFE_ADDA_DL_RATE_16K;
  56. case 22050:
  57. return MTK_AFE_ADDA_DL_RATE_22K;
  58. case 24000:
  59. return MTK_AFE_ADDA_DL_RATE_24K;
  60. case 32000:
  61. return MTK_AFE_ADDA_DL_RATE_32K;
  62. case 44100:
  63. return MTK_AFE_ADDA_DL_RATE_44K;
  64. case 48000:
  65. return MTK_AFE_ADDA_DL_RATE_48K;
  66. case 96000:
  67. return MTK_AFE_ADDA_DL_RATE_96K;
  68. case 192000:
  69. return MTK_AFE_ADDA_DL_RATE_192K;
  70. default:
  71. dev_warn(afe->dev, "%s(), rate %d invalid, use 48kHz!!!\n",
  72. __func__, rate);
  73. return MTK_AFE_ADDA_DL_RATE_48K;
  74. }
  75. }
  76. static unsigned int adda_ul_rate_transform(struct mtk_base_afe *afe,
  77. unsigned int rate)
  78. {
  79. switch (rate) {
  80. case 8000:
  81. return MTK_AFE_ADDA_UL_RATE_8K;
  82. case 16000:
  83. return MTK_AFE_ADDA_UL_RATE_16K;
  84. case 32000:
  85. return MTK_AFE_ADDA_UL_RATE_32K;
  86. case 48000:
  87. return MTK_AFE_ADDA_UL_RATE_48K;
  88. case 96000:
  89. return MTK_AFE_ADDA_UL_RATE_96K;
  90. case 192000:
  91. return MTK_AFE_ADDA_UL_RATE_192K;
  92. default:
  93. dev_warn(afe->dev, "%s(), rate %d invalid, use 48kHz!!!\n",
  94. __func__, rate);
  95. return MTK_AFE_ADDA_UL_RATE_48K;
  96. }
  97. }
  98. /* dai component */
  99. static const struct snd_kcontrol_new mtk_adda_dl_ch1_mix[] = {
  100. SOC_DAPM_SINGLE_AUTODISABLE("DL1_CH1", AFE_CONN3, I_DL1_CH1, 1, 0),
  101. SOC_DAPM_SINGLE_AUTODISABLE("DL2_CH1", AFE_CONN3, I_DL2_CH1, 1, 0),
  102. SOC_DAPM_SINGLE_AUTODISABLE("DL3_CH1", AFE_CONN3, I_DL3_CH1, 1, 0),
  103. SOC_DAPM_SINGLE_AUTODISABLE("ADDA_UL_CH2", AFE_CONN3,
  104. I_ADDA_UL_CH2, 1, 0),
  105. SOC_DAPM_SINGLE_AUTODISABLE("ADDA_UL_CH1", AFE_CONN3,
  106. I_ADDA_UL_CH1, 1, 0),
  107. SOC_DAPM_SINGLE_AUTODISABLE("PCM_1_CAP_CH1", AFE_CONN3,
  108. I_PCM_1_CAP_CH1, 1, 0),
  109. SOC_DAPM_SINGLE_AUTODISABLE("PCM_2_CAP_CH1", AFE_CONN3,
  110. I_PCM_2_CAP_CH1, 1, 0),
  111. };
  112. static const struct snd_kcontrol_new mtk_adda_dl_ch2_mix[] = {
  113. SOC_DAPM_SINGLE_AUTODISABLE("DL1_CH1", AFE_CONN4, I_DL1_CH1, 1, 0),
  114. SOC_DAPM_SINGLE_AUTODISABLE("DL1_CH2", AFE_CONN4, I_DL1_CH2, 1, 0),
  115. SOC_DAPM_SINGLE_AUTODISABLE("DL2_CH1", AFE_CONN4, I_DL2_CH1, 1, 0),
  116. SOC_DAPM_SINGLE_AUTODISABLE("DL2_CH2", AFE_CONN4, I_DL2_CH2, 1, 0),
  117. SOC_DAPM_SINGLE_AUTODISABLE("DL3_CH1", AFE_CONN4, I_DL3_CH1, 1, 0),
  118. SOC_DAPM_SINGLE_AUTODISABLE("DL3_CH2", AFE_CONN4, I_DL3_CH2, 1, 0),
  119. SOC_DAPM_SINGLE_AUTODISABLE("ADDA_UL_CH2", AFE_CONN4,
  120. I_ADDA_UL_CH2, 1, 0),
  121. SOC_DAPM_SINGLE_AUTODISABLE("ADDA_UL_CH1", AFE_CONN4,
  122. I_ADDA_UL_CH1, 1, 0),
  123. SOC_DAPM_SINGLE_AUTODISABLE("PCM_1_CAP_CH1", AFE_CONN4,
  124. I_PCM_1_CAP_CH1, 1, 0),
  125. SOC_DAPM_SINGLE_AUTODISABLE("PCM_2_CAP_CH1", AFE_CONN4,
  126. I_PCM_2_CAP_CH1, 1, 0),
  127. SOC_DAPM_SINGLE_AUTODISABLE("PCM_1_CAP_CH2", AFE_CONN4,
  128. I_PCM_1_CAP_CH2, 1, 0),
  129. SOC_DAPM_SINGLE_AUTODISABLE("PCM_2_CAP_CH2", AFE_CONN4,
  130. I_PCM_2_CAP_CH2, 1, 0),
  131. };
  132. static int mtk_adda_ul_event(struct snd_soc_dapm_widget *w,
  133. struct snd_kcontrol *kcontrol,
  134. int event)
  135. {
  136. struct snd_soc_component *cmpnt = snd_soc_dapm_to_component(w->dapm);
  137. struct mtk_base_afe *afe = snd_soc_component_get_drvdata(cmpnt);
  138. struct mt8183_afe_private *afe_priv = afe->platform_priv;
  139. dev_dbg(afe->dev, "%s(), name %s, event 0x%x\n",
  140. __func__, w->name, event);
  141. switch (event) {
  142. case SND_SOC_DAPM_PRE_PMU:
  143. /* update setting to dmic */
  144. if (afe_priv->mtkaif_dmic) {
  145. /* mtkaif_rxif_data_mode = 1, dmic */
  146. regmap_update_bits(afe->regmap, AFE_ADDA_MTKAIF_RX_CFG0,
  147. 0x1, 0x1);
  148. /* dmic mode, 3.25M*/
  149. regmap_update_bits(afe->regmap, AFE_ADDA_MTKAIF_RX_CFG0,
  150. 0x0, 0xf << 20);
  151. regmap_update_bits(afe->regmap, AFE_ADDA_UL_SRC_CON0,
  152. 0x0, 0x1 << 5);
  153. regmap_update_bits(afe->regmap, AFE_ADDA_UL_SRC_CON0,
  154. 0x0, 0x3 << 14);
  155. /* turn on dmic, ch1, ch2 */
  156. regmap_update_bits(afe->regmap, AFE_ADDA_UL_SRC_CON0,
  157. 0x1 << 1, 0x1 << 1);
  158. regmap_update_bits(afe->regmap, AFE_ADDA_UL_SRC_CON0,
  159. 0x3 << 21, 0x3 << 21);
  160. }
  161. break;
  162. case SND_SOC_DAPM_POST_PMD:
  163. /* should delayed 1/fs(smallest is 8k) = 125us before afe off */
  164. usleep_range(125, 135);
  165. break;
  166. default:
  167. break;
  168. }
  169. return 0;
  170. }
  171. /* mtkaif dmic */
  172. static const char * const mt8183_adda_off_on_str[] = {
  173. "Off", "On"
  174. };
  175. static const struct soc_enum mt8183_adda_enum[] = {
  176. SOC_ENUM_SINGLE_EXT(ARRAY_SIZE(mt8183_adda_off_on_str),
  177. mt8183_adda_off_on_str),
  178. };
  179. static int mt8183_adda_dmic_get(struct snd_kcontrol *kcontrol,
  180. struct snd_ctl_elem_value *ucontrol)
  181. {
  182. struct snd_soc_component *cmpnt = snd_soc_kcontrol_component(kcontrol);
  183. struct mtk_base_afe *afe = snd_soc_component_get_drvdata(cmpnt);
  184. struct mt8183_afe_private *afe_priv = afe->platform_priv;
  185. ucontrol->value.integer.value[0] = afe_priv->mtkaif_dmic;
  186. return 0;
  187. }
  188. static int mt8183_adda_dmic_set(struct snd_kcontrol *kcontrol,
  189. struct snd_ctl_elem_value *ucontrol)
  190. {
  191. struct snd_soc_component *cmpnt = snd_soc_kcontrol_component(kcontrol);
  192. struct mtk_base_afe *afe = snd_soc_component_get_drvdata(cmpnt);
  193. struct mt8183_afe_private *afe_priv = afe->platform_priv;
  194. struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
  195. if (ucontrol->value.enumerated.item[0] >= e->items)
  196. return -EINVAL;
  197. afe_priv->mtkaif_dmic = ucontrol->value.integer.value[0];
  198. dev_info(afe->dev, "%s(), kcontrol name %s, mtkaif_dmic %d\n",
  199. __func__, kcontrol->id.name, afe_priv->mtkaif_dmic);
  200. return 0;
  201. }
  202. static const struct snd_kcontrol_new mtk_adda_controls[] = {
  203. SOC_ENUM_EXT("MTKAIF_DMIC", mt8183_adda_enum[0],
  204. mt8183_adda_dmic_get, mt8183_adda_dmic_set),
  205. };
  206. enum {
  207. SUPPLY_SEQ_ADDA_AFE_ON,
  208. SUPPLY_SEQ_ADDA_DL_ON,
  209. SUPPLY_SEQ_ADDA_UL_ON,
  210. };
  211. static const struct snd_soc_dapm_widget mtk_dai_adda_widgets[] = {
  212. /* adda */
  213. SND_SOC_DAPM_MIXER("ADDA_DL_CH1", SND_SOC_NOPM, 0, 0,
  214. mtk_adda_dl_ch1_mix,
  215. ARRAY_SIZE(mtk_adda_dl_ch1_mix)),
  216. SND_SOC_DAPM_MIXER("ADDA_DL_CH2", SND_SOC_NOPM, 0, 0,
  217. mtk_adda_dl_ch2_mix,
  218. ARRAY_SIZE(mtk_adda_dl_ch2_mix)),
  219. SND_SOC_DAPM_SUPPLY_S("ADDA Enable", SUPPLY_SEQ_ADDA_AFE_ON,
  220. AFE_ADDA_UL_DL_CON0, ADDA_AFE_ON_SFT, 0,
  221. NULL, 0),
  222. SND_SOC_DAPM_SUPPLY_S("ADDA Playback Enable", SUPPLY_SEQ_ADDA_DL_ON,
  223. AFE_ADDA_DL_SRC2_CON0,
  224. DL_2_SRC_ON_TMP_CTL_PRE_SFT, 0,
  225. NULL, 0),
  226. SND_SOC_DAPM_SUPPLY_S("ADDA Capture Enable", SUPPLY_SEQ_ADDA_UL_ON,
  227. AFE_ADDA_UL_SRC_CON0,
  228. UL_SRC_ON_TMP_CTL_SFT, 0,
  229. mtk_adda_ul_event,
  230. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  231. SND_SOC_DAPM_CLOCK_SUPPLY("aud_dac_clk"),
  232. SND_SOC_DAPM_CLOCK_SUPPLY("aud_dac_predis_clk"),
  233. SND_SOC_DAPM_CLOCK_SUPPLY("aud_adc_clk"),
  234. SND_SOC_DAPM_CLOCK_SUPPLY("mtkaif_26m_clk"),
  235. };
  236. static const struct snd_soc_dapm_route mtk_dai_adda_routes[] = {
  237. /* playback */
  238. {"ADDA_DL_CH1", "DL1_CH1", "DL1"},
  239. {"ADDA_DL_CH2", "DL1_CH1", "DL1"},
  240. {"ADDA_DL_CH2", "DL1_CH2", "DL1"},
  241. {"ADDA_DL_CH1", "DL2_CH1", "DL2"},
  242. {"ADDA_DL_CH2", "DL2_CH1", "DL2"},
  243. {"ADDA_DL_CH2", "DL2_CH2", "DL2"},
  244. {"ADDA_DL_CH1", "DL3_CH1", "DL3"},
  245. {"ADDA_DL_CH2", "DL3_CH1", "DL3"},
  246. {"ADDA_DL_CH2", "DL3_CH2", "DL3"},
  247. {"ADDA Playback", NULL, "ADDA_DL_CH1"},
  248. {"ADDA Playback", NULL, "ADDA_DL_CH2"},
  249. /* adda enable */
  250. {"ADDA Playback", NULL, "ADDA Enable"},
  251. {"ADDA Playback", NULL, "ADDA Playback Enable"},
  252. {"ADDA Capture", NULL, "ADDA Enable"},
  253. {"ADDA Capture", NULL, "ADDA Capture Enable"},
  254. /* clk */
  255. {"ADDA Playback", NULL, "mtkaif_26m_clk"},
  256. {"ADDA Playback", NULL, "aud_dac_clk"},
  257. {"ADDA Playback", NULL, "aud_dac_predis_clk"},
  258. {"ADDA Capture", NULL, "mtkaif_26m_clk"},
  259. {"ADDA Capture", NULL, "aud_adc_clk"},
  260. };
  261. static int set_mtkaif_rx(struct mtk_base_afe *afe)
  262. {
  263. struct mt8183_afe_private *afe_priv = afe->platform_priv;
  264. int delay_data;
  265. int delay_cycle;
  266. switch (afe_priv->mtkaif_protocol) {
  267. case MT8183_MTKAIF_PROTOCOL_2_CLK_P2:
  268. regmap_write(afe->regmap, AFE_AUD_PAD_TOP, 0x38);
  269. regmap_write(afe->regmap, AFE_AUD_PAD_TOP, 0x39);
  270. /* mtkaif_rxif_clkinv_adc inverse for calibration */
  271. regmap_write(afe->regmap, AFE_ADDA_MTKAIF_CFG0,
  272. 0x80010000);
  273. if (afe_priv->mtkaif_phase_cycle[0] >=
  274. afe_priv->mtkaif_phase_cycle[1]) {
  275. delay_data = DELAY_DATA_MISO1;
  276. delay_cycle = afe_priv->mtkaif_phase_cycle[0] -
  277. afe_priv->mtkaif_phase_cycle[1];
  278. } else {
  279. delay_data = DELAY_DATA_MISO2;
  280. delay_cycle = afe_priv->mtkaif_phase_cycle[1] -
  281. afe_priv->mtkaif_phase_cycle[0];
  282. }
  283. regmap_update_bits(afe->regmap,
  284. AFE_ADDA_MTKAIF_RX_CFG2,
  285. MTKAIF_RXIF_DELAY_DATA_MASK_SFT,
  286. delay_data << MTKAIF_RXIF_DELAY_DATA_SFT);
  287. regmap_update_bits(afe->regmap,
  288. AFE_ADDA_MTKAIF_RX_CFG2,
  289. MTKAIF_RXIF_DELAY_CYCLE_MASK_SFT,
  290. delay_cycle << MTKAIF_RXIF_DELAY_CYCLE_SFT);
  291. break;
  292. case MT8183_MTKAIF_PROTOCOL_2:
  293. regmap_write(afe->regmap, AFE_AUD_PAD_TOP, 0x31);
  294. regmap_write(afe->regmap, AFE_ADDA_MTKAIF_CFG0,
  295. 0x00010000);
  296. break;
  297. case MT8183_MTKAIF_PROTOCOL_1:
  298. regmap_write(afe->regmap, AFE_AUD_PAD_TOP, 0x31);
  299. regmap_write(afe->regmap, AFE_ADDA_MTKAIF_CFG0, 0x0);
  300. break;
  301. default:
  302. break;
  303. }
  304. return 0;
  305. }
  306. /* dai ops */
  307. static int mtk_dai_adda_hw_params(struct snd_pcm_substream *substream,
  308. struct snd_pcm_hw_params *params,
  309. struct snd_soc_dai *dai)
  310. {
  311. struct mtk_base_afe *afe = snd_soc_dai_get_drvdata(dai);
  312. unsigned int rate = params_rate(params);
  313. dev_dbg(afe->dev, "%s(), id %d, stream %d, rate %d\n",
  314. __func__, dai->id, substream->stream, rate);
  315. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
  316. unsigned int dl_src2_con0 = 0;
  317. unsigned int dl_src2_con1 = 0;
  318. /* clean predistortion */
  319. regmap_write(afe->regmap, AFE_ADDA_PREDIS_CON0, 0);
  320. regmap_write(afe->regmap, AFE_ADDA_PREDIS_CON1, 0);
  321. /* set sampling rate */
  322. dl_src2_con0 = adda_dl_rate_transform(afe, rate) << 28;
  323. /* set output mode */
  324. switch (rate) {
  325. case 192000:
  326. dl_src2_con0 |= (0x1 << 24); /* UP_SAMPLING_RATE_X2 */
  327. dl_src2_con0 |= 1 << 14;
  328. break;
  329. case 96000:
  330. dl_src2_con0 |= (0x2 << 24); /* UP_SAMPLING_RATE_X4 */
  331. dl_src2_con0 |= 1 << 14;
  332. break;
  333. default:
  334. dl_src2_con0 |= (0x3 << 24); /* UP_SAMPLING_RATE_X8 */
  335. break;
  336. }
  337. /* turn off mute function */
  338. dl_src2_con0 |= (0x03 << 11);
  339. /* set voice input data if input sample rate is 8k or 16k */
  340. if (rate == 8000 || rate == 16000)
  341. dl_src2_con0 |= 0x01 << 5;
  342. /* SA suggest apply -0.3db to audio/speech path */
  343. dl_src2_con1 = 0xf74f0000;
  344. /* turn on down-link gain */
  345. dl_src2_con0 = dl_src2_con0 | (0x01 << 1);
  346. regmap_write(afe->regmap, AFE_ADDA_DL_SRC2_CON0, dl_src2_con0);
  347. regmap_write(afe->regmap, AFE_ADDA_DL_SRC2_CON1, dl_src2_con1);
  348. /* set sdm gain */
  349. regmap_update_bits(afe->regmap,
  350. AFE_ADDA_DL_SDM_DCCOMP_CON,
  351. ATTGAIN_CTL_MASK_SFT,
  352. AUDIO_SDM_LEVEL_NORMAL << ATTGAIN_CTL_SFT);
  353. } else {
  354. unsigned int voice_mode = 0;
  355. unsigned int ul_src_con0 = 0; /* default value */
  356. /* set mtkaif protocol */
  357. set_mtkaif_rx(afe);
  358. /* Using Internal ADC */
  359. regmap_update_bits(afe->regmap,
  360. AFE_ADDA_TOP_CON0,
  361. 0x1 << 0,
  362. 0x0 << 0);
  363. voice_mode = adda_ul_rate_transform(afe, rate);
  364. ul_src_con0 |= (voice_mode << 17) & (0x7 << 17);
  365. /* enable iir */
  366. ul_src_con0 |= (1 << UL_IIR_ON_TMP_CTL_SFT) &
  367. UL_IIR_ON_TMP_CTL_MASK_SFT;
  368. /* 35Hz @ 48k */
  369. regmap_write(afe->regmap, AFE_ADDA_IIR_COEF_02_01, 0x00000000);
  370. regmap_write(afe->regmap, AFE_ADDA_IIR_COEF_04_03, 0x00003FB8);
  371. regmap_write(afe->regmap, AFE_ADDA_IIR_COEF_06_05, 0x3FB80000);
  372. regmap_write(afe->regmap, AFE_ADDA_IIR_COEF_08_07, 0x3FB80000);
  373. regmap_write(afe->regmap, AFE_ADDA_IIR_COEF_10_09, 0x0000C048);
  374. regmap_write(afe->regmap, AFE_ADDA_UL_SRC_CON0, ul_src_con0);
  375. /* mtkaif_rxif_data_mode = 0, amic */
  376. regmap_update_bits(afe->regmap,
  377. AFE_ADDA_MTKAIF_RX_CFG0,
  378. 0x1 << 0,
  379. 0x0 << 0);
  380. }
  381. return 0;
  382. }
  383. static const struct snd_soc_dai_ops mtk_dai_adda_ops = {
  384. .hw_params = mtk_dai_adda_hw_params,
  385. };
  386. /* dai driver */
  387. #define MTK_ADDA_PLAYBACK_RATES (SNDRV_PCM_RATE_8000_48000 |\
  388. SNDRV_PCM_RATE_96000 |\
  389. SNDRV_PCM_RATE_192000)
  390. #define MTK_ADDA_CAPTURE_RATES (SNDRV_PCM_RATE_8000 |\
  391. SNDRV_PCM_RATE_16000 |\
  392. SNDRV_PCM_RATE_32000 |\
  393. SNDRV_PCM_RATE_48000)
  394. #define MTK_ADDA_FORMATS (SNDRV_PCM_FMTBIT_S16_LE |\
  395. SNDRV_PCM_FMTBIT_S24_LE |\
  396. SNDRV_PCM_FMTBIT_S32_LE)
  397. static struct snd_soc_dai_driver mtk_dai_adda_driver[] = {
  398. {
  399. .name = "ADDA",
  400. .id = MT8183_DAI_ADDA,
  401. .playback = {
  402. .stream_name = "ADDA Playback",
  403. .channels_min = 1,
  404. .channels_max = 2,
  405. .rates = MTK_ADDA_PLAYBACK_RATES,
  406. .formats = MTK_ADDA_FORMATS,
  407. },
  408. .capture = {
  409. .stream_name = "ADDA Capture",
  410. .channels_min = 1,
  411. .channels_max = 2,
  412. .rates = MTK_ADDA_CAPTURE_RATES,
  413. .formats = MTK_ADDA_FORMATS,
  414. },
  415. .ops = &mtk_dai_adda_ops,
  416. },
  417. };
  418. int mt8183_dai_adda_register(struct mtk_base_afe *afe)
  419. {
  420. struct mtk_base_afe_dai *dai;
  421. dai = devm_kzalloc(afe->dev, sizeof(*dai), GFP_KERNEL);
  422. if (!dai)
  423. return -ENOMEM;
  424. list_add(&dai->list, &afe->sub_dais);
  425. dai->dai_drivers = mtk_dai_adda_driver;
  426. dai->num_dai_drivers = ARRAY_SIZE(mtk_dai_adda_driver);
  427. dai->controls = mtk_adda_controls;
  428. dai->num_controls = ARRAY_SIZE(mtk_adda_controls);
  429. dai->dapm_widgets = mtk_dai_adda_widgets;
  430. dai->num_dapm_widgets = ARRAY_SIZE(mtk_dai_adda_widgets);
  431. dai->dapm_routes = mtk_dai_adda_routes;
  432. dai->num_dapm_routes = ARRAY_SIZE(mtk_dai_adda_routes);
  433. return 0;
  434. }